201
|
Abstract
PTEN expression can be dysregulated in cancers via multiple mechanisms including genomic loss, epigenetic silencing, transcriptional repression, and posttranscriptional regulation by microRNAs. MicroRNAs are short, noncoding RNAs that regulate gene expression by binding to recognition sites on target transcripts. Recent studies have demonstrated that the competition for shared microRNAs between both protein-coding and noncoding transcripts represents an additional facet of gene regulation. Here, we describe in detail an integrated computational and experimental approach to identify and validate these competing endogenous RNA (ceRNA) interactions.
Collapse
Affiliation(s)
- Yvonne Tay
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02215, USA.
| |
Collapse
|
202
|
Li Y, Di C, Li W, Cai W, Tan X, Xu L, Yang L, Lou G, Yan Y. Oncomirs miRNA-221/222 and Tumor Suppressors miRNA-199a/195 Are Crucial miRNAs in Liver Cancer: A Systematic Analysis. Dig Dis Sci 2016; 61:2315-2327. [PMID: 27156077 PMCID: PMC4943968 DOI: 10.1007/s10620-016-4156-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 04/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high mortality rate of hepatocellular carcinoma (HCC) is partly due to a lack of good diagnostic markers and treatment strategies. Recently, several microRNA (miRNA) profiling studies were conducted with HCC; however, their inconsistency means that their diagnostic or therapeutic value is debatable. AIMS This study aims to systematically evaluate the consistency of miRNAs from multiple independent studies. METHODS A systematic analysis of miRNAs from eligible publications was conducted, followed by real-time PCRs. The targets of highly consistent miRNAs were collected using online programs, followed by enrichment analyses for gene ontology terms and Kyoto encyclopedia of genes and genomes pathways. RESULTS In total, 241 differentially expressed miRNAs were reported in 13 HCC profiling studies, of which 137 were upregulated and 104 downregulated. Among consistently upregulated miRNAs (cutoff > fourfold), miRNA-222, miRNA-21, miRNA-221, miRNA-210, and miRNA-224 were found increased in 8, 6, 6, 5, and 5 different studies, respectively. Among 137 downregulated miRNAs, miRNA-195, miRNA-199a, miRNA-125b, and miRNA-99a were reported in 8, 8, 5, and 5 studies, respectively. These results were confirmed by real-time PCR. Enrichment analyses demonstrated that programmed cell death and proliferation play important roles during the interplay of miRNA with HCC. CONCLUSIONS miRNAs most consistently related to HCC are oncomirs miRNA-221/222 and tumor suppressors miRNA-199a/195.
Collapse
Affiliation(s)
- Yanhu Li
- College of Life Science, Shihezi University, 48 Dongmingxin St., Urumqi, 830011 Xinjiang People’s Republic of China ,School of Medicine, Hangzhou Normal University, 16 Xuelin Road, Xiasha Higher Education Park, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou St., Hangzhou, 310015 Zhejiang People’s Republic of China
| | - Wen Li
- IHRC Inc., 2 Ravinia Drive, Suite 1750, Atlanta, GA 30346 USA
| | - Weibin Cai
- Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou St., Hangzhou, 310015 Zhejiang People’s Republic of China
| | - Xiaohua Tan
- Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou St., Hangzhou, 310015 Zhejiang People’s Republic of China
| | - Liangwen Xu
- Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou St., Hangzhou, 310015 Zhejiang People’s Republic of China
| | - Lei Yang
- Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou St., Hangzhou, 310015 Zhejiang People’s Republic of China
| | - Guoqiang Lou
- Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou St., Hangzhou, 310015 Zhejiang People’s Republic of China
| | - Yutao Yan
- Affiliated Hospital, Hangzhou Normal University, 126 Wenzhou St., Hangzhou, 310015 Zhejiang People’s Republic of China ,School of Medicine, Hangzhou Normal University, 16 Xuelin Road, Xiasha Higher Education Park, Hangzhou, 310036 Zhejiang People’s Republic of China
| |
Collapse
|
203
|
Laderas TG, Heiser LM, Sönmez K. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity. Front Genet 2015; 6:341. [PMID: 26779250 PMCID: PMC4688377 DOI: 10.3389/fgene.2015.00341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, invasion, and other cancer hallmarks. The goal of precision medicine is to identify therapeutically-actionable mutations from large-scale omic datasets. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to the oncogene's deleterious potential, a new genomic feature that we term "surrogate oncogenes." Surrogate oncogenes are representatives of these mutated subnetworks that interact with oncogenes. By mapping mutations to a protein-protein interaction network, we determine the significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified a significant number of surrogate oncogenes in known oncogenes such as BRCA1 and ESR1, lending credence to this approach. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations from a single sample, and therefore has the potential to integrate patient-unique mutations into drug sensitivity predictions, suggesting a new direction in precision medicine and drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers from The Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue types.
Collapse
Affiliation(s)
- Ted G Laderas
- OHSU Knight Cancer Institute, Oregon Health & Science University, PortlandOR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, PortlandOR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland OR, USA
| | - Kemal Sönmez
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland OR, USA
| |
Collapse
|
204
|
Xu F, Wu LY, Chang CK, He Q, Zhang Z, Liu L, Shi WH, Guo J, Zhu Y, Zhao YS, Gu SC, Fei CM, Wu D, Zhou LY, Su JY, Song LX, Xiao C, Li X. Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as progression-related drivers in myelodysplastic syndromes. Nat Commun 2015; 6:8806. [PMID: 26608094 PMCID: PMC4674765 DOI: 10.1038/ncomms9806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023] Open
Abstract
The progressive mechanism underlying myelodysplastic syndrome remains unknown. Here we identify ROBO1 and ROBO2 as novel progression-related somatic mutations using whole-exome and targeted sequencing in 6 of 16 (37.5%) paired MDS patients with disease progression. Further deep sequencing detects 20 (10.4%) patients with ROBO mutations in a cohort of 193 MDS patients. In addition, copy number loss and loss of heterogeneity (LOH) of ROBO1 and ROBO2 are frequently observed in patients with progression or carrying ROBO mutations. In in vitro experiments, overexpression of ROBO1 or ROBO2 produces anti-proliferative and pro-apoptotic effects in leukaemia cells. However, this effect was lost in ROBO mutants and ROBO-SLIT2 signalling is impaired. Multivariate analysis shows that ROBO mutations are independent factors for predicting poor survival. These findings demonstrate a novel contribution of ROBO mutations to the pathogenesis of MDS and highlight a key role for ROBO-SLIT2 signalling in MDS disease progression.
Collapse
Affiliation(s)
- Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wen-Hui Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Zhu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - You-Shan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shu-Cheng Gu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cheng-Ming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
205
|
The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity. Biochem J 2015; 473:135-44. [PMID: 26527737 PMCID: PMC4700475 DOI: 10.1042/bj20150931] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/02/2015] [Indexed: 11/17/2022]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr(366)/pSer(370) results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX-MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a 'scooting' mode of catalysis from the 'hopping' mode that is characteristic of PTEN.
Collapse
|
206
|
Lupini L, Bassi C, Mlcochova J, Musa G, Russo M, Vychytilova-Faltejskova P, Svoboda M, Sabbioni S, Nemecek R, Slaby O, Negrini M. Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients. BMC Cancer 2015; 15:808. [PMID: 26508446 PMCID: PMC4624582 DOI: 10.1186/s12885-015-1752-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy. METHODS In order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant. RESULTS We confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test). CONCLUSIONS The combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.
Collapse
Affiliation(s)
- Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Jitka Mlcochova
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Gentian Musa
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Marta Russo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Petra Vychytilova-Faltejskova
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Marek Svoboda
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Radim Nemecek
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
207
|
Roversi G, Picinelli C, Bestetti I, Crippa M, Perotti D, Ciceri S, Saccheri F, Collini P, Poliani PL, Catania S, Peissel B, Pagni F, Russo S, Peterlongo P, Manoukian S, Finelli P. Constitutional de novo deletion of the FBXW7 gene in a patient with focal segmental glomerulosclerosis and multiple primitive tumors. Sci Rep 2015; 5:15454. [PMID: 26482194 PMCID: PMC4612309 DOI: 10.1038/srep15454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022] Open
Abstract
Multiple primary malignant neoplasms are rare entities in the clinical setting, but represent an important issue in the clinical management of patients since they could be expression of a genetic predisposition to malignancy. A high resolution genome wide array CGH led us to identify the first case of a de novo constitutional deletion confined to the FBXW7 gene, a well known tumor suppressor, in a patient with a syndromic phenotype characterized by focal segmental glomerulosclerosis and multiple primary early/atypical onset tumors, including Hodgkin's lymphoma, Wilms tumor and breast cancer. Other genetic defects may be associated with patient's phenotype. In this light, constitutional mutations at BRCA1, BRCA2, TP53, PALB2 and WT1 genes were excluded by performing sequencing and MLPA analysis; similarly, we ruled out constitutional abnormalities at the imprinted 11p15 region by methylation specific -MLPA assay. Our observations sustain the role of FBXW7 as cancer predisposition gene and expand the spectrum of its possible associated diseases.
Collapse
Affiliation(s)
- Gaia Roversi
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy.,Medical Genetics Lab, San Gerardo Hospital, Monza, Italy
| | - Chiara Picinelli
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Ilaria Bestetti
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Milena Crippa
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Ciceri
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Paola Collini
- Soft Tissue and Bone Pathology, Histopathology and Pediatric Pathology Unit, Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pietro L Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Serena Catania
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fabio Pagni
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Palma Finelli
- Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
208
|
Abstract
In spite of a rapidly expanding understanding of head and neck tumor biology and optimization of radiation, chemotherapy, and surgical treatment modalities, head and neck squamous cell carcinoma (HNSCC) remains a major cause of cancer-related morbidity and mortality. Although our biologic understanding of these tumors had largely been limited to pathways driving proliferation, survival, and differentiation, the identification of HPV as a major driver of HNSCC and genomic sequencing analyses has dramatically influenced our understanding of tumor biology and approach to therapy. Here, we summarize molecular aspects of HNSCC biology and identify promising areas for potential diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - James W Rocco
- Department of Otolaryngology-Head and Neck Surgery, Wexner Medical Center, James Cancer Hospital, Solove Research Institute, The Ohio State University, 320 West 10th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
209
|
Chen M, Nowak DG, Trotman LC. Molecular pathways: PI3K pathway phosphatases as biomarkers for cancer prognosis and therapy. Clin Cancer Res 2015; 20:3057-63. [PMID: 24928944 DOI: 10.1158/1078-0432.ccr-12-3680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer research has seen tremendous changes over the past decade. Fast progress in sequencing technology has afforded us with landmark genetic alterations, which had immediate impact on clinical science and practice by pointing to new kinase targets, such as phosphoinositide 3-kinase (PI3K), the EGF receptor, or BRAF. The PI3K pathway for growth control has emerged as a prime example for both oncogene activation and tumor suppressor loss in cancer. Here, we discuss how therapy using PI3K pathway inhibitors could benefit from information on specific phosphatases, which naturally antagonize the kinase targets. This PI3K pathway is found mutated in most cancer types, including prostate, breast, colon, and brain tumors. The tumor-suppressing phosphatases operate at two levels. Lipid-level phosphatases, such as PTEN and INPP4B, revert PI3K activity to keep the lipid second messengers inactive. At the protein level, PHLPP1/2 protein phosphatases inactivate AKT kinase, thus antagonizing mTOR complex 2 activity. However, in contrast with their kinase counterparts the phosphatases are unlikely drug targets. They would need to be stimulated by therapy and are commonly deleted and mutated in cancer. Yet, because they occupy critical nodes in preventing cancer initiation and progression, the information on their status has tremendous potential in outcome prediction, and in matching the available kinase inhibitor repertoire with the right patients. Clin Cancer Res; 20(12); 3057-63. ©2014 AACR.
Collapse
Affiliation(s)
- Muhan Chen
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Dawid G Nowak
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Lloyd C Trotman
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
210
|
Jung H, Lee D, Lee J, Park D, Kim YJ, Park WY, Hong D, Park PJ, Lee E. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet 2015; 47:1242-8. [PMID: 26437032 DOI: 10.1038/ng.3414] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
Abstract
A substantial fraction of disease-causing mutations are pathogenic through aberrant splicing. Although genome profiling studies have identified somatic single-nucleotide variants (SNVs) in cancer, the extent to which these variants trigger abnormal splicing has not been systematically examined. Here we analyzed RNA sequencing and exome data from 1,812 patients with cancer and identified ∼900 somatic exonic SNVs that disrupt splicing. At least 163 SNVs, including 31 synonymous ones, were shown to cause intron retention or exon skipping in an allele-specific manner, with ∼70% of the SNVs occurring on the last base of exons. Notably, SNVs causing intron retention were enriched in tumor suppressors, and 97% of these SNVs generated a premature termination codon, leading to loss of function through nonsense-mediated decay or truncated protein. We also characterized the genomic features predictive of such splicing defects. Overall, this work demonstrates that intron retention is a common mechanism of tumor-suppressor inactivation.
Collapse
Affiliation(s)
- Hyunchul Jung
- Research Institute, National Cancer Center, Gyeonggi-do, South Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Donghoon Lee
- Research Institute, National Cancer Center, Gyeonggi-do, South Korea.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Jongkeun Lee
- Research Institute, National Cancer Center, Gyeonggi-do, South Korea.,Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Gyeonggi-do, South Korea
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Company, Ltd., Seoul, South Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Company, Ltd., Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Dongwan Hong
- Research Institute, National Cancer Center, Gyeonggi-do, South Korea.,Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Gyeonggi-do, South Korea
| | - Peter J Park
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunjung Lee
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
211
|
BÖHRNSEN FLORIAN, ENDERS CHRISTINA, LUDWIG HANSCHRISTOPH, BRÜCK WOLFGANG, FÜZESI LASZLO, GUTENBERG ANGELIKA. Common molecularcytogenetic alterations in tumors originating from the pineal region. Oncol Lett 2015; 10:1853-1857. [PMID: 26622764 PMCID: PMC4533695 DOI: 10.3892/ol.2015.3383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Tumors of the pineal region (PR) are rare and can be subdivided into four main histomorphological groups: Pineal-parenchymal tumors (PPT), germ cell tumors (GCT), glial tumors and miscellaneous tumors. The appropriate pathological classification and grading of these malignancies is essential for determining the clinical management and prognosis. However, an early diagnosis is often delayed due to unspecific clinical symptoms, and histological support is not always decisive to identify the diversity of tumors of the PR. The present study aimed to characterize 18 tumors of the PR using comparative genomic hybridization. All the tumors were primarily surgically resected without any previous irradiation or chemotherapy. In addition to chromosomal aberrations in PPT and different GCTs of the PR, the present study described, for the first time, the chromosomal changes in a few rare entities (solitary-fibrous and neuroendocrine tumors) of the PR. The tumors in the study, regardless of histology and World Health Organization grade, were characterized by frequent gains at 7, 9q, 12q, 16p, 17 and 22q, and losses at 13q. While the detection of chromosomal aberrations in these tumors appears not to be indicative enough of histological entities and their grade of malignancy, the present data may be of use to select genes of interest for higher resolution genomic analyses.
Collapse
Affiliation(s)
- FLORIAN BÖHRNSEN
- Clinic of Oral and Maxillofacial Surgery, Georg-August University Göttingen, Göttingen D-37075, Germany
| | - CHRISTINA ENDERS
- Institute of Pathology, Georg-August University Göttingen, Göttingen D-37075, Germany
| | - HANS-CHRISTOPH LUDWIG
- Department of Neurosurgery, Georg-August University Göttingen, Göttingen D-37075, Germany
| | - WOLFGANG BRÜCK
- Institute of Neuropathology, Georg-August University Göttingen, Göttingen D-37075, Germany
| | - LASZLO FÜZESI
- Institute of Pathology, Georg-August University Göttingen, Göttingen D-37075, Germany
| | - ANGELIKA GUTENBERG
- Department of Neurosurgery, Georg-August University Göttingen, Göttingen D-37075, Germany
- Department of Neurosurgery, Johannes Gutenberg University, Mainz D-76726, Germany
| |
Collapse
|
212
|
XIE YUXIN, XIE KEQI, GOU QIHENG, CHEN NIANYONG. IκB kinase α functions as a tumor suppressor in epithelial-derived tumors through an NF-κB-independent pathway (Review). Oncol Rep 2015; 34:2225-32. [DOI: 10.3892/or.2015.4229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 11/06/2022] Open
|
213
|
Heinrich F, Chakravarthy S, Nanda H, Papa A, Pandolfi PP, Ross AH, Harishchandra RK, Gericke A, Lösche M. The PTEN Tumor Suppressor Forms Homodimers in Solution. Structure 2015; 23:1952-1957. [PMID: 26299948 DOI: 10.1016/j.str.2015.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/20/2015] [Accepted: 07/25/2015] [Indexed: 12/01/2022]
Abstract
As the phosphoinositol-3-kinase antagonist in the PI3K pathway, the PTEN tumor suppressor exerts phosphatase activity on diacylphosphatidylinositol triphosphate in the plasma membrane. Even partial loss of this activity enhances tumorigenesis, but a mechanistic basis for this aspect of PTEN physiology has not yet been established. It was recently proposed that PTEN mutations have dominant-negative effects in cancer via PTEN dimers. We show that PTEN forms homodimers in vitro, and determine a structural model of the complex from SAXS and Rosetta docking studies. Our findings shed new light on the cellular control mechanism of PTEN activity. Phosphorylation of the unstructured C-terminal tail of PTEN reduces PTEN activity, and this result was interpreted as a blockage of the PTEN membrane binding interface through this tail. The results presented here instead suggest that the C-terminal tail functions in stabilizing the homodimer, and that tail phosphorylation interferes with this stabilization.
Collapse
Affiliation(s)
- Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Srinivas Chakravarthy
- BioCAT, Center for Synchrotron Radiation Research and Instrumentation, Argonne National Laboratory, Argonne, IL 60439, USA; Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Hirsh Nanda
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Antonella Papa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia; Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alonzo H Ross
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rakesh K Harishchandra
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
214
|
Miura H, Inoko H, Tanaka M, Nakaoka H, Kimura M, Gurumurthy CB, Sato M, Ohtsuka M. Assessment of Artificial MiRNA Architectures for Higher Knockdown Efficiencies without the Undesired Effects in Mice. PLoS One 2015; 10:e0135919. [PMID: 26285215 PMCID: PMC4540464 DOI: 10.1371/journal.pone.0135919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/27/2015] [Indexed: 01/08/2023] Open
Abstract
RNAi-based strategies have been used for hypomorphic analyses. However, there are technical challenges to achieve robust, reproducible knockdown effect. Here we examined the artificial microRNA (amiRNA) architectures that could provide higher knockdown efficiencies. Using transient and stable transfection assays in cells, we found that simple amiRNA-expression cassettes, that did not contain a marker gene (−MG), displayed higher amiRNA expression and more efficient knockdown than those that contained a marker gene (+MG). Further, we tested this phenomenon in vivo, by analyzing amiRNA-expressing mice that were produced by the pronuclear injection-based targeted transgenesis (PITT) method. While we observed significant silencing of the target gene (eGFP) in +MG hemizygous mice, obtaining −MG amiRNA expression mice, even hemizygotes, was difficult and the animals died perinatally. We obtained only mosaic mice having both “−MG amiRNA” cells and “amiRNA low-expression” cells but they exhibited growth retardation and cataracts, and they could not transmit the –MG amiRNA allele to the next generation. Furthermore, +MG amiRNA homozygotes could not be obtained. These results suggested that excessive amiRNAs transcribed by −MG expression cassettes cause deleterious effects in mice, and the amiRNA expression level in hemizygous +MG amiRNA mice is near the upper limit, where mice can develop normally. In conclusion, the PITT-(+MG amiRNA) system demonstrated here can generate knockdown mouse models that reliably express highest and tolerable levels of amiRNAs.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411–8540, Japan
| | - Minoru Kimura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Channabasavaiah B. Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States of America
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 1-21-20 Korimoto, Kagoshima, Kagoshima 890–0065, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- * E-mail:
| |
Collapse
|
215
|
Menin immunoreactivity in secretory granules of human pancreatic islet cells. Appl Immunohistochem Mol Morphol 2015; 22:748-55. [PMID: 25153502 DOI: 10.1097/pai.0000000000000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The protein product of the Multiple Endocrine Neoplasia Type I (MEN1) gene is thought to be involved in predominantly nuclear functions; however, immunohistochemical (IHC) analysis data on cellular localization are conflicting. To further investigate menin expression, we analyzed human pancreas (an MEN1 target organ) using IHC analyses and 6 antibodies raised against full-length menin or its peptides. In 10 normal pancreas specimens, 2 independently raised antibodies showed unexpected cytoplasmic immunoreactivity in peripheral cells in each islet examined (over 100 total across all 10 patients). The staining exhibited a distinct punctate pattern and subsequent immunoelectron microscopy indicated the target antigen was in secretory granules. Exocrine pancreas and pancreatic stroma were not immunoreactive. In MEN1 patients, unaffected islets stained similar to those in normal samples but with a more peripheral location of positive cells, whereas hyperplastic islets and tumorlets showed increased and diffuse cytoplasmic staining, respectively. Endocrine tumors from MEN1 patients were negative for menin, consistent with a 2-hit loss of a tumor suppressor gene. Secretory granule localization of menin in a subset of islet cells suggests a function of the protein unique to a target organ of familial endocrine neoplasia, although the IHC data must be interpreted with some caution because of the possibility of antibody cross-reaction. The identity, cellular trafficking, and role of this putative secretory granule-form of menin warrant additional investigation.
Collapse
|
216
|
George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, Müller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Pützer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmüller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castaños-Vélez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Köhler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansén S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nürnberg P, Reinhardt C, Perner S, Heukamp L, Büttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK. Comprehensive genomic profiles of small cell lung cancer. Nature 2015; 524:47-53. [PMID: 26168399 DOI: 10.1038/nature14664] [Citation(s) in RCA: 1553] [Impact Index Per Article: 155.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
Collapse
Affiliation(s)
- Julie George
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jing Shan Lim
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Se Jin Jang
- Department of Pathology and Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Yupeng Cun
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Luka Ozretić
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University. 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Korea
| | - Frauke Leenders
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Xin Lu
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lynnette Fernández-Cuesta
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Graziella Bosco
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Müller
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ilona Dahmen
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Nadine S Jahchan
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Kwon-Sik Park
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Dian Yang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Anthony N Karnezis
- Vancouver General Hospital, Terry Fox laboratory, Vancouver, British Columbia V5Z 1L3, Canada
| | - Dedeepya Vaka
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Angela Torres
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Maia Segura Wang
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Roopika Menon
- Institute of Pathology, Center of Integrated Oncology Cologne-Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - Sung-Min Chun
- Department of Pathology and Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Deokhoon Kim
- Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Matt Wilkerson
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA
| | - Neil Hayes
- UNC Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marc Bos
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Sebastian Michels
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Ignacija Vlasic
- Department of Internal Medicine, University Hospital of Cologne, 50931 Cologne, Germany
| | - Danila Seidel
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Berit Pinther
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Philipp Schaub
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- 1] Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany. [2] Institute of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
| | - Jun Yokota
- 1] Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan. [2] Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona 08916, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan
| | - Reika Iwakawa
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan
| | - Koji Tsuta
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital Chuo-ku, Tokyo 1040045, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Thomas Muley
- 1] Thoraxklinik at University Hospital Heidelberg, Amalienstrasse 5, 69126 Heidelberg, Germany. [2] Translational Lung Research Center Heidelberg (TLRC-H), Member of German Center for Lung Research (DZL), Amalienstrasse 5, 69126 Heidelberg, Germany
| | - Hans Hoffmann
- Thoraxklinik at University Hospital Heidelberg, Amalienstrasse 5, 69126 Heidelberg, Germany
| | - Philipp A Schnabel
- 1] Translational Lung Research Center Heidelberg (TLRC-H), Member of German Center for Lung Research (DZL), Amalienstrasse 5, 69126 Heidelberg, Germany. [2] Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yuan Chen
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Alex Soltermann
- Institute of Surgical Pathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Chang-min Choi
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Yong-Hee Kim
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Pierre P Massion
- Thoracic Program, Vanderbilt-Ingram Cancer Center PRB 640, 2220 Pierce Avenue, Nashville, Tennessee 37232, USA
| | - Yong Zou
- Thoracic Program, Vanderbilt-Ingram Cancer Center PRB 640, 2220 Pierce Avenue, Nashville, Tennessee 37232, USA
| | - Dragana Jovanovic
- University Hospital of Pulmonology, Clinical Center of Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Kontic
- University Hospital of Pulmonology, Clinical Center of Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Gavin M Wright
- Department of Surgery, St. Vincent's Hospital, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Prudence A Russell
- Department of Pathology, St. Vincent's Hospital, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Benjamin Solomon
- Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Ina Koch
- Asklepios Biobank für Lungenerkrankungen, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Asklepios Fachkliniken München-Gauting 82131, Germany
| | - Michael Lindner
- Asklepios Biobank für Lungenerkrankungen, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Asklepios Fachkliniken München-Gauting 82131, Germany
| | - Lucia A Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni, Rotondo, Italy
| | - Annamaria la Torre
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni, Rotondo, Italy
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool Cancer Research Centre, 200 London Road, L69 3GA Liverpool, UK
| | - Marko Jakopovic
- University of Zagreb, School of Medicine, Department for Respiratory Diseases Jordanovac, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Jelena Knezevic
- Laboratory for Translational Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | | | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS - Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Odd-Terje Brustugun
- 1] Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway. [2] Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Jens Köhler
- 1] West German Cancer Center, Department of Medical Oncology, University Hospital Essen, 45147 Essen, Germany. [2] German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Martin Schuler
- 1] West German Cancer Center, Department of Medical Oncology, University Hospital Essen, 45147 Essen, Germany. [2] German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Johan Botling
- Departments of Immunology, Genetics and Pathology, and Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 75185 Uppsala, Sweden
| | - Martin Sandelin
- Departments of Immunology, Genetics and Pathology, and Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 75185 Uppsala, Sweden
| | - Montserrat Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Helga B Salvesen
- 1] Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, N-5058 Bergen, Norway. [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, N-5058 Bergen, Norway
| | - Viktor Achter
- Computing Center, University of Cologne, 50931 Cologne, Germany
| | - Ulrich Lang
- 1] Computing Center, University of Cologne, 50931 Cologne, Germany. [2] Department of Informatics, University of Cologne, 50931 Cologne, Germany
| | - Magdalena Bogus
- Institute of Legal Medicine, University of Cologne, 50823 Cologne, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, University of Cologne, 50823 Cologne, Germany
| | - Thomas Zander
- Gastrointestinal Cancer Group Cologne, Center of Integrated Oncology Cologne-Bonn, Department I for Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany
| | - Sascha Ansén
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Michael Hallek
- 1] Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. [2] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jürgen Wolf
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Martin Vingron
- Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, 464-8681 Nagoya, Japan
| | - William D Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Peter Nürnberg
- 1] Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany. [2] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany. [3] Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Christian Reinhardt
- Department of Internal Medicine, University Hospital of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Lukas Heukamp
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Stefan A Haas
- Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Elisabeth Brambilla
- Department of Pathology, CHU Grenoble INSERM U823, University Joseph Fourier, Institute Albert Bonniot 38043, CS10217 Grenoble, France
| | - Martin Peifer
- 1] Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany. [2] Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Roman K Thomas
- 1] Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany. [2] Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
217
|
Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun 2015; 6:7505. [PMID: 26106036 PMCID: PMC4491827 DOI: 10.1038/ncomms8505] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
Although BRCA1 function is essential for maintaining genomic integrity in all cell types, it is unclear why increased risk of cancer in individuals harbouring deleterious mutations in BRCA1 is restricted to only a select few tissues. Here we show that human mammary epithelial cells (HMECs) from BRCA1-mutation carriers (BRCA1(mut/+)) exhibit increased genomic instability and rapid telomere erosion in the absence of tumour-suppressor loss. Furthermore, we uncover a novel form of haploinsufficiency-induced senescence (HIS) specific to epithelial cells, which is triggered by pRb pathway activation rather than p53 induction. HIS and telomere erosion in HMECs correlate with misregulation of SIRT1 leading to increased levels of acetylated pRb as well as acetylated H4K16 both globally and at telomeric regions. These results identify a novel form of cellular senescence and provide a potential molecular basis for the rapid cell- and tissue- specific predisposition of breast cancer development associated with BRCA1 haploinsufficiency.
Collapse
|
218
|
Maiques O, Cuevas D, García Dios DA, Coenegrachts L, Santacana M, Velasco A, Romero M, Gatius S, Lambrechts D, Müller S, Pedersen HC, Dolcet X, Amant F, Matias-Guiu X. FISH analysis of PTEN in endometrial carcinoma. Comparison with SNP arrays and MLPA. Histopathology 2015; 65:371-88. [PMID: 25353038 PMCID: PMC4282383 DOI: 10.1111/his.12396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS To check the usefulness of a standardized protocol of PTEN FISH in 31 endometrial carcinomas (ECs) in comparison with SNP array (SNPA), multiplex ligation-dependent probe amplification (MLPA), and immunohistochemistry. METHODS AND RESULTS Fluorescence in-situ hybridization analysis showed two PTEN copies in 17 cases, three copies in nine cases, hemizygous deletion in two cases, and diverse cell populations with different PTEN copy number in three cases. A good correlation was seen between FISH and SNPA, particularly in cases with three copies. FISH identified two cases with entire deletion of chromosome 10, but did not identify a focal deletion of PTEN. Five cases with PTEN deletion and duplication of the second allele by SNPA were interpreted as normal by FISH. Concordance between FISH and MLPA was seen in 15 cases with two copies, and in two cases with PTEN deletion. Six cases were interpreted as amplified by MLPA, but showed polyploidy by FISH. FISH was superior to SNPA and MLPA in assessing the tumours with diverse cell populations with different PTEN copies. CONCLUSIONS The results show good concordance between FISH, SNPA and MLPA. SNPA was superior in tumours with deletion of one copy and duplication of the second allele. FISH was superior in assessing tumour heterogeneity.
Collapse
Affiliation(s)
- Oscar Maiques
- Department of Pathology and Molecular Genetics/Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRB LleidaLleida, Spain
| | - Dolors Cuevas
- Department of Pathology and Molecular Genetics/Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRB LleidaLleida, Spain
| | - Diego Andrés García Dios
- Gynaecological Oncology, University Hospitals LeuvenLeuven, Belgium
- Department of Oncology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Lieve Coenegrachts
- Gynaecological Oncology, University Hospitals LeuvenLeuven, Belgium
- Department of Oncology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Maria Santacana
- Department of Pathology and Molecular Genetics/Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRB LleidaLleida, Spain
| | - Ana Velasco
- Department of Pathology and Molecular Genetics/Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRB LleidaLleida, Spain
| | - Marta Romero
- Department of Pathology and Molecular Genetics/Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRB LleidaLleida, Spain
| | - Sónia Gatius
- Department of Pathology and Molecular Genetics/Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRB LleidaLleida, Spain
| | - Diether Lambrechts
- Vesalius Research Centre, Vlaams Instituut voor BiotechnologieLeuven, Belgium
- Laboratory for Translational Genetics, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Sven Müller
- Research and Development, Dako DenmarkGlostrup, Denmark
| | | | - Xavier Dolcet
- Department of Pathology and Molecular Genetics/Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRB LleidaLleida, Spain
| | - Frederic Amant
- Gynaecological Oncology, University Hospitals LeuvenLeuven, Belgium
- Department of Oncology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRB LleidaLleida, Spain
- Address for correspondence: X Matias-Guiu, PhD, Hospital Universitari Arnau de Vilanova, Av. Rovira Roure, 80, 25198 Lleida, Spain. e-mail:
| |
Collapse
|
219
|
The expression of tumour suppressors and proto-oncogenes in tissues susceptible to their hereditary cancers. Br J Cancer 2015; 113:345-53. [PMID: 26079304 PMCID: PMC4506389 DOI: 10.1038/bjc.2015.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/05/2014] [Accepted: 05/15/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Studies of familial cancers have found that only a small subset of tissues are affected by inherited mutations in a given tumour suppressor gene (TSG) or proto-oncogene (POG), even though the mutation is present in all tissues. Previous tests have shown that tissue specificity is not due to the presence vs absence of gene expression, as TSGs and POGs are expressed in nearly every type of normal human tissue. Using published microarray expression data we tested the related hypothesis that tissue-specific expression of a TSG or POG is highest in tissue where it is of oncogenic importance. METHODS We tested this hypothesis by examining whether individual TSGs and POGs had higher expression in the normal (noncancerous) tissues where they are implicated in familial cancers relative to those tissues where they are not. We examined data for 15 TSGs and 8 POGs implicated in familial cancer across 12 human tissue types. RESULTS We found a significant difference between expression levels in susceptible vs nonsusceptible tissues. It was found that 9 (60%, P<0.001) of the TSGs and 5 (63%, P<0.001) of the POGs had their highest expression level in the tissue type susceptible to their oncogenic effect. CONCLUSIONS This highly significant association supports the hypothesis that mutation of a specific TSG or POG is likely to be most oncogenic in the tissue where the gene has its highest level of expression. This suggests that high expression in normal tissues is a potential marker for linking cancer-related genes with their susceptible tissues.
Collapse
|
220
|
PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A 2015; 112:8403-8. [PMID: 26080435 DOI: 10.1073/pnas.1507882112] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer antigen 3 (PCA3) is the most specific prostate cancer biomarker but its function remains unknown. Here we identify PRUNE2, a target protein-coding gene variant, which harbors the PCA3 locus, thereby classifying PCA3 as an antisense intronic long noncoding (lnc)RNA. We show that PCA3 controls PRUNE2 levels via a unique regulatory mechanism involving formation of a PRUNE2/PCA3 double-stranded RNA that undergoes adenosine deaminase acting on RNA (ADAR)-dependent adenosine-to-inosine RNA editing. PRUNE2 expression or silencing in prostate cancer cells decreased and increased cell proliferation, respectively. Moreover, PRUNE2 and PCA3 elicited opposite effects on tumor growth in immunodeficient tumor-bearing mice. Coregulation and RNA editing of PRUNE2 and PCA3 were confirmed in human prostate cancer specimens, supporting the medical relevance of our findings. These results establish PCA3 as a dominant-negative oncogene and PRUNE2 as an unrecognized tumor suppressor gene in human prostate cancer, and their regulatory axis represents a unique molecular target for diagnostic and therapeutic intervention.
Collapse
|
221
|
Zhu K, Liu Q, Zhou Y, Tao C, Zhao Z, Sun J, Xu H. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives. BMC Genomics 2015; 16 Suppl 7:S8. [PMID: 26099335 PMCID: PMC4474543 DOI: 10.1186/1471-2164-16-s7-s8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Defective tumor suppressor genes (TSGs) and hyperactive oncogenes (OCGs) heavily contribute to cell proliferation and apoptosis during cancer development through genetic variations such as somatic mutations and deletions. Moreover, they usually do not perform their cellular functions individually but rather execute jointly. Therefore, a comprehensive comparison of their mutation patterns and network properties may provide a deeper understanding of their roles in the cancer development and provide some clues for identification of novel targets. RESULTS In this study, we performed a comprehensive survey of TSGs and OCGs from the perspectives of somatic mutations and network properties. For comparative purposes, we choose five gene sets: TSGs, OCGs, cancer drug target genes, essential genes, and other genes. Based on the data from Pan-Cancer project, we found that TSGs had the highest mutation frequency in most tumor types and the OCGs second. The essential genes had the lowest mutation frequency in all tumor types. For the network properties in the human protein-protein interaction (PPI) network, we found that, relative to target proteins, essential proteins, and other proteins, the TSG proteins and OCG proteins both tended to have higher degrees, higher betweenness, lower clustering coefficients, and shorter shortest-path distances. Moreover, the TSG proteins and OCG proteins tended to have direct interactions with cancer drug target proteins. To further explore their relationship, we generated a TSG-OCG network and found that TSGs and OCGs connected strongly with each other. The integration of the mutation frequency with the TSG-OCG network offered a network view of TSGs, OCGs, and their interactions, which may provide new insights into how the TSGs and OCGs jointly contribute to the cancer development. CONCLUSIONS Our study first discovered that the OCGs and TSGs had different mutation patterns, but had similar and stronger protein-protein characteristics relative to the essential proteins or control proteins in the whole human interactome. We also found that the TSGs and OCGs had the most direct interactions with cancer drug targets. The results will be helpful for cancer drug target identification, and ultimately, understanding the etiology of cancer and treatment at the network level.
Collapse
|
222
|
Grill JI, Herbst A, Brandl L, Kong L, Schneider MR, Kirchner T, Wolf E, Kolligs FT. Inactivation of Itf2 promotes intestinal tumorigenesis in ApcMin/+ mice. Biochem Biophys Res Commun 2015; 461:249-53. [DOI: 10.1016/j.bbrc.2015.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
|
223
|
Fragoso R, Barata JT. Kinases, tails and more: regulation of PTEN function by phosphorylation. Methods 2015; 77-78:75-81. [PMID: 25448482 DOI: 10.1016/j.ymeth.2014.10.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation regulates the conformation, stability, homo- and heterotypic protein interactions, localization, and activity of the tumor suppressor PTEN. From a simple picture, at the beginning of this millennium, recognizing that CK2 phosphorylated PTEN at the C-terminus and thereby impacted on PTEN stability and activity, research has led to a significantly more complex scenario today, where for instance GSK3, Plk3, ATM, ROCK or Src-family kinases are also gaining the spotlight in this evolving play. Here, we review the current knowledge on the kinases that phosphorylate PTEN, and on the impact that specific phosphorylation events have on PTEN function.
Collapse
Affiliation(s)
- Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
224
|
PTEN–PDZ domain interactions: Binding of PTEN to PDZ domains of PTPN13. Methods 2015; 77-78:147-56. [DOI: 10.1016/j.ymeth.2014.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023] Open
|
225
|
Naguib A, Bencze G, Cho H, Zheng W, Tocilj A, Elkayam E, Faehnle CR, Jaber N, Pratt CP, Chen M, Zong WX, Marks MS, Joshua-Tor L, Pappin DJ, Trotman LC. PTEN functions by recruitment to cytoplasmic vesicles. Mol Cell 2015; 58:255-68. [PMID: 25866245 DOI: 10.1016/j.molcel.2015.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/18/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
PTEN is proposed to function at the plasma membrane, where receptor tyrosine kinases are activated. However, the majority of PTEN is located throughout the cytoplasm. Here, we show that cytoplasmic PTEN is distributed along microtubules, tethered to vesicles via phosphatidylinositol 3-phosphate (PI(3)P), the signature lipid of endosomes. We demonstrate that the non-catalytic C2 domain of PTEN specifically binds PI(3)P through the CBR3 loop. Mutations render this loop incapable of PI(3)P binding and abrogate PTEN-mediated inhibition of PI 3-kinase/AKT signaling. This loss of function is rescued by fusion of the loop mutant PTEN to FYVE, the canonical PI(3)P binding domain, demonstrating the functional importance of targeting PTEN to endosomal membranes. Beyond revealing an upstream activation mechanism of PTEN, our data introduce the concept of PI 3-kinase signal activation on the vast plasma membrane that is contrasted by PTEN-mediated signal termination on the small, discrete surfaces of internalized vesicles.
Collapse
Affiliation(s)
- Adam Naguib
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gyula Bencze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hyejin Cho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ante Tocilj
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Elad Elkayam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Faehnle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nadia Jaber
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael S Marks
- Department of Pathology & Laboratory of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory of Medicine and Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
226
|
MK3 modulation affects BMI1-dependent and independent cell cycle check-points. PLoS One 2015; 10:e0118840. [PMID: 25853770 PMCID: PMC4390245 DOI: 10.1371/journal.pone.0118840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/14/2015] [Indexed: 01/04/2023] Open
Abstract
Although the MK3 gene was originally found deleted in some cancers, it is highly expressed in others. The relevance of MK3 for oncogenesis is currently not clear. We recently reported that MK3 controls ERK activity via a negative feedback mechanism. This prompted us to investigate a potential role for MK3 in cell proliferation. We here show that overexpression of MK3 induces a proliferative arrest in normal diploid human fibroblasts, characterized by enhanced expression of replication stress- and senescence-associated markers. Surprisingly, MK3 depletion evokes similar senescence characteristics in the fibroblast model. We previously identified MK3 as a binding partner of Polycomb Repressive Complex 1 (PRC1) proteins. In the current study we show that MK3 overexpression results in reduced cellular EZH2 levels and concomitant loss of epigenetic H3K27me3-marking and PRC1/chromatin-occupation at the CDKN2A/INK4A locus. In agreement with this, the PRC1 oncoprotein BMI1, but not the PCR2 protein EZH2, bypasses MK3-induced senescence in fibroblasts and suppresses P16INK4A expression. In contrast, BMI1 does not rescue the MK3 loss-of-function phenotype, suggesting the involvement of multiple different checkpoints in gain and loss of MK3 function. Notably, MK3 ablation enhances proliferation in two different cancer cells. Finally, the fibroblast model was used to evaluate the effect of potential tumorigenic MK3 driver-mutations on cell proliferation and M/SAPK signaling imbalance. Taken together, our findings support a role for MK3 in control of proliferation and replicative life-span, in part through concerted action with BMI1, and suggest that the effect of MK3 modulation or mutation on M/SAPK signaling and, ultimately, proliferation, is cell context-dependent.
Collapse
|
227
|
Sakamaki A, Katsuragi Y, Otsuka K, Tomita M, Obata M, Iwasaki T, Abe M, Sato T, Ochiai M, Sakuraba Y, Aoyagi Y, Gondo Y, Sakimura K, Nakagama H, Mishima Y, Kominami R. Bcl11b SWI/SNF-complex subunit modulates intestinal adenoma and regeneration after γ-irradiation through Wnt/β-catenin pathway. Carcinogenesis 2015; 36:622-31. [PMID: 25827435 DOI: 10.1093/carcin/bgv044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/28/2015] [Indexed: 01/23/2023] Open
Abstract
SWI/SNF chromatin remodeling complexes constitute a highly related family of multi-subunit complexes to modulate transcription, and SWI/SNF subunit genes are collectively mutated in 20% of all human cancers. Bcl11b is a SWI/SNF subunit and acts as a haploinsufficient tumor suppressor in leukemia/lymphomas. Here, we show expression of Bcl11b in intestinal crypt cells and promotion of intestinal tumorigenesis by Bcl11b attenuation in Apc (min/+) mice. Of importance, mutations or allelic loss of BCL11B was detected in one-third of human colon cancers. We also show that attenuated Bcl11b activity in the crypt base columnar (CBC) cells expressing the Lgr5 stem cell marker enhanced regeneration of intestinal epithelial cells after the radiation-induced injury. Interestingly, BCL11B introduction in human cell lines downregulated transcription of β-catenin target genes, whereas Bcl11b attenuation in Lgr5(+) CBCs increased expression of β-catenin targets including c-Myc and cyclin D1. Together, our results argue that Bcl11b impairment promotes tumor development in mouse and human intestine at least in part through deregulation of β-catenin pathway.
Collapse
Affiliation(s)
- Akira Sakamaki
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinori Katsuragi
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kensuke Otsuka
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan
| | - Masanori Tomita
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan
| | - Miki Obata
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Iwasaki
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Manabu Abe
- Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan
| | - Toshihiro Sato
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masako Ochiai
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and
| | - Yoshiyuki Sakuraba
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Aoyagi
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoichi Gondo
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kenji Sakimura
- Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan
| | - Hitoshi Nakagama
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and
| | - Yukio Mishima
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Kominami
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
228
|
Kotini AG, Chang CJ, Boussaad I, Delrow JJ, Dolezal EK, Nagulapally AB, Perna F, Fishbein GA, Klimek VM, Hawkins RD, Huangfu D, Murry CE, Graubert T, Nimer SD, Papapetrou EP. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol 2015; 33:646-55. [PMID: 25798938 PMCID: PMC4464949 DOI: 10.1038/nbt.3178] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Chromosomal deletions associated with human diseases, such as cancer are common, but synteny issues complicate modeling of these deletions in mice. We use cellular reprogramming and genome engineering to functionally dissect the loss of chromosome 7q [del(7q)], a somatic cytogenetic abnormality present in myelodysplastic syndromes (MDS). We derive del(7q)- and isogenic karyotypically normal induced pluripotent stem cells (iPSCs) from hematopoietic cells of MDS patients and show that the del(7q) iPSCs recapitulate disease-associated phenotypes, including impaired hematopoietic differentiation. These disease phenotypes are rescued by spontaneous dosage correction and can be reproduced in karyotypically normal cells by engineering hemizygosity of defined chr7q segments, in a 20 Mb region. We use a phenotype-rescue screen to identify candidate haploinsufficient genes that might mediate the del(7q)- hematopoietic defect. Our approach highlights the utility of human iPSCs both for functional mapping of disease-associated large-scale chromosomal deletions and for discovery of haploinsufficient genes.
Collapse
Affiliation(s)
- Andriana G Kotini
- 1] Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [2] The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [3] The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chan-Jung Chang
- 1] Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [2] The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [3] The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ibrahim Boussaad
- 1] Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA. [2] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Jeffrey J Delrow
- Genomics Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily K Dolezal
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Abhinav B Nagulapally
- 1] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. [2] Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Gregory A Fishbein
- 1] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. [2] Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Virginia M Klimek
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - R David Hawkins
- 1] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. [2] Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - Charles E Murry
- 1] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. [2] Department of Pathology, University of Washington, Seattle, Washington, USA. [3] Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA. [4] Department of Bioengineering University of Washington, Seattle, Washington, USA. [5] Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Timothy Graubert
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Eirini P Papapetrou
- 1] Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [2] The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [3] The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [4] Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA. [5] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. [6] Department of Pathology, University of Washington, Seattle, Washington, USA. [7] Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
229
|
Assis LVMD, Isoldi MC. Overview of the biochemical and genetic processes in malignant mesothelioma. J Bras Pneumol 2015; 40:429-42. [PMID: 25210967 PMCID: PMC4201175 DOI: 10.1590/s1806-37132014000400012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive form of cancer, has a long latency period, and is resistant to chemotherapy. It is extremely fatal, with a mean survival of less than one year. The development of MM is strongly correlated with exposure to asbestos and with other factors, such as erionite and simian virus 40 [corrected]. Although various countries have banned the use of asbestos, MM has proven to be difficult to control and there appears to be a trend toward an increase in its incidence in the years to come. In Brazil, MM has not been widely studied from a genetic or biochemical standpoint. In addition, there have been few epidemiological studies of the disease, and the profile of its incidence has yet to be well established in the Brazilian population. The objective of this study was to review the literature regarding the processes of malignant transformation, as well as the respective mechanisms of tumorigenesis, in MM.
Collapse
|
230
|
Abstract
Wilms' tumor, or nephroblastoma, is the most common pediatric renal cancer. The tumors morphologically resemble embryonic kidneys with a disrupted architecture and are associated with undifferentiated metanephric precursors. Here, we discuss genetic and epigenetic findings in Wilms' tumor in the context of renal development. Many of the genes implicated in Wilms' tumorigenesis are involved in the control of nephron progenitors or the microRNA (miRNA) processing pathway. Whereas the first group of genes has been extensively studied in normal development, the second finding suggests important roles for miRNAs in general-and specific miRNAs in particular-in normal kidney development that still await further analysis. The recent identification of Wilms' tumor cancer stem cells could provide a framework to integrate these pathways and translate them into new or improved therapeutic interventions.
Collapse
Affiliation(s)
- Peter Hohenstein
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom;
| | - Kathy Pritchard-Jones
- UCL Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Jocelyn Charlton
- UCL Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| |
Collapse
|
231
|
An G, Li Z, Tai YT, Acharya C, Li Q, Qin X, Yi S, Xu Y, Feng X, Li C, Zhao J, Shi L, Zang M, Deng S, Sui W, Hao M, Zou D, Zhao Y, Qi J, Cheng T, Ru K, Wang J, Anderson KC, Qiu L. The impact of clone size on the prognostic value of chromosome aberrations by fluorescence in situ hybridization in multiple myeloma. Clin Cancer Res 2015; 21:2148-56. [PMID: 25652456 DOI: 10.1158/1078-0432.ccr-14-2576] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/02/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Accumulating evidence indicates that intratumor heterogeneity is prevalent in multiple myeloma and that a collection of multiple, genetically distinct subclones are present within the myeloma cell population. It is not clear whether the size of clonal myeloma populations harboring unique cytogenetic abnormalities carry any additional prognostic value. EXPERIMENTAL DESIGN We analyzed the prognostic impact of cytogenetic aberrations by fluorescence in situ hybridization at different cutoff values in a cohort of 333 patients with newly diagnosed myeloma and 92 patients with relapsed myeloma. RESULTS We found that nearly all IgH-related arrangements were observed in a large majority of the purified plasma cells; however, 13q deletion, 17p deletion, and 1q21 amplification appeared in different percentages within the malignant plasma cell population. Based on the size of subclones carrying these cytogenetic aberrations, the patients were divided into four groups: 0%-10%, 10.5%-20%, 20.5%-50%, and >50%. Receiver-operating characteristics analysis was applied to determine the optimal cutoff value with the greatest differential survival and showed that the most powerful clone sizes were 10% for 13q deletion, 50% for 17p deletion, and 20% for 1q21 gains, which provided the best possible cutoffs for predicting poor outcomes. CONCLUSIONS Our study indicated that the impact of clone size on prognostic value varies between specific genetic abnormalities. Prognostic value was observed for even a subgroup of plasma cells harboring the cytogenetic aberration of 13q deletion and 1q21 gains; however, 17p deletion displayed the most powerful cutoff for predicting survival only if the predominant clones harbored the abnormality.
Collapse
Affiliation(s)
- Gang An
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China. LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Zengjun Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chirag Acharya
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaoqi Qin
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Xiaoyan Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China. LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chengwen Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jiawei Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Lihui Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Meirong Zang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Junyuan Qi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Kun Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
232
|
Wang LQ, Chim CS. DNA methylation of tumor-suppressor miRNA genes in chronic lymphocytic leukemia. Epigenomics 2015; 7:461-73. [PMID: 25650645 DOI: 10.2217/epi.15.6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is one of the most important epigenetic modifications of the genome involved in the regulation of numerous cellular processes through gene silencing without altering DNA sequences. miRNAs, a class of single-stranded noncoding RNAs of 19-25 nucleotides in length, function as post-transcriptional regulators of gene expression leading to mRNA cleavage or translational repression of their corresponding target protein-coding genes. Recently, dysregulation of tumor suppressor miRNAs mediated by promoter DNA hypermethylation is implicated in human cancers, including B-cell chronic lymphocytic leukemia (CLL). Moreover, it appears that methylated miRNA genes could be potential biomarkers for CLL diagnosis or therapy. This review will highlight the role of aberrant methylation of miRNA genes in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Lu Qian Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| |
Collapse
|
233
|
Lotem J, Levanon D, Negreanu V, Bauer O, Hantisteanu S, Dicken J, Groner Y. Runx3 at the interface of immunity, inflammation and cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:131-43. [PMID: 25641675 DOI: 10.1016/j.bbcan.2015.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 02/06/2023]
Abstract
Inactivation of tumor suppressor genes (TSG) in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago claims arose that the RUNX3 member of the RUNX transcription factor family is a major TSG inactivated in gastric cancer, a postulate extended later to other cancers. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. Here we critically re-appraise this paradigm in light of recent high-throughput, quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models. Collectively, these studies unequivocally demonstrate that RUNX3 is not a bona fide cell-autonomous TSG. Accordingly, RUNX3 is not recognized as a TSG and is not included among the 2000 cancer genes listed in the "Cancer Gene Census" or "Network for Cancer Genes" repositories. In contrast, RUNX3 does play important functions in immunity and inflammation and may thereby indirectly influence epithelial tumor development.
Collapse
Affiliation(s)
- Joseph Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omri Bauer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Hantisteanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Joseph Dicken
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
234
|
Poliseno L, Pandolfi PP. PTEN ceRNA networks in human cancer. Methods 2015; 77-78:41-50. [PMID: 25644446 DOI: 10.1016/j.ymeth.2015.01.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 12/14/2022] Open
Abstract
In multiple human cancer types, a close link exists between the expression levels of Phosphatase and Tensin Homolog deleted on chromosome 10 (PTEN) and its oncosuppressive activities. Therefore, an in depth understanding of the molecular mechanisms by which PTEN expression is modulated is crucial in order to achieve a comprehensive knowledge of its biological roles. In recent years, the competition between PTEN mRNA and other RNAs for shared microRNA molecules has emerged as one such mechanism and has brought into focus the coding-independent activities of PTEN and other mRNAs. In this review article, we examine the competing endogenous RNA (ceRNA) partners of PTEN that have been identified so far. We also discuss how PTEN-centered ceRNA networks can contribute to a deeper understanding of PTEN function and tumorigenesis.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Pisa, Italy; Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
235
|
Pettapiece-Phillips R, Narod SA, Kotsopoulos J. The role of body size and physical activity on the risk of breast cancer in BRCA mutation carriers. Cancer Causes Control 2015; 26:333-44. [PMID: 25579073 DOI: 10.1007/s10552-014-0521-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/23/2014] [Indexed: 01/18/2023]
Abstract
Women who inherit a BRCA mutation face a high lifetime risk of developing breast cancer. Given the high penetrance of these mutations, prevention is of extreme importance. Here, we review the literature regarding the role of body size and of physical activity in the context of BRCA-associated breast cancer. There is some evidence to support a protective role of a healthy body size and of regular physical activity among mutation carriers, particularly during adolescence or early adulthood. Factors which increase the physiologic expression of the normal copy of the BRCA1 or BRCA2 gene and thereby normalize protein levels, contribute to stem cell homeostasis, and/or affect hormone levels, might mitigate the effects of an inherited BRCA mutation. Preliminary evidence from one in vivo study and from one epidemiologic report suggests that an increase in BRCA1 mRNA expression occurs with increasing levels of physical activity. The prospect of changing lifestyle for the purpose of preventing breast cancer in high-risk women, complemented by mechanistic evidence, warrants evaluation in large-scale prospective studies.
Collapse
Affiliation(s)
- Rachael Pettapiece-Phillips
- Women's College Research Institute, Women's College Hospital, 790 Bay Street, 7th Floor, Toronto, ON, M5G 1N8, Canada
| | | | | |
Collapse
|
236
|
Kidd M, Modlin IM, Bodei L, Drozdov I. Decoding the Molecular and Mutational Ambiguities of Gastroenteropancreatic Neuroendocrine Neoplasm Pathobiology. Cell Mol Gastroenterol Hepatol 2015; 1:131-153. [PMID: 28210673 PMCID: PMC5301133 DOI: 10.1016/j.jcmgh.2014.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), considered a heterogeneous neoplasia, exhibit ill-defined pathobiology and protean symptomatology and are ubiquitous in location. They are difficult to diagnose, challenging to manage, and outcome depends on cell type, secretory product, histopathologic grading, and organ of origin. A morphologic and molecular genomic review of these lesions highlights tumor characteristics that can be used clinically, such as somatostatin-receptor expression, and confirms features that set them outside the standard neoplasia paradigm. Their unique pathobiology is useful for developing diagnostics using somatostatin-receptor targeted imaging or uptake of radiolabeled amino acids specific to secretory products or metabolism. Therapy has evolved via targeting of protein kinase B signaling or somatostatin receptors with drugs or isotopes (peptide-receptor radiotherapy). With DNA sequencing, rarely identified activating mutations confirm that tumor suppressor genes are relevant. Genomic approaches focusing on cancer-associated genes and signaling pathways likely will remain uninformative. Their uniquely dissimilar molecular profiles mean individual tumors are unlikely to be easily or uniformly targeted by therapeutics currently linked to standard cancer genetic paradigms. The prevalence of menin mutations in pancreatic NEN and P27KIP1 mutations in small intestinal NEN represents initial steps to identifying a regulatory commonality in GEP-NEN. Transcriptional profiling and network-based analyses may define the cellular toolkit. Multianalyte diagnostic tools facilitate more accurate molecular pathologic delineations of NEN for assessing prognosis and identifying strategies for individualized patient treatment. GEP-NEN remain unique, poorly understood entities, and insight into their pathobiology and molecular mechanisms of growth and metastasis will help identify the diagnostic and therapeutic weaknesses of this neoplasia.
Collapse
Key Words
- 5-HT, serotonin, 5-hydroxytryptamine
- Akt, protein kinase B
- BRAF, gene encoding serine/threonine-protein kinase B-Raf
- Blood
- CGH, comparative genomic hybridization
- CREB, cAMP response element-binding protein
- Carcinoid
- CgA, chromogranin A
- D cell, somatostatin
- DAG, diacylglycerol
- EC, enterochromaffin
- ECL, enterochromaffin-like
- EGFR, epidermal growth factor receptor
- ERK, extracellular-signal-regulated kinase
- G cell, gastrin
- GABA, γ-aminobutyric acid
- GEP-NEN, gastroenteropancreatic neuroendocrine neoplasms
- GPCR, G-protein coupled receptor
- Gastroenteropancreatic Neuroendocrine Neoplasms
- IGF-I, insulin-like growth factor-I
- ISG, immature secretory vesicles
- Ki-67
- LOH, loss of heterozygosity
- MAPK, mitogen-activated protein kinase
- MEN-1/MEN1, multiple endocrine neoplasia type 1
- MSI, microsatellite instability
- MTA, metastasis associated-1
- NEN, neuroendocrine neoplasms
- NFκB, nuclear factor κB
- PET, positron emission tomography
- PI3, phosphoinositide-3
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PTEN, phosphatase and tensin homolog deleted on chromosome 10
- Proliferation
- SD-208, 2-(5-chloro-2-fluorophenyl)-4-[(4-pyridyl)amino]p-teridine
- SNV, single-nucleotide variant
- SSA, somatostatin analog
- SST, somatostatin
- Somatostatin
- TGF, transforming growth factor
- TGN, trans-Golgi network
- TSC2, tuberous sclerosis complex 2 (tuberin)
- Transcriptome
- VMAT, vesicular monoamine transporters
- X/A-like cells, ghrelin
- cAMP, adenosine 3′,5′-cyclic monophosphate
- mTOR, mammalian target of rapamycin
- miR/miRNA, micro-RNA
Collapse
Affiliation(s)
| | - Irvin M. Modlin
- Correspondence Address correspondence to: Irvin M. Modlin, MD, PhD, The Gnostic Consortium, Wren Laboratories, 35 NE Industrial Road, Branford, Connecticut, 06405.
| | | | | |
Collapse
|
237
|
Lochhead P, Chan AT, Nishihara R, Fuchs CS, Beck AH, Giovannucci E, Ogino S. Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol 2015; 28:14-29. [PMID: 24925058 PMCID: PMC4265316 DOI: 10.1038/modpathol.2014.81] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
The term 'field effect' (also known as field defect, field cancerization, or field carcinogenesis) has been used to describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within that territory. We explore an expanded, integrative concept, 'etiologic field effect', which asserts that various etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a 'field of susceptibility' to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular and molecular alterations during disease course, an etiologically focused approach to field effect can: (1) broaden the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental levels, during all stages of tumor evolution; (2) embrace host-environment-tumor interactions (including gene-environment interactions) occurring in the tumor microenvironment; and, (3) help explain intriguing observations, such as shared molecular features between bilateral primary breast carcinomas, and between synchronous colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has identified a number of endogenous and environmental exposures which can influence not only molecular signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host immunity and tumor behavior. We anticipate that future technological advances will allow the development of in vivo biosensors capable of detecting and quantifying 'etiologic field effect' as abnormal network pathology patterns of cellular and microenvironmental responses to endogenous and exogenous exposures. Through an 'etiologic field effect' paradigm, and holistic systems pathology (systems biology) approaches to cancer biology, we can improve personalized prevention and treatment strategies for precision medicine.
Collapse
Affiliation(s)
- Paul Lochhead
- Gastrointestinal Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrew T Chan
- 1] Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reiko Nishihara
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Charles S Fuchs
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA [3] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA [3] Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
238
|
Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of lung cancer. Transl Res 2015; 165:74-90. [PMID: 24686037 PMCID: PMC4162853 DOI: 10.1016/j.trsl.2014.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality in the United States. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA expression, have been reported widely in the literature to play a major role in the genesis of lung cancer. The goal of this review is to summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and to provide an overview of the potential translational applications of these changes, including applications for early detection, diagnosis, prognostication, and therapeutics.
Collapse
Affiliation(s)
- Scott M Langevin
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert A Kratzke
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minn
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI.
| |
Collapse
|
239
|
Dehner LP, Messinger YH, Schultz KAP, Williams GM, Wikenheiser-Brokamp K, Hill DA. Pleuropulmonary Blastoma: Evolution of an Entity as an Entry into a Familial Tumor Predisposition Syndrome. Pediatr Dev Pathol 2015; 18:504-11. [PMID: 26698637 PMCID: PMC9743680 DOI: 10.2350/15-10-1732-oa.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pleuropulmonary blastoma (PPB) is the most common primary malignant neoplasm of the lung in children. Like other solid dysontogenic neoplasms, this tumor typically presents before 7 years of age. The earliest manifestation is the presence of a lung cyst(s), which is usually recognized in the first year of life and is difficult to differentiate on the basis of imaging studies from non-neoplastic cysts of early childhood. From a multilocular cyst, PPB has the potential to progress to a high-grade multipatterned primitive sarcoma. More than 65% of all affected children have a heterozygous germline mutation in DICER1. The DICER1 PPB familial tumor predisposition syndrome is initially recognized in most cases on the basis of PPB alone but also by several other unique and characteristic extrapulmonary tumors, including pediatric cystic nephroma, nasal chondromesenchymal hamartoma, nodular lesions of the thyroid, embryonal rhabdomyosarcoma of the cervix, and ciliary body medulloepithelioma.
Collapse
Affiliation(s)
- Louis P. Dehner
- International Pleuropulmonary Blastoma Registry. Children’s Hospital and Clinics of Minnesota, Minneapolis, Minnesota;,Lauren V. Ackerman Laboratory of Surgical Pathology, Barnes-Jewish and St. Louis Children’s Hospitals, Washington University Medical Center, St. Louis, Missouri
| | - Yoav H. Messinger
- International Pleuropulmonary Blastoma Registry. Children’s Hospital and Clinics of Minnesota, Minneapolis, Minnesota
| | - Kris Ann P. Schultz
- International Pleuropulmonary Blastoma Registry. Children’s Hospital and Clinics of Minnesota, Minneapolis, Minnesota
| | - Gretchen M. Williams
- International Pleuropulmonary Blastoma Registry. Children’s Hospital and Clinics of Minnesota, Minneapolis, Minnesota
| | - Kathryn Wikenheiser-Brokamp
- International Pleuropulmonary Blastoma Registry. Children’s Hospital and Clinics of Minnesota, Minneapolis, Minnesota;,Division of Pathology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, and Department of Pathology, University of Cincinnati College of Medicine
| | - D. Ashley Hill
- International Pleuropulmonary Blastoma Registry. Children’s Hospital and Clinics of Minnesota, Minneapolis, Minnesota;,Division of Pathology, Children’s National Medical Center, Washington, District of Columbia
| |
Collapse
|
240
|
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2014; 115:327-94. [DOI: 10.1021/cr300213b] [Citation(s) in RCA: 916] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun-Kyung Lim
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
- BioNanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Taekhoon Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
- Electronic
Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1,
Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea
| | - Soonmyung Paik
- Severance
Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea
- Division
of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States
| | - Seungjoo Haam
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-Min Huh
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
| | - Kwangyeol Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
241
|
Couvé S, Ladroue C, Laine E, Mahtouk K, Guégan J, Gad S, Le Jeune H, Le Gentil M, Nuel G, Kim WY, Lecomte B, Pagès JC, Collin C, Lasne F, Benusiglio PR, Bressac-de Paillerets B, Feunteun J, Lazar V, Gimenez-Roqueplo AP, Mazure NM, Dessen P, Tchertanov L, Mole DR, Kaelin W, Ratcliffe P, Richard S, Gardie B. Genetic evidence of a precisely tuned dysregulation in the hypoxia signaling pathway during oncogenesis. Cancer Res 2014; 74:6554-64. [PMID: 25371412 PMCID: PMC5555745 DOI: 10.1158/0008-5472.can-14-1161] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The classic model of tumor suppression implies that malignant transformation requires full "two-hit" inactivation of a tumor-suppressor gene. However, more recent work in mice has led to the proposal of a "continuum" model that involves more fluid concepts such as gene dosage-sensitivity and tissue specificity. Mutations in the tumor-suppressor gene von Hippel-Lindau (VHL) are associated with a complex spectrum of conditions. Homozygotes or compound heterozygotes for the R200W germline mutation in VHL have Chuvash polycythemia, whereas heterozygous carriers are free of disease. Individuals with classic, heterozygous VHL mutations have VHL disease and are at high risk of multiple tumors (e.g., CNS hemangioblastomas, pheochromocytoma, and renal cell carcinoma). We report here an atypical family bearing two VHL gene mutations in cis (R200W and R161Q), together with phenotypic analysis, structural modeling, functional, and transcriptomic studies of these mutants in comparison with classical mutants involved in the different VHL phenotypes. We demonstrate that the complex pattern of disease manifestations observed in VHL syndrome is perfectly correlated with a gradient of VHL protein (pVHL) dysfunction in hypoxia signaling pathways. Thus, by studying naturally occurring familial mutations, our work validates in humans the "continuum" model of tumor suppression.
Collapse
Affiliation(s)
- Sophie Couvé
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes (EPHE), Villejuif, France. Institut National de la Santé et de la Recherche Medicale (INSERM) U753, Gustave Roussy Cancer Campus, Villejuif, France. Centre Expert National Cancers Rares INCa "PREDIR" and Réseau National INCa "Maladie de VHL et prédispositions au cancer du rein," Service d'Urologie, Assistance publique, Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Charline Ladroue
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes (EPHE), Villejuif, France. Institut National de la Santé et de la Recherche Medicale (INSERM) U753, Gustave Roussy Cancer Campus, Villejuif, France
| | - Elodie Laine
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), CNRS-ENS de Cachan, LabEx LERMIT, Cachan, France. Equipe de Génomique Analytique, Laboratoire de Biologie Computationnelle et Quantitative, CNRS-UPMC, UMR 7238, Paris, France
| | - Karène Mahtouk
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes (EPHE), Villejuif, France. Institut National de la Santé et de la Recherche Medicale (INSERM) U753, Gustave Roussy Cancer Campus, Villejuif, France
| | - Justine Guégan
- Plate-forme de Génomique, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sophie Gad
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes (EPHE), Villejuif, France. Institut National de la Santé et de la Recherche Medicale (INSERM) U753, Gustave Roussy Cancer Campus, Villejuif, France. Centre Expert National Cancers Rares INCa "PREDIR" and Réseau National INCa "Maladie de VHL et prédispositions au cancer du rein," Service d'Urologie, Assistance publique, Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Hélène Le Jeune
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes (EPHE), Villejuif, France. Institut National de la Santé et de la Recherche Medicale (INSERM) U753, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marion Le Gentil
- Plate-forme de Génomique, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gregory Nuel
- Mathématiques Appliquées à Paris 5 (MAP5), UMR CNRS 8145, Université Paris Descartes, Paris, France
| | - William Y Kim
- Lineberger Comprehensive Cancer Center University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Jean-Christophe Pagès
- INSERM U966, Université François Rabelais de Tours, Faculté de Médecine, Tours, France
| | - Christine Collin
- INSERM U966, Université François Rabelais de Tours, Faculté de Médecine, Tours, France
| | - Françoise Lasne
- Département des analyses, Agence Française de Lutte contre le Dopage (AFLD), Chatenay-Malabry, France
| | - Patrick R Benusiglio
- Département de Médecine Oncologique, Gustave Roussy Cancer Campus, Villejuif, France. Centre Expert National Cancers Rares INCa "PREDIR" and Réseau National INCa "Maladie de VHL et prédispositions au cancer du rein," Service d'Urologie, Assistance publique, Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Brigitte Bressac-de Paillerets
- Centre Expert National Cancers Rares INCa "PREDIR" and Réseau National INCa "Maladie de VHL et prédispositions au cancer du rein," Service d'Urologie, Assistance publique, Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. Service de Génétique, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jean Feunteun
- Laboratoire Stabilité génétique et Oncogénèse, UMR CNRS 8200, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vladimir Lazar
- Plate-forme de Génomique, Gustave Roussy Cancer Campus, Villejuif, France
| | - Anne-Paule Gimenez-Roqueplo
- Centre Expert National Cancers Rares INCa "PREDIR" and Réseau National INCa "Maladie de VHL et prédispositions au cancer du rein," Service d'Urologie, Assistance publique, Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. Assistance Publique, Hôpitaux de Paris, Hôpital européen Georges Pompidou, Service de Génétique, Paris, France. INSERM UMR970, Paris-Cardiovascular Research Center at HEGP, Paris, France. Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Nathalie M Mazure
- Institute for Research on Cancer and Ageing of Nice (IRCAN), UMR CNRS 7284, INSERM U1081, UNS, Nice, France
| | - Philippe Dessen
- Plate-forme de Génomique, Gustave Roussy Cancer Campus, Villejuif, France
| | - Luba Tchertanov
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), CNRS-ENS de Cachan, LabEx LERMIT, Cachan, France
| | - David R Mole
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | | | - Peter Ratcliffe
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Stéphane Richard
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes (EPHE), Villejuif, France. Institut National de la Santé et de la Recherche Medicale (INSERM) U753, Gustave Roussy Cancer Campus, Villejuif, France. Centre Expert National Cancers Rares INCa "PREDIR" and Réseau National INCa "Maladie de VHL et prédispositions au cancer du rein," Service d'Urologie, Assistance publique, Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, Paris, France.
| | - Betty Gardie
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes (EPHE), Villejuif, France. Unité Mixte de Recherche (UMR) INSERM U892, CNRS 6299, Centre de Recherche en Cancérologie Nantes/Angers (CRCNA), Université de Nantes, Nantes, France.
| |
Collapse
|
242
|
Wohak LE, Krais AM, Kucab JE, Stertmann J, Øvrebø S, Seidel A, Phillips DH, Arlt VM. Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol 2014; 90:291-304. [PMID: 25398514 PMCID: PMC4748000 DOI: 10.1007/s00204-014-1409-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023]
Abstract
The tumour suppressor gene TP53 is mutated in more than 50 % of human tumours, making it one of the most important cancer genes. We have investigated the role of TP53 in cytochrome P450 (CYP)-mediated metabolic activation of three polycyclic aromatic hydrocarbons (PAHs) in a panel of isogenic colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/−), TP53(−/−), TP53(R248W/+) or TP53(R248W/−) were treated with benzo[a]pyrene (BaP), dibenz[a,h]anthracene and dibenzo[a,l]pyrene, and the formation of DNA adducts was measured by 32P-postlabelling analysis. Each PAH formed significantly higher DNA adduct levels in TP53(+/+) cells than in the other cell lines. There were also significantly lower levels of PAH metabolites in the culture media of these other cell lines. Bypass of the need for metabolic activation by treating cells with the corresponding reactive PAH-diol-epoxide metabolites resulted in similar adduct levels in all cell lines, which confirms that the influence of p53 is on the metabolism of the parent PAHs. Western blotting showed that CYP1A1 protein expression was induced to much greater extent in TP53(+/+) cells than in the other cell lines. CYP1A1 is inducible via the aryl hydrocarbon receptor (AHR), but we did not find that expression of AHR was dependent on p53; rather, we found that BaP-induced CYP1A1 expression was regulated through p53 binding to a p53 response element in the CYP1A1 promoter region, thereby enhancing its transcription. This study demonstrates a new pathway for CYP1A1 induction by environmental PAHs and reveals an emerging role for p53 in xenobiotic metabolism.
Collapse
Affiliation(s)
- Laura E Wohak
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.,Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, UK
| | - Annette M Krais
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Julia Stertmann
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Steinar Øvrebø
- Department of Biological and Chemical Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, Grosshansdorf, Germany
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
243
|
McCann MJ, Rowland IR, Roy NC. The anti-proliferative effects of enterolactone in prostate cancer cells: evidence for the role of DNA licencing genes, mi-R106b cluster expression, and PTEN dosage. Nutrients 2014; 6:4839-55. [PMID: 25372501 PMCID: PMC4245566 DOI: 10.3390/nu6114839] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 01/20/2023] Open
Abstract
The mammalian lignan, enterolactone, has been shown to reduce the proliferation of the earlier stages of prostate cancer at physiological concentrations in vitro. However, efficacy in the later stages of the disease occurs at concentrations difficult to achieve through dietary modification. We have therefore investigated what concentration(s) of enterolactone can restrict proliferation in multiple stages of prostate cancer using an in vitro model system of prostate disease. We determined that enterolactone at 20 μM significantly restricted the proliferation of mid and late stage models of prostate disease. These effects were strongly associated with changes in the expression of the DNA licencing genes (GMNN, CDT1, MCM2 and 7), in reduced expression of the miR-106b cluster (miR-106b, miR-93, and miR-25), and in increased expression of the PTEN tumour suppressor gene. We have shown anti-proliferative effects of enterolactone in earlier stages of prostate disease than previously reported and that these effects are mediated, in part, by microRNA-mediated regulation.
Collapse
Affiliation(s)
- Mark J McCann
- Food Nutrition & Health, Food and Bio-based Products, AgResearch Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Ian R Rowland
- Department of Food and Nutritional Sciences, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK.
| | - Nicole C Roy
- Food Nutrition & Health, Food and Bio-based Products, AgResearch Grasslands Research Centre, Palmerston North 4442, New Zealand.
| |
Collapse
|
244
|
Irving AA, Yoshimi K, Hart ML, Parker T, Clipson L, Ford MR, Kuramoto T, Dove WF, Amos-Landgraf JM. The utility of Apc-mutant rats in modeling human colon cancer. Dis Model Mech 2014; 7:1215-25. [PMID: 25288683 PMCID: PMC4213726 DOI: 10.1242/dmm.016980] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prior to the advent of genetic engineering in the mouse, the rat was the model of choice for investigating the etiology of cancer. Now, recent advances in the manipulation of the rat genome, combined with a growing recognition of the physiological differences between mice and rats, have reignited interest in the rat as a model of human cancer. Two recently developed rat models, the polyposis in the rat colon (Pirc) and Kyoto Apc Delta (KAD) strains, each carry mutations in the intestinal-cancer-associated adenomatous polyposis coli (Apc) gene. In contrast to mouse models carrying Apc mutations, in which cancers develop mainly in the small intestine rather than in the colon and there is no gender bias, these rat models exhibit colonic predisposition and gender-specific susceptibility, as seen in human colon cancer. The rat also provides other experimental resources as a model organism that are not provided by the mouse: the structure of its chromosomes facilitates the analysis of genomic events, the size of its colon permits longitudinal analysis of tumor growth, and the size of biological samples from the animal facilitates multiplexed molecular analyses of the tumor and its host. Thus, the underlying biology and experimental resources of these rat models provide important avenues for investigation. We anticipate that advances in disease modeling in the rat will synergize with resources that are being developed in the mouse to provide a deeper understanding of human colon cancer.
Collapse
Affiliation(s)
- Amy A Irving
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kazuto Yoshimi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Marcia L Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Taybor Parker
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Madeline R Ford
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - James M Amos-Landgraf
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA. Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
245
|
Ishak CA, Dick FA. Conditional haploinsufficiency of the retinoblastoma tumor suppressor gene. Mol Cell Oncol 2014; 2:e968069. [PMID: 27308386 PMCID: PMC4905237 DOI: 10.4161/23723548.2014.968069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
Abstract
Recent work demonstrates that retention of a single functional retinoblastoma susceptibility (RB1) allele is insufficient to maintain genome stability. Haploinsufficiency of RB1 accelerates cancer pathogenesis in concert with inactivation of tumor protein p53. Collectively, multiple lines of evidence suggest revision of the ‘2-hit’ model to include conditional haploinsufficiency of RB1.
Collapse
Affiliation(s)
- Charles A Ishak
- London Regional Cancer Program Western University; London, Ontario, Canada; Department of Biochemistry; Western University; London, Ontario, Canada
| | - Frederick A Dick
- London Regional Cancer Program Western University; London, Ontario, Canada; Children's Health Research Institute Western University; London, Ontario, Canada; Department of Biochemistry; Western University; London, Ontario, Canada
| |
Collapse
|
246
|
Zhang J, Lou X, Zellmer L, Liu S, Xu N, Liao DJ. Just like the rest of evolution in Mother Nature, the evolution of cancers may be driven by natural selection, and not by haphazard mutations. Oncoscience 2014; 1:580-90. [PMID: 25594068 PMCID: PMC4278337 DOI: 10.18632/oncoscience.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022] Open
Abstract
Sporadic carcinogenesis starts from immortalization of a differentiated somatic cell or an organ-specific stem cell. The immortalized cell incepts a new or quasinew organism that lives like a parasite in the patient and usually proceeds to progressive simplification, constantly engendering intermediate organisms that are simpler than normal cells. Like organismal evolution in Mother Nature, this cellular simplification is a process of Darwinian selection of those mutations with growth- or survival-advantages, from numerous ones that occur randomly and stochastically. Therefore, functional gain of growth- or survival-sustaining oncogenes and functional loss of differentiation-sustaining tumor suppressor genes, which are hallmarks of cancer cells and contribute to phenotypes of greater malignancy, are not drivers of carcinogenesis but are results from natural selection of advantageous mutations. Besides this mutation-load dependent survival mechanism that is evolutionarily low and of an asexual nature, cancer cells may also use cell fusion for survival, which is an evolutionarily-higher mechanism and is of a sexual nature. Assigning oncogenes or tumor suppressor genes or their mutants as drivers to induce cancer in animals may somewhat coerce them to create man-made oncogenic pathways that may not really be a course of sporadic cancer formations in the human.
Collapse
Affiliation(s)
- Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Lucas Zellmer
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P.R. China
| | - D Joshua Liao
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
247
|
Wang WC, Tsou MH, Chen HJ, Hsu WF, Lai YC. Two single nucleotide polymorphisms in the von Hippel-Lindau tumor suppressor gene in Taiwanese with renal cell carcinoma. BMC Res Notes 2014; 7:638. [PMID: 25217002 PMCID: PMC4168206 DOI: 10.1186/1756-0500-7-638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background Renal cell carcinoma, a common malignant tumor arising from the kidney, occurs in 3.62 and 1.95 cases per one hundred thousand people among men and women, respectively, in Taiwan each year. Approximately 80% of cases are classified as clear-cell renal cell carcinoma. Inactivation of the von Hippel-Lindau tumor suppressor gene has been implicated in the tumorigenic pathway of renal cell carcinoma. Two single nucleotide polymorphisms, rs779805 and rs1642742, located in the promoter and 3′ untranslated regions of the von Hippel-Lindau gene are informative and implicated in the occurrence of renal cell carcinoma worldwide. The aim of this study is to clarify whether these polymorphisms are associated with renal cell carcinoma in Taiwanese. Genomic DNA was isolated from normal and tumor tissues of 19 renal cell carcinoma patients. The samples were screened for allelic polymorphisms by restriction fragment length polymorphism with BsaJ I and Acc I digestion. Reconfirmation was carried out by direct sequencing. Results Consistent with Knudson’s two-hit theory, AA to AG somatic mutations were observed in rs779805. In addition, loss of heterozygosity in both rs779805 and rs1642742 was demonstrated in 10 out of 15 RCC patients aged 50 or over. The G allele or AG heterozygote frequencies at these two loci were much higher in patient germline DNA when compared with the control group. After adjusting for age, the frequency of the G allele in both loci was much higher for late onset renal cell carcinoma in the Taiwanese population. Conclusions Our current results confirmed that the existence of G allele in both rs779805 and rs1642742 in the von Hippel-Lindau tumor suppressor gene is of importance in renal cell carcinoma tumorigenesis. However, more comprehensive and detailed research is needed to address the clinical relevance. Larger sample size is required to determine the exact power of correlation between these two genetic polymorphisms and renal cell carcinoma. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-638) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Yen-Chein Lai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, No,110, Sec, 1, Chien Kuo N, Road, Taichung 402, Taiwan, Republic of China.
| |
Collapse
|
248
|
Bosse KR, Shukla AR, Pawel B, Chikwava KR, Santi M, Tooke L, Castagna K, Biegel JA, Bagatell R. Malignant rhabdoid tumor of the bladder and ganglioglioma in a 14 year-old male with a germline 22q11.2 deletion. Cancer Genet 2014; 207:415-9. [PMID: 25018128 PMCID: PMC7412592 DOI: 10.1016/j.cancergen.2014.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/04/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022]
Abstract
Malignant rhabdoid tumors (MRTs) are rare pediatric malignancies characterized by clinically aggressive lesions that typically show loss of SMARCB1 expression. We herein describe a case of a malignant rhabdoid tumor of the bladder in a 14-year-old male with an autism spectrum disorder and a de novo 3 Mb germline deletion in chromosome band 22q11.2 that included the SMARCB1 gene. The malignancy developed in the setting of chronic hematuria (>2 years) following the occurrence of two other lesions: a central nervous system ganglioglioma and an intraoral dermoid cyst. MRTs of the bladder are exceedingly rare, and this patient is the oldest child reported with this tumor to date. This case adds to the growing body of literature regarding the recently described, phenotypically diverse, distal 22q11.2 syndrome. Furthermore, this is the first reported case in which an MRT of the bladder appears to have developed from a pre-existing bladder lesion. Finally, this case further supports a rhabdoid tumorigenesis model in which heterozygous loss of SMARCB1 predisposes to initial tumor formation with intact SMARCB1 expression, with subsequent inactivation of the other SMARCB1 allele, which results in transformation into more malignant lesions.
Collapse
Affiliation(s)
- Kristopher R Bosse
- Division of Oncology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Aseem R Shukla
- Division of Urology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bruce Pawel
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kudakwashe R Chikwava
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mariarita Santi
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Laura Tooke
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Katherine Castagna
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jaclyn A Biegel
- Department of Pathology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Rochelle Bagatell
- Division of Oncology, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
249
|
Fragoso R, Barata JT. PTEN and leukemia stem cells. Adv Biol Regul 2014; 56:22-29. [PMID: 24961634 DOI: 10.1016/j.jbior.2014.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Leukemia stem cells (LSCs) are considered responsible for leukemia initiation, relapse and resistance to chemotherapy. These cells have self-renewal capacity and originate the other cells in the leukemia pool. Therefore, in order to completely eradicate leukemia cells and consequently cure the disease, therapies should in principle necessarily target LSCs. However, the fact that LSCs share functional and phenotypic properties with normal hematopoietic stem cells (HSCs) poses a significant challenge: how to target LSCs without damaging normal HSCs and compromising hematopoiesis? The discovery that PTEN regulates LSCs and HSCs through different mechanisms, demonstrated that it is possible to identify pathways that differentially impact leukemia and normal stem cell function and opened new therapeutic perspectives for the selective elimination of LSCs. In this review, we briefly discuss the mechanisms that regulate PTEN function in LSCs and HSCs and their potential for the development of LSC-targeted therapies.
Collapse
Affiliation(s)
- Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
250
|
Stoczynska-Fidelus E, Bienkowski M, Pacholczyk M, Winiecka-Klimek M, Banaszczyk M, Zieba J, Bieniek G, Piaskowski S, Rieske P. Different mutational characteristics of TSG in cell lines and surgical specimens. Tumour Biol 2014; 35:11311-8. [PMID: 25119593 PMCID: PMC4244698 DOI: 10.1007/s13277-014-2444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/04/2014] [Indexed: 01/22/2023] Open
Abstract
One of the most crucial concerns of cancer research pertains to the differences between the neoplastic cells in tumor specimens in vivo and their counterparts in cell lines. The huge amount of results deposited in cancer genetic databases allows to address this issue from a wider perspective. Our analysis of the Sanger Institute Catalog Of Somatic Mutations In Cancer (COSMIC) database v61 showed a lower percentage of homozygous mutations in a group of tumor suppressor genes in surgical samples (in vivo) in comparison to their frequency in cell lines (in vitro). Similarly, the mutations resulting in the lack of protein (e.g., nonsense mutations or whole gene deletions) of several tumor suppressor genes (TSGs) were more frequently observed in vitro than in vivo. In this article, we suggest two potential explanations of these data. Firstly, TSG heterozygous mutations resulting in the modified protein (e.g., missense mutations) may be gradually (when the specific molecular context is achieved) changed to homozygous mutations resulting in the lack of protein during carcinogenesis. Secondly, among different independent pathways of tumorigenesis, those leading to homozygous nonsense mutations are characteristic for cells which are more efficiently stabilized in vitro. To conclude, these observations may be interesting for researchers working with cell line in vitro models illustrating the extent to which they reflect the tumors in vivo.
Collapse
|