201
|
Cryopreservation of Gametes and Embryos and Their Molecular Changes. Int J Mol Sci 2021; 22:ijms221910864. [PMID: 34639209 PMCID: PMC8509660 DOI: 10.3390/ijms221910864] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
The process of freezing cells or tissues and depositing them in liquid nitrogen at -196 °C is called cryopreservation. Sub-zero temperature is not a physiological condition for cells and water ice crystals represent the main problem since they induce cell death, principally in large cells like oocytes, which have a meiotic spindle that degenerates during this process. Significantly, cryopreservation represents an option for fertility preservation in patients who develop gonadal failure for any condition and those who want to freeze their germ cells for later use. The possibility of freezing sperm, oocytes, and embryos has been available for a long time, and in 1983 the first birth with thawed oocytes was achieved. From the mid-2000s forward, the use of egg vitrification through intracytoplasmic sperm injection has improved pregnancy rates. Births using assisted reproductive technologies (ART) have some adverse conditions and events. These risks could be associated with ART procedures or related to infertility. Cryopreservation generates changes in the epigenome of gametes and embryos, given that ART occurs when the epigenome is most vulnerable. Furthermore, cryoprotective agents induce alterations in the integrity of germ cells and embryos. Notably, cryopreservation extensively affects cell viability, generates proteomic profile changes, compromises crucial cellular functions, and alters sperm motility. This technique has been widely employed since the 1980s and there is a lack of knowledge about molecular changes. The emerging view is that molecular changes are associated with cryopreservation, affecting metabolism, cytoarchitecture, calcium homeostasis, epigenetic state, and cell survival, which compromise the fertilization in ART.
Collapse
|
202
|
Sundaravadivelu PK, Raina K, Thool M, Ray A, Joshi JM, Kaveeshwar V, Sudhagar S, Lenka N, Thummer RP. Tissue-Restricted Stem Cells as Starting Cell Source for Efficient Generation of Pluripotent Stem Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:151-180. [PMID: 34611861 DOI: 10.1007/5584_2021_660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have vast biomedical potential concerning disease modeling, drug screening and discovery, cell therapy, tissue engineering, and understanding organismal development. In the year 2006, a groundbreaking study reported the generation of iPSCs from mouse embryonic fibroblasts by viral transduction of four transcription factors, namely, Oct4, Sox2, Klf4, and c-Myc. Subsequently, human iPSCs were generated by reprogramming fibroblasts as a starting cell source using two reprogramming factor cocktails [(i) OCT4, SOX2, KLF4, and c-MYC, and (ii) OCT4, SOX2, NANOG, and LIN28]. The wide range of applications of these human iPSCs in research, therapeutics, and personalized medicine has driven the scientific community to optimize and understand this reprogramming process to achieve quality iPSCs with higher efficiency and faster kinetics. One of the essential criteria to address this is by identifying an ideal cell source in which pluripotency can be induced efficiently to give rise to high-quality iPSCs. Therefore, various cell types have been studied for their ability to generate iPSCs efficiently. Cell sources that can be easily reverted to a pluripotent state are tissue-restricted stem cells present in the fetus and adult tissues. Tissue-restricted stem cells can be isolated from fetal, cord blood, bone marrow, and other adult tissues or can be obtained by differentiation of embryonic stem cells or trans-differentiation of other tissue-restricted stem cells. Since these cells are undifferentiated cells with self-renewal potential, they are much easier to reprogram due to the inherent characteristic of having an endogenous expression of few pluripotency-inducing factors. This review presents an overview of promising tissue-restricted stem cells that can be isolated from different sources, namely, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, limbal epithelial stem cells, and spermatogonial stem cells, and their reprogramming efficacy. This insight will pave the way for developing safe and efficient reprogramming strategies and generating patient-specific iPSCs from tissue-restricted stem cells derived from various fetal and adult tissues.
Collapse
Affiliation(s)
- Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
203
|
Oswald A, Chakraborty A, Ni Y, Wettengel JM, Urban S, Protzer U. Concentration of Na +-taurocholate-cotransporting polypeptide expressed after in vitro-transcribed mRNA transfection determines susceptibility of hepatoma cells for hepatitis B virus. Sci Rep 2021; 11:19799. [PMID: 34611272 PMCID: PMC8492621 DOI: 10.1038/s41598-021-99263-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Infection of hepatocytes by hepatitis B virus (HBV) depends on surface expression of its receptor Na+-taurocholate-cotransporting polypeptide (NTCP), but sufficient NTCP expression is lacking in most cell lines. NTCP can be introduced by plasmid transfection or transduction by viral vectors to render cells permissive for HBV. However, transient transfection of hepatocyte-derived cell lines is inefficient, resulting in inhomogeneous protein expression and does not allow to adapt the level of NTCP expression. We therefore utilized in vitro transcribed mRNA to introduce NTCP into cells. Optimization using alternative cap structures and nucleotide modifications rendered mRNA transfection into different non-hepatic and hepatic cell lines very efficient. After transfection of mRNA, surface expression and functionality of NTCP was demonstrated by staining with an N-terminal HBV-preS peptide and bile acid uptake. Introduction of NTCP by mRNA transfection increased susceptibility of hepatoma cells to HBV in a dose-dependent manner. Transfection of NTCP mRNA into non-liver cells, in contrast, supported bile acid uptake but did still not render the cells permissive for HBV, demonstrating the requirement for additional host factors. Introduction of candidate host factors by mRNA transfection will allow for fast and convenient analysis of the viral life cycle using a transient, but reliable expression system.
Collapse
Affiliation(s)
- Andreas Oswald
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Anindita Chakraborty
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Jochen M Wettengel
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany.
| |
Collapse
|
204
|
Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
205
|
Su Y, Wang L, Fan Z, Liu Y, Zhu J, Kaback D, Oudiz J, Patrick T, Yee SP, Tian X(C, Polejaeva I, Tang Y. Establishment of Bovine-Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms221910489. [PMID: 34638830 PMCID: PMC8508593 DOI: 10.3390/ijms221910489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Pluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KdOSKMLN). These biPSCs exhibited silenced transgene expression at passage 10, and had prolonged self-renewal capacity for over 70 passages. The biPSCs have flat, primed-like PSC colony morphology in combined media of knockout serum replacement (KSR) and mTeSR, but switched to dome-shaped, naïve-like PSC colony morphology in mTeSR medium and 2i/LIF with single cell colonization capacity. These cells have comparable proliferation rate to the reported primed- or naïve-state human PSCs, with three-germ layer differentiation capacity and normal karyotype. Transcriptome analysis revealed a high similarity of biPSCs to reported bovine embryonic stem cells (ESCs) and embryos. The naïve-like biPSCs can be incorporated into mouse embryos, with the extended capacity of integration into extra-embryonic tissues. Finally, at least 24.5% cloning efficiency could be obtained in nuclear transfer (NT) experiment using late passage biPSCs as nuclear donors. Our report represents a significant advance in the establishment of bovine PSCs.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Ling Wang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Jiaqi Zhu
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Deborah Kaback
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Julia Oudiz
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Tayler Patrick
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Siu Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Xiuchun (Cindy) Tian
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Irina Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
- Correspondence: (I.P.); (Y.T.)
| | - Young Tang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
- Correspondence: (I.P.); (Y.T.)
| |
Collapse
|
206
|
Hsu LJ, Liu CL, Kuo ML, Shen CN, Shen CR. An Alternative Cell Therapy for Cancers: Induced Pluripotent Stem Cell (iPSC)-Derived Natural Killer Cells. Biomedicines 2021; 9:1323. [PMID: 34680440 PMCID: PMC8533510 DOI: 10.3390/biomedicines9101323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Cell therapy is usually defined as the treatment or prevention of human disease by supplementation with cells that have been selected, manipulated, and pharmacologically treated or altered outside the body (ex vivo). Induced pluripotent stem cells (iPSCs), with their unique characteristics of indefinite expansion in cultures and genetic modifications, represent an ideal cell source for differentiation into specialized cell types. Cell therapy has recently become one of the most promising therapeutic approaches for cancers, and different immune cell types are selected as therapeutic platforms. Natural killer (NK) cells are shown to be effective tumor cell killers and do not cause graft-vs-host disease (GVHD), making them excellent candidates for, and facilitating the development of, "off-the-shelf" cell therapies. In this review, we summarize the progress in the past decade in the advent of iPSC technology and review recent developments in gene-modified iPSC-NK cells as readily available "off-the-shelf" cellular therapies.
Collapse
Affiliation(s)
- Li-Jie Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan;
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei 243, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
207
|
Mizuno-Iijima S, Nakashiba T, Ayabe S, Nakata H, Ike F, Hiraiwa N, Mochida K, Ogura A, Masuya H, Kawamoto S, Tamura M, Obata Y, Shiroishi T, Yoshiki A. Mouse resources at the RIKEN BioResource Research Center and the National BioResource Project core facility in Japan. Mamm Genome 2021; 33:181-191. [PMID: 34532769 PMCID: PMC8445257 DOI: 10.1007/s00335-021-09916-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023]
Abstract
The RIKEN BioResource Research Center (BRC) was established in 2001 as a comprehensive biological resource center in Japan. The Experimental Animal Division, one of the BRC infrastructure divisions, has been designated as the core facility for mouse resources within the National BioResource Project (NBRP) by the Japanese government since FY2002. Our activities regarding the collection, preservation, quality control, and distribution of mouse resources have been supported by the research community, including evaluations and guidance on advancing social and research needs, as well as the operations and future direction of the BRC. Expenditure for collection, preservation, and quality-control operations of the BRC, as a national core facility, has been funded by the government, while distribution has been separately funded by users' reimbursement fees. We have collected over 9000 strains created mainly by Japanese scientists including Nobel laureates and researchers in cutting-edge fields and distributed mice to 7000 scientists with 1500 organizations in Japan and globally. Our users have published 1000 outstanding papers and a few dozen patents. The collected mouse resources are accessible via the RIKEN BRC website, with a revised version of the searchable online catalog. In addition, to enhance the visibility of useful strains, we have launched web corners designated as the "Mouse of the Month" and "Today's Tool and Model." Only high-demand strains are maintained in live colonies, while other strains are cryopreserved as embryos or sperm to achieve cost-effective management. Since 2007, the RIKEN BRC has built up a back-up facility in the RIKEN Harima branch to protect the deposited strains from disasters. Our mice have been distributed with high quality through the application of strict microbial and genetic quality control programs that cover a globally accepted pathogens list and mutated alleles generated by various methods. Added value features, such as information about users' publications, standardized phenotyping data, and genome sequences of the collected strains, are important to facilitate the use of our resources. We have added and disseminated such information in collaboration with the NBRP Information Center and the NBRP Genome Information Upgrading Program. The RIKEN BRC has participated in international mouse resource networks such as the International Mouse Strain Resource, International Mouse Phenotyping Consortium, and Asian Mouse Mutagenesis and Resource Association to facilitate the worldwide use of high-quality mouse resources, and as a consequence it contributes to reproducible life science studies and innovation around the globe.
Collapse
Affiliation(s)
- Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Toshiaki Nakashiba
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Hatsumi Nakata
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Fumio Ike
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Noriko Hiraiwa
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Keiji Mochida
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Hiroshi Masuya
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shoko Kawamoto
- Genetics Informatics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yuichi Obata
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | | | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan.
| |
Collapse
|
208
|
Identification of Optimal Expression Parameters and Purification of a Codon-Optimized Human GLIS1 Transcription Factor from Escherichia coli. Mol Biotechnol 2021; 64:42-56. [PMID: 34528219 DOI: 10.1007/s12033-021-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.
Collapse
|
209
|
Autologous bone marrow-derived mesenchymal stem cells provide complete regeneration in a rabbit model of the Achilles tendon bundle rupture. INTERNATIONAL ORTHOPAEDICS 2021; 45:3263-3276. [PMID: 34510279 DOI: 10.1007/s00264-021-05168-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To ascertain the role of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in the tendon regeneration. METHODS The study was conducted on 58 Achilles tendons from 29 laboratory Chinchilla adult rabbits. The central bundles of 48 tendons were partially removed and substituted with a tissue-engineered construct consisting of a collagen sponge either loaded with BM-MSCs (n = 24) or cell free (n = 24), placed inside a Vicryl mesh tube. The ends of the resected tendon were inserted in the construct to reach a direct contact with the sponge and sutured to the tube. The animals were sacrificed three and six months post-surgery. Ten intact tendons from five rabbits were used as an untreated control. The tissue samples (n = 30) were stained with haematoxylin and eosin, Picrosirius red, primary antibodies to collagen types I and III and studied by bright-field, phase-contrast, polarized light, and scanning electron microscopies followed by semi-quantitative morphometry. RESULTS Six months results of cell-loaded scaffolds demonstrated parallel collagen fibres, spindle-shaped tenocytes, and neoangiogenesis. In the control cell-free group, the injured areas were filled with a nonspecific fibrotic tissue with minor foci of incomplete regeneration. The biomechanical tests of 28 tendons taken from 14 rabbits showed that the stiffness of the cell-based reconstructed tendons increased to 98% of the value for the intact samples. CONCLUSION The obtained results support the hypothesis that the application of BM-MSCs in a tissue-engineered tendon construct leads to the restitution of the tendon tissue.
Collapse
|
210
|
Lubanska D, Qemo I, Byrne M, Matthews KN, Fifield BA, Brown J, da Silva EF, Porter LA. The cyclin-like protein SPY1 overrides reprogramming induced senescence through EZH2 mediated H3K27me3. Stem Cells 2021; 39:1688-1700. [PMID: 34486784 DOI: 10.1002/stem.3453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/24/2021] [Indexed: 02/03/2023]
Abstract
Fully differentiated cells can be reprogrammed through ectopic expression of key transcription factors to create induced pluripotent stem cells. These cells share many characteristics of normal embryonic stem cells and have great promise in disease modeling and regenerative medicine. The process of remodeling has its limitations, including a very low efficiency due to the upregulation of many antiproliferative genes, including cyclin dependent kinase inhibitors CDKN1A and CDKN2A, which serve to protect the cell by inducing apoptotic and senescent programs. Our data reveals a unique cell cycle mechanism enabling mouse fibroblasts to repress cyclin dependent kinase inhibitors through the activation of the epigenetic regulator EZH2 by a cyclin-like protein SPY1. This data reveals that the SPY1 protein is required for reprogramming to a pluripotent state and is capable of increasing reprogramming efficiency.
Collapse
Affiliation(s)
- Dorota Lubanska
- Department of Biomedical Sciences, University of Windsor, Ontario, Windsor, Ontario, Canada
| | - Ingrid Qemo
- Department of Biomedical Sciences, University of Windsor, Ontario, Windsor, Ontario, Canada
| | - Megan Byrne
- Department of Biomedical Sciences, University of Windsor, Ontario, Windsor, Ontario, Canada
| | - Kaitlyn N Matthews
- Department of Biomedical Sciences, University of Windsor, Ontario, Windsor, Ontario, Canada
| | - Bre-Anne Fifield
- Department of Biomedical Sciences, University of Windsor, Ontario, Windsor, Ontario, Canada
| | - Jillian Brown
- Department of Biomedical Sciences, University of Windsor, Ontario, Windsor, Ontario, Canada
| | | | - Lisa A Porter
- Department of Biomedical Sciences, University of Windsor, Ontario, Windsor, Ontario, Canada
| |
Collapse
|
211
|
The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021; 5:951-967. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Citation(s) in RCA: 596] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
Collapse
|
212
|
Abstract
Progressive aging is a physiological process that represents a central risk factor for the development of several human age-associated chronic diseases, including neurodegenerative diseases. A major focus in biomedical research is the pursuit for appropriate model systems to better model the biology of human aging and the interface between aging and disease mechanisms. Direct conversion of human fibroblasts into induced neurons (iNs) has emerged as a novel technology for the in vitro modeling of age-dependent neurological diseases. Similar to other cellular reprogramming techniques, e.g., iPSC-based cellular reprograming, direct conversion relies on the ectopic overexpression of transcription factors, typically including well-known pioneer factors. However, in contrast to alternative technologies to generate neurons, the entire process of direct conversion bypasses any proliferative or stem cell-like stage, which in fact renders it the unique aptitude of preserving age-associated hallmarks from the initial fibroblast source. In this chapter, we introduce direct conversion as a practical and easy-to-approach disease model for aging and neurodegenerative disease research. A focus here is to provide a stepwise protocol for the efficient and highly reproducible generation of iNs from adult dermal fibroblasts from human donors.
Collapse
|
213
|
Agrawal A, Narayan G, Gogoi R, Thummer RP. Recent Advances in the Generation of β-Cells from Induced Pluripotent Stem Cells as a Potential Cure for Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:1-27. [PMID: 34426962 DOI: 10.1007/5584_2021_653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by high blood glucose levels due to insufficient insulin secretion, insulin action, or both. The present-day solution to diabetes mellitus includes regular administration of insulin, which brings about many medical complications in diabetic patients. Although islet transplantation from cadaveric subjects was proposed to be a permanent cure, the increased risk of infections, the need for immunosuppressive drugs, and their unavailability had restricted its use. To overcome this, the generation of renewable and transplantable β-cells derived from autologous induced pluripotent stem cells (iPSCs) has gained enormous interest as a potential therapeutic strategy to treat diabetes mellitus permanently. To date, extensive research has been undertaken to derive transplantable insulin-producing β-cells (iβ-cells) from iPSCs in vitro by recapitulating the in vivo developmental process of the pancreas. This in vivo developmental process relies on transcription factors, signaling molecules, growth factors, and culture microenvironment. This review highlights the various factors facilitating the generation of mature β-cells from iPSCs. Moreover, this review also describes the generation of pancreatic progenitors and β-cells from diabetic patient-specific iPSCs, exploring the potential of the diabetes disease model and drug discovery. In addition, the applications of genome editing strategies have also been discussed to achieve patient-specific diabetes cell therapy. Last, we have discussed the current challenges and prospects of iPSC-derived β-cells to improve the relative efficacy of the available treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
214
|
Johnson J, Shojaee M, Mitchell Crow J, Khanabdali R. From Mesenchymal Stromal Cells to Engineered Extracellular Vesicles: A New Therapeutic Paradigm. Front Cell Dev Biol 2021; 9:705676. [PMID: 34409037 PMCID: PMC8366519 DOI: 10.3389/fcell.2021.705676] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells obtained from many tissues including bone marrow, adipose tissue, umbilical cord, amniotic fluid, and placenta. MSCs are the leading cell source for stem cell therapy due to their regenerative and immunomodulatory properties, their low risk of tumorigenesis and lack of ethical constraints. However, clinical applications of MSCs remain limited. MSC therapeutic development continues to pose challenges in terms of preparation, purity, consistency, efficiency, reproducibility, processing time and scalability. Additionally, there are issues with their poor engraftment and survival in sites of disease or damage that limit their capacity to directly replace damaged cells. A key recent development in MSC research, however, is the now widely accepted view that MSCs primarily exert therapeutic effects via paracrine factor secretion. One of the major paracrine effectors are extracellular vesicles (EVs). EVs represent a potential cell-free alternative to stem cell therapy but are also rapidly emerging as a novel therapeutic platform in their own right, particularly in the form of engineered EVs (EEVs) tailored to target a broad range of clinical indications. However, the development of EVs and EEVs for therapeutic application still faces a number of hurdles, including the establishment of a consistent, scalable cell source, and the development of robust GMP-compliant upstream and downstream manufacturing processes. In this review we will highlight the clinical challenges of MSC therapeutic development and discuss how EVs and EEVs can overcome the challenges faced in the clinical application of MSCs.
Collapse
Affiliation(s)
- Jancy Johnson
- Exopharm Ltd., Melbourne, VIC, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
215
|
Chu X, Wang M, Qiu X, Huang Y, Li T, Otieno E, Li N, Luo L, Xiao X. Strategies for constructing pluripotent stem cell- and progenitor cell-derived three-dimensional cardiac micro-tissues. J Biomed Mater Res A 2021; 110:488-503. [PMID: 34397148 DOI: 10.1002/jbm.a.37298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cardiac micro-tissue is a promising model for simulating the structural and functional features of heart in vitro. This scientific achievement provides a platform for exploration about the mechanisms on the development, damage, and regeneration of tissue, hence, paving a way toward development of novel therapies for heart diseases. However, 3D micro-tissue technology is still in its infant stages faced with many challenges such as incompleteness of the tissue microarchitecture, loss of the resident immune cells, poor reproducibility, and deficiencies in continuously feeding the nutrients and removing wastes during micro-tissue culturing. There is an urgent need to optimize the construction of 3D cardiac micro-tissue and improve functions of the involved cells. Therefore, scaffolds and cell resources for building 3D cardiac micro-tissues, strategies for inducing the maturation and functionalization of pluripotent stem cell- or cardiac progenitor cell-derived cardiomyocytes, and the major challenges were reviewed in this writing to enable future fabrication of 3D cardiac micro-tissues or organoids for drug screening, disease modeling, regeneration treatment, and so on.
Collapse
Affiliation(s)
- Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Laboratory Animals Science, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Na Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Li Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
216
|
Roye Y, Bhattacharya R, Mou X, Zhou Y, Burt MA, Musah S. A Personalized Glomerulus Chip Engineered from Stem Cell-Derived Epithelium and Vascular Endothelium. MICROMACHINES 2021; 12:967. [PMID: 34442589 PMCID: PMC8400556 DOI: 10.3390/mi12080967] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023]
Abstract
Progress in understanding kidney disease mechanisms and the development of targeted therapeutics have been limited by the lack of functional in vitro models that can closely recapitulate human physiological responses. Organ Chip (or organ-on-a-chip) microfluidic devices provide unique opportunities to overcome some of these challenges given their ability to model the structure and function of tissues and organs in vitro. Previously established organ chip models typically consist of heterogenous cell populations sourced from multiple donors, limiting their applications in patient-specific disease modeling and personalized medicine. In this study, we engineered a personalized glomerulus chip system reconstituted from human induced pluripotent stem (iPS) cell-derived vascular endothelial cells (ECs) and podocytes from a single patient. Our stem cell-derived kidney glomerulus chip successfully mimics the structure and some essential functions of the glomerular filtration barrier. We further modeled glomerular injury in our tissue chips by administering a clinically relevant dose of the chemotherapy drug Adriamycin. The drug disrupts the structural integrity of the endothelium and the podocyte tissue layers, leading to significant albuminuria as observed in patients with glomerulopathies. We anticipate that the personalized glomerulus chip model established in this report could help advance future studies of kidney disease mechanisms and the discovery of personalized therapies. Given the remarkable ability of human iPS cells to differentiate into almost any cell type, this work also provides a blueprint for the establishment of more personalized organ chip and 'body-on-a-chip' models in the future.
Collapse
Affiliation(s)
- Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; (Y.R.); (R.B.); (X.M.); (Y.Z.); (M.A.B.)
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; (Y.R.); (R.B.); (X.M.); (Y.Z.); (M.A.B.)
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
| | - Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; (Y.R.); (R.B.); (X.M.); (Y.Z.); (M.A.B.)
| | - Yuhao Zhou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; (Y.R.); (R.B.); (X.M.); (Y.Z.); (M.A.B.)
| | - Morgan A. Burt
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; (Y.R.); (R.B.); (X.M.); (Y.Z.); (M.A.B.)
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; (Y.R.); (R.B.); (X.M.); (Y.Z.); (M.A.B.)
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Cell Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
217
|
Abstract
Induced pluripotent stem cell (iPSC) technology holds promise for modeling neurodegenerative diseases. Traditional approaches for disease modeling using animal and cellular models require knowledge of disease mutations. However, many patients with neurodegenerative diseases do not have a known genetic cause. iPSCs offer a way to generate patient-specific models and study pathways of dysfunction in an in vitro setting in order to understand the causes and subtypes of neurodegeneration. Furthermore, iPSC-based models can be used to search for candidate therapeutics using high-throughput screening. Here we review how iPSC-based models are currently being used to further our understanding of neurodegenerative diseases, as well as discuss their challenges and future directions.
Collapse
Affiliation(s)
- Jonathan Li
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Ernest Fraenkel
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
218
|
Chakritbudsabong W, Chaiwattanarungruengpaisan S, Sariya L, Pamonsupornvichit S, Ferreira JN, Sukho P, Gronsang D, Tharasanit T, Dinnyes A, Rungarunlert S. Exogenous LIN28 Is Required for the Maintenance of Self-Renewal and Pluripotency in Presumptive Porcine-Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:709286. [PMID: 34354993 PMCID: PMC8329718 DOI: 10.3389/fcell.2021.709286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Porcine species have been used in preclinical transplantation models for assessing the efficiency and safety of transplants before their application in human trials. Porcine-induced pluripotent stem cells (piPSCs) are traditionally established using four transcription factors (4TF): OCT4, SOX2, KLF4, and C-MYC. However, the inefficiencies in the reprogramming of piPSCs and the maintenance of their self-renewal and pluripotency remain challenges to be resolved. LIN28 was demonstrated to play a vital role in the induction of pluripotency in humans. To investigate whether this factor is similarly required by piPSCs, the effects of adding LIN28 to the 4TF induction method (5F approach) on the efficiency of piPSC reprogramming and maintenance of self-renewal and pluripotency were examined. Using a retroviral vector, porcine fetal fibroblasts were transfected with human OCT4, SOX2, KLF4, and C-MYC with or without LIN28. The colony morphology and chromosomal stability of these piPSC lines were examined and their pluripotency properties were characterized by investigating both their expression of pluripotency-associated genes and proteins and in vitro and in vivo differentiation capabilities. Alkaline phosphatase assay revealed the reprogramming efficiencies to be 0.33 and 0.17% for the 4TF and 5TF approaches, respectively, but the maintenance of self-renewal and pluripotency until passage 40 was 6.67 and 100%, respectively. Most of the 4TF-piPSC colonies were flat in shape, showed weak positivity for alkaline phosphatase, and expressed a significantly high level of SSEA-4 protein, except for one cell line (VSMUi001-A) whose properties were similar to those of the 5TF-piPSCs; that is, tightly packed and dome-like in shape, markedly positive for alkaline phosphatase, and expressing endogenous pluripotency genes (pOCT4, pSOX2, pNANOG, and pLIN28), significantly high levels of pluripotent proteins (OCT4, SOX2, NANOG, LIN28, and SSEA-1), and a significantly low level of SSEA-4 protein. VSMUi001-A and all 5F-piPSC lines formed embryoid bodies, underwent spontaneous cardiogenic differentiation with cardiac beating, expressed cardiomyocyte markers, and developed teratomas. In conclusion, in addition to the 4TF, LIN28 is required for the effective induction of piPSCs and the maintenance of their long-term self-renewal and pluripotency toward the development of all germ layers. These piPSCs have the potential applicability for veterinary science.
Collapse
Affiliation(s)
- Warunya Chakritbudsabong
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sirikron Pamonsupornvichit
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Joao N Ferreira
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panithi Sukho
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Dulyatad Gronsang
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Andras Dinnyes
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.,College of Life Sciences, Sichuan University, Chengdu, China
| | - Sasitorn Rungarunlert
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
219
|
Chen CXQ, Abdian N, Maussion G, Thomas RA, Demirova I, Cai E, Tabatabaei M, Beitel LK, Karamchandani J, Fon EA, Durcan TM. A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods Protoc 2021; 4:mps4030050. [PMID: 34287353 PMCID: PMC8293472 DOI: 10.3390/mps4030050] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived from human somatic cells have created new opportunities to generate disease-relevant cells. Thus, as the use of patient-derived stem cells has become more widespread, having a workflow to monitor each line is critical. This ensures iPSCs pass a suite of quality-control measures, promoting reproducibility across experiments and between labs. With this in mind, we established a multistep workflow to assess our newly generated iPSCs. Our workflow tests four benchmarks: cell growth, genomic stability, pluripotency, and the ability to form the three germline layers. We also outline a simple test for assessing cell growth and highlight the need to compare different growth media. Genomic integrity in the human iPSCs is analyzed by G-band karyotyping and a qPCR-based test for the detection of common karyotypic abnormalities. Finally, we confirm that the iPSC lines can differentiate into a given cell type, using a trilineage assay, and later confirm that each iPSC can be differentiated into one cell type of interest, with a focus on the generation of cortical neurons. Taken together, we present a multistep quality-control workflow to evaluate newly generated iPSCs and detail the findings on these lines as they are tested within the workflow.
Collapse
Affiliation(s)
- Carol X.-Q. Chen
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Narges Abdian
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Gilles Maussion
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Rhalena A. Thomas
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Iveta Demirova
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Eddie Cai
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Mahdieh Tabatabaei
- The Neuro’s Clinical Biological Imaging and Genetic Repository (C-BIG), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (M.T.); (J.K.)
| | - Lenore K. Beitel
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Jason Karamchandani
- The Neuro’s Clinical Biological Imaging and Genetic Repository (C-BIG), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (M.T.); (J.K.)
| | - Edward A. Fon
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
- Correspondence: ; Tel.: +1-514-398-6933
| |
Collapse
|
220
|
Chen ZZ, Wang JY, Kang Y, Yang QY, Gu XY, Zhi DL, Yan L, Long CZ, Shen B, Niu YY. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zool Res 2021; 42:469-477. [PMID: 34213093 PMCID: PMC8317192 DOI: 10.24272/j.issn.2095-8137.2021.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
Mutations of PTEN-induced kinase I (PINK1) cause early-onset Parkinson's disease (PD) with selective neurodegeneration in humans. However, current PINK1 knockout mouse and pig models are unable to recapitulate the typical neurodegenerative phenotypes observed in PD patients. This suggests that generating PINK1 disease models in non-human primates (NHPs) that are close to humans is essential to investigate the unique function of PINK1 in primate brains. Paired single guide RNA (sgRNA)/Cas9-D10A nickases and truncated sgRNA/Cas9, both of which can reduce off-target effects without compromising on-target editing, are two optimized strategies in the CRISPR/Cas9 system for establishing disease animal models. Here, we combined the two strategies and injected Cas9-D10A mRNA and two truncated sgRNAs into one-cell-stage cynomolgus zygotes to target the PINK1 gene. We achieved precise and efficient gene editing of the target site in three newborn cynomolgus monkeys. The frame shift mutations of PINK1 in mutant fibroblasts led to a reduction in mRNA. However, western blotting and immunofluorescence staining confirmed the PINK1 protein levels were comparable to that in wild-type fibroblasts. We further reprogramed mutant fibroblasts into induced pluripotent stem cells (iPSCs), which showed similar ability to differentiate into dopamine (DA) neurons. Taken together, our results showed that co-injection of Cas9-D10A nickase mRNA and sgRNA into one-cell-stage cynomolgus embryos enabled the generation of human disease models in NHPs and target editing by pair truncated sgRNA/Cas9-D10A in PINK1 gene exon 2 did not impact protein expression.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jian-Ying Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qiao-Yan Yang
- Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Xue-Ying Gu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Da-Long Zhi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medicine University, Xi'an, Shaanxi 710032, China
| | - Li Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Cheng-Zu Long
- Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China. E-mail:
| | - Yu-Yu Niu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. E-mail:
| |
Collapse
|
221
|
Zahra MH, Afify SM, Hassan G, Nawara HM, Kumon K, Seno A, Seno M. Metformin suppresses self-renewal and stemness of cancer stem cell models derived from pluripotent stem cells. Cell Biochem Funct 2021; 39:896-907. [PMID: 34268768 DOI: 10.1002/cbf.3661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022]
Abstract
Metformin exhibits anti-cancer activities in various types of tumours while it is prescribed as the first-line drug for type 2 diabetes. Since new evidence has recently suggested that metformin could target cancer stem cells (CSCs) and prevent their recurrence, repositioning of metformin could be considered as a candidate for anti-CSC agent. In this study, we assessed the effect of metformin on the cancer stem cells developed from induced pluripotent stem cells. As the result, metformin significantly suppressed the self-renewal ability of CSCs when assessed by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell counting methods exhibiting the IC50 as approximately 20 mM, which suppressed tube formation by CSCs on Matrigel reducing the angiogenic potential of CSCs. Cell cycle analysis showed that metformin reduced the percentage of cells in the S phase increasing the percentage of cells in G0/G1 phase. Moreover, the tumorigenicity of CSCs was found to be attenuated when the cells were injected with metformin. From these results, we concluded that metformin could be promising for targeted therapy by repositioning the widely available drugs with safety. SIGNIFICANCE OF THE STUDY: Metformin could target CSCs and prevent their recurrence, repositioning of metformin could be considered as a candidate for the anti-CSC agent. In this paper, we assessed the effect of metformin on the CSCs developed from induced pluripotent stem cells. Here, we show that metformin suppresses the self-renewal and tube formation abilities of CSCs. We also show that metformin reduces the percentage of cells in the S phase increasing the percentage of cells in G0/G1 phase. Moreover, the tumorigenicity of CSCs was found to be attenuated when grafted in vivo after treatment with metformin.
Collapse
Affiliation(s)
- Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Said M Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Hend M Nawara
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kazuki Kumon
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Akimasa Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
222
|
Li Y, Zhang Y, Li T, Wang X, Bao W, Huang J, Ma Y, Li S, Wang S, Yang Y, Liu Y, Gao Y, Feng H, Li Y. Generation of three iPSC lines from different types of pediatric acute leukemia patients. Stem Cell Res 2021; 55:102460. [PMID: 34298433 DOI: 10.1016/j.scr.2021.102460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022] Open
Abstract
Leukemia is the most common malignant tumor in childhood. The pathogenesis of leukemia is still unclear. Therefore, it is imperative to establish effective disease models. In our study, we reprogrammed different types of pediatric acute leukemia cells into iPSCs using CytoTune®Sendai virus. All generated iPSCs maintained pluripotency and spontaneous in vivo differentiation capacity.
Collapse
Affiliation(s)
- Yang Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Yingwen Zhang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Ting Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Xiang Wang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Weiqiao Bao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Jun Huang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Yani Ma
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Shanshan Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Siqi Wang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Yi Yang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yijin Gao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China.
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanxin Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai 200127, China.
| |
Collapse
|
223
|
Alvarez-Palomo AB, Requena-Osete J, Delgado-Morales R, Moreno-Manzano V, Grau-Bove C, Tejera AM, Otero MJ, Barrot C, Santos-Barriopedro I, Vaquero A, Mezquita-Pla J, Moran S, Naya CH, Garcia-Martínez I, Pérez FV, Blasco MA, Esteller M, Edel MJ. A synthetic mRNA cell reprogramming method using CYCLIN D1 promotes DNA repair, generating improved genetically stable human induced pluripotent stem cells. Stem Cells 2021; 39:866-881. [PMID: 33621399 DOI: 10.1002/stem.3358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
A key challenge for clinical application of induced pluripotent stem cells (iPSC) to accurately model and treat human pathologies depends on developing a method to generate genetically stable cells to reduce long-term risks of cell transplant therapy. Here, we hypothesized that CYCLIN D1 repairs DNA by highly efficient homologous recombination (HR) during reprogramming to iPSC that reduces genetic instability and threat of neoplastic growth. We adopted a synthetic mRNA transfection method using clinically compatible conditions with CYCLIN D1 plus base factors (OCT3/4, SOX2, KLF4, LIN28) and compared with methods that use C-MYC. We demonstrate that CYCLIN D1 made iPSC have (a) lower multitelomeric signal, (b) reduced double-strand DNA breaks, (c) correct nuclear localization of RAD51 protein expression, and (d) reduced single-nucleotide polymorphism (SNP) changes per chromosome, compared with the classical reprogramming method using C-MYC. CYCLIN D1 iPSC have reduced teratoma Ki67 cell growth kinetics and derived neural stem cells successfully engraft in a hostile spinal cord injury (SCI) microenvironment with efficient survival, differentiation. We demonstrate that CYCLIN D1 promotes double-stranded DNA damage repair predominantly through HR during cell reprogramming to efficiently produce iPSC. CYCLIN D1 reduces general cell stress associated with significantly lower SIRT1 gene expression and can rescue Sirt1 null mouse cell reprogramming. In conclusion, we show synthetic mRNA transfection of CYCLIN D1 repairs DNA during reprogramming resulting in significantly improved genetically stable footprint in human iPSC, enabling a new cell reprogramming method for more accurate and reliable generation of human iPSC for disease modeling and future clinical applications.
Collapse
Affiliation(s)
- Ana Belén Alvarez-Palomo
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
- Cell Therapy Service, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Jordi Requena-Osete
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, NORMENT, Centre for Mental Disorders Research, Oslo, Norway
| | - Raul Delgado-Morales
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Carme Grau-Bove
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Agueda M Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Manel Juan Otero
- Hospital Clinic, Department of Clinical Immunology, Biomedical Diagnostic Center (CDB), Villarroel, Catalonia, Spain
| | - Carme Barrot
- Forensic Genetics Laboratory, Legal Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Irene Santos-Barriopedro
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Jovita Mezquita-Pla
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Sebastian Moran
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Carlos Hobeich Naya
- Congenital Coagulopathies Department, Banc de Sang i Teixits (BST), Barcelona, Spain
- Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Iris Garcia-Martínez
- Congenital Coagulopathies Department, Banc de Sang i Teixits (BST), Barcelona, Spain
- Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Francisco Vidal Pérez
- Congenital Coagulopathies Department, Banc de Sang i Teixits (BST), Barcelona, Spain
- Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Michael J Edel
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Institute of Neuroscience, Faculty of Medicine, University of Barcelona, Hospital Clinic, Barcelona, Catalonia, Spain
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- University of Western Australia, School of Medicine and Pharmacology, Harry Perkins Research Institute, Centre for Cell Therapy and Regenerative Medicine (CCTRM), Perth, Western Australia, Australia
- Centro de Oftalmología Barraquer, Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
224
|
Mao Y, Wang L, Zhong B, Yang N, Li Z, Cui T, Feng G, Li W, Zhang Y, Zhou Q. Continuous expression of reprogramming factors induces and maintains mouse pluripotency without specific growth factors and signaling inhibitors. Cell Prolif 2021; 54:e13090. [PMID: 34197016 PMCID: PMC8349648 DOI: 10.1111/cpr.13090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Derivation and maintenance of pluripotent stem cells (PSCs) generally require optimized and complex culture media, which hinders the derivation of PSCs from various species. Expression of Oct4, Sox2, Klf4, and c‐Myc (OSKM) can reprogram somatic cells into induced PSCs (iPSCs), even for species possessing no optimal culture condition. Herein, we explored whether expression of OSKM could induce and maintain pluripotency without PSC‐specific growth factors and signaling inhibitors. Methods The culture medium of Tet‐On‐OSKM/Oct4‐GFP mouse embryonic stem cells (ESCs) was switched from N2B27 with MEK inhibitor, GSK3β inhibitor, and leukemia inhibitory factor (LIF) (2iL) to N2B27 with doxycycline. Tet‐On‐OSKM mouse embryonic fibroblast (MEF) cells were reprogrammed in N2B27 with doxycycline. Cell proliferation was traced. Pluripotency was assessed by expression of ESC marker genes, teratoma, and chimera formation. RNA‐Seq was conducted to analyze gene expression. Results Via continuous expression of OSKM, mouse ESCs (OSKM‐ESCs) and the resulting iPSCs (OSKM‐iPSCs) reprogrammed from MEF cells propagated stably, expressed pluripotency marker genes, and formed three germ layers in teratomas. Transcriptional landscapes of OSKM‐iPSCs resembled those of ESCs cultured in 2iL and were more similar to those of ESCs cultured in serum/LIF. Furthermore, OSKM‐iPSCs contributed to germline transmission. Conclusions Expression of OSKM could induce and maintain mouse pluripotency without specific culturing factors. Importantly, OSKM‐iPSCs could produce gene‐modified animals through germline transmission, with potential applications in other species.
Collapse
Affiliation(s)
- Yihuan Mao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Bei Zhong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Ning Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
225
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
226
|
Gradišnik L, Bošnjak R, Maver T, Velnar T. Advanced Bio-Based Polymers for Astrocyte Cell Models. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3664. [PMID: 34209194 PMCID: PMC8269866 DOI: 10.3390/ma14133664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
The development of in vitro neural tissue analogs is of great interest for many biomedical engineering applications, including the tissue engineering of neural interfaces, treatment of neurodegenerative diseases, and in vitro evaluation of cell-material interactions. Since astrocytes play a crucial role in the regenerative processes of the central nervous system, the development of biomaterials that interact favorably with astrocytes is of great research interest. The sources of human astrocytes, suitable natural biomaterials, guidance scaffolds, and ligand patterned surfaces are discussed in the article. New findings in this field are essential for the future treatment of spinal cord and brain injuries.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia;
- AMEU-ECM, Slovenska 17, 2000 Maribor, Slovenia
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia;
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Velnar
- AMEU-ECM, Slovenska 17, 2000 Maribor, Slovenia
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
227
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
228
|
Mukherjee S, Yadav G, Kumar R. Recent trends in stem cell-based therapies and applications of artificial intelligence in regenerative medicine. World J Stem Cells 2021; 13:521-541. [PMID: 34249226 PMCID: PMC8246250 DOI: 10.4252/wjsc.v13.i6.521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells are undifferentiated cells that can self-renew and differentiate into diverse types of mature and functional cells while maintaining their original identity. This profound potential of stem cells has been thoroughly investigated for its significance in regenerative medicine and has laid the foundation for cell-based therapies. Regenerative medicine is rapidly progressing in healthcare with the prospect of repair and restoration of specific organs or tissue injuries or chronic disease conditions where the body’s regenerative process is not sufficient to heal. In this review, the recent advances in stem cell-based therapies in regenerative medicine are discussed, emphasizing mesenchymal stem cell-based therapies as these cells have been extensively studied for clinical use. Recent applications of artificial intelligence algorithms in stem cell-based therapies, their limitation, and future prospects are highlighted.
Collapse
Affiliation(s)
- Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
229
|
Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose of Review
Beta cell replacement therapy as a form of islet transplantation is a promising alternative therapy with the possibility to make selected patients with type 1 diabetes (T1D) insulin independent. However, this technique faces challenges such as extensive activation of the host immune system post-transplantation, lifelong need for immunosuppression, and the scarcity of islet donor pancreas. Advancement in tissue engineering strategies can improve these challenges and allow for a more widespread application of this therapy. This review will discuss the recent development and clinical translation of tissue engineering strategies in beta cell replacement therapy.
Recent Findings
Tissue engineering offers innovative solutions for producing unlimited glucose responsive cells and fabrication of appropriate devices/scaffolds for transplantation applications. Generation of pancreatic organoids with supporting cells in biocompatible biomaterials is a powerful technique to improve the function of insulin-producing cell clusters. Fabrication of physical barriers such as encapsulation strategies can protect the cells from the host immune system and allow for graft retrieval, although this strategy still faces major challenges to fully restore physiological glucose regulation.
Summary
The three main components of tissue engineering strategies including the generation of stem cell-derived insulin-producing cells and organoids and the possibilities for therapeutic delivery of cell-seeded devices to extra-hepatic sites need to come together in order to provide safe and functional insulin-producing devices for clinical beta cell replacement therapy.
Collapse
|
230
|
Madrid M, Sumen C, Aivio S, Saklayen N. Autologous Induced Pluripotent Stem Cell-Based Cell Therapies: Promise, Progress, and Challenges. Curr Protoc 2021; 1:e88. [PMID: 33725407 DOI: 10.1002/cpz1.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The promise of human induced pluripotent stem cells (iPSCs) lies in their ability to serve as a starting material for autologous, or patient-specific, stem cell-based therapies. Since the first publications describing the generation of iPSCs from human tissue in 2007, a Phase I/IIa clinical trial testing an autologous iPSC-derived cell therapy has been initiated in the U.S., and several other autologous iPSC-based therapies have advanced through various stages of development. Three single-patient in-human transplants of autologous iPSC-derived cells have taken place worldwide. None of the patients suffered serious adverse events, despite not undergoing immunosuppression. These promising outcomes support the proposed advantage of an autologous approach: a cell therapy product that can engraft without the risk of immune rejection, eliminating the need for immunosuppression and the associated side effects. Despite this advantage, there are currently more allogeneic than autologous iPSC-based cell therapy products in development due to the cost and complexity of scaling out manufacturing for each patient. In this review, we highlight recent progress toward clinical translation of autologous iPSC-based cell therapies. We also highlight technological advancements that would reduce the cost and complexity of autologous iPSC-based cell therapy production, enabling autologous iPSC-based therapies to become a more commonplace treatment modality for patients. © 2021 The Authors.
Collapse
Affiliation(s)
| | - Cenk Sumen
- Stemson Therapeutics, San Diego, California
| | | | | |
Collapse
|
231
|
Wszoła M, Nitarska D, Cywoniuk P, Gomółka M, Klak M. Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells 2021; 10:1544. [PMID: 34207441 PMCID: PMC8234129 DOI: 10.3390/cells10061544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Often, intensive insulin therapy is insufficient, and patients require a pancreas or pancreatic islets transplant. However, both solutions are associated with many possible complications, including graft rejection. The best approach seems to be a donor-independent T1D treatment strategy based on human stem cells cultured in vitro and differentiated into insulin and glucagon-producing cells (β and α cells, respectively). Both types of cells can then be incorporated into the bio-ink used for 3D printing of the bionic pancreas, which can be transplanted into T1D patients to restore glucose homeostasis. The aim of this review is to summarize current knowledge about stem cells sources and their transformation into key pancreatic cells. Last, but not least, we comment on possible solutions of post-transplant immune response triggered stem cell-derived pancreatic cells and their potential control mechanisms.
Collapse
Affiliation(s)
- Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | | | - Piotr Cywoniuk
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Magdalena Gomółka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
| |
Collapse
|
232
|
Kornej J, Hanger VA, Trinquart L, Ko D, Preis SR, Benjamin EJ, Lin H. New biomarkers from multiomics approaches: improving risk prediction of atrial fibrillation. Cardiovasc Res 2021; 117:1632-1644. [PMID: 33751041 PMCID: PMC8208748 DOI: 10.1093/cvr/cvab073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia leading to many adverse outcomes and increased mortality. Yet the molecular mechanisms underlying AF remain largely unknown. Recent advances in high-throughput technologies make large-scale molecular profiling possible. In the past decade, multiomics studies of AF have identified a number of potential biomarkers of AF. In this review, we focus on the studies of multiomics profiles with AF risk. We summarize recent advances in the discovery of novel biomarkers for AF through multiomics studies. We also discuss limitations and future directions in risk assessment and discovery of therapeutic targets for AF.
Collapse
Affiliation(s)
- Jelena Kornej
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt Wayte Ave, Framingham, MA 01702, USA
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Ludovic Trinquart
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Darae Ko
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah R Preis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt Wayte Ave, Framingham, MA 01702, USA
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Section of Preventive Medicine & Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Honghuang Lin
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt Wayte Ave, Framingham, MA 01702, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
233
|
Methods for Isolation and Reprogramming of Various Somatic Cell Sources into iPSCs. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2454:643-655. [PMID: 34128204 DOI: 10.1007/7651_2021_387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Induced pluripotent stem cells (iPSCs) were originally derived from adult somatic cells by ectopic expression of the stem cell transcription factors OCT3/4, SOX2, c-Myc, and KLF4. The characteristic features of iPSCs are similar to those of embryonic stem cells; they can be expanded indefinitely in vitro and differentiated into the three germ layers: endoderm, mesoderm, and ectoderm. The breakthrough discovery by Takahashi and Yamanaka that somatic cells can be "reprogrammed" to generate iPSCs has led to extensive use of iPSCs and their differentiated cells thereof, in diverse research areas, such as regenerative medicine, development, as well as establishment of disease-specific models, thus providing the platform for personalized patient-specific medicine.
Collapse
|
234
|
Pacini G, Dunkel I, Mages N, Mutzel V, Timmermann B, Marsico A, Schulz EG. Integrated analysis of Xist upregulation and X-chromosome inactivation with single-cell and single-allele resolution. Nat Commun 2021; 12:3638. [PMID: 34131144 PMCID: PMC8206119 DOI: 10.1038/s41467-021-23643-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
To ensure dosage compensation between the sexes, one randomly chosen X chromosome is silenced in each female cell in the process of X-chromosome inactivation (XCI). XCI is initiated during early development through upregulation of the long non-coding RNA Xist, which mediates chromosome-wide gene silencing. Cell differentiation, Xist upregulation and gene silencing are thought to be coupled at multiple levels to ensure inactivation of exactly one out of two X chromosomes. Here we perform an integrated analysis of all three processes through allele-specific single-cell RNA-sequencing. Specifically, we assess the onset of random XCI in differentiating mouse embryonic stem cells, and develop dedicated analysis approaches. By exploiting the inter-cellular heterogeneity of XCI onset, we identify putative Xist regulators. Moreover, we show that transient Xist upregulation from both X chromosomes results in biallelic gene silencing right before transitioning to the monoallelic state, confirming a prediction of the stochastic model of XCI. Finally, we show that genetic variation modulates the XCI process at multiple levels, providing a potential explanation for the long-known X-controlling element (Xce) effect, which leads to preferential inactivation of a specific X chromosome in inter-strain crosses. We thus draw a detailed picture of the different levels of regulation that govern the initiation of XCI. The experimental and computational strategies we have developed here will allow us to profile random XCI in more physiological contexts, including primary human cells in vivo.
Collapse
Affiliation(s)
- Guido Pacini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Norbert Mages
- Sequencing core facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing core facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annalisa Marsico
- Institute for Computational Biology, Helmholtz Center, München, Germany.
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
235
|
Pieri NCG, de Souza AF, Botigelli RC, Pessôa LVDF, Recchia K, Machado LS, Glória MH, de Castro RVG, Leal DF, Fantinato Neto P, Martins SMMK, Dos Santos Martins D, Bressan FF, de Andrade AFC. Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under Different Culture Conditions. Stem Cell Rev Rep 2021; 18:1639-1656. [PMID: 34115317 DOI: 10.1007/s12015-021-10198-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Culture conditions regulate the process of pluripotency acquisition and self-renewal. This study aimed to analyse the influence of the in vitro environment on the induction of porcine induced pluripotent stem cell (piPSCs) differentiation into primordial germ cell-like cells (pPGCLCs). piPSC culture with different supplementation strategies (LIF, bFGF, or LIF plus bFGF) promoted heterogeneous phenotypic profiles. Continuous bFGF supplementation during piPSCs culture was beneficial to support a pluripotent state and the differentiation of piPSCs into pPGCLCs. The pPGCLCs were positive for the gene and protein expression of pluripotent and germinative markers. This study can provide a suitable in vitro model for use in translational studies and to help answer numerous remaining questions about germ cells.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil.
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Lucas Simões Machado
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo/SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Diego Feitosa Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | | | - Daniele Dos Santos Martins
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
236
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
237
|
Liu D, Liu L, Duan K, Guo J, Li S, Zhao Z, Zhang X, Zhou N, Zheng Y. Transcriptional dynamics of transposable elements when converting fibroblast cells of Macaca mulatta to neuroepithelial stem cells. BMC Genomics 2021; 22:405. [PMID: 34082708 PMCID: PMC8176597 DOI: 10.1186/s12864-021-07717-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/16/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Transposable elements (TE) account for more than 50% of human genome. It has been reported that some types of TEs are dynamically regulated in the reprogramming of human cell lines. However, it is largely unknown whether some TEs in Macaca mulatta are also regulated during the reprogramming of cell lines of monkey. RESULTS Here, we systematically examined the transcriptional activities of TEs during the conversion of Macaca mulatta fibroblast cells to neuroepithelial stem cells (NESCs). Hundreds of TEs were dynamically regulated during the reprogramming of Macaca mulatta fibroblast cells. Furthermore, 48 Long Terminal Repeats (LTRs), as well as some integrase elements, of Macaca endogenous retrovirus 3 (MacERV3) were transiently activated during the early stages of the conversion process, some of which were further confirmed with PCR experiments. These LTRs were potentially bound by critical transcription factors for reprogramming, such as KLF4 and ETV5. CONCLUSION These results suggest that the transcription of TEs are delicately regulated during the reprogramming of Macaca mulatta fibroblast cells. Although the family of ERVs activated during the reprogramming of fibroblast cells in Macaca mulatta is different from those in the reprogramming of human fibroblast cells, our results suggest that the activation of some ERVs is a conserved mechanism in primates for converting fibroblast cells to stem cells.
Collapse
Affiliation(s)
- Dahai Liu
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Li Liu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kui Duan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Shipeng Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhigang Zhao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xiaotuo Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Nan Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China. .,Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
238
|
Chen G, Guo Y, Li C, Li S, Wan X. Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem Cell Rev Rep 2021; 16:511-523. [PMID: 32185667 DOI: 10.1007/s12015-020-09965-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ground state of embryonic stem cells (ESCs) is closely related to the development of regenerative medicine. Particularly, long-term culture of ESCs in vitro, maintenance of their undifferentiated state, self-renewal and multi-directional differentiation ability is the premise of ESCs mechanism and application research. Induced pluripotent stem cells (iPSC) reprogrammed from mouse embryonic fibroblasts (MEF) cells into cells with most of the ESC characteristics show promise towards solving ethical problems currently facing stem cell research. However, integration into chromosomal DNA through viral-mediated genes may activate proto oncogenes and lead to risk of cancer of iPSC. At the same time, iPS induction efficiency needs to be further improved to reduce the use of transcription factors. In this review, we discuss small molecules that promote self-renewal and reprogramming, including growth factor receptor inhibitors, GSK-3β and histone deacetylase inhibitors, metabolic regulators, pathway modulators as well as EMT/MET regulation inhibitors to enhance maintenance of ESCs and enable reprogramming. Additionally, we summarize the mechanism of action of small molecules on ESC self-renewal and iPSC reprogramming. Finally, we will report on the progress in identification of novel and potentially effective agents as well as selected strategies that show promise in regenerative medicine. On this basis, development of more small molecule combinations and efficient induction of chemically induced pluripotent stem cell (CiPSC) is vital for stem cell therapy. This will significantly improve research in pathogenesis, individualized drug screening, stem cell transplantation, tissue engineering and many other aspects.
Collapse
Affiliation(s)
- Guofang Chen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Yu'e Guo
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuangdi Li
- Departments of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
239
|
Yang L, Xue S, Du M, Lian F. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. Int J Nanomedicine 2021; 16:3741-3754. [PMID: 34113099 PMCID: PMC8186278 DOI: 10.2147/ijn.s304873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/01/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction The reprogramming of induced cardiomyocytes (iCMs) is of particular significance in regenerative medicine; however, it remains a great challenge to fabricate an efficient and safe gene delivery system to induce reprogramming of iCMs for therapeutic applications in heart injury. Here, we report branched polyethyleneimine (BP) coated nitrogen-enriched carbon dots (BP-NCDs) as highly efficient nanocarriers loaded with microRNAs-combo (BP-NCDs/MC) for cardiac reprogramming. Methods The BP-NCDs nanocarriers were prepared and characterized by several analytical techniques. Results The BP-NCDs nanocarriers showed good microRNAs-combo binding affinity, negligible cytotoxicity, and long-term microRNAs expression. Importantly, BP-NCDs/MC nanocomplexes led to the efficient direct reprogramming of fibroblasts into iCMs without genomic integration and resulting in effective recovery of cardiac function after myocardial infarction (MI). Conclusion This study offers a novel strategy to provide safe and effective microRNAs-delivery nanoplatforms based on carbon dots for promising cardiac regeneration and disease therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
240
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
241
|
Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture). Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01618-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
242
|
Modeling leukemia with pediatric acute leukemia patient-derived iPSCs. Stem Cell Res 2021; 54:102404. [PMID: 34111697 DOI: 10.1016/j.scr.2021.102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE ediatric acute leukemia (AL) is the most common hematological malignancy in childhood. However, the limitation of clinical specimens hindered the progress of research. Therefore, new research platforms are urgently needed to establish and clarify the pathogenesis of pediatric AL, and it is necessary to try to find novel targeted therapies for the clinical use. Here, the induced pluripotent stem cells (iPSCs) derived from AL provide a reliable model for basic research. METHODS eukemia cells were sorted by flow cytometry and then reprogrammed into iPSCs by Sendai virus. Cell cycle assay was used to analyze cell proliferation. RESULTS iPS cell lines from T cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) cells were successfully established. The reprogramming efficiency of AML cells was much higher than that of ALL cells. Disease iPS cells switched off the expression of the disease marker genes at iPS and HPC stage. When different subtypes of AML-iPSCs were differentiated into hematopoietic progenitor cells, iPS derived from acute megakaryocytic leukemia was more readily differentiated into megakaryocyte-erythroid progenitors. Whereas, the differentiation of multipotent lymphoid progenitor (MLP) and granulocyte macrophage progenitor (GMP) were blocked. The iPS derived from acute monocyte leukemia (AMCL) also showed the differentiation of common myeloid progenitors (CMP), GMP and monocytes significantly increased but MLP differentiation was inhibited. The AML-iPSC could form teratomas and we could obverse three germ layers in vivo, indicating that the AML-iPSCs have full pluripotency. However, there were not enough blood cells in teratoma to identify the leukemia. CONCLUSIONS Our results provide a novel platform for AL research and critical insight into the difference of hematopoietic differentiation between ALL and AML.
Collapse
|
243
|
Induced Pluripotent Stem Cell-Derived Conditioned Medium Promotes Endogenous Leukemia Inhibitory Factor to Attenuate Endotoxin-Induced Acute Lung Injury. Int J Mol Sci 2021; 22:ijms22115554. [PMID: 34074039 PMCID: PMC8197417 DOI: 10.3390/ijms22115554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The conditioned medium of induced pluripotent stem cells (iPSC-CM) can attenuate neutrophil recruitment and endothelial leakage of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Therefore, we investigated the mechanisms by which iPSC-CM regulate the interaction between neutrophils and the endothelium in ALI. Murine iPSCs (miPSCs) were delivered intravenously to male C57BL/6 mice (8–12 weeks old) 4 h after intratracheal LPS injection. A miPSC-derived conditioned medium (miPSC-CM) was delivered intravenously to mice after intratracheal LPS injection. DMSO-induced HL-60 cells (D-HL-60, neutrophil-like cells) and human umbilical vein endothelial cells (HUVECs) were used as in vitro models to assess the interaction of neutrophils and endothelial cells. miPSC-CM diminished the histopathological changes in the lungs and the neutrophil count in bronchoalveolar lavage fluids of ALI mice. miPSC-CM attenuated the expression of adhesion molecules in the lungs of ALI mice. Human iPSC conditioned medium (hiPSC-CM) reduced the expression of adhesion molecules in a HUVEC and D-HL-60 co-culture after LPS stimulation, which decreased the transendothelial migration (TEM) of D-HL-60. A human angiogenesis factors protein array revealed that leukemia inhibitory factor (LIF) was not detected in the absence of D-HL-60 and hiPSC-CM groups. hiPSC-CM significantly promoted the production of endogenous LIF in in vitro models. Administration of an anti-LIF antibody not only reversed the effect of iPSC-CM in ALI mice, but also blocked the effect of iPSC-CM on neutrophils TEM in in vitro models. However, a controlled IgG had no such effect. Our study demonstrated that iPSC-CM promoted endogenous LIF to inhibit neutrophils TEM and attenuate the severity of sepsis-induced ALI.
Collapse
|
244
|
Induced Tissue-Specific Stem Cells (iTSCs): Their Generation and Possible Use in Regenerative Medicine. Pharmaceutics 2021; 13:pharmaceutics13060780. [PMID: 34071015 PMCID: PMC8224740 DOI: 10.3390/pharmaceutics13060780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
Induced tissue-specific stem cells (iTSCs) are partially reprogrammed cells which have an intermediate state, such as progenitors or stem cells. They originate from the de-differentiation of differentiated somatic cells into pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), or from the differentiation of undifferentiated cells. They show a limited capacity to differentiate and a morphology similar to that of somatic cell stem cells present in tissues, but distinct from that of iPSCs and ESCs. iTSCs can be generally obtained 7 to 10 days after reprogramming of somatic cells with Yamanaka’s factors, and their fibroblast-like morphology remains unaltered. iTSCs can also be obtained directly from iPSCs cultured under conditions allowing cellular differentiation. In this case, to effectively induce iTSCs, additional treatment is required, as exemplified by the conversion of iPSCs into naïve iPSCs. iTSCs can proliferate continuously in vitro, but when transplanted into immunocompromised mice, they fail to generate solid tumors (teratomas), implying loss of tumorigenic potential. The low tendency of iTSCs to elicit tumors is beneficial, especially considering applications for regenerative medicine in humans. Several iTSC types have been identified, including iTS-L, iTS-P, and iTS-D, obtained by reprogramming hepatocytes, pancreatic cells, and deciduous tooth-derived dental pulp cells, respectively. This review provides a brief overview of iPSCs and discusses recent advances in the establishment of iTSCs and their possible applications in regenerative medicine.
Collapse
|
245
|
Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2021; 8:7033-7081. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, mechanics at multiple stages-nucleus to cell to ECM-underlie multiple physiological and pathological functions from its development to reproduction to death. Under this inspiration, substantial research has established the role of multiple aspects of mechanics in regulating fundamental cellular processes, including spreading, migration, growth, proliferation, and differentiation. However, our understanding of how these mechanical mechanisms are orchestrated or tuned at different stages to maintain or restore the healthy environment at the tissue or organ level remains largely a mystery. Over the past few decades, research in the mechanical manipulation of the surrounding environment-known as substrate or matrix or scaffold on which, or within which, cells are seeded-has been exceptionally enriched in the field of tissue engineering and regenerative medicine. To do so, traditional tissue engineering aims at recapitulating key mechanical milestones of native ECM into a substrate for guiding the cell fate and functions towards specific tissue regeneration. Despite tremendous progress, a big puzzle that remains is how the cells compute a host of mechanical cues, such as stiffness (elasticity), viscoelasticity, plasticity, non-linear elasticity, anisotropy, mechanical forces, and mechanical memory, into many biological functions in a cooperative, controlled, and safe manner. High throughput understanding of key cellular decisions as well as associated mechanosensitive downstream signaling pathway(s) for executing these decisions in response to mechanical cues, solo or combined, is essential to address this issue. While many reports have been made towards the progress and understanding of mechanical cues-particularly, substrate bulk stiffness and viscoelasticity-in regulating the cellular responses, a complete picture of mechanical cues is lacking. This review highlights a comprehensive view on the mechanical cues that are linked to modulate many cellular functions and consequent tissue functionality. For a very basic understanding, a brief discussion of the key mechanical players of ECM and the principle of mechanotransduction process is outlined. In addition, this review gathers together the most important data on the stiffness of various cells and ECM components as well as various tissues/organs and proposes an associated link from the mechanical perspective that is not yet reported. Finally, beyond addressing the challenges involved in tuning the interplaying mechanical cues in an independent manner, emerging advances in designing biomaterials for tissue engineering are also explored.
Collapse
Affiliation(s)
- Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Bangladesh
| | | | | | | |
Collapse
|
246
|
Pellegrino E, Gutierrez MG. Human stem cell-based models for studying host-pathogen interactions. Cell Microbiol 2021; 23:e13335. [PMID: 33792137 DOI: 10.1111/cmi.13335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
The use of human cell lines and primary cells as in vitro models represents a valuable approach to study cellular responses to infection. However, with the advent of new molecular technologies and tools available, there is a growing need to develop more physiologically relevant systems to overcome cell line model limitations and better mimic human disease. Since the discovery of human stem cells, its use has revolutionised the development of in vitro models. This is because after differentiation, these cells have the potential to reflect in vivo cell phenotypes and allow for probing questions in numerous fields of the biological sciences. Moreover, the possibility to combine the advantages of stem cell-derived cell types with genome editing technologies and engineered 3D microenvironments, provides enormous potential for producing in vitro systems to investigate cellular responses to infection that are both relevant and predictive. Here, we discuss recent advances in the use of human stem cells to model host-pathogen interactions, highlighting emerging technologies in the field of stem cell biology that can be exploited to investigate the fundamental biology of infection. TAKE AWAYS: hPSC overcome current limitations to study host-pathogen interactions in vitro. Genome editing can be used in hPSC to study cellular responses to infection. hPSC, 3D models and genome editing can recreate physiological in vitro systems.
Collapse
Affiliation(s)
- Enrica Pellegrino
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
247
|
Lim H, Choi IY, Hyun SH, Kim H, Lee G. Approaches to characterize the transcriptional trajectory of human myogenesis. Cell Mol Life Sci 2021; 78:4221-4234. [PMID: 33590269 PMCID: PMC11072395 DOI: 10.1007/s00018-021-03782-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/31/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem cells (hPSCs) have attracted considerable interest in understanding the cellular fate determination processes and modeling a number of intractable diseases. In vitro generation of skeletal muscle tissues using hPSCs provides an essential model to identify the molecular functions and gene regulatory networks controlling the differentiation of skeletal muscle progenitor cells. Such a genetic roadmap is not only beneficial to understanding human myogenesis but also to decipher the molecular pathology of many skeletal muscle diseases. The combination of established human in vitro myogenesis protocols and newly developed molecular profiling techniques offers extensive insight into the molecular signatures for the development of normal and disease human skeletal muscle tissues. In this review, we provide a comprehensive overview of the current progress of in vitro skeletal muscle generation from hPSCs and relevant examples of the transcriptional landscape and disease-related transcriptional aberrations involving signaling pathways during the development of skeletal muscle cells.
Collapse
Affiliation(s)
- HoTae Lim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
- School of Medicine, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - In Young Choi
- School of Medicine, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Graduate School, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
- School of Medicine, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Hyesoo Kim
- School of Medicine, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gabsang Lee
- School of Medicine, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
248
|
Abstract
Human pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide unprecedented opportunities for cell therapies against intractable diseases and injuries. Both ESCs and iPSCs are already being used in clinical trials. However, we continue to encounter practical issues that limit their use, including their inherent properties of tumorigenicity, immunogenicity, and heterogeneity. Here, I review two decades of research aimed at overcoming these three difficulties.
Collapse
|
249
|
Atiq Hassan, Nasir N, Muzammil K. Treatment Strategies to Promote Regeneration in Experimental Spinal Cord Injury Models. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
250
|
Alle Q, Le Borgne E, Milhavet O, Lemaitre JM. Reprogramming: Emerging Strategies to Rejuvenate Aging Cells and Tissues. Int J Mol Sci 2021; 22:3990. [PMID: 33924362 PMCID: PMC8070588 DOI: 10.3390/ijms22083990] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with a progressive and functional decline of all tissues and a striking increase in many "age-related diseases". Although aging has long been considered an inevitable process, strategies to delay and potentially even reverse the aging process have recently been developed. Here, we review emerging rejuvenation strategies that are based on reprogramming toward pluripotency. Some of these approaches may eventually lead to medical applications to improve healthspan and longevity.
Collapse
Affiliation(s)
- Quentin Alle
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Enora Le Borgne
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Ollivier Milhavet
- IRMB, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| |
Collapse
|