201
|
Emadi N, Esteky H. Behavioral demand modulates object category representation in the inferior temporal cortex. J Neurophysiol 2014; 112:2628-37. [PMID: 25080572 DOI: 10.1152/jn.00761.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual object categorization is a critical task in our daily life. Many studies have explored category representation in the inferior temporal (IT) cortex at the level of single neurons and population. However, it is not clear how behavioral demands modulate this category representation. Here, we recorded from the IT single neurons in monkeys performing two different tasks with identical visual stimuli: passive fixation and body/object categorization. We found that category selectivity of the IT neurons was improved in the categorization compared with the passive task where reward was not contingent on image category. The category improvement was the result of larger rate enhancement for the preferred category and smaller response variability for both preferred and nonpreferred categories. These specific modulations in the responses of IT category neurons enhanced signal-to-noise ratio of the neural responses to discriminate better between the preferred and nonpreferred categories. Our results provide new insight into the adaptable category representation in the IT cortex, which depends on behavioral demands.
Collapse
Affiliation(s)
- Nazli Emadi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Research Center for Brain and Cognition, School of Medicine, Shahid Beheshti University, Tehran, Iran; and Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, California
| | - Hossein Esteky
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Research Center for Brain and Cognition, School of Medicine, Shahid Beheshti University, Tehran, Iran; and
| |
Collapse
|
202
|
Abstract
Psychophysical and neurophysiological studies indicate that during the preparation of saccades, visual processing at the target location is facilitated automatically by the deployment of attention. It has been assumed that the neural mechanisms involved in presaccadic shifts of attention are purely spatial in nature. Saccade preparation modulates the visual responses of neurons within extrastriate area V4, where the responses to targets are enhanced and responses to nontargets are suppressed. We tested whether this effect also engages a nonspatial form of modulation. We measured the responses of area V4 neurons to oriented gratings in two monkeys (Macaca mulatta) making delayed saccades to targets distant from the neuronal receptive field (RF). We varied the orientation of both the RF stimulus and the saccadic target. We found that, in addition to the spatial modulation, saccade preparation involves a feature-dependent modulation of V4 neuronal responses. Specifically, we found that the suppression of area V4 responses to nontarget stimuli during the preparation of saccades depends on the features of the saccadic target. Presaccadic suppression was absent when the features of the saccadic target matched the features preferred by individual V4 neurons. This feature-dependent modulation occurred in the absence of any feature-attention task. We show that our observations are consistent with a computational framework in which feature-based effects automatically emerge from saccade-related feedback signals that are spatial in nature.
Collapse
|
203
|
Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat Neurosci 2014; 17:1003-11. [PMID: 24929661 PMCID: PMC4122755 DOI: 10.1038/nn.3742] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/16/2014] [Indexed: 11/08/2022]
Abstract
It is widely held that the frontal eye field (FEF) in prefrontal cortex (PFC) modulates processing in visual cortex with attention, although the evidence for a necessary role is equivocal. To help identify critical sources of attentional feedback to area V4, we surgically removed the entire lateral PFC, including the FEF, in one hemisphere and transected the corpus callosum and anterior commisure in two macaques. This deprived V4 of PFC input in one hemisphere while keeping the other hemisphere intact. In the absence of PFC, attentional effects on neuronal responses and synchrony in V4 were significantly reduced and the remaining effects of attention were delayed in time indicating a critical role of PFC. Conversely, distracters captured attention and influenced V4 responses. However, because the effects of attention in V4 were not eliminated by PFC lesions, other sources of top-down attentional control signals to visual cortex must exist outside of PFC.
Collapse
|
204
|
Savaki HE, Gregoriou GG, Bakola S, Moschovakis AK. Topography of Visuomotor Parameters in the Frontal and Premotor Eye Fields. Cereb Cortex 2014; 25:3095-106. [DOI: 10.1093/cercor/bhu106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
205
|
A distinct contribution of the frontal eye field to the visual representation of saccadic targets. J Neurosci 2014; 34:3687-98. [PMID: 24599467 DOI: 10.1523/jneurosci.3824-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The responses of neurons within posterior visual cortex are enhanced when response field (RF) stimuli are targeted with saccadic eye movements. Although the motor-related activity within oculomotor structures seems a likely source of the enhancement, the origin of the modulation is unknown. We tested the role of the frontal eye field (FEF) in driving presaccadic modulation in area V4 by inactivating FEF neurons at retinotopically corresponding sites within the macaque monkey (Macaca mulatta) brain. As previously observed, FEF inactivation produced profound, and spatially specific, deficits in memory-guided saccades, and increased the latency, scatter, and duration of visually guided saccades. Despite the clear behavioral deficits, we found that rather than being eliminated or reduced by FEF inactivation, presaccadic enhancement of V4 activity was increased. FEF inactivation nonetheless diminished the stimulus discriminability of V4 visual responses both during fixation and in the presaccadic period. Thus, without input from the FEF, V4 neurons signaled more about the direction of saccades and less about the features of the saccadic target. In addition, FEF inactivation significantly increased the suppressive effects of non-RF stimuli on V4 activity. These results reveal multiple sources of presaccadic modulation in V4 and suggest that the FEF contributes uniquely to the presaccadic specification of visual target features.
Collapse
|
206
|
Visual space is compressed in prefrontal cortex before eye movements. Nature 2014; 507:504-7. [PMID: 24670771 PMCID: PMC4064801 DOI: 10.1038/nature13149] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 02/13/2014] [Indexed: 11/08/2022]
Abstract
We experience the visual world through a series of saccadic eye movements, each one shifting our gaze to bring objects of interest to the fovea for further processing. Although such movements lead to frequent and substantial displacements of the retinal image, these displacements go unnoticed. It is widely assumed that a primary mechanism underlying this apparent stability is an anticipatory shifting of visual receptive fields (RFs) from their presaccadic to their postsaccadic locations before movement onset. Evidence of this predictive 'remapping' of RFs has been particularly apparent within brain structures involved in gaze control. However, critically absent among that evidence are detailed measurements of visual RFs before movement onset. Here we show that during saccade preparation, rather than remap, RFs of neurons in a prefrontal gaze control area massively converge towards the saccadic target. We mapped the visual RFs of prefrontal neurons during stable fixation and immediately before the onset of eye movements, using multi-electrode recordings in monkeys. Following movements from an initial fixation point to a target, RFs remained stationary in retinocentric space. However, in the period immediately before movement onset, RFs shifted by as much as 18 degrees of visual angle, and converged towards the target location. This convergence resulted in a threefold increase in the proportion of RFs responding to stimuli near the target region. In addition, like in human observers, the population of prefrontal neurons grossly mislocalized presaccadic stimuli as being closer to the target. Our results show that RF shifts do not predict the retinal displacements due to saccades, but instead reflect the overriding perception of target space during eye movements.
Collapse
|
207
|
Clark KL, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 2014; 8:33. [PMID: 24782714 PMCID: PMC3986539 DOI: 10.3389/fncir.2014.00033] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.
Collapse
Affiliation(s)
- Kelsey L Clark
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Behrad Noudoost
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| |
Collapse
|
208
|
Clark KL, Noudoost B, Moore T. Persistent spatial information in the FEF during object-based short-term memory does not contribute to task performance. J Cogn Neurosci 2014; 26:1292-9. [PMID: 24673408 DOI: 10.1162/jocn_a_00599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.
Collapse
|
209
|
A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution. J Neurosci 2014; 33:19504-17. [PMID: 24336717 DOI: 10.1523/jneurosci.1356-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.
Collapse
|
210
|
Premereur E, Vanduffel W, Janssen P. The effect of FEF microstimulation on the responses of neurons in the lateral intraparietal area. J Cogn Neurosci 2014; 26:1672-84. [PMID: 24564460 DOI: 10.1162/jocn_a_00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The macaque FEFs and the lateral intraparietal area (LIP) are high-level cortical areas involved in both spatial attention and oculomotor behavior. Stimulating FEF at a level below the threshold for evoking saccades increases fMRI activity and gamma power in area LIP, but the precise effect exerted by the FEF on LIP neurons is unknown. In our study, we recorded LIP single-unit activity during a visually guided saccade task with a peripherally presented go signal during microstimulation of FEF. We found that FEF microstimulation increased the LIP spike rate immediately after the highly salient go signal inside the LIP receptive field when both target and go signal were presented inside the receptive field, and no other possible go cues were present on the screen. The effect of FEF microstimulation on the LIP response was positive until at least 800 msec after microstimulation had ceased, but reversed for longer trial durations. Therefore, FEF microstimulation can modulate the LIP spike rate only when attention is selectively directed toward the stimulated location. These results provide the first direct evidence for LIP spike rate modulations caused by FEF microstimulation, thus showing that FEF activity can be the source of top-down control of area LIP.
Collapse
|
211
|
Smith CT, Swift-Scanlan T, Boettiger CA. Genetic polymorphisms regulating dopamine signaling in the frontal cortex interact to affect target detection under high working memory load. J Cogn Neurosci 2014; 26:395-407. [PMID: 24144248 PMCID: PMC3877727 DOI: 10.1162/jocn_a_00501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontal-dependent task performance is typically modulated by dopamine (DA) according to an inverted-U pattern, whereby intermediate levels of DA signaling optimizes performance. Numerous studies implicate trait differences in DA signaling based on differences in the catechol-O-methyltransferase (COMT) gene in executive function task performance. However, little work has investigated genetic variations in DA signaling downstream from COMT. One candidate is the DA- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32), which mediates signaling through the D1-type DA receptor, the dominant DA receptor in the frontal cortex. Using an n-back task, we used signal detection theory to measure performance in a healthy adult population (n = 97) genotyped for single nucleotide polymorphisms in the COMT (rs4680) and DARPP-32 (rs907094) genes. Correct target detection (hits) and false alarms were used to calculate d' measures for each working memory load (0-, 2-, and 3-back). At the highest load (3-back) only, we observed a significant COMT × DARPP-32 interaction, such that the DARPP-32 T/T genotype enhanced target detection in COMT(ValVal) individuals, but impaired target detection in COMT(Met) carriers. These findings suggest that enhanced dopaminergic signaling via the DARPP-32 T allele aids target detection in individuals with presumed low frontal DA (COMT(ValVal)) but impairs target detection in those with putatively higher frontal DA levels (COMT(Met) carriers). Moreover, these data support an inverted-U model with intermediate levels of DA signaling optimizing performance on tasks requiring maintenance of mental representations in working memory.
Collapse
Affiliation(s)
| | | | - Charlotte A. Boettiger
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill
- School of Nursing, University of North Carolina, Chapel Hill
| |
Collapse
|
212
|
Zénon A, Corneil BD, Alamia A, Filali-Sadouk N, Olivier E. Counterproductive effect of saccadic suppression during attention shifts. PLoS One 2014; 9:e86633. [PMID: 24466181 PMCID: PMC3900577 DOI: 10.1371/journal.pone.0086633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/16/2013] [Indexed: 11/24/2022] Open
Abstract
During saccadic eye movements, the processing of visual information is transiently interrupted by a mechanism known as "saccadic suppression" [1] that is thought to ensure perceptual stability [2]. If, as proposed in the premotor theory of attention [3], covert shifts of attention rely on sub-threshold recruitment of oculomotor circuits, then saccadic suppression should also occur during covert shifts. In order to test this prediction, we designed two experiments in which participants had to orient towards a cued letter, with or without saccades. We analyzed the time course of letter identification score in an "attention" task performed without saccades, using the saccadic latencies measured in the "saccade" task as a marker of covert saccadic preparation. Visual conditions were identical in all tasks. In the "attention" task, we found a drop in perceptual performance around the predicted onset time of saccades that were never performed. Importantly, this decrease in letter identification score cannot be explained by any known mechanism aligned on cue onset such as inhibition of return, masking, or microsaccades. These results show that attentional allocation triggers the same suppression mechanisms as during saccades, which is relevant during eye movements but detrimental in the context of covert orienting.
Collapse
Affiliation(s)
- Alexandre Zénon
- Institute of Neuroscience, University of Louvain, Brussels, Belgium
| | - Brian D. Corneil
- Departments of Physiology & Pharmacology, Psychology, Western University, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
| | - Andrea Alamia
- Institute of Neuroscience, University of Louvain, Brussels, Belgium
| | | | - Etienne Olivier
- Institute of Neuroscience, University of Louvain, Brussels, Belgium
| |
Collapse
|
213
|
Sreenivasan KK, Curtis CE, D'Esposito M. Revisiting the role of persistent neural activity during working memory. Trends Cogn Sci 2014; 18:82-9. [PMID: 24439529 DOI: 10.1016/j.tics.2013.12.001] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
What are the neural mechanisms underlying working memory (WM)? One influential theory posits that neurons in the lateral prefrontal cortex (lPFC) store WM information via persistent activity. In this review, we critically evaluate recent findings that together indicate that this model of WM needs revision. We argue that sensory cortex, not the lPFC, maintains high-fidelity representations of WM content. By contrast, the lPFC simultaneously maintains representations of multiple goal-related variables that serve to bias stimulus-specific activity in sensory regions. This work highlights multiple neural mechanisms supporting WM, including temporally dynamic population coding in addition to persistent activity. These new insights focus the question on understanding how the mechanisms that underlie WM are related, interact, and are coordinated in the lPFC and sensory cortex.
Collapse
Affiliation(s)
- Kartik K Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, 19 Washington Square North, New York, NY 10011, USA.
| | - Clayton E Curtis
- Department of Psychology, and Center for Neural Science, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, and Department of Psychology, University of California, Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA
| |
Collapse
|
214
|
Buschschulte A, Boehler CN, Strumpf H, Stoppel C, Heinze HJ, Schoenfeld MA, Hopf JM. Reward- and attention-related biasing of sensory selection in visual cortex. J Cogn Neurosci 2013; 26:1049-65. [PMID: 24345176 DOI: 10.1162/jocn_a_00539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Attention to task-relevant features leads to a biasing of sensory selection in extrastriate cortex. Features signaling reward seem to produce a similar bias, but how modulatory effects due to reward and attention relate to each other is largely unexplored. To address this issue, it is critical to separate top-down settings defining reward relevance from those defining attention. To this end, we used a visual search paradigm in which the target's definition (attention to color) was dissociated from reward relevance by delivering monetary reward on search frames where a certain task-irrelevant color was combined with the target-defining color to form the target object. We assessed the state of neural biasing for the attended and reward-relevant color by analyzing the neuromagnetic brain response to asynchronously presented irrelevant distractor probes drawn in the target-defining color, the reward-relevant color, and a completely irrelevant color as a reference. We observed that for the prospect of moderate rewards, the target-defining color but not the reward-relevant color produced a selective enhancement of the neuromagnetic response between 180 and 280 msec in ventral extrastriate visual cortex. Increasing reward prospect caused a delayed attenuation (220-250 msec) of the response to reward probes, which followed a prior (160-180 msec) response enhancement in dorsal ACC. Notably, shorter latency responses in dorsal ACC were associated with stronger attenuation in extrastriate visual cortex. Finally, an analysis of the brain response to the search frames revealed that the presence of the reward-relevant color in search distractors elicited an enhanced response that was abolished after increasing reward size. The present data together indicate that when top-down definitions of reward relevance and attention are separated, the behavioral significance of reward-associated features is still rapidly coded in higher-level cortex areas, thereby commanding effective top-down inhibitory control to counter a selection bias for those features in extrastriate visual cortex.
Collapse
|
215
|
Abstract
Dopamine neurons are well known for signaling reward-prediction errors. In this issue, Matsumoto and Takada (2013) show that some dopamine neurons also signal salient events during progression through a visual search task requiring working memory and sustained attention.
Collapse
Affiliation(s)
- John M Pearson
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience, Department of Neurobiology, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
216
|
Dopamine regulates two classes of primate prefrontal neurons that represent sensory signals. J Neurosci 2013; 33:13724-34. [PMID: 23966694 DOI: 10.1523/jneurosci.0210-13.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The lateral prefrontal cortex (PFC), a hub of higher-level cognitive processing, is strongly modulated by midbrain dopamine (DA) neurons. The cellular mechanisms have been comprehensively studied in the context of short-term memory, but little is known about how DA regulates sensory inputs to PFC that precede and give rise to such memory activity. By preparing recipient cortical circuits for incoming signals, DA could be a powerful determinant of downstream cognitive processing. Here, we tested the hypothesis that prefrontal DA regulates the representation of sensory signals that are required for perceptual decisions. In rhesus monkeys trained to report the presence or absence of visual stimuli at varying levels of contrast, we simultaneously recorded extracellular single-unit activity and applied DA to the immediate vicinity of the neurons by micro-iontophoresis. We found that DA modulation of prefrontal neurons is not uniform but tailored to specialized neuronal classes. In one population of neurons, DA suppressed activity with high temporal precision but preserved signal/noise ratio. Neurons in this group had short visual response latencies and comprised all recorded narrow-spiking, putative interneurons. In a distinct population, DA increased excitability and enhanced signal/noise ratio by reducing response variability. These neurons had longer visual response latencies and were composed exclusively of broad-spiking, putative pyramidal neurons. By gating sensory inputs to PFC and subsequently strengthening the representation of sensory signals, DA might play an important role in shaping how the PFC initiates appropriate behavior in response to changes in the sensory environment.
Collapse
|
217
|
Jonikaitis D, Theeuwes J. Dissociating oculomotor contributions to spatial and feature-based selection. J Neurophysiol 2013; 110:1525-34. [DOI: 10.1152/jn.00275.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccades not only deliver the high-resolution retinal image requisite for visual perception, but processing stages associated with saccade target selection affect visual perception even before the eye movement starts. These presaccadic effects are thought to arise from two visual selection mechanisms: spatial selection that enhances processing of the saccade target location and feature-based selection that enhances processing of the saccade target features. By measuring oculomotor performance and perceptual discrimination, we determined which selection mechanisms are associated with saccade preparation. We observed both feature-based and space-based selection during saccade preparation but found that feature-based selection was neither related to saccade initiation nor was it affected by simultaneously observed redistribution of spatial selection. We conclude that oculomotor selection biases visual selection only in a spatial, feature-unspecific manner.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians Universität München, Munich, Germany; and
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Theeuwes
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
218
|
Millan MJ, Bales KL. Towards improved animal models for evaluating social cognition and its disruption in schizophrenia: the CNTRICS initiative. Neurosci Biobehav Rev 2013; 37:2166-80. [PMID: 24090822 DOI: 10.1016/j.neubiorev.2013.09.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/22/2023]
Abstract
Social cognition refers to processes used to monitor and interpret social signals from others, to decipher their state of mind, emotional status and intentions, and select appropriate social behaviour. Social cognition is sophisticated in humans, being embedded with verbal language and enacted in a complex cultural environment. Its disruption characterises the entire course of schizophrenia and is correlated with poor functional outcome. Further, deficits in social cognition are related to impairment in other cognitive domains, positive symptoms (paranoia and delusions) and negative symptoms (social withdrawal and reduced motivation). In light of the significance and inadequate management of social cognition deficits, there is a need for translatable experimental procedures for their study, and identification of effective pharmacotherapy. No single paradigm captures the multi-dimensional nature of social cognition, and procedures for assessing ability to infer mental states are not well-developed for experimental therapeutic settings. Accordingly, a recent CNTRICS meeting prioritised procedures for measuring a specific construct: "acquisition and recognition of affective (emotional) states", coupled to individual recognition. Two complementary paradigms for refinement were identified: social recognition/preference in rodents, and visual tracking of social scenes in non-human primates (NHPs). Social recognition is disrupted in genetic, developmental or pharmacological disease models for schizophrenia, and performance in both procedures is improved by the neuropeptide oxytocin. The present article surveys a broad range of procedures for studying social cognition in rodents and NHPs, discusses advantages and drawbacks, and focuses on development of social recognition/preference and gaze-following paradigms for improved study of social cognition deficits in schizophrenia and their potential treatment.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | |
Collapse
|
219
|
Matsumoto M, Takada M. Distinct representations of cognitive and motivational signals in midbrain dopamine neurons. Neuron 2013; 79:1011-24. [PMID: 23932490 DOI: 10.1016/j.neuron.2013.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2013] [Indexed: 11/29/2022]
Abstract
Dopamine is essential to cognitive functions. However, despite abundant studies demonstrating that dopamine neuron activity is related to reinforcement and motivation, little is known about what signals dopamine neurons convey to promote cognitive processing. We therefore examined dopamine neuron activity in monkeys performing a delayed matching-to-sample task that required working memory and visual search. We found that dopamine neurons responded to task events associated with cognitive operations. A subset of dopamine neurons were activated by visual stimuli if the monkey had to store the stimuli in working memory. These neurons were located dorsolaterally in the substantia nigra pars compacta, whereas ventromedial dopamine neurons, some in the ventral tegmental area, represented reward prediction signals. Furthermore, dopamine neurons monitored visual search performance, becoming active when the monkey made an internal judgment that the search was successfully completed. Our findings suggest an anatomical gradient of dopamine signals along the dorsolateral-ventromedial axis of the ventral midbrain.
Collapse
Affiliation(s)
- Masayuki Matsumoto
- Systems Neuroscience Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | | |
Collapse
|
220
|
A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J Neurosci 2013; 33:8359-69. [PMID: 23658175 DOI: 10.1523/jneurosci.4058-12.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although we are confronted with an ever-changing environment, we do not have the capacity to analyze all incoming sensory information. Perception is selective and is guided both by salient events occurring in our visual field and by cognitive premises about what needs our attention. Although the lateral intraparietal area (LIP) and frontal eye field (FEF) are known to represent the position of visual attention, their respective contributions to its control are still unclear. Here, we report LIP and FEF neuronal activities recorded while monkeys performed a voluntary attention-orientation target-detection task. We show that both encode behaviorally significant events, but that the FEF plays a specific role in mapping abstract cue instructions onto a spatial priority map to voluntarily guide attention. On the basis of a latency analysis, we show that the coding of stimulus identity and position precedes the emergence of an explicit attentional signal within the FEF. We also describe dynamic temporal hierarchies between LIP and FEF: stimuli carrying the highest intrinsic saliency are signaled by LIP before FEF, whereas stimuli carrying the highest extrinsic saliency are signaled in FEF before LIP. This suggests that whereas the parietofrontal attentional network most probably processes visual information in a recurrent way, exogenous processing predominates in the parietal cortex and the endogenous control of attention takes place in the FEF.
Collapse
|
221
|
Herrero J, Gieselmann M, Sanayei M, Thiele A. Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 2013; 78:729-39. [PMID: 23719166 PMCID: PMC3748348 DOI: 10.1016/j.neuron.2013.03.029] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 11/19/2022]
Abstract
Attention improves perception by affecting different aspects of the neuronal code. It enhances firing rates, it reduces firing rate variability and noise correlations of neurons, and it alters the strength of oscillatory activity. Attention-induced rate enhancement in striate cortex requires cholinergic mechanisms. The neuropharmacological mechanisms responsible for attention-induced variance and noise correlation reduction or those supporting changes in oscillatory activity are unknown. We show that ionotropic glutamatergic receptor activation is required for attention-induced rate variance, noise correlation, and LFP gamma power reduction in macaque V1, but not for attention-induced rate modulations. NMDA receptors mediate attention-induced variance reduction and attention-induced noise correlation reduction. Our results demonstrate that attention improves sensory processing by a variety of mechanisms that are dissociable at the receptor level.
Collapse
Affiliation(s)
- Jose L. Herrero
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Marc A. Gieselmann
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mehdi Sanayei
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Corresponding author
| |
Collapse
|
222
|
Squire RF, Noudoost B, Schafer RJ, Moore T. Prefrontal Contributions to Visual Selective Attention. Annu Rev Neurosci 2013; 36:451-66. [DOI: 10.1146/annurev-neuro-062111-150439] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Tirin Moore
- Department of Neurobiology and
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305;
| |
Collapse
|
223
|
Arsenault JT, Nelissen K, Jarraya B, Vanduffel W. Dopaminergic reward signals selectively decrease fMRI activity in primate visual cortex. Neuron 2013; 77:1174-86. [PMID: 23522051 DOI: 10.1016/j.neuron.2013.01.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Stimulus-reward coupling without attention can induce highly specific perceptual learning effects, suggesting that reward triggers selective plasticity within visual cortex. Additionally, dopamine-releasing events-temporally surrounding stimulus-reward associations-selectively enhance memory. These forms of plasticity may be evoked by selective modulation of stimulus representations during dopamine-inducing events. However, it remains to be shown whether dopaminergic signals can selectively modulate visual cortical activity. We measured fMRI activity in monkey visual cortex during reward-only trials apart from intermixed cue-reward trials. Reward without visual stimulation selectively decreased fMRI activity within the cue representations that had been paired with reward during other trials. Behavioral tests indicated that these same uncued reward trials strengthened cue-reward associations. Furthermore, such spatially-specific activity modulations depended on prediction error, as shown by manipulations of reward magnitude, cue-reward probability, cue-reward familiarity, and dopamine signaling. This cue-selective negative reward signal offers a mechanism for selectively gating sensory cortical plasticity.
Collapse
Affiliation(s)
- John T Arsenault
- Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
224
|
Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat. PLoS One 2013; 8:e63655. [PMID: 23671691 PMCID: PMC3646040 DOI: 10.1371/journal.pone.0063655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 11/29/2022] Open
Abstract
Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.
Collapse
|
225
|
Lee KM, Ahn KH. The frontal eye fields limit the capacity of visual short-term memory in rhesus monkeys. PLoS One 2013; 8:e59606. [PMID: 23555049 PMCID: PMC3598708 DOI: 10.1371/journal.pone.0059606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
The frontal eye fields (FEF) in rhesus monkeys have been implicated in visual short-term memory (VSTM) as well as control of visual attention. Here we examined the importance of the area in the VSTM capacity and the relationship between VSTM and attention, using the chemical inactivation technique and multi-target saccade tasks with or without the need of target-location memory. During FEF inactivation, serial saccades to targets defined by color contrast were unaffected, but saccades relying on short-term memory were impaired when the target count was at the capacity limit of VSTM. The memory impairment was specific to the FEF-coded retinotopic locations, and subject to competition among targets distributed across visual fields. These results together suggest that the FEF plays a crucial role during the entry of information into VSTM, by enabling attention deployment on targets to be remembered. In this view, the memory capacity results from the limited availability of attentional resources provided by FEF: The FEF can concurrently maintain only a limited number of activations to register the targets into memory. When lesions render part of the area unavailable for activation, the number would decrease, further reducing the capacity of VSTM.
Collapse
Affiliation(s)
- Kyoung-Min Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.
| | | |
Collapse
|
226
|
Schall JD. Macrocircuits: decision networks. Curr Opin Neurobiol 2013; 23:269-74. [PMID: 23246279 PMCID: PMC3606280 DOI: 10.1016/j.conb.2012.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/13/2012] [Accepted: 11/20/2012] [Indexed: 01/25/2023]
Abstract
Decision-making requires stimulus categorization and localization to guide accurate responses that can be produced through multiple effectors. The success of actions is monitored so that performance can be adjusted to achieve goals. This review will survey recent empirical and theoretical developments very selectively with an emphasis on neurophysiological data from nonhuman primates that provide the clearest information about neural mechanisms.
Collapse
Affiliation(s)
- Jeffrey D Schall
- Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
227
|
Dissociable dopaminergic control of saccadic target selection and its implications for reward modulation. Proc Natl Acad Sci U S A 2013; 110:3579-84. [PMID: 23401524 DOI: 10.1073/pnas.1221236110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate mechanisms by which reward modulates target selection, we studied the behavioral effects of perturbing dopaminergic activity within the frontal eye field (FEF) of monkeys performing a saccadic choice task and simulated the effects using a plausible cortical network. We found that manipulation of FEF activity either by blocking D1 receptors (D1Rs) or by stimulating D2 receptors (D2Rs) increased the tendency to choose targets in the response field of the affected site. However, the D1R manipulation decreased the tendency to repeat choices on subsequent trials, whereas the D2R manipulation increased that tendency. Moreover, the amount of shift in target selection resulting from the two manipulations correlated in opposite ways with the baseline stochasticity of choice behavior. Our network simulation results suggest that D1Rs influence target selection mainly through their effects on the strength of inputs to the FEF and on recurrent connectivity, whereas D2Rs influence the excitability of FEF output neurons. Altogether, these results reveal dissociable dopaminergic mechanisms influencing target selection and suggest how reward can influence adaptive choice behavior via prefrontal dopamine.
Collapse
|
228
|
Matsushima A, Tanaka M. Manipulation of object choice by electrical microstimulation in macaque frontal eye fields. Cereb Cortex 2013; 24:1493-501. [PMID: 23349221 DOI: 10.1093/cercor/bht009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For each saccade, we select an object to direct gaze and to specify the direction and amplitude of eye movement. Although these 2 processes are inevitably interdependent when visual stimuli are held stationary, several lines of evidence suggest that the neuronal signals in the frontal eye fields (FEF) that underlie the selection of visual objects are distinct from those underlying the selection of saccades. In the present study, we overtly dissociated these 2 processes spatially and temporally using the covert object-tracking paradigm, in which 4 identical objects moved randomly for 3 s before monkeys made a saccade to a previously selected target. To assess the causal role of the FEF in the 2 selection processes, we applied electrical microstimulation to the FEF at various times during the motion period. When stimulation was delivered at the motion onset, animals tended to choose an object that was initially presented at a particular location depending on the stimulation site. In contrast, the same stimulation delivered at the motion end failed to alter saccade end points. These results indicate that manipulation of FEF activity can change the selection of a visual object without affecting saccade goals, suggesting the existence of neurons solely regulating visual selection.
Collapse
Affiliation(s)
- Ayano Matsushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | |
Collapse
|
229
|
Martin KAC, Spühler IA. The fine structure of the dopaminergic innervation of area 10 of macaque prefrontal cortex. Eur J Neurosci 2013; 37:1061-71. [PMID: 23331617 DOI: 10.1111/ejn.12124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
Abstract
In common with other areas of the prefrontal cortex, activity in frontopolar area 10 is probably modulated by dopamine. We studied the dopaminergic innervation of monkey prefrontal area 10 by immunostaining with tyrosine hydroxylase (TH) antibodies. TH-positive axons in layer 3 were examined by electron microscopy of series of ultrathin sections. TH-positive boutons containing vesicles were sparse (2 × 10(-4) per μm(3)) and the majority (94%, n = 52) had no identifiable synaptic specialization, which supports the hypothesis that dopamine is released non-synaptically and raises the question of whether the local microenvironment surrounding the boutons is special. Compared with unlabelled boutons TH-positive boutons had a higher proportion of their perimeter in contact with dendritic shafts and were more often in continuous contact with pairs of pre- and postsynaptic structures. However, this may result from exclusion from sites preferred by glutamatergic and GABAergic synapses as the density of all synapses in the closer vicinity was no different from any randomly selected site in the neuropil. This quantitative ultrastructural study presents basic features of the dopaminergic innervation in prefrontal area 10 and provides a more detailed understanding of the structural basis of dopamine signalling in the cortex.
Collapse
Affiliation(s)
- Kevan A C Martin
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Winterthurerstr.190, 8057, Zürich, Switzerland
| | | |
Collapse
|
230
|
Anatomical connection strength predicts dopaminergic drug effects on fronto-striatal function. Psychopharmacology (Berl) 2013; 227:521-31. [PMID: 23404064 PMCID: PMC3655213 DOI: 10.1007/s00213-013-3000-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/09/2013] [Indexed: 11/11/2022]
Abstract
RATIONALE The neurotransmitter dopamine plays a key role in cognitive functions that are associated with fronto-striatal circuitry and has been implicated in many neuropsychiatric disorders. However, there is a large variability in the direction and extent of dopaminergic drug effects across individuals. OBJECTIVES We investigated whether individual differences in dopaminergic drug effects on human fronto-striatal functioning are associated with individual differences in white matter tracts. METHODS The effects of the dopamine receptor agonist bromocriptine were assessed using functional magnetic resonance imaging in 22 healthy volunteers in a placebo-controlled, double-blind, within-subject design. Human psychopharmacology and functional neuroimaging were combined with functional connectivity analyses and structural connectivity analyses to establish a link between dopaminergic drug effects on fronto-striatal function and fronto-striatal anatomy. RESULTS We demonstrate that bromocriptine alters functional signals associated with attention switching in the basal ganglia. Crucially, individual differences in the drug's effect on these signals could be predicted from individual differences in fronto-striato-thalamic white matter tracts, as indexed by diffusion tensor imaging. Anatomical fronto-striatal connectivity also predicted drug effects on switch-related functional connectivity between the basal ganglia and the prefrontal cortex. CONCLUSIONS These data reinforce the link between dopamine, cognition and the basal ganglia and have implications for the individual tailoring of dopaminergic drug therapy based on anatomical fronto-striatal connection strength.
Collapse
|
231
|
Miller EK, Buschman TJ. Cortical circuits for the control of attention. Curr Opin Neurobiol 2012; 23:216-22. [PMID: 23265963 DOI: 10.1016/j.conb.2012.11.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/28/2012] [Indexed: 01/28/2023]
Abstract
How are some thoughts favored over others? A wealth of data at the level of single neurons has yielded candidate brain areas and mechanisms for our best-understood model: visual attention. Recent work has naturally evolved toward efforts at a more integrative, network, understanding. It suggests that focusing attention arises from interactions between widespread cortical and subcortical networks that may be regulated via their rhythmic synchronization.
Collapse
Affiliation(s)
- Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | | |
Collapse
|
232
|
Noudoost B, Moore T. Parietal and prefrontal neurons driven to distraction. Nat Neurosci 2012; 16:8-9. [PMID: 23257928 DOI: 10.1038/nn.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Behrad Noudoost
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
233
|
Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nat Neurosci 2012; 16:98-104. [PMID: 23242309 DOI: 10.1038/nn.3282] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/15/2012] [Indexed: 11/08/2022]
Abstract
The posterior parietal cortex and the prefrontal cortex are associated with eye movements and visual attention, but their specific contributions are poorly understood. We compared the dorsolateral prefrontal cortex (dlPFC) and the lateral intraparietal area (LIP) in monkeys using a memory saccade task in which a salient distractor flashed at a variable timing and location during the memory delay. We found that the two areas had similar responses to target selection, but made distinct contributions to distractor suppression. Distractor responses were more strongly suppressed and more closely correlated with performance in the dlPFC relative to LIP. Moreover, reversible inactivation of the dlPFC produced much larger increases in distractibility than inactivation of LIP. These findings suggest that LIP and dlPFC mediate different aspects of selective attention. Although both areas can contribute to the perceptual selection of salient information, the dlPFC has a decisive influence on whether and how attended stimulus is linked with actions.
Collapse
|
234
|
Premereur E, Janssen P, Vanduffel W. FEF-microstimulation causes task-dependent modulation of occipital fMRI activity. Neuroimage 2012. [PMID: 23186918 DOI: 10.1016/j.neuroimage.2012.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Electrical microstimulation of FEF (FEF-EM) modulates neuronal activity in area V4 (Moore and Armstrong, 2003) and elicits functional magnetic resonance imaging (fMRI) activations in visual cortex in a bottom-up dependent manner (Ekstrom et al., 2008). Here we test the hypothesis that FEF-EM-induced modulations of fMRI activity are also function of task demands, which would suggest top-down dependent gating of FEF signals in early visual cortex. We scanned two monkeys performing a visually guided saccade task; a passive fixation task with a very similar visual display; and a passive fixation task without peripheral dots. We found increased effects of FEF-EM on fMRI-activity in visual cortex during saccades compared to fixation, indicating that the FEF-EM induced modulation is task-dependent. Finally, the effect of FEF-EM is mainly present in voxels which were less activated by visual stimuli in the absence of electrical stimulation. Our results show that the FEF-EM-induced pattern of activation in early visual cortex is topographically specific and more pronounced during increased task demands. These results fit with models suggesting that FEF is an important source modulating activity in early sensory cortex and that these influences can be enhanced by coincident bottom-up or top-down signals.
Collapse
Affiliation(s)
- Elsie Premereur
- Lab. voor Neuro- & Psychofysiologie, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
235
|
Mu Y, Li XQ, Zhang B, Du JL. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. Neuron 2012; 75:688-99. [PMID: 22920259 DOI: 10.1016/j.neuron.2012.05.035] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2012] [Indexed: 12/18/2022]
Abstract
Visual cues often modulate auditory signal processing, leading to improved sound detection. However, the synaptic and circuit mechanism underlying this cross-modal modulation remains poorly understood. Using larval zebrafish, we first established a cross-modal behavioral paradigm in which a preceding flash enhances sound-evoked escape behavior, which is known to be executed through auditory afferents (VIII(th) nerves) and command-like neurons (Mauthner cells). In vivo recording revealed that the visual enhancement of auditory escape is achieved by increasing sound-evoked Mauthner cell responses. This increase in Mauthner cell responses is accounted for by the increase in the signal-to-noise ratio of sound-evoked VIII(th) nerve spiking and efficacy of VIII(th) nerve-Mauthner cell synapses. Furthermore, the visual enhancement of Mauthner cell response and escape behavior requires light-responsive dopaminergic neurons in the caudal hypothalamus and D1 dopamine receptor activation. Our findings illustrate a cooperative neural mechanism for visual modulation of audiomotor processing that involves dopaminergic neuromodulation.
Collapse
Affiliation(s)
- Yu Mu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
236
|
Persistent spatial information in the frontal eye field during object-based short-term memory. J Neurosci 2012; 32:10907-14. [PMID: 22875925 DOI: 10.1523/jneurosci.1450-12.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.
Collapse
|
237
|
Abstract
Despite many studies on selective attention, fundamental questions remain about its nature and neural mechanisms. Here I draw from the animal and machine learning fields that describe attention as a mechanism for active learning and uncertainty reduction and explore the implications of this view for understanding visual attention and eye movement control. I propose that a closer integration of these different views has the potential greatly to expand our understanding of oculomotor control and our ability to use this system as a window into high level but poorly understood cognitive functions, including the capacity for curiosity and exploration and for inferring internal models of the external world.
Collapse
|
238
|
Abstract
Switches between different behavioral states of the animal are associated with prominent changes in global brain activity, between sleep and wakefulness or from inattentive to vigilant states. What mechanisms control brain states, and what are the functions of the different states? Here we summarize current understanding of the key neural circuits involved in regulating brain states, with a particular emphasis on the subcortical neuromodulatory systems. At the functional level, arousal and attention can greatly enhance sensory processing, whereas sleep and quiet wakefulness may facilitate learning and memory. Several new techniques developed over the past decade promise great advances in our understanding of the neural control and function of different brain states.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
239
|
Nelissen K, Jarraya B, Arsenault JT, Rosen BR, Wald LL, Mandeville JB, Marota JJ, Vanduffel W. Neural correlates of the formation and retention of cocaine-induced stimulus-reward associations. Biol Psychiatry 2012; 72:422-8. [PMID: 22440616 DOI: 10.1016/j.biopsych.2012.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/27/2012] [Accepted: 02/19/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Cocaine can elicit drug-seeking behavior for drug-predicting stimuli, even after a single stimulus-cocaine pairing. Although orbitofrontal cortex is thought to be important during encoding and maintenance of stimulus-reward value, we still lack a comprehensive model of the neural circuitry underlying this cognitive process. METHODS We studied the conditioned effects of cocaine with monkey functional magnetic resonance imaging and classical conditioning by pairing a visual shape (conditioning stimulus [CS+]) with a noncontingent cocaine infusion; a control stimulus was never paired. We correlated the behavioral preference of the monkey for the CS+, as measured offline, with the activity induced by the CS+ relative to the control stimulus as function of time. RESULTS We observed that during formation of stimulus-cocaine associations strong CS+-induced functional magnetic resonance imaging activations emerged in frontal cortex that correlated significantly with behavioral CS+ preference. Afterward, CS+ preference correlated only with activity in early visual cortex. Control experiments suggest that these findings cannot be explained by increased familiarity for the CS+. CONCLUSIONS Our findings suggest a complex interaction between frontal and occipital cortex during cocaine conditioning. Frontal cortex is important for establishing novel representations of stimulus valence when cocaine is used as reinforcer, whereas early visual cortex is involved in retaining these cocaine-stimulus associations.
Collapse
Affiliation(s)
- Koen Nelissen
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Apitz T, Bunzeck N. Reward modulates the neural dynamics of early visual category processing. Neuroimage 2012; 63:1614-22. [PMID: 22971547 DOI: 10.1016/j.neuroimage.2012.08.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/02/2012] [Accepted: 08/18/2012] [Indexed: 11/25/2022] Open
Abstract
Converging evidence suggests that visual brain regions are part of a widespread network that signals forthcoming reward. However, the precise temporal dynamics underlying the interaction between reward and visual information processing remain unclear. To further investigate this issue, we used magnetoencephalography (MEG) in combination with two versions of a face/scene discrimination task followed by a recognition memory test. In experiment 1, the distinction between faces and scenes was associated with monetary reward prospect, whereas in experiment 2 subjects distinguished between both categories in the absence of reward. In both experiments characteristic neural category effects (i.e., differences between faces and scenes) were observed in the event-related magnetic fields (ERF) at ~100 ms (M100) and ~170 ms (M170) after stimulus onset. Importantly, both ERF components (M100 and M170) were amplified in the context of reward (i.e., experiment 1) and this interaction could be source localized to the lateral occipital cortex (~100 ms) and fusiform gyrus (~170 ms). Furthermore, neural effects of reward prediction emerged over frontal sensors at ~300 ms after stimulus onset which reliably correlated with subsequent recognition memory performance. These results demonstrate that reward motivation can modulate early neural computations of complex visual information, possibly by tuning sensory neurons within the visual cortex.
Collapse
Affiliation(s)
- Thore Apitz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | |
Collapse
|
241
|
|
242
|
Gorgoraptis N, Mah YH, Machner B, Singh-Curry V, Malhotra P, Hadji-Michael M, Cohen D, Simister R, Nair A, Kulinskaya E, Ward N, Greenwood R, Husain M. The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke. ACTA ACUST UNITED AC 2012; 135:2478-91. [PMID: 22761293 PMCID: PMC3407421 DOI: 10.1093/brain/aws154] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemispatial neglect following right-hemisphere stroke is a common and disabling disorder, for which there is currently no effective pharmacological treatment. Dopamine agonists have been shown to play a role in selective attention and working memory, two core cognitive components of neglect. Here, we investigated whether the dopamine agonist rotigotine would have a beneficial effect on hemispatial neglect in stroke patients. A double-blind, randomized, placebo-controlled ABA design was used, in which each patient was assessed for 20 testing sessions, in three phases: pretreatment (Phase A1), on transdermal rotigotine for 7-11 days (Phase B) and post-treatment (Phase A2), with the exact duration of each phase randomized within limits. Outcome measures included performance on cancellation (visual search), line bisection, visual working memory, selective attention and sustained attention tasks, as well as measures of motor control. Sixteen right-hemisphere stroke patients were recruited, all of whom completed the trial. Performance on the Mesulam shape cancellation task improved significantly while on rotigotine, with the number of targets found on the left side increasing by 12.8% (P = 0.012) on treatment and spatial bias reducing by 8.1% (P = 0.016). This improvement in visual search was associated with an enhancement in selective attention but not on our measures of working memory or sustained attention. The positive effect of rotigotine on visual search was not associated with the degree of preservation of prefrontal cortex and occurred even in patients with significant prefrontal involvement. Rotigotine was not associated with any significant improvement in motor performance. This proof-of-concept study suggests a beneficial role of dopaminergic modulation on visual search and selective attention in patients with hemispatial neglect following stroke.
Collapse
Affiliation(s)
- Nikos Gorgoraptis
- UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Hobson J, Friston K. Waking and dreaming consciousness: neurobiological and functional considerations. Prog Neurobiol 2012; 98:82-98. [PMID: 22609044 PMCID: PMC3389346 DOI: 10.1016/j.pneurobio.2012.05.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 12/28/2022]
Abstract
This paper presents a theoretical review of rapid eye movement sleep with a special focus on pontine-geniculate-occipital waves and what they might tell us about the functional anatomy of sleep and consciousness. In particular, we review established ideas about the nature and purpose of sleep in terms of protoconsciousness and free energy minimization. By combining these theoretical perspectives, we discover answers to some fundamental questions about sleep: for example, why is homeothermy suspended during sleep? Why is sleep necessary? Why are we not surprised by our dreams? What is the role of synaptic regression in sleep? The imperatives for sleep that emerge also allow us to speculate about the functional role of PGO waves and make some empirical predictions that can, in principle, be tested using recent advances in the modeling of electrophysiological data.
Collapse
Affiliation(s)
- J.A. Hobson
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - K.J. Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
244
|
Lee KM, Ahn KH, Keller EL. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift. PLoS One 2012; 7:e39886. [PMID: 22761923 PMCID: PMC3384609 DOI: 10.1371/journal.pone.0039886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/28/2012] [Indexed: 11/24/2022] Open
Abstract
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.
Collapse
Affiliation(s)
- Kyoung-Min Lee
- Department of Neurology, Seoul National University, Seoul, Republic of Korea.
| | | | | |
Collapse
|
245
|
Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex. J Neurosci 2012; 32:4959-71. [PMID: 22492051 DOI: 10.1523/jneurosci.5835-11.2012] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dopamine D2 receptors (D2Rs) play a major role in the function of the prefrontal cortex (PFC), and may contribute to prefrontal dysfunction in conditions such as schizophrenia. Here we report that in mouse PFC, D2Rs are selectively expressed by a subtype of layer V pyramidal neurons that have thick apical tufts, prominent h-current, and subcortical projections. Within this subpopulation, the D2R agonist quinpirole elicits a novel afterdepolarization that generates voltage fluctuations and spiking for hundreds of milliseconds. Surprisingly, this afterdepolarization is masked in quiescent brain slices, but is readily unmasked by physiologic levels of synaptic input which activate NMDA receptors, possibly explaining why this phenomenon has not been reported previously. Notably, we could still elicit this afterdepolarization for some time after the cessation of synaptic stimulation. In addition to NMDA receptors, the quinpirole-induced afterdepolarization also depended on L-type Ca(2+) channels and was blocked by the selective L-type antagonist nimodipine. To confirm that D2Rs can elicit this afterdepolarization by enhancing Ca(2+) (and Ca(2+)-dependent) currents, we measured whole-cell Ca(2+) potentials that occur after blocking Na(+) and K(+) channels, and found quinpirole enhanced these potentials, while the selective D2R antagonist sulpiride had the opposite effect. Thus, D2Rs can elicit a Ca(2+)-channel-dependent afterdepolarization that powerfully modulates activity in specific prefrontal neurons. Through this mechanism, D2Rs might enhance outputs to subcortical structures, contribute to reward-related persistent firing, or increase the level of noise in prefrontal circuits.
Collapse
|
246
|
Katsuki F, Constantinidis C. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front Integr Neurosci 2012; 6:17. [PMID: 22563310 PMCID: PMC3342558 DOI: 10.3389/fnint.2012.00017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/16/2012] [Indexed: 11/24/2022] Open
Abstract
The dorsolateral prefrontal cortex (PFC) and posterior parietal cortex (PPC) are two parts of a broader brain network involved in the control of cognitive functions such as working-memory, spatial attention, and decision-making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the PFC to influence memory performance, attention allocation, and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the PFC and PPC, and their underlying mechanisms.
Collapse
Affiliation(s)
- Fumi Katsuki
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | | |
Collapse
|
247
|
Abstract
Shifts of gaze and of covert attention rely on tightly linked yet divergent neural mechanisms. In this issue of Neuron, Gregoriou et al. (2012) provide interesting evidence that different functional classes of neurons within the frontal eye field contribute uniquely to these two functions.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
248
|
Gregoriou GG, Gotts SJ, Desimone R. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron 2012; 73:581-94. [PMID: 22325208 DOI: 10.1016/j.neuron.2011.12.019] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
Shifts of gaze and shifts of attention are closely linked and it is debated whether they result from the same neural mechanisms. Both processes involve the frontal eye fields (FEF), an area which is also a source of top-down feedback to area V4 during covert attention. To test the relative contributions of oculomotor and attention-related FEF signals to such feedback, we recorded simultaneously from both areas in a covert attention task and in a saccade task. In the attention task, only visual and visuomovement FEF neurons showed enhanced responses, whereas movement cells were unchanged. Importantly, visual, but not movement or visuomovement cells, showed enhanced gamma frequency synchronization with activity in V4 during attention. Within FEF, beta synchronization was increased for movement cells during attention but was suppressed in the saccade task. These findings support the idea that the attentional modulation of visual processing is not mediated by movement neurons.
Collapse
Affiliation(s)
- Georgia G Gregoriou
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71003, Greece.
| | | | | |
Collapse
|
249
|
Cooke SF, Bear MF. Stimulus-selective response plasticity in the visual cortex: an assay for the assessment of pathophysiology and treatment of cognitive impairment associated with psychiatric disorders. Biol Psychiatry 2012; 71:487-95. [PMID: 22019003 DOI: 10.1016/j.biopsych.2011.09.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/10/2011] [Accepted: 09/01/2011] [Indexed: 10/16/2022]
Abstract
Long-term potentiation (LTP) is a form of experimentally induced enhancement of chemical synaptic transmission that has long been proposed as a model of the endogenous processes of synaptic plasticity that mediate memory. There is a large body of evidence that the molecular mechanisms underlying experimentally induced LTP also subserve various forms of naturally occurring, experience-dependent synaptic plasticity in animals and humans. Here we describe a phenomenon called stimulus-specific response potentiation (SRP), which occurs in the primary visual cortex of mice as a result of repeated exposure to visual stimuli and is believed to reveal the mechanisms that underlie perceptual learning. We first describe evidence that SRP represents naturally occurring LTP of thalamo-cortical synaptic transmission. We then discuss the potential value of SRP as a preclinical assay for the assessment of putative drug treatments on synaptic plasticity. Stimulus-specific response potentiation is not only easy to assay and robust but captures features of feed-forward glutamatergic function and visual learning that are deficient in human psychiatric disorders, notably including schizophrenia. We suggest that phenomena analogous to SRP in humans are likely to be useful biomarkers of altered cortical LTP and of treatment response in diseases associated with impaired cognition.
Collapse
Affiliation(s)
- Sam F Cooke
- Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
250
|
Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, Connor R, Davis S, Deakin B, DeRubeis RJ, Dubois B, Geyer MA, Goodwin GM, Gorwood P, Jay TM, Joëls M, Mansuy IM, Meyer-Lindenberg A, Murphy D, Rolls E, Saletu B, Spedding M, Sweeney J, Whittington M, Young LJ. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 2012; 11:141-68. [PMID: 22293568 DOI: 10.1038/nrd3628] [Citation(s) in RCA: 866] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies of psychiatric disorders have traditionally focused on emotional symptoms such as depression, anxiety and hallucinations. However, poorly controlled cognitive deficits are equally prominent and severely compromise quality of life, including social and professional integration. Consequently, intensive efforts are being made to characterize the cellular and cerebral circuits underpinning cognitive function, define the nature and causes of cognitive impairment in psychiatric disorders and identify more effective treatments. Successful development will depend on rigorous validation in animal models as well as in patients, including measures of real-world cognitive functioning. This article critically discusses these issues, highlighting the challenges and opportunities for improving cognition in individuals suffering from psychiatric disorders.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherche Servier, 78290 Croissy/Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|