201
|
Pick C, Ebersberger I, Spielmann T, Bruchhaus I, Burmester T. Phylogenomic analyses of malaria parasites and evolution of their exported proteins. BMC Evol Biol 2011; 11:167. [PMID: 21676252 PMCID: PMC3146879 DOI: 10.1186/1471-2148-11-167] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/15/2011] [Indexed: 01/11/2023] Open
Abstract
Background Plasmodium falciparum is the most malignant agent of human malaria. It belongs to the taxon Laverania, which includes other ape-infecting Plasmodium species. The origin of the Laverania is still debated. P. falciparum exports pathogenicity-related proteins into the host cell using the Plasmodium export element (PEXEL). Predictions based on the presence of a PEXEL motif suggest that more than 300 proteins are exported by P. falciparum, while there are many fewer exported proteins in non-Laverania. Results A whole-genome approach was applied to resolve the phylogeny of eight Plasmodium species and four outgroup taxa. By using 218 orthologous proteins we received unanimous support for a sister group position of Laverania and avian malaria parasites. This observation was corroborated by the analyses of 28 exported proteins with orthologs present in all Plasmodium species. Most interestingly, several deviations from the P. falciparum PEXEL motif were found to be present in the orthologous sequences of non-Laverania. Conclusion Our phylogenomic analyses strongly support the hypotheses that the Laverania have been founded by a single Plasmodium species switching from birds to African great apes or vice versa. The deviations from the canonical PEXEL motif in orthologs may explain the comparably low number of exported proteins that have been predicted in non-Laverania.
Collapse
Affiliation(s)
- Christian Pick
- Institute of Zoology and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | | | | | | | | |
Collapse
|
202
|
Jordan SJ, Oliveira AL, Neal AT, Hernandez JN, Branch OH, Rayner JC. Antibodies directed against merozoite surface protein-6 are induced by natural exposure to Plasmodium falciparum in a low transmission environment. Parasite Immunol 2011; 33:401-10. [PMID: 21585398 DOI: 10.1111/j.1365-3024.2011.01299.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria caused by Plasmodium falciparum is a major cause of global infant mortality, and there is currently no licensed vaccine that provides protection against infection or disease. Several P. falciparum vaccine targets have undergone early testing, but many more candidates remain with little data to support their development. Plasmodium falciparum Merozoite Surface Protein 6 (PfMSP6) is a candidate of particular interest because it is a member of the PfMSP3 multi-gene family, raising the possibility that vaccine-induced immune responses could cross-react across multiple family members. However, few immunoepidemiological studies of PfMSP6 have been carried out to measure domain-specific anti-PfMSP6 responses. This study investigated anti-PfMSP6 responses in P. falciparum-infected individuals from the Peruvian Amazon, using two different PfMSP6 N-terminal allele antigens and a single C-terminal domain antigen, and compared the responses with both PfMSP6 genotyping data and anti-PfMSP3 response data that had been previously generated for the same samples. Anti-PfMSP6 responses were detected despite the low transmission setting, but were less frequent and of considerably lower intensity than anti-PfMSP3 responses. There was a positive correlation between anti-PfMSP3 and PfMSP6 responses, suggesting that the possibility that PfMSP3 family antigens could induce cross-reactive responses requires further detailed investigation.
Collapse
Affiliation(s)
- S J Jordan
- William C Gorgas Center for Geographic Medicine, Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
203
|
Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett 2011; 585:1579-88. [PMID: 21557944 DOI: 10.1016/j.febslet.2011.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/15/2023]
Abstract
The Apicomplexans are obligate intracellular protozoan parasites and the causative agents of severe diseases in humans and animals. Although complete genome sequences are available since many years and for several parasites, they are replete with putative genes of unassigned function. Forward and reverse genetic approaches are limited only to a few Apicomplexans that can either be propagated in vitro or in a convenient animal model. This review will compare and contrast the most recent strategies developed for the genetic manipulation of Plasmodium falciparum, Plasmodium berghei and Toxoplasma gondii that have taken advantage of the intrinsic features of their respective genomes. Efforts towards the improvement of the transfection efficiencies in malaria parasites, the development of approaches to study essential genes and the elaboration of high-throughput methods for the identification of gene function will be discussed.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
204
|
Applied genomics: data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA. J Clin Microbiol 2011; 49:2411-8. [PMID: 21525225 DOI: 10.1128/jcm.02603-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms.
Collapse
|
205
|
Plasmodium knowlesi: reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog 2011; 7:e1002015. [PMID: 21490952 PMCID: PMC3072369 DOI: 10.1371/journal.ppat.1002015] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 02/08/2011] [Indexed: 01/16/2023] Open
Abstract
Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein (csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium (P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000-40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host.
Collapse
|
206
|
Ochoa A, Llinás M, Singh M. Using context to improve protein domain identification. BMC Bioinformatics 2011; 12:90. [PMID: 21453511 PMCID: PMC3090354 DOI: 10.1186/1471-2105-12-90] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying domains in protein sequences is an important step in protein structural and functional annotation. Existing domain recognition methods typically evaluate each domain prediction independently of the rest. However, the majority of proteins are multidomain, and pairwise domain co-occurrences are highly specific and non-transitive. RESULTS Here, we demonstrate how to exploit domain co-occurrence to boost weak domain predictions that appear in previously observed combinations, while penalizing higher confidence domains if such combinations have never been observed. Our framework, Domain Prediction Using Context (dPUC), incorporates pairwise "context" scores between domains, along with traditional domain scores and thresholds, and improves domain prediction across a variety of organisms from bacteria to protozoa and metazoa. Among the genomes we tested, dPUC is most successful at improving predictions for the poorly-annotated malaria parasite Plasmodium falciparum, for which over 38% of the genome is currently unannotated. Our approach enables high-confidence annotations in this organism and the identification of orthologs to many core machinery proteins conserved in all eukaryotes, including those involved in ribosomal assembly and other RNA processing events, which surprisingly had not been previously known. CONCLUSIONS Overall, our results demonstrate that this new context-based approach will provide significant improvements in domain and function prediction, especially for poorly understood genomes for which the need for additional annotations is greatest. Source code for the algorithm is available under a GPL open source license at http://compbio.cs.princeton.edu/dpuc/. Pre-computed results for our test organisms and a web server are also available at that location.
Collapse
Affiliation(s)
- Alejandro Ochoa
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
207
|
Fonager J, Franke-Fayard BMD, Adams JH, Ramesar J, Klop O, Khan SM, Janse CJ, Waters AP. Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites. BMC Genomics 2011; 12:155. [PMID: 21418605 PMCID: PMC3073922 DOI: 10.1186/1471-2164-12-155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/20/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The genome of a number of species of malaria parasites (Plasmodium spp.) has been sequenced in the hope of identifying new drug and vaccine targets. However, almost one-half of predicted Plasmodium genes are annotated as hypothetical and are difficult to analyse in bulk due to the inefficiency of current reverse genetic methodologies for Plasmodium. Recently, it has been shown that the transposase piggyBac integrates at random into the genome of the human malaria parasite P. falciparum offering the possibility to develop forward genetic screens to analyse Plasmodium gene function. This study reports the development and application of the piggyBac transposition system for the rodent malaria parasite P. berghei and the evaluation of its potential as a tool in forward genetic studies. P. berghei is the most frequently used malaria parasite model in gene function analysis since phenotype screens throughout the complete Plasmodium life cycle are possible both in vitro and in vivo. RESULTS We demonstrate that piggyBac based gene inactivation and promoter-trapping is both easier and more efficient in P. berghei than in the human malaria parasite, P. falciparum. Random piggyBac-mediated insertion into genes was achieved after parasites were transfected with the piggyBac donor plasmid either when transposase was expressed either from a helper plasmid or a stably integrated gene in the genome. Characterization of more than 120 insertion sites demonstrated that more than 70 most likely affect gene expression classifying their protein products as non-essential for asexual blood stage development. The non-essential nature of two of these genes was confirmed by targeted gene deletion one of which encodes P41, an ortholog of a human malaria vaccine candidate. Importantly for future development of whole genome phenotypic screens the remobilization of the piggyBac element in parasites that stably express transposase was demonstrated. CONCLUSION These data demonstrate that piggyBac behaved as an efficient and random transposon in P. berghei. Remobilization of piggyBac element shows that with further development the piggyBac system can be an effective tool to generate random genome-wide mutation parasite libraries, for use in large-scale phenotype screens in vitro and in vivo.
Collapse
Affiliation(s)
- Jannik Fonager
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Blandine MD Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida USA
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Andrew P Waters
- Institute of, Infection, Immunity & Inflammation, School of Medical, Veterinary & Life Sciences, & Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Scotland, UK
| |
Collapse
|
208
|
Arisue N, Kawai S, Hirai M, Palacpac NMQ, Jia M, Kaneko A, Tanabe K, Horii T. Clues to evolution of the SERA multigene family in 18 Plasmodium species. PLoS One 2011; 6:e17775. [PMID: 21423628 PMCID: PMC3058004 DOI: 10.1371/journal.pone.0017775] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/09/2011] [Indexed: 12/26/2022] Open
Abstract
SERA gene sequences were newly determined from 11 primate
Plasmodium species including two human parasites,
P. ovale and P. malariae, and the
evolutionary history of SERA genes was analyzed together with 7 known species.
All have one each of Group I to III cysteine-type SERA genes and varying number
of Group IV serine-type SERA genes in tandem cluster. Notably, Group IV SERA
genes were ascertained in all mammalian parasite lineages; and in two primate
parasite lineages gene events such as duplication, truncation, fragmentation and
gene loss occurred at high frequency in a manner that mimics the birth-and-death
evolution model. Transcription profile of individual SERA genes varied greatly
among rodent and monkey parasites. Results support the lineage-specific
evolution of the Plasmodium SERA gene family. These findings
provide further impetus for studies that could clarify/provide proof-of-concept
that duplications of SERA genes were associated with the parasites'
expansion of host range and the evolutionary conundrums of multigene families in
Plasmodium.
Collapse
Affiliation(s)
- Nobuko Arisue
- Department of Molecular Protozoology, Research
Institute for Microbial Diseases, Osaka University, Suita, Osaka,
Japan
| | - Satoru Kawai
- Laboratory of Tropical Medicine and
Parasitology, Dokkyo University School of Medicine, Mibu, Shimotsuga, Tochigi,
Japan
| | - Makoto Hirai
- Department of Parasitology, Graduate School of
Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Nirianne M. Q. Palacpac
- Department of Molecular Protozoology, Research
Institute for Microbial Diseases, Osaka University, Suita, Osaka,
Japan
| | - Mozhi Jia
- Department of Molecular Protozoology, Research
Institute for Microbial Diseases, Osaka University, Suita, Osaka,
Japan
| | - Akira Kaneko
- Department of Parasitology, Osaka City
University Graduate School of Medicine, Osaka, Japan
- Island Malaria Group, Department of
Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm,
Sweden
- Institute of Tropical Medicine, Nagasaki
University, Nagasaki, Japan
| | - Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute
for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research
Institute for Microbial Diseases, Osaka University, Suita, Osaka,
Japan
- * E-mail:
| |
Collapse
|
209
|
Genome-wide identification of molecular mimicry candidates in parasites. PLoS One 2011; 6:e17546. [PMID: 21408160 PMCID: PMC3050887 DOI: 10.1371/journal.pone.0017546] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/08/2011] [Indexed: 11/25/2022] Open
Abstract
Among the many strategies employed by parasites for immune evasion and host manipulation, one of the most fascinating is molecular mimicry. With genome sequences available for host and parasite, mimicry of linear amino acid epitopes can be investigated by comparative genomics. Here we developed an in silico pipeline for genome-wide identification of molecular mimicry candidate proteins or epitopes. The predicted proteome of a given parasite was broken down into overlapping fragments, each of which was screened for close hits in the human proteome. Control searches were carried out against unrelated, free-living eukaryotes to eliminate the generally conserved proteins, and with randomized versions of the parasite proteins to get an estimate of statistical significance. This simple but computation-intensive approach yielded interesting candidates from human-pathogenic parasites. From Plasmodium falciparum, it returned a 14 amino acid motif in several of the PfEMP1 variants identical to part of the heparin-binding domain in the immunosuppressive serum protein vitronectin. And in Brugia malayi, fragments were detected that matched to periphilin-1, a protein of cell-cell junctions involved in barrier formation. All the results are publicly available by means of mimicDB, a searchable online database for molecular mimicry candidates from pathogens. To our knowledge, this is the first genome-wide survey for molecular mimicry proteins in parasites. The strategy can be adopted to any pair of host and pathogen, once appropriate negative control organisms are chosen. MimicDB provides a host of new starting points to gain insights into the molecular nature of host-pathogen interactions.
Collapse
|
210
|
Sato S. The apicomplexan plastid and its evolution. Cell Mol Life Sci 2011; 68:1285-96. [PMID: 21380560 PMCID: PMC3064897 DOI: 10.1007/s00018-011-0646-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 11/24/2022]
Abstract
Protistan species belonging to the phylum Apicomplexa have a non-photosynthetic secondary plastid-the apicoplast. Although its tiny genome and even the entire nuclear genome has been sequenced for several organisms bearing the organelle, the reason for its existence remains largely obscure. Some of the functions of the apicoplast, including housekeeping ones, are significantly different from those of other plastids, possibly due to the organelle's unique symbiotic origin.
Collapse
Affiliation(s)
- Shigeharu Sato
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, UK.
| |
Collapse
|
211
|
Hung SS, Parkinson J. Post-genomics resources and tools for studying apicomplexan metabolism. Trends Parasitol 2011; 27:131-40. [DOI: 10.1016/j.pt.2010.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/26/2022]
|
212
|
Joannin N, Kallberg Y, Wahlgren M, Persson B. RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum. BMC Genomics 2011; 12:119. [PMID: 21332983 PMCID: PMC3050820 DOI: 10.1186/1471-2164-12-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/18/2011] [Indexed: 01/30/2023] Open
Abstract
Background Many parasites use multicopy protein families to avoid their host's immune system through a strategy called antigenic variation. RIFIN and STEVOR proteins are variable surface antigens uniquely found in the malaria parasites Plasmodium falciparum and P. reichenowi. Although these two protein families are different, they have more similarity to each other than to any other proteins described to date. As a result, they have been grouped together in one Pfam domain. However, a recent study has described the sub-division of the RIFIN protein family into several functionally distinct groups. These sub-groups require phylogenetic analysis to sort out, which is not practical for large-scale projects, such as the sequencing of patient isolates and meta-genomic analysis. Results We have manually curated the rif and stevor gene repertoires of two Plasmodium falciparum genomes, isolates DD2 and HB3. We have identified 25% of mis-annotated and ~30 missing rif and stevor genes. Using these data sets, as well as sequences from the well curated reference genome (isolate 3D7) and field isolate data from Uniprot, we have developed a tool named RSpred. The tool, based on a set of hidden Markov models and an evaluation program, automatically identifies STEVOR and RIFIN sequences as well as the sub-groups: A-RIFIN, B-RIFIN, B1-RIFIN and B2-RIFIN. In addition to these groups, we distinguish a small subset of STEVOR proteins that we named STEVOR-like, as they either differ remarkably from typical STEVOR proteins or are too fragmented to reach a high enough score. When compared to Pfam and TIGRFAMs, RSpred proves to be a more robust and more sensitive method. We have applied RSpred to the proteomes of several P. falciparum strains, P. reichenowi, P. vivax, P. knowlesi and the rodent malaria species. All groups were found in the P. falciparum strains, and also in the P. reichenowi parasite, whereas none were predicted in the other species. Conclusions We have generated a tool for the sorting of RIFIN and STEVOR proteins, large antigenic variant protein groups, into homogeneous sub-families. Assigning functions to such protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. RSpred removes the need for complicated and time consuming phylogenetic analysis methods. It will benefit both research groups sequencing whole genomes as well as others working with field isolates. RSpred is freely accessible via http://www.ifm.liu.se/bioinfo/.
Collapse
Affiliation(s)
- Nicolas Joannin
- Department of Microbiology, Cell and Tumor biology (MTC), Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
213
|
Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GHJ, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent MH, Howlett BJ. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun 2011; 2:202. [PMID: 21326234 PMCID: PMC3105345 DOI: 10.1038/ncomms1189] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/11/2011] [Indexed: 02/06/2023] Open
Abstract
Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints.
Collapse
Affiliation(s)
- Thierry Rouxel
- INRA-Bioger, UR1290, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon F-78850, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Abstract
Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences.
Collapse
|
215
|
Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection. Mol Biochem Parasitol 2011; 177:29-34. [PMID: 21251930 DOI: 10.1016/j.molbiopara.2011.01.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/29/2010] [Accepted: 01/06/2011] [Indexed: 11/22/2022]
Abstract
Genetic manipulation of Plasmodium falciparum in culture through transfection has provided numerous insights into the molecular and cell biology of this parasite. The procedure is rather cumbersome, and is limited by the number of drug-resistant markers that can be used for selecting transfected parasites. Here we report a new selectable marker that could allow multiple transfections. We have taken advantage of our finding that a critical function of the mitochondrial electron transport chain (mtETC) in the erythrocytic stages of P. falciparum is the regeneration of ubiquinone as co-substrate of dihydroorotate dehydrogenase (DHODH), and that transgenic P. falciparum expressing ubiquinone-independent DHODH from yeast (yDHODH) are resistant to all mtETC inhibitors. We assessed the possibility of using yDHODH as a positive selectable marker for transfections of P. falciparum, including its use in gene disruption strategies. We constructed a transfection vector designed for gene disruption, termed pUF-1, containing the yDHODH gene as the positive selection marker in combination with a previously described fused yeast cytosine deaminase-uracil phosphoribosyl transferase gene as a negative selection marker. Transfection of the D10 strain followed by selection with atovaquone yielded positively selected parasites containing the plasmid, demonstrating that yDHODH can be used as a selective marker. Atovaquone, however, could not be used for such selection with the Dd2 strain of P. falciparum. On the other hand, we demonstrated that yDHODH transgenic parasites could be selected in both strains by Plasmodium DHODH-specific triazolopyrimidine-based inhibitors. Thus, selection with DHODH inhibitors was superior in that it successfully selected transgenic Dd2 parasites, as well as yielded transgenic parasites after a shorter period of selection. As a proof of concept, we have successfully disrupted the type II vacuolar proton-pumping pyrophosphatase gene (PfVP2) in P. falciparum by double crossover recombination, showing that this gene is not essential for the survival of blood stage parasites.
Collapse
|
216
|
Implications of Human Microbiome Research for the Developing World. METAGENOMICS OF THE HUMAN BODY 2011. [PMCID: PMC7120668 DOI: 10.1007/978-1-4419-7089-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human microbiome refers to all of the species that inhabit the human body, residing both on and in it. Over the past several years, there has been a significantly increased interest directed to the understanding of the microorganisms that reside on and in the human body. These studies of the human microbiome promise to reveal all these species and increase our understanding of the normal inhabitants, those that trigger disease and those that vary in response to disease conditions. It is anticipated that these directed research efforts, coupled with new technological advances, will ultimately allow one to gain a greater understanding of the relationships of these species with their human hosts. The various chapters in this book present a range of aspects of human microbiome research, explain the scientific and technological rationale, and highlight the significant potential that the results from these studies hold. In this chapter, we begin to address the potential and long-term implications of the knowledge gained from human microbiome research (which currently is centered in the developed world) for the developing world, which has often lagged behind in the benefits of these new technologies and their implications to new research areas.
Collapse
|
217
|
Anderson T, Nkhoma S, Ecker A, Fidock D. How can we identify parasite genes that underlie antimalarial drug resistance? Pharmacogenomics 2011; 12:59-85. [PMID: 21174623 PMCID: PMC3148835 DOI: 10.2217/pgs.10.165] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This article outlines genome-scale approaches that can be used to identify mutations in malaria (Plasmodium) parasites that underlie drug resistance and contribute to treatment failure. These approaches include genetic mapping by linkage or genome-wide association studies, drug selection and characterization of resistant mutants, and the identification of genome regions under strong recent selection. While these genomic approaches can identify candidate resistance loci, genetic manipulation is needed to demonstrate causality. We therefore also describe the growing arsenal of available transfection approaches for direct incrimination of mutations suspected to play a role in resistance. Our intention is both to review past progress and highlight promising approaches for future investigations.
Collapse
Affiliation(s)
- Tim Anderson
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
218
|
Cox-Singh J. Insights from monkey malaria that can change thinking about human infections. Malar J 2010. [PMCID: PMC2963208 DOI: 10.1186/1475-2875-9-s2-i2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
219
|
Cai H, Gu J, Wang Y. Core genome components and lineage specific expansions in malaria parasites plasmodium. BMC Genomics 2010; 11 Suppl 3:S13. [PMID: 21143780 PMCID: PMC2999343 DOI: 10.1186/1471-2164-11-s3-s13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background The increasing resistance of Plasmodium, the malaria parasites, to multiple commonly used drugs has underscored the urgent need to develop effective antimalarial drugs and vaccines. The new direction of genomics-driven target discovery has become possible with the completion of parasite genome sequencing, which can lead us to a better understanding of how the parasites develop the genetic variability that is associated with their response to environmental challenges and other adaptive phenotypes. Results We present the results of a comprehensive analysis of the genomes of six Plasmodium species, including two species that infect humans, one that infects monkeys, and three that infect rodents. The core genome shared by all six species is composed of 3,351 genes, which make up about 22%-65% of the genome repertoire. These components play important roles in fundamental functions as well as in parasite-specific activities. We further investigated the distribution and features of genes that have been expanded in specific Plasmodium lineage(s). Abundant duplicate genes are present in the six species, with 5%-9% of the whole genomes composed lineage specific radiations. The majority of these gene families are hypothetical proteins with unknown functions; a few may have predicted roles such as antigenic variation. Conclusions The core genome components in the malaria parasites have functions ranging from fundamental biological processes to roles in the complex networks that sustain the parasite-specific lifestyles appropriate to different hosts. They represent the minimum requirement to maintain a successful life cycle that spans vertebrate hosts and mosquito vectors. Lineage specific expansions (LSEs) have given rise to abundant gene families in Plasmodium. Although the functions of most families remain unknown, these LSEs could reveal components in parasite networks that, by their enhanced genetic variability, can contribute to pathogenesis, virulence, responses to environmental challenges, or interesting phenotypes.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
220
|
van Schaijk BCL, Vos MW, Janse CJ, Sauerwein RW, Khan SM. Removal of heterologous sequences from Plasmodium falciparum mutants using FLPe-recombinase. PLoS One 2010; 5:e15121. [PMID: 21152048 PMCID: PMC2994908 DOI: 10.1371/journal.pone.0015121] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 10/22/2010] [Indexed: 01/23/2023] Open
Abstract
Genetically-modified mutants are now indispensable Plasmodium gene-function reagents, which are also being pursued as genetically attenuated parasite vaccines. Currently, the generation of transgenic malaria-parasites requires the use of drug-resistance markers. Here we present the development of an FRT/FLP-recombinase system that enables the generation of transgenic parasites free of resistance genes. We demonstrate in the human malaria parasite, P. falciparum, the complete and efficient removal of the introduced resistance gene. We targeted two neighbouring genes, p52 and p36, using a construct that has a selectable marker cassette flanked by FRT-sequences. This permitted the subsequent removal of the selectable marker cassette by transient transfection of a plasmid that expressed a 37°C thermostable and enhanced FLP-recombinase. This method of removing heterologous DNA sequences from the genome opens up new possibilities in Plasmodium research to sequentially target multiple genes and for using genetically-modified parasites as live, attenuated malaria vaccines.
Collapse
Affiliation(s)
- Ben C. L. van Schaijk
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- * E-mail: ) (BCLvS); (SMK)
| | - Martijn W. Vos
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
- * E-mail: ) (BCLvS); (SMK)
| |
Collapse
|
221
|
Mesplet M, Echaide I, Dominguez M, Mosqueda JJ, Suarez CE, Schnittger L, Florin-Christensen M. Bovipain-2, the falcipain-2 ortholog, is expressed in intraerythrocytic stages of the tick-transmitted hemoparasite Babesia bovis. Parasit Vectors 2010; 3:113. [PMID: 21092313 PMCID: PMC3003645 DOI: 10.1186/1756-3305-3-113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/23/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cysteine proteases have been shown to be highly relevant for Apicomplexan parasites. In the case of Babesia bovis, a tick-transmitted hemoparasite of cattle, inhibitors of these enzymes were shown to hamper intraerythrocytic replication of the parasite, underscoring their importance for survival. RESULTS Four papain-like cysteine proteases were found to be encoded by the B. bovis genome using the MEROPS database. One of them, the ortholog of Plasmodium falciparum falcipain-2, here named bovipain-2, was further characterized. Bovipain-2 is encoded in B. bovis chromosome 4 by an ORF of 1.3 kb, has a predicted molecular weight of 42 kDa, and is hydrophilic with the exception of a transmembrane region. It has orthologs in several other apicomplexans, and its predicted amino acid sequence shows a high degree of conservation among several B. bovis isolates from North and South America. Synteny studies demonstrated that the bovipain-2 gene has expanded in the genomes of two related piroplasmids, Theileria parva and T. annulata, into families of 6 and 7 clustered genes respectively. The bovipain-2 gene is transcribed in in vitro cultured intra-erythrocyte forms of a virulent and an attenuated B. bovis strain from Argentina, and has no introns, as shown by RT-PCR followed by sequencing. Antibodies against a recombinant form of bovipain-2 recognized two parasite protein bands of 34 and 26 kDa, which coincide with the predicted sizes of the pro-peptidase and mature peptidase, respectively. Immunofluorescence studies showed an intracellular localization of bovipain-2 in the middle-rear region of in vitro cultured merozoites, as well as diffused in the cytoplasm of infected erythrocytes. Anti-bovipain-2 antibodies also reacted with B. bigemina-infected erythrocytes giving a similar pattern, which suggests cross-reactivity among these species. Antibodies in sera of two out of six B. bovis-experimentally infected bovines tested, reacted specifically with recombinant bovipain-2 in immunoblots, thus demonstrating expression and immunogenicity during bovine-infecting stages. CONCLUSIONS Overall, we present the characterization of bovipain-2 and demonstrate its in vitro and in vivo expression in virulent and attenuated strains. Given the involvement of apicomplexan cysteine proteases in essential parasite functions, bovipain-2 constitutes a new vaccine candidate and potential drug target for bovine babesiosis.
Collapse
Affiliation(s)
- María Mesplet
- Instituto de Patobiología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, INTA-Castelar, Argentina.
| | | | | | | | | | | | | |
Collapse
|
222
|
Raffaele S, Win J, Cano LM, Kamoun S. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics 2010; 11:637. [PMID: 21080964 PMCID: PMC3091767 DOI: 10.1186/1471-2164-11-637] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora infestans is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The P. infestans genome experienced a repeat-driven expansion relative to the genomes of Phytophthora sojae and Phytophthora ramorum and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation. RESULTS We used in silico approaches to predict and describe the repertoire of P. infestans secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the P. sojae and P. ramorum genomes and (iii) is encoded by genes residing in gene sparse regions of P. infestans genome. Although including only ~3% of P. infestans genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced in planta. We highlight 19 plastic secretome genes induced in planta but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors. CONCLUSIONS This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.
Collapse
Affiliation(s)
- Sylvain Raffaele
- The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
223
|
Modelling knowlesi malaria transmission in humans: vector preference and host competence. Malar J 2010; 9:329. [PMID: 21080968 PMCID: PMC2996403 DOI: 10.1186/1475-2875-9-329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium knowlesi, a malaria species that normally infects long-tailed macaques, was recently found to be prevalent in humans in Southeast Asia. While human host competency has been demonstrated experimentally, the extent to which the parasite can be transmitted from human back to mosquito vector in nature is unclear. Methods Using a mathematical model, the influence of human host competency on disease transmission is assessed. Adapting a standard model for vector-borne disease transmission and using an evolutionary invasion analysis, the paper explores how differential host competency between humans and macaques can facilitate the epidemiological processes of P. knowlesi infection between different hosts. Results Following current understanding of the evolutionary route of other human malaria vectors and parasites, an increasing human population in knowlesi malaria endemic regions will select for a more anthropophilic vector as well as a parasite that preferentially transmits between humans. Applying these adaptations, evolutionary invasion analysis yields threshold conditions under which this macaque disease may become a significant public health issue. Conclusions These threshold conditions are discussed in the context of malaria vector-parasite co-evolution as a function of anthropogenic effects.
Collapse
|
224
|
Tyagi S, Sharma M, Das A. Comparative genomic analysis of simple sequence repeats in three Plasmodium species. Parasitol Res 2010; 108:451-8. [PMID: 20924609 DOI: 10.1007/s00436-010-2086-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/08/2010] [Indexed: 11/24/2022]
Abstract
Simple sequence repeats (SSRs) are known to be responsible for genetic complexities and play major roles in gene and genome evolution. To this respect, malaria parasites are known to have rapidly evolving and complex genomes with complicated and differential pathogenic behaviors. Hence, by studying the whole genome comparative SSRs patterns, one can understand genomic complexities and differential evolutionary patterns of these species. We herein utilized the whole genome sequence information of three Plasmodium species, Plasmodium falciparum, Plasmodium vivax, and Plasmodium knowlesi, to comparatively analyze genome-wide distribution of SSRs. The study revealed that despite having the smallest genome size, P. falciparum bears the highest SSR content among the three Plasmodium species. Furthermore, distribution patterns of different SSRs types (e.g., mono, di, tri, tetra, penta, and hexa) in term of relative abundance and relative density provide evidences for greater accumulation of di-repeats and marked decrease of mono-repeats in P. falciparum in comparison to other two species. Overall, the types and distribution of SSRs in P. falciparum genome was found to be different than that of P. vivax and P. knowlesi. The latter two species have quite similar SSR organizations in many aspects of the data. The results were discussed in terms of comparative SSR patterns among the three Plasmodium species, uniqueness of P. falciparum in SSR organization and general pattern of evolution of SSRs in Plasmodium.
Collapse
Affiliation(s)
- Suchi Tyagi
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110 077, India
| | | | | |
Collapse
|
225
|
Abstract
The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing <0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed.
Collapse
Affiliation(s)
- Denise L Doolan
- Division of Immunology, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, P.O. Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| |
Collapse
|
226
|
Malaria Update for the Clinical Microbiology Laboratory: a New Species, Plasmodium knowlesi, and New Diagnostic Tests. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.clinmicnews.2010.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
227
|
Tan JC, Tan A, Checkley L, Honsa CM, Ferdig MT. Variable numbers of tandem repeats in Plasmodium falciparum genes. J Mol Evol 2010; 71:268-78. [PMID: 20730584 DOI: 10.1007/s00239-010-9381-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 08/09/2010] [Indexed: 11/29/2022]
Abstract
Genome variation studies in Plasmodium falciparum have focused on SNPs and, more recently, large-scale copy number polymorphisms and ectopic rearrangements. Here, we examine another source of variation: variable number tandem repeats (VNTRs). Interspersed low complexity features, including the well-studied P. falciparum microsatellite sequences, are commonly classified as VNTRs; however, this study is focused on longer coding VNTR polymorphisms, a small class of copy number variations. Selection against frameshift mutation is a main constraint on tandem repeats (TRs) in coding regions, while limited propagation of TRs longer than 975 nt total length is a minor restriction in coding regions. Comparative analysis of three P. falciparum genomes reveals that more than 9% of all P. falciparum ORFs harbor VNTRs, much more than has been reported for any other species. Moreover, genotyping of VNTR loci in a drug-selected line, progeny of a genetic cross, and 334 field isolates demonstrates broad variability in these sequences. Functional enrichment analysis of ORFs harboring VNTRs identifies stress and DNA damage responses along with chromatin modification activities, suggesting an influence on genome mutability and functional variation. Analysis of the repeat units and their flanking regions in both P. falciparum and Plasmodium reichenowi sequences implicates a replication slippage mechanism in the generation of TRs from an initially unrepeated sequence. VNTRs can contribute to rapid adaptation by localized sequence duplication. They also can confound SNP-typing microarrays or mapping short-sequence reads and therefore must be accounted for in such analyses.
Collapse
Affiliation(s)
- John C Tan
- The Eck Institute for Global Health, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN, 46556, USA.
| | | | | | | | | |
Collapse
|
228
|
Balabaskaran Nina P, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol 2010; 8:e1000418. [PMID: 20644710 PMCID: PMC2903591 DOI: 10.1371/journal.pbio.1000418] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/01/2010] [Indexed: 12/28/2022] Open
Abstract
The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the F(o) sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a of the F(o) sector. The absence of genes encoding orthologs of the novel subunits even in apicomplexans suggests that the Tetrahymena ATP synthase, despite core similarities, is a unique enzyme exhibiting dramatic differences compared to the conventional complexes found in metazoan, fungal, and plant mitochondria, as well as in prokaryotes. These findings have significant implications for the origins and evolution of a central player in bioenergetics.
Collapse
Affiliation(s)
- Praveen Balabaskaran Nina
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Natalya V. Dudkina
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Lesley A. Kane
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer E. van Eyk
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Egbert J. Boekema
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
229
|
Jemmely NY, Niang M, Preiser PR. Small variant surface antigens and Plasmodium evasion of immunity. Future Microbiol 2010; 5:663-82. [PMID: 20353305 DOI: 10.2217/fmb.10.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antigenic variation at the Plasmodium-infected erythrocyte surface plays a critical role in malaria disease severity and host immune evasion. Our current understanding of the role of Plasmodium variant surface antigens in antigenic variation and immune evasion is largely limited to the extensive work carried out on the Plasmodium falciparum var gene family. Although homologues of var genes are not present in other malaria species, small variant gene families comprising the rif and stevor genes in P. falciparum and the pir genes in Plasmodium vivax, Plasmodium knowlesi and the rodent malaria Plasmodium chabaudi, Plasmodium berghei and Plasmodium yoelii also show features suggesting a role in antigenic variation and immune evasion. In this article, we highlight our current understanding of these variant antigens and provide insights on the mechanisms developed by malaria parasites to effectively avoid the host immune response and establish chronic infection.
Collapse
Affiliation(s)
- Noelle Yvonne Jemmely
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
230
|
Tsuboi T, Takeo S, Arumugam TU, Otsuki H, Torii M. The wheat germ cell-free protein synthesis system: a key tool for novel malaria vaccine candidate discovery. Acta Trop 2010; 114:171-6. [PMID: 19913490 DOI: 10.1016/j.actatropica.2009.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/13/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
Abstract
Malaria kills more than a million people a year, causes malady in about three hundred million people and poses risk to approximately 40% of the world's population living in malarious countries. This disease is re-emerging mainly due to the development of drug-resistant parasites and insecticide-resistant mosquitoes. Therefore, we are now forced to resort to remedy through vaccination. Until now, not even a single licensed malaria vaccine has been developed despite intensive efforts. Even the efficacy of RTS,S, the most advanced and promising vaccine candidate in the pipeline of malaria vaccine development, was only around 50% based on a number of clinical trials. These facts urge malaria researchers to urgently enrich this pipeline, as much as possible, with potential vaccine candidates. With the availability of malaria genome database, the enrichment of this pipeline is possible if we could now employ an efficient protein expression technology to decode the malaria genomic data, without any codon optimization, into quality recombinant proteins. Then, these synthesized recombinant proteins can be characterized and screened for discovering novel potential vaccine targets. The wheat germ cell-free protein synthesis system will be a promising tool to this end. This review highlights the recent successes in synthesizing quality malaria proteins using this tool.
Collapse
|
231
|
Diez D, Hayes N, Joannin N, Normark J, Kanehisa M, Wahlgren M, Wheelock CE, Goto S. varDB: a database of antigenic variant sequences--current status and future prospects. Acta Trop 2010; 114:144-51. [PMID: 19539588 DOI: 10.1016/j.actatropica.2009.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/03/2009] [Accepted: 06/09/2009] [Indexed: 11/19/2022]
Abstract
Antigenic variation is a common mechanism employed by many pathogenic organisms to avoid recognition of surface proteins by the host immune system. The malaria parasite, Plasmodium falciparum, among many others, exploits this mechanism and manages to survive in an otherwise hostile environment. Although similarities in the mechanisms used among different species to generate antigenic variation are broadly recognized, there is a lack of studies using cross-species data. The varDB project (http://www.vardb.org) was created to study antigenic variation at a range of different levels, both within and among species. The project aims to serve as a resource to increase our understanding of antigenic variation by providing a framework for comparative studies. In this review we describe the varDB project, its construction, and the overall organization of information with the intent of increasing the utility of varDB to the research community. The current version of varDB supports 27 species involved in 19 different diseases affecting humans as well as other species. These data include 42 gene families that are represented by over 67,000 sequences. The varDB project is still in its infancy but is expected to continue to grow with the addition of new organisms and gene families as well as input from the general research community.
Collapse
Affiliation(s)
- Diego Diez
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
232
|
The emerging of the fifth malaria parasite (Plasmodium knowlesi). A public health concern? Braz J Infect Dis 2010. [DOI: 10.1016/s1413-8670(10)70062-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
233
|
Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, Quail MA, Chukualim B, Capewell P, MacLeod A, Melville SE, Gibson W, Barry JD, Berriman M, Hertz-Fowler C. The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl Trop Dis 2010; 4:e658. [PMID: 20404998 PMCID: PMC2854126 DOI: 10.1371/journal.pntd.0000658] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/02/2010] [Indexed: 12/03/2022] Open
Abstract
Background Trypanosoma brucei gambiense is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a T. b. brucei isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between T. b. gambiense and the reference genome. We sought to identify features that were uniquely associated with T. b. gambiense and its ability to infect humans. Methods and Findings An improved high-quality draft genome sequence for the group 1 T. b. gambiense DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with T. b. brucei showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in T. b. gambiense DAL 972. A comparison of the variant surface glycoproteins (VSG) in T. b. brucei with all T. b. gambiense sequence reads showed that the essential structural repertoire of VSG domains is conserved across T. brucei. Conclusions This study provides the first estimate of intraspecific genomic variation within T. brucei, and so has important consequences for future population genomics studies. We have shown that the T. b. gambiense genome corresponds closely with the reference, which should therefore be an effective scaffold for any T. brucei genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in T. b. brucei, no T. b. gambiense-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans. Sleeping sickness, or Human African Trypanosomiasis, is a disease affecting the health and productivity of poor people in many rural areas of sub-Saharan Africa. The disease is caused by a single-celled flagellate, Trypanosoma brucei, which evades the immune system by periodically switching the proteins on its surface. We have produced a genome sequence for T. brucei gambiense, which is the particular subspecies causing most disease in humans. We compared this with an existing reference genome for a non-human infecting strain (T. b. brucei 927) to identify genes in T. b. gambiense that might explain its ability to infect humans and to assess how well the reference performs as a universal plan for all T. brucei. The genome sequences differ only due to rare insertions and duplications and homologous genes are over 95% identical on average. The archive of surface antigens that enable the parasite to switch its protein coat is remarkably consistent, even though it evolves very quickly. We identified genes with predicted cell surface functions that are only present in T. b. brucei and have evolved rapidly in recent time. These genes might help to explain variation in disease pathology between different T. brucei strains in different hosts.
Collapse
Affiliation(s)
- Andrew P. Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Andrew Berry
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Jacqueline McQuillan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Martin A. Aslett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | | | - Paul Capewell
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - J. David Barry
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Christiane Hertz-Fowler
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
234
|
Oliva R, Win J, Raffaele S, Boutemy L, Bozkurt TO, Chaparro-Garcia A, Segretin ME, Stam R, Schornack S, Cano LM, van Damme M, Huitema E, Thines M, Banfield MJ, Kamoun S. Recent developments in effector biology of filamentous plant pathogens. Cell Microbiol 2010; 12:705-15. [PMID: 20374248 DOI: 10.1111/j.1462-5822.2010.01471.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous pathogens, such as plant pathogenic fungi and oomycetes, secrete an arsenal of effector molecules that modulate host innate immunity and enable parasitic infection. It is now well accepted that these effectors are key pathogenicity determinants that enable parasitic infection. In this review, we report on the most interesting features of a representative set of filamentous pathogen effectors and highlight recent findings. We also list and describe all the linear motifs reported to date in filamentous pathogen effector proteins. Some of these motifs appear to define domains that mediate translocation inside host cells.
Collapse
|
235
|
Boddey JA, Hodder AN, Günther S, Gilson PR, Patsiouras H, Kapp EA, Pearce JA, de Koning-Ward TF, Simpson RJ, Crabb BS, Cowman AF. An aspartyl protease directs malaria effector proteins to the host cell. Nature 2010; 463:627-31. [PMID: 20130643 PMCID: PMC2818761 DOI: 10.1038/nature08728] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/04/2009] [Indexed: 11/12/2022]
Abstract
Plasmodium falciparum causes the virulent form of malaria and disease manifestations are linked to growth inside infected erythrocytes. In order to survive and evade host responses the parasite remodels the erythrocyte by exporting several hundred effector proteins beyond the surrounding parasitophorous vacuole membrane. A feature of exported proteins is a pentameric motif (RxLxE/Q/D) that is a substrate for an unknown protease. Here, we show the protein responsible for cleavage of this motif is Plasmepsin V, an aspartic acid protease located in the endoplasmic reticulum. Plasmepsin V cleavage reveals the export signal (xE/Q/D) at the N-terminus of cargo proteins. Expression of an identical mature protein with xQ at the N-terminus generated by signal peptidase was not exported demonstrating Plasmepsin V activity is essential and linked with other key export events. Identification of the protease responsible for export into erythrocytes provides a novel target for therapeutic intervention against this devastating disease.
Collapse
Affiliation(s)
- Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Essien K, Stoeckert CJ. Conservation and divergence of known apicomplexan transcriptional regulons. BMC Genomics 2010; 11:147. [PMID: 20199665 PMCID: PMC2841118 DOI: 10.1186/1471-2164-11-147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 03/03/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The apicomplexans are a diverse phylum of parasites causing an assortment of diseases including malaria in a wide variety of animals and lymphoproliferation in cattle. Little is known about how these varied parasites regulate their transcriptional regulons. Even less is known about how regulon systems, consisting of transcription factors and target genes together with their associated biological process, evolve in these diverse parasites. RESULTS In order to obtain insights into the differences in transcriptional regulation between these parasites we compared the orthology profiles of putative malaria transcription factors across species and examined the enrichment patterns of four binding sites across eleven apicomplexans. About three-fifths of the factors are broadly conserved in several phylogenetic orders of sequenced apicomplexans. This observation suggests the existence of regulons whose regulation is conserved across this ancient phylum. Transcription factors not broadly conserved across the phylum are possibly involved in regulon systems that have diverged between species. Examining binding site enrichment patterns in light of transcription factor conservation patterns suggests a second mode via which regulon systems may diverge - rewiring of existing transcription factors and their associated binding sites in specific ways. Integrating binding sites with transcription factor conservation patterns also facilitated prediction of putative regulators for one of the binding sites. CONCLUSIONS Even though transcription factors are underrepresented in apicomplexans, the distribution of these factors and their associated regulons reflect common and family-specific transcriptional regulatory processes.
Collapse
Affiliation(s)
- Kobby Essien
- Department of Bioengineering, University of Pennsylvania, 240 SkirkanichHall, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
237
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
238
|
Abstract
During the evolution of the genus Homo, with regard to species habilis, erectus and sapiens, malaria infection played a key biological role, influencing the anthropological development too. Plasmodia causing malaria developed two kinds of evolution, according to a biological and philogenetical point of view. In particular, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, would have either coevolved with human mankind (coevolution), or reached human species during the most ancient phases of genus Homo evolution. On the other hand, Plasmodium falciparum has been transmitted to humans by monkeys in a more recent period, probably between the end of Mesolithic and the beginning of Neolithic age. The authors show both direct and indirect biomolecular evidences of malaria infection, detected in buried subjects, dating to the Ancient World, and brought to light in the course of archeological excavations in some relevant Mediterranean sites. In this literature review the Authors organize present scientific evidences: these confirm the malarial role in affecting the evolution of populations in Mediterranean countries. The people living in several different regions on the Mediterranean Sea sides, the cradle of western civilization, have been progressively influenced by malaria, in the course of the spread of this endemic disease during the last millennia. In addition, populations affected by endemic malaria developed cultural, dietary and behaviour adaptations, contributing to decrease the risk of disease. These habits were not probably fully conscious. Nevertheless it may be thought that both these customs and biological modifications, caused by malarial plasmodia, favoured the emergence of groups of people with a greater resistance against malaria. All these considered factors decreased demographical impact, influencing in a favourable way the general development and growth of civilization.
Collapse
|
239
|
Liew KJL, Hu G, Bozdech Z, Peter PR. Defining species specific genome differences in malaria parasites. BMC Genomics 2010; 11:128. [PMID: 20175934 PMCID: PMC2837034 DOI: 10.1186/1471-2164-11-128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 02/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background In recent years a number of genome sequences for different plasmodium species have become available. This has allowed the identification of numerous conserved genes across the different species and has significantly enhanced our understanding of parasite biology. In contrast little is known about species specific differences between the different genomes partly due to the lower sequence coverage and therefore relatively poor annotation of some of the draft genomes particularly the rodent malarias parasite species. Results To improve the current annotation and gene identification status of the draft genomes of P. berghei, P. chabaudi and P. yoelii, we performed genome-wide comparisons between these three species. Through analyses via comparative genome hybridizations using a newly designed pan-rodent array as well as in depth bioinformatics analysis, we were able to improve on the coverage of the draft rodent parasite genomes by detecting orthologous genes between these related rodent parasite species. More than 1,000 orthologs for P. yoelii were now newly associated with a P. falciparum gene. In addition to extending the current core gene set for all plasmodium species this analysis also for the first time identifies a relatively small number of genes that are unique to the primate malaria parasites while a larger gene set is uniquely conserved amongst the rodent malaria parasites. Conclusions These findings allow a more thorough investigation of the genes that are important for host specificity in malaria.
Collapse
Affiliation(s)
- Kingsley J L Liew
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
240
|
Sawai H, Otani H, Arisue N, Palacpac N, de Oliveira Martins L, Pathirana S, Handunnetti S, Kawai S, Kishino H, Horii T, Tanabe K. Lineage-specific positive selection at the merozoite surface protein 1 (msp1) locus of Plasmodium vivax and related simian malaria parasites. BMC Evol Biol 2010; 10:52. [PMID: 20167126 PMCID: PMC2832629 DOI: 10.1186/1471-2148-10-52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022] Open
Abstract
Background The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity. Results We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1. Conclusions The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.
Collapse
Affiliation(s)
- Hiromi Sawai
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Böhme U, Lemieux J, Barrell B, Pain A, Berriman M, Newbold C, Llinás M. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 2010; 76:12-24. [PMID: 20141604 PMCID: PMC2859250 DOI: 10.1111/j.1365-2958.2009.07026.x] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent advances in high-throughput sequencing present a new opportunity to deeply probe an organism's transcriptome. In this study, we used Illumina-based massively parallel sequencing to gain new insight into the transcriptome (RNA-Seq) of the human malaria parasite, Plasmodium falciparum. Using data collected at seven time points during the intraerythrocytic developmental cycle, we (i) detect novel gene transcripts; (ii) correct hundreds of gene models; (iii) propose alternative splicing events; and (iv) predict 5' and 3' untranslated regions. Approximately 70% of the unique sequencing reads map to previously annotated protein-coding genes. The RNA-Seq results greatly improve existing annotation of the P. falciparum genome with over 10% of gene models modified. Our data confirm 75% of predicted splice sites and identify 202 new splice sites, including 84 previously uncharacterized alternative splicing events. We also discovered 107 novel transcripts and expression of 38 pseudogenes, with many demonstrating differential expression across the developmental time series. Our RNA-Seq results correlate well with DNA microarray analysis performed in parallel on the same samples, and provide improved resolution over the microarray-based method. These data reveal new features of the P. falciparum transcriptional landscape and significantly advance our understanding of the parasite's red blood cell-stage transcriptome.
Collapse
Affiliation(s)
- Thomas D Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Cox-Singh J, Hiu J, Lucas SB, Divis PC, Zulkarnaen M, Chandran P, Wong KT, Adem P, Zaki SR, Singh B, Krishna S. Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report. Malar J 2010; 9:10. [PMID: 20064229 PMCID: PMC2818646 DOI: 10.1186/1475-2875-9-10] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here. CASE PRESENTATION A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a post-mortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent. CONCLUSIONS The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further study of knowlesi malaria will aid the interpretation of, often conflicting, information on malaria pathophysiology in humans.
Collapse
Affiliation(s)
- Janet Cox-Singh
- Division of Cellular and Molecular Medicine, Centre For Infection, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Jessie Hiu
- Department of Forensic, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Sebastian B Lucas
- Department of Histopathology, KCL School of Medicine, St Thomas' Hospital, London, UK
| | - Paul C Divis
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Mohammad Zulkarnaen
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Patricia Chandran
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum T Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Patricia Adem
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Balbir Singh
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | - Sanjeev Krishna
- Division of Cellular and Molecular Medicine, Centre For Infection, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Malaria Research Centre, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
| |
Collapse
|
243
|
Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol 2010; 170:65-73. [PMID: 20045030 DOI: 10.1016/j.molbiopara.2009.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/15/2022]
Abstract
Multigene families are present on the telomeric and sub-telomeric regions of most chromosomes of the malaria parasite, Plasmodium. The largest gene family identified so far is the Plasmodium interspersed repeat (pir) multigene gene family and is shared by Plasmodium vivax, and simian and rodent malaria species. Most pir genes share a similar structure across the different species; a short first exon, long second exon and a third exon encoding a trans-membrane domain, and some pir genes can be assigned to specific sub-families. Although pir genes can be differentially transcribed in different life cycle stages, suggesting different functions, there is no clear link between sub-family and transcription pattern. Some of the pir genes encode proteins expressed on or near the surface of infected erythrocytes, and therefore could be potential targets of the host's immune response, and involved in antigenic variation and immune evasion. Other functions such as signalling, trafficking and adhesion have been also postulated. The presence of pir in rodent models will allow the investigation of this gene family in vivo and thus their potential as vaccines or in other interventions in human P. vivax infections.
Collapse
Affiliation(s)
- Deirdre Cunningham
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
244
|
Mitsui H, Arisue N, Sakihama N, Inagaki Y, Horii T, Hasegawa M, Tanabe K, Hashimoto T. Phylogeny of Asian primate malaria parasites inferred from apicoplast genome-encoded genes with special emphasis on the positions of Plasmodium vivax and P. fragile. Gene 2010; 450:32-8. [DOI: 10.1016/j.gene.2009.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/20/2009] [Accepted: 10/01/2009] [Indexed: 11/25/2022]
|
245
|
Affiliation(s)
- Elizabeth A Winzeler
- Department of Cell Biology ICND202, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
246
|
Takeo S, Arumugam TU, Torii M, Tsuboi T. Wheat germ cell-free technology for accelerating the malaria vaccine research. Expert Opin Drug Discov 2009; 4:1191-9. [DOI: 10.1517/17460440903369813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
247
|
Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol 2009; 26:6-10. [PMID: 19879191 DOI: 10.1016/j.pt.2009.10.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/26/2009] [Accepted: 10/06/2009] [Indexed: 11/22/2022]
Abstract
Intracellular malaria parasites export numerous proteins into their host cell, a process essential for parasite survival and virulence. Many of these proteins are defined by a short amino acid sequence motif termed PEXEL or VTS that mediates their export, suggesting a collective trafficking route. The existence of several PEXEL-negative exported proteins (PNEPs) indicates that alternative export pathways might also exist. We review recent data on the sequences mediating export of PNEPs and compare this process to PEXEL export taking into account novel findings on the function of this motif. Based on this we propose that, despite the lack of a PEXEL in PNEPs, both groups of proteins might converge in a single export pathway on their way into the host cell.
Collapse
|
248
|
Abstract
Immunization with attenuated pre-erythrocytic malaria parasites can confer sterile protection against malaria in humans and rodents, and a single pre-erythrocytic antigen incorporated in a subunit vaccine has substantially reduced clinical Plasmodium falciparum malaria episodes in African infants during phase 2 trials. Building upon this success has been hindered by technical obstacles that limit research on pre-erythrocytic parasites, especially the liver stage (LS) parasites, and by an incomplete understanding of the immune mechanisms that confer protection in humans. Recent improvements in growing and isolating LS parasites have allowed progress in defining the transcriptome and proteome of the LS parasite, although more work remains to be done particularly for the early LS parasite of P. falciparum. Next generation pre-erythrocytic antigens can be assessed and prioritized based on immunization studies in animals, and on models of immunity such as attenuated parasite vaccines that confer sterile protection or naturally acquired LS-specific immune responses that correlate with protection in endemic areas. Although mechanisms of protection in humans remain poorly understood, the availability of a human malaria challenge model for early clinical testing of candidate vaccines is a valuable tool to confirm which immunogens should move forward to larger field trials.
Collapse
Affiliation(s)
- C Speake
- Malaria Program, Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | |
Collapse
|
249
|
Wellems TE, Hayton K, Fairhurst RM. The impact of malaria parasitism: from corpuscles to communities. J Clin Invest 2009; 119:2496-505. [PMID: 19729847 DOI: 10.1172/jci38307] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malaria continues to exert a tremendous health burden on human populations, reflecting astonishingly successful adaptations of the causative Plasmodium parasites. We discuss here how this burden has driven the natural selection of numerous polymorphisms in the genes encoding hemoglobin and other erythrocyte proteins and some effectors of immunity. Plasmodium falciparum, the most deadly parasite species in humans, displays a vigorous system of antigen variation to counter host defenses and families of functionally redundant ligands to invade human cells. Advances in genetics and genomics are providing fresh insights into the nature of these evolutionary adaptations, processes of parasite transmission and infection, and the difficult challenges of malaria control.
Collapse
Affiliation(s)
- Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-8132, USA.
| | | | | |
Collapse
|
250
|
Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. THE LANCET. INFECTIOUS DISEASES 2009; 9:555-66. [PMID: 19695492 DOI: 10.1016/s1473-3099(09)70177-x] [Citation(s) in RCA: 472] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|