201
|
Characterization of melanoma susceptibility genes in high-risk patients from Central Italy. Melanoma Res 2018; 27:258-267. [PMID: 28146043 DOI: 10.1097/cmr.0000000000000323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic susceptibility to cutaneous melanoma has been investigated in Italian high-risk melanoma patients from different geographical regions. CDKN2A, CDK4, and MC1R genes have been screened in most studies, MITF and POT1 were screened in only one study, and none analyzed the TERT promoter. We carried out a mutational analysis of CDKN2A, CDK4 exon 2, POT1 p.S270N, MITF exon 10, MC1R, and the TERT promoter in 106 high-risk patients with familial melanoma (FM) and sporadic multiple primary melanoma (spMPM) from Central Italy and evaluated mutations according to the clinicopathological characteristics of patients and lesions. In FM, CDKN2A mutations were detected in 8.3% of the families, including one undescribed exon 1β mutation (p.T31M), and their prevalence increased with the number of affected relatives within the family. MC1R variants were identified in 65% of the patients and the TERT rs2853669 promoter polymorphism was identified in 58% of the patients. A novel synonymous mutation detected in MITF exon 10 (c.861A>G, p.E287E), although predicted as a splice site mutation by computational tools, could not functionally be confirmed to alter splicing. For spMPM, 3% carried CDKN2A mutations, 79% carried MC1R variants, and 47% carried the TERT rs2853669 promoter polymorphism. MC1R variants were associated with fair skin type and light hair color both in FM and in spMPM, and with a reduction of age at diagnosis in FM patients. Mutations in CDK4 exon 2 and the POT1 p.S270N mutation were not detected. A low frequency of CDKN2A mutations and a high prevalence of MC1R variants characterize high-risk melanoma patients from Central Italy.
Collapse
|
202
|
Di Costanzo A, Del Gaudio N, Conte L, Dell'Aversana C, Vermeulen M, de Thé H, Migliaccio A, Nebbioso A, Altucci L. The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. Oncogene 2018; 37:2559-2572. [PMID: 29467492 PMCID: PMC5945585 DOI: 10.1038/s41388-018-0143-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/15/2017] [Accepted: 12/24/2017] [Indexed: 12/31/2022]
Abstract
Polycomb group (PcG) proteins regulate transcription, playing a key role in stemness and differentiation. Deregulation of PcG members is known to be involved in cancer pathogenesis. Emerging evidence suggests that CBX2, a member of the PcG protein family, is overexpressed in several human tumors, correlating with lower overall survival. Unraveling the mechanisms regulating CBX2 expression may thus provide a promising new target for anticancer strategies. Here we show that the HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. We identify CBX4 and RNF4 as the E3 SUMO and E3 ubiquitin ligase, respectively, and describe the specific molecular mechanism regulating CBX2 protein stability. Finally, we show that CBX2-depleted leukemic cells display impaired proliferation, underscoring its critical role in regulating leukemia cell tumorogenicity. Our results show that SAHA affects CBX2 stability, revealing a potential SAHA-mediated anti-leukemic activity though SUMO2/3 pathway.
Collapse
Affiliation(s)
- Antonella Di Costanzo
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy.
| | - Nunzio Del Gaudio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Lidio Conte
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Carmela Dell'Aversana
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Hugues de Thé
- INSERM Unite ́ Mixte de Recherche 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris Cedex 10, France
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Angela Nebbioso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy.
| |
Collapse
|
203
|
Benfodda M, Gazal S, Descamps V, Basset-Seguin N, Deschamps L, Thomas L, Lebbe C, Saiag P, Zanetti R, Sacchetto L, Chiorino G, Scatolini M, Grandchamp B, Bensussan A, Soufir N. Truncating mutations of TP53AIP1 gene predispose to cutaneous melanoma. Genes Chromosomes Cancer 2018; 57:294-303. [PMID: 29359367 DOI: 10.1002/gcc.22528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Genetic predisposition to cutaneous malignant melanoma (CMM) involves highly penetrant predisposing genes and low and intermediate penetrant predisposing alleles. However, the missing heritability in (CMM) is still high. For such and in order to identify new genetic factors for CMM, we conducted an exome sequencing study in high-risk CMM patients. Two rounds of exome sequencing were successively performed in 33 and 27 high-risk patients. We focused on genes carrying rare nonsense, frameshift, and splice variants (allelic frequency <1%) that were present in both series of exomes. An extension study was then conducted in a large cohort (1 079 CMM patients and 1 230 Caucasian ethnically matched healthy controls), and the inactivating variants frequency was compared between groups using two-sided Fisher exact test. Two TP53AIP1 truncating mutations were identified in four patients: a frameshift c.63_64insG, p.Q22Afs*81 in two patients from the same family and in the proband of a second family; and a nonsense mutation c.95 C > A, p.Ser32Stop in a patient with multiple CMMs. In all patients, TP53AIP1 truncating variants were strongly associated with CMM risk (two-sided Fisher exact test = 0.004, OR = 3.3[1.3-8.5]). Additionally, we showed that TP53AIP1 mRNA was strongly down-regulated throughout different phases of melanoma progression. TP53AIP1 gene is a TP53 target which plays a key role by inducting apoptosis in response to UV-induced DNA damage. Constitutional mutations of TP53AIP1 had previously been involved in susceptibility to prostate cancer. Our results show that constitutional truncating TP53AIP1 mutations predispose to CMM in the French population. Replication studies in other populations should be performed.
Collapse
Affiliation(s)
- Meriem Benfodda
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Département de Génétique, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France
| | - Steven Gazal
- Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,UMR S 738, Faculté de Médecine Xavier Bichat, 75018, Paris, France
| | - Vincent Descamps
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,Département de Dermatologie, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France
| | - Nicole Basset-Seguin
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,Département de Dermatologie, Hôpital Saint Louis, APHP, 75010, Paris, France
| | - Lydia Deschamps
- Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,Département d'Anatomie Pathologique, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France
| | - Luc Thomas
- Département de Dermatologie, Hôpital de l'Hôtel-Dieu, 69002, Lyon, France
| | - Celeste Lebbe
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,Département de Dermatologie, Hôpital Saint Louis, APHP, 75010, Paris, France
| | - Philippe Saiag
- Département de Dermatologie, Hôpital Ambroise Paré, APHP, 92100, Boulogne Billancourt, France
| | - Roberto Zanetti
- Centre for Cancer Prevention, Piedmont Cancer Registry-CPO, Torino, Italy
| | - Lidia Sacchetto
- Centre for Cancer Prevention, Piedmont Cancer Registry-CPO, Torino, Italy.,Politecnico di Torino, Torino, Italy.,Università degli Studi di Torino, Torino, Italy.,Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Giovanna Chiorino
- Centre for Cancer Prevention, Piedmont Cancer Registry-CPO, Torino, Italy
| | - Maria Scatolini
- Laboratory of Molecular Oncology, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Bernard Grandchamp
- Département de Génétique, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - Armand Bensussan
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - Nadem Soufir
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Département de Génétique, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France
| |
Collapse
|
204
|
Lao Y, Yang K, Wang Z, Sun X, Zou Q, Yu X, Cheng J, Tong X, Yeh ETH, Yang J, Yi J. DeSUMOylation of MKK7 kinase by the SUMO2/3 protease SENP3 potentiates lipopolysaccharide-induced inflammatory signaling in macrophages. J Biol Chem 2018; 293:3965-3980. [PMID: 29352108 PMCID: PMC5857993 DOI: 10.1074/jbc.m117.816769] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
Protein SUMOylation has been reported to play a role in innate immune response, but the enzymes, substrates, and consequences of the specific inflammatory signaling events are largely unknown. Reactive oxygen species (ROS) are abundantly produced during macrophage activation and required for Toll-like receptor 4 (TLR4)-mediated inflammatory signaling. Previously, we demonstrated that SENP3 is a redox-sensitive SUMO2/3 protease. To explore any links between reversible SUMOylation and ROS-related inflammatory signaling in macrophage activation, we generated mice with Senp3 conditional knock-out in myeloid cells. In bacterial lipopolysaccharide (LPS)-induced in vitro and in vivo inflammation models, we found that SENP3 deficiency markedly compromises the activation of TLR4 inflammatory signaling and the production of proinflammatory cytokines in macrophages exposed to LPS. Moreover, Senp3 conditional knock-out mice were significantly less susceptible to septic shock. Of note, SENP3 deficiency was associated with impairment in JNK phosphorylation. We found that MKK7, which selectively phosphorylates JNK, is a SENP3 substrate and that SENP3-mediated deSUMOylation of MKK7 may favor its binding to JNK. Importantly, ROS-dependent SENP3 accumulation and MKK7 deSUMOylation rapidly occurred after LPS stimulation. In conclusion, our findings indicate that SENP3 potentiates LPS-induced TLR4 signaling via deSUMOylation of MKK7 leading to enhancement in JNK phosphorylation and the downstream events. Therefore this work provides novel mechanistic insights into redox regulation of innate immune responses.
Collapse
Affiliation(s)
- Yimin Lao
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Yang
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhaojun Wang
- the Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China, and
| | - Xueqing Sun
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Zou
- the Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China, and
| | - Xiaoyan Yu
- the Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China, and
| | - Jinke Cheng
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuemei Tong
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Edward T H Yeh
- the Department of Internal Medicine, University of Missouri, Columbia, Missouri 65211
| | - Jie Yang
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China,
| | - Jing Yi
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China,
| |
Collapse
|
205
|
The next generation of metastatic melanoma: uncovering the genetic variants for anti-BRAF therapy response. Oncotarget 2018; 7:25135-49. [PMID: 26863566 PMCID: PMC5041894 DOI: 10.18632/oncotarget.7175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma (MM) is a highly aggressive cancer with a median overall survival of 6-9 months, notwithstanding the numerous efforts in development of new therapeutic approaches. To this aim we tested the clinical applicability of the Ion Torrent Personal Genome Machine to simultaneously screen MM patients in order to individuate new or already known SNPs and mutations able to predict the duration of response to BRAF inhibitors. An Ampliseq Custom Panel, including 11 crucial full length genes involved in melanoma carcinogenesis and therapy response pathways, was created and used to analyze 25 MM patients. We reported BRAFV600 and NRASQ61 mutations in 68% and 24% of samples, respectively. Moreover, we more frequently identified the following alterations related to BRAF status: PIK3CAI391M (44%) and KITD737N (36%) mutations, CTLA4T17A (52%), MC1RV60L (32%) and MITFS473A (60%) polymorphisms. Considering the progression free survival (PFS), statistical analyses showed that BRAFV600 patients without any of these more frequent alterations had a higher median PFS. Protein structure changes seem to be due to these variants by in silico analysis. In conclusion, a Next-Generation Sequencing approach with custom panel may provide new information to evaluate tumor-specific therapeutic susceptibility and individual prognosis to improve the care of MM patients.
Collapse
|
206
|
Yu Y, Hu H, Chen JS, Hu F, Fowler J, Scheet P, Zhao H, Huff CD. Integrated case-control and somatic-germline interaction analyses of melanoma susceptibility genes. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2247-2254. [PMID: 29317335 DOI: 10.1016/j.bbadis.2018.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
Abstract
While a number of genes have been implicated in melanoma susceptibility, the role of protein-coding variation in melanoma development and progression remains underexplored. To better characterize the role of germline coding variation in melanoma, we conducted a whole-exome case-control and somatic-germline interaction study involving 322 skin cutaneous melanoma cases from The Cancer Genome Atlas and 3607 controls of European ancestry. We controlled for cross-platform technological stratification using XPAT and conducted gene-based association tests using VAAST 2. Four established melanoma susceptibility genes achieved nominal statistical significance, MC1R (p = .0014), MITF (p = .0165) BRCA2 (p = .0206), and MTAP (p = .0393). We also observed a suggestive association for FANCA (p = .002), a gene previously implicated in melanoma survival. The association signal for BRCA2 was driven primarily by likely gene disrupting (LGD) variants, with an Odds Ratio (OR) of 5.62 (95% Confidence Interval (CI) 1.03-30.1). In contrast, the association signals for MC1R and MITF were driven primarily by predicted pathogenic missense variants, with estimated ORs of 1.4 to 3.0 for MC1R and 4.1 for MITF. MTAP exhibited an excess of both LGD and predicted damaging missense variants among cases, with ORs of 5.62 and 3.72, respectively, although neither category was significant. For individuals with known or predicted damaging variants, age of disease onset was significantly lower for two of the four genes, MC1R (p = .005) and MTAP (p = .035). In an analysis of germline carrier status and overlapping copy number alterations, we observed no evidence to support a two-hit model of carcinogenesis in any of the four genes. Although MC1R carriers were represented proportionally among the four molecular tumor subtypes, these individuals accounted for 69% of ultraviolet (UV) radiation mutational signatures among triple-wild type tumors (p = .040), highlighting the increased sensitivity to UV exposure among individuals with loss-of-function variants in MC1R.
Collapse
Affiliation(s)
- Yao Yu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hao Hu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiun-Sheng Chen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Fulan Hu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jerry Fowler
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad D Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
207
|
New Interactors of the Truncated EBNA-LP Protein Identified by Mass Spectrometry in P3HR1 Burkitt's Lymphoma Cells. Cancers (Basel) 2018; 10:cancers10010012. [PMID: 29303964 PMCID: PMC5789362 DOI: 10.3390/cancers10010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023] Open
Abstract
The Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) acts as a co-activator of EBNA-2, a transcriptional activator essential for Epstein-Barr virus (EBV)-induced B-cell transformation. Burkitt's lymphoma (BL) cells harboring a mutant EBV strain that lacks both the EBNA-2 gene and 3' exons of EBNA-LP express Y1Y2-truncated isoforms of EBNA-LP (tEBNA-LP) and better resist apoptosis than if infected with the wild-type virus. In such BL cells, tEBNA-LP interacts with the protein phosphatase 2A (PP2A) catalytic subunit (PP2A C), and this interaction likely plays a role in resistance to apoptosis. Here, 28 cellular and four viral proteins have been identified by mass spectrometry as further possible interactors of tEBNA-LP. Three interactions were confirmed by immunoprecipitation and Western blotting, namely with the A structural subunit of PP2A (PP2A A), the structure-specific recognition protein 1 (SSRP1, a component of the facilitate chromatin transcription (FACT) complex), and a new form of the transcription factor EC (TFEC). Thus, tEBNA-LP appears to be involved not only in cell resistance to apoptosis through its interaction with two PP2A subunits, but also in other processes where its ability to co-activate transcriptional regulators could be important.
Collapse
|
208
|
Mendel L, Ambrosetti D, Bodokh Y, Ngo-Mai M, Durand M, Simbsler-Michel C, Delhorbe M, Amiel J, Pedeutour F. Comprehensive study of three novel cases of TFEB
-amplified renal cell carcinoma and review of the literature: Evidence for a specific entity with poor outcome. Genes Chromosomes Cancer 2017; 57:99-113. [DOI: 10.1002/gcc.22513] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lionel Mendel
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Department of Urology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Damien Ambrosetti
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Central Laboratory of Pathology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Yohan Bodokh
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Department of Urology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Mélanie Ngo-Mai
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Central Laboratory of Pathology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Matthieu Durand
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Department of Urology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | | | - Mickael Delhorbe
- Laboratory of Solid Tumor Genetics; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Jean Amiel
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Department of Urology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Laboratory of Solid Tumor Genetics; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| |
Collapse
|
209
|
Phelep A, Laouari D, Bharti K, Burtin M, Tammaccaro S, Garbay S, Nguyen C, Vasseur F, Blanc T, Berissi S, Langa-Vives F, Fischer E, Druilhe A, Arnheiter H, Friedlander G, Pontoglio M, Terzi F. MITF - A controls branching morphogenesis and nephron endowment. PLoS Genet 2017; 13:e1007093. [PMID: 29240767 PMCID: PMC5746285 DOI: 10.1371/journal.pgen.1007093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/28/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Congenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown. Here, we identified a specific isoform of MITF (MITF-A), a bHLH-Zip transcription factor, as a novel regulator of the final nephron number. We showed that overexpression of MITF-A leads to a substantial increase of nephron number and bigger kidneys, whereas Mitfa deficiency results in reduced nephron number. Furthermore, we demonstrated that MITF-A triggers ureteric bud branching, a phenotype that is associated with increased ureteric bud cell proliferation. Molecular studies associated with an in silico analyses revealed that amongst the putative MITF-A targets, Ret was significantly modulated by MITF-A. Consistent with the key role of this network in kidney morphogenesis, Ret heterozygosis prevented the increase of nephron number in mice overexpressing MITF-A. Collectively, these results uncover a novel transcriptional network that controls branching morphogenesis during kidney development and identifies one of the first modifier genes of nephron endowment. The number of nephrons, the functional unit of kidney, varies widely among humans. Indeed, it has been shown that kidneys may contain from 0.3 to more than 2 million of nephrons. Nephrons are formed during development via a coordinated morphogenetic program in which the metanephric mesenchyme reciprocally and recursively interacts with the ureteric bud. The fine-tuning of this cross-talk determines the final number of nephrons. Strong evidence indicates that suboptimal nephron endowment is associated with an increased risk of hypertension and chronic kidney disease, a major healthcare burden. Indeed, chronic kidney disease is characterized by the progressive decline of renal function towards end stage renal disease, which occurs once a critical number of nephrons has been lost. Elucidating the molecular mechanisms that control nephron endowment is, therefore, a critical issue for public health. However, little is known about the factors that determine the final number of nephrons in the healthy population. Our data showed that nephron endowment is genetically predetermined and identified Mitfa, a bHLH transcription factor, as one of the first modifiers of nephron formation during kidney development. By generating an allelic series of transgenic mice expressing different levels of MITF-A, we discovered that MITF-A promotes final nephron endowment. In addition, we elucidated the molecular mechanisms by which MITF-A promotes nephron formation and identified RET as one of the critical effectors.
Collapse
Affiliation(s)
- Aurélie Phelep
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Denise Laouari
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Kapil Bharti
- Unit on Ocular and Stem Cells Translational Research National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Martine Burtin
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Salvina Tammaccaro
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Serge Garbay
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Clément Nguyen
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Florence Vasseur
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Thomas Blanc
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Sophie Berissi
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | | | - Evelyne Fischer
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Anne Druilhe
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Heinz Arnheiter
- Scientist Emeritus, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD, United States of America
| | - Gerard Friedlander
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Marco Pontoglio
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Fabiola Terzi
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
210
|
Bodokh Y, Ambrosetti D, Kubiniek V, Tibi B, Durand M, Amiel J, Pertuit M, Barlier A, Pedeutour F. ALK-TPM3 rearrangement in adult renal cell carcinoma: Report of a new case showing loss of chromosome 3 and literature review. Cancer Genet 2017; 221:31-37. [PMID: 29405994 DOI: 10.1016/j.cancergen.2017.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/08/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Seven cases of translocation-associated renal cell carcinoma involving ALK (ALK-tRCC) were referenced in the last World Health Organization's classification (2016), in a group of emerging/provisional RCC. The first three cases were pediatric, medullary-based, associated with sickle-cell trait and showed a fusion of ALK with VCL. Thirteen cases have been further described. They displayed clinical, morphological and genomic heterogeneity. Most of them occurred in adults. None of the patients was affected by sickle-cell disease. We report a new case of ALK-tRCC in a 55-year-old woman. Genomic profile showed losses of chromosomes 3, 9 and 14, anomalies often observed in clear cell RCC. VHL mutation or morphological features suggesting a clear cell RCC were not detected. We identified an unbalanced rearrangement of ALK and TPM3. Review of the literature identified similar features in our case and previously published cases: heterogeneous solid architecture, eosinophilic cells, mucinous cytoplasmic elements, rhabdoid cells and intracytoplasmic lumina. These elements may constitute the basis of a pathological definition of ALK-tRCC. Their observation in a RCC should lead to perform molecular detection of ALK rearrangement. This may have a crucial importance for metastatic patients treatment since ALK rearrangements confer sensitivity to tyrosine kinases inhibitors such as crizotinib.
Collapse
Affiliation(s)
- Yohan Bodokh
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Damien Ambrosetti
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Central Laboratory of Pathology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Valérie Kubiniek
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Branwel Tibi
- Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Matthieu Durand
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Jean Amiel
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Morgane Pertuit
- Aix Marseille Univ, APHM, INSERM, MMG, Conception, Laboratory of Molecular Biology, Marseille, France
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, Conception, Laboratory of Molecular Biology, Marseille, France; Laboratory of Molecular Biology, Hôpital la Conception, Aix Marseille Université, CNRS, CRN2M-UMR 7286, Marseille, France
| | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France.
| |
Collapse
|
211
|
Zhang X, Cheng X, Lai Y, Zhou Y, Cao W, Hua ZC. Salmonella VNP20009-mediated RNA interference of ABCB5 moderated chemoresistance of melanoma stem cell and suppressed tumor growth more potently. Oncotarget 2017; 7:14940-50. [PMID: 26910836 PMCID: PMC4924763 DOI: 10.18632/oncotarget.7496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Drug resistance remains an obstacle hindering the success of chemotherapy. Cancer stem cells (CSCs) have been recently found to confer resistance to chemotherapy. Therefore functional markers of CSCs should be discovered and specific therapies targeting these cells should be developed. In our investigation, a small population of B16F10 cells which was positive for ATP-binding cassette sub-family B member 5 (ABCB5) was isolated. This population displayed characteristics similar to those of CSCs and ABCB5 was identified to confer tumor growth and drug resistance in B16F10 cell line. Although targeting ABCB5 by small short interfering RNA delivered by VNP20009 failed to inhibit tumor growth, the combined treatment of VNP-shABCB5 and chemotherapy can act synergistically to delay tumor growth and enhance survival time in a primary B16F10 mice model. Results suggest that the combined treatment of VNP-shABCB5 and chemotherapy can improve the efficacy of chemotherapeutic drugs. Therefore, this combination therapy is of potential significance for melanoma treatment.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China
| | - Xiawei Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuqiang Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Wenmin Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China.,The State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu , China
| |
Collapse
|
212
|
Artomov M, Stratigos AJ, Kim I, Kumar R, Lauss M, Reddy BY, Miao B, Daniela Robles-Espinoza C, Sankar A, Njauw CN, Shannon K, Gragoudas ES, Marie Lane A, Iyer V, Newton-Bishop JA, Timothy Bishop D, Holland EA, Mann GJ, Singh T, Daly MJ, Tsao H. Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing. J Natl Cancer Inst 2017; 109:3861235. [PMID: 29522175 PMCID: PMC5939858 DOI: 10.1093/jnci/djx083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Methods Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Results Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10-6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10-4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10-4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10-5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. Conclusions The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene.
Collapse
Affiliation(s)
- Mykyta Artomov
- MGH Analytic and Translational Genetics Unit, MGH and Broad Institute, Boston, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Alexander J Stratigos
- 1st Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Ivana Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Boston, MA
| | - Raj Kumar
- Department of Dermatology, Wellman Center for Photomedicine, MGH, Boston, MA
| | - Martin Lauss
- Retina Service, Massachusetts Eye and Ear Infirmary, Boston, MA
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Bobby Y Reddy
- Department of Dermatology, Wellman Center for Photomedicine, MGH, Boston, MA
| | - Benchun Miao
- Department of Dermatology, Wellman Center for Photomedicine, MGH, Boston, MA
| | - Carla Daniela Robles-Espinoza
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, UK
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Aravind Sankar
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Ching-Ni Njauw
- Department of Dermatology, Wellman Center for Photomedicine, MGH, Boston, MA
| | - Kristen Shannon
- Melanoma Genetics Program, MGH Cancer Center, MGH, Boston, MA
| | | | - Anne Marie Lane
- Retina Service, Massachusetts Eye and Ear Infirmary, Boston, MA
| | - Vivek Iyer
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Julia A Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - D Timothy Bishop
- Department of Dermatology, Wellman Center for Photomedicine, MGH, Boston, MA
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Elizabeth A Holland
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Graham J Mann
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
- Melanoma Institute Australia, University of Sydney, North Sydney, NSW, Australia
| | - Tarjinder Singh
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Mark J Daly
- MGH Analytic and Translational Genetics Unit, MGH and Broad Institute, Boston, MA
| | - Hensin Tsao
- Melanoma Genetics Program, MGH Cancer Center, MGH, Boston, MA
| |
Collapse
|
213
|
Konstantakou EG, Velentzas AD, Anagnostopoulos AK, Giannopoulou AF, Anastasiadou E, Papassideri IS, Voutsinas GE, Tsangaris GT, Stravopodis DJ. Unraveling the human protein atlas of metastatic melanoma in the course of ultraviolet radiation-derived photo-therapy. J Proteomics 2017; 188:119-138. [PMID: 29180045 DOI: 10.1016/j.jprot.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
To explore the photo-therapeutic capacity of UV radiation in solid tumors, we herein employed an nLC-MS/MS technology to profile the proteomic landscape of irradiated WM-266-4 human metastatic-melanoma cells. Obtained data resulted in proteomic catalogues of 5982 and 7280 proteins for UVB- and UVC-radiation conditions, respectively, and indicated the ability of UVB/C-radiation forms to eliminate metastatic-melanoma cells through induction of synergistically operating programs of apoptosis and necroptosis. However, it seems that one or more WM-266-4 cell sub-populations may escape from UV-radiation's photo-damaging activity, acquiring, besides apoptosis tolerance, an EMT phenotype that likely offers them the advantage of developing resistance to certain chemotherapeutic drugs. Low levels of autophagy may also critically contribute to the selective survival and growth of UV-irradiated melanoma-cell escapers. These are the cells that must be systemically targeted with novel therapeutic schemes, like the one of UV radiation and Irinotecan herein suggested to be holding strong promise for the effective treatment of metastatic-melanoma patients. Given the dual nature of UV radiation to serve as both anti-tumorigenic and tumorigenic agent, all individuals being subjected to risk factors for melanoma development have to be appropriately informed and educated, in order to integrate the innovative PPPM concept in their healthcare-sector management. SIGNIFICANCE This study reports the application of nLC-MS/MS technology to deeply map the proteomic landscape of UV-irradiated human metastatic-melanoma cells. Data bioinformatics processing led to molecular-network reconstructions that unearthed the dual nature of UV radiation to serve as both anti-tumorigenic and tumorigenic factor in metastatic-melanoma cellular environments. Our UV radiation-derived "photo-proteomic" atlas may prove valuable for the identification of new biomarkers and development of novel therapies for the disease. Given that UV radiation represents a major risk factor causing melanoma, a PPPM-based life style and clinical practice must be embraced by all individuals being prone to disease's appearance and expansion.
Collapse
Affiliation(s)
- Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios K Anagnostopoulos
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ema Anastasiadou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerassimos E Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - George Th Tsangaris
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
214
|
Delaunay J, Martin L, Bressac-de Paillerets B, Duru G, Ingster O, Thomas L. Improvement of Genetic Testing for Cutaneous Melanoma in Countries With Low to Moderate Incidence: The Rule of 2 vs the Rule of 3. JAMA Dermatol 2017; 153:1122-1129. [PMID: 28903138 DOI: 10.1001/jamadermatol.2017.2926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Genetic testing for melanoma-prone mutation in France, a country with low to moderate incidence of melanoma, is proposed in cases with 2 invasive cutaneous melanomas and/or related cancers in the same patient, or in first- or second-degree relatives (rule of 2). In preclinical studies, these rules led to disclosure of mutation(s) in more than 10% of these families, the threshold widely accepted to justify genetic testing for cancers. Objective To reconsider these criteria in a general population testing of patients. Design, Setting, and Participants This was a retrospective study, performed from 2004 to 2015 at Angers and Lyons University Hospitals, of a cohort of 1032 patients who underwent genetic testing. Main Outcomes and Measures Frequency of mutation in high (CDKN2A, CDK4, and BAP1) and intermediate (MITF) susceptibility genes; statistical effect of histologic subtype, age, dysplastic nevi syndrome, and associated cancers on mutation rate; and evaluation of cases with anamnestic uncertainty. Results The mutation rate was 67 of 1032 patients (6.5%). Their mean (SD) age was 54.5 (14.2) years [range, 18-89 years], and 543 (52.6%) were men. It increased to 38 of 408 patients (9.3%) when applying a rule of 3 (those with ≥3 primary melanomas or genetically related cancers) (P = .68) and to 27 of 150 patients (18.0%) with a rule of 4 (4 primary melanomas or related cancer) (P < .001). The impact of age at first melanoma was observed only in those younger than 40 years, with a rate of 32 of 263 (12.1%) (P = .12) for the rule of 2 and 22 of 121 (18.2%) (P = .001) for the rule of 3. Use of the rule of 2 in patients younger than 40 years reduced the number of missed CDKN2A-mutated-families when applying the rule of 3 from 14 of 43 to 7 of 43. Anamnestic uncertainty, found in 88 families (8.5%), if excluded, would have led us to withdraw of only 21 cases (23.8%), and only 1 mutation would have been missed. Conclusions and Relevance We propose using the rule of 3 to recommend genetic testing in France and countries with low to moderate incidence of melanoma, except in families and patients with a first melanoma occurrence before age 40 years in whom the rule of 2 could be maintained.
Collapse
Affiliation(s)
| | - Ludovic Martin
- Service de Dermatologie, CHU d'Angers, Angers CEDEX, France
| | - Brigitte Bressac-de Paillerets
- Gustave Roussy, Université Paris-Saclay, Département de Biologie et Pathologie Médicales, Villejuif, France.,INSERM U1186, Université Paris-Saclay, Villejuif, France
| | - Gerard Duru
- Equipe d'accueil 4129, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Luc Thomas
- Service de Dermatologie Centre Hospitalier, Lyon Sud, France.,Université Claude Bernard Lyon 1-Santé, Lyon, France.,Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR5286, Lyon France
| |
Collapse
|
215
|
Adorisio S, Fierabracci A, Muscari I, Liberati AM, Ayroldi E, Migliorati G, Thuy TT, Riccardi C, Delfino DV. SUMO proteins: Guardians of immune system. J Autoimmun 2017; 84:21-28. [PMID: 28919255 DOI: 10.1016/j.jaut.2017.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
Small ubiquitin-like modifier (SUMO) proteins belong to the ubiquitin-like family and act to change the function of target proteins through post-translational modifications. Through their interactions with innate immune pathways, SUMOs promote an efficient immune response to pathogenic challenge avoiding, at the same time, an excess of immune response that could lead to the development of autoimmune diseases. This report discusses the general functions of SUMO proteins; highlights SUMO involvement in the innate immune response through their role in NF-κB and interferon pathways; the involvement of SUMO proteins in autoimmune diseases; and reviews bacterial, viral, and parasitic interactions with SUMO pathways. In conclusion, we speculate that targeting SUMOs could represent a new therapeutic strategy against infections and autoimmunity.
Collapse
Affiliation(s)
- Sabrina Adorisio
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Alessandra Fierabracci
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy
| | - Isabella Muscari
- Section of Onco-hematology, University of Perugia, Santa Maria Hospital, 05100, Terni, Italy
| | - Anna Marina Liberati
- Section of Onco-hematology, University of Perugia, Santa Maria Hospital, 05100, Terni, Italy
| | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Trinh Thi Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Viet Nam
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Piazzale Severi, 06132, Perugia, Italy; Foligno Nursing School, Via Oberdan 123, Foligno, PG, Italy.
| |
Collapse
|
216
|
Bourneuf E. The MeLiM Minipig: An Original Spontaneous Model to Explore Cutaneous Melanoma Genetic Basis. Front Genet 2017; 8:146. [PMID: 29081790 PMCID: PMC5645500 DOI: 10.3389/fgene.2017.00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest skin cancer and is a major public health concern with a growing incidence worldwide. As for other complex diseases, animal models are needed in order to better understand the mechanisms leading to pathology, identify potential biomarkers to be used in the clinics, and eventually molecular targets for therapeutic solutions. Cutaneous melanoma, arising from skin melanocytes, is mainly caused by environmental factors such as UV radiation; however a significant genetic component participates in the etiology of the disease. The pig is a recognized model for spontaneous development of melanoma with features similar to the human ones, followed by a complete regression and a vitiligo-like depigmentation. Three different pig models (MeLiM, Sinclair, and MMS-Troll) have been maintained through the last decades, and different genetic studies have evidenced a complex inheritance of the disease. As in humans, pigmentation seems to play a prominent role, notably through MC1R and MITF signaling. Conversely, cell cycle genes as CDKN2A and CDK4 have been excluded as predisposing for melanoma in MeLiM. So far, only sparse studies have focused on somatic changes occurring during oncogenesis, and have revealed major cytological changes and a potential dysfunction of the telomere maintenance system. Finally, the spontaneous tumor progression and regression occurring in these models could shed light on the interplay between endogenous retroviruses, melanomagenesis, and adaptive immune response.
Collapse
Affiliation(s)
- Emmanuelle Bourneuf
- LREG, CEA, Université Paris-Saclay, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
217
|
Choi J, Xu M, Makowski MM, Zhang T, Law MH, Kovacs MA, Granzhan A, Kim WJ, Parikh H, Gartside M, Trent JM, Teulade-Fichou MP, Iles MM, Newton-Bishop JA, Bishop DT, MacGregor S, Hayward NK, Vermeulen M, Brown KM. A common intronic variant of PARP1 confers melanoma risk and mediates melanocyte growth via regulation of MITF. Nat Genet 2017; 49:1326-1335. [PMID: 28759004 DOI: 10.1038/ng.3927] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
Previous genome-wide association studies have identified a melanoma-associated locus at 1q42.1 that encompasses a ∼100-kb region spanning the PARP1 gene. Expression quantitative trait locus (eQTL) analysis in multiple cell types of the melanocytic lineage consistently demonstrated that the 1q42.1 melanoma risk allele (rs3219090[G]) is correlated with higher PARP1 levels. In silico fine-mapping and functional validation identified a common intronic indel, rs144361550 (-/GGGCCC; r2 = 0.947 with rs3219090), as displaying allele-specific transcriptional activity. A proteomic screen identified RECQL as binding to rs144361550 in an allele-preferential manner. In human primary melanocytes, PARP1 promoted cell proliferation and rescued BRAFV600E-induced senescence phenotypes in a PARylation-independent manner. PARP1 also transformed TERT-immortalized melanocytes expressing BRAFV600E. PARP1-mediated senescence rescue was accompanied by transcriptional activation of the melanocyte-lineage survival oncogene MITF, highlighting a new role for PARP1 in melanomagenesis.
Collapse
Affiliation(s)
- Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Mai Xu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Matthew H Law
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michael A Kovacs
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Anton Granzhan
- CNRS UMR 9187, INSERM U1196, Institut Curie, PSL Research University and Université Paris Sud, Université Paris Saclay, Orsay, France
| | - Wendy J Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Hemang Parikh
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael Gartside
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jeffrey M Trent
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Marie-Paule Teulade-Fichou
- CNRS UMR 9187, INSERM U1196, Institut Curie, PSL Research University and Université Paris Sud, Université Paris Saclay, Orsay, France
| | - Mark M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Julia A Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
218
|
Pathways from senescence to melanoma: focus on MITF sumoylation. Oncogene 2017; 36:6659-6667. [PMID: 28825724 DOI: 10.1038/onc.2017.292] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Cutaneous melanoma is a deadly skin cancer that originates from melanocytes. The development of cutaneous melanoma involves a complex interaction between environmental factors, mainly ultraviolet radiation from sunlight, and genetic alterations. Melanoma can also occur from a pre-existing nevus, a benign lesion formed from melanocytes harboring oncogenic mutations that trigger proliferative arrest and senescence entry. Senescence is a potent barrier against tumor progression. As such, the acquisition of mutations that suppress senescence and promote cell division is mandatory for cancer development. This topic appears central to melanoma development because, in humans, several somatic and germline mutations are related to the control of cellular senescence and proliferative activity. Consequently, primary melanoma can be viewed as a paradigm of senescence evasion. In support of this notion, a sumoylation-defective germline mutation in microphthalmia-associated transcription factor (MITF), a master regulator of melanocyte homeostasis, is associated with the development of melanoma. Interestingly, this MITF variant has also been recently reported to negatively impact the program of senescence. This article reviews the genetic alterations that have been shown to be involved in melanoma and that alter the process of senescence to favor melanoma development. Then, the transcription factor MITF and its sumoylation-defective mutant are described. How sumoylation misregulation can change MITF activity and impact the process of senescence is discussed. Finally, the contribution of such information to the development of anti-malignant melanoma strategies is evaluated.
Collapse
|
219
|
Nguyen KA, Syed JS, Espenschied CR, LaDuca H, Bhagat AM, Suarez-Sarmiento A, O'Rourke TK, Brierley KL, Hofstatter EW, Shuch B. Advances in the diagnosis of hereditary kidney cancer: Initial results of a multigene panel test. Cancer 2017; 123:4363-4371. [PMID: 28787086 DOI: 10.1002/cncr.30893] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/23/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Panel testing has been recently introduced to evaluate hereditary cancer; however, limited information is available regarding its use in kidney cancer. METHODS The authors retrospectively reviewed test results and clinical data from patients who underwent targeted multigene panel testing of up to 19 genes associated with hereditary kidney cancer from 2013 to 2016. The frequency of positive (mutation/variant likely pathogenic), inconclusive (variant of unknown significance), and negative results was evaluated. A logistic regression analysis evaluated predictive factors for a positive test. RESULTS Patients (n = 1235) had a median age at diagnosis of 46 years, which was significantly younger than the US population of individuals with kidney cancer (P < .0001). Overall, 6.1%, 75.5%, and 18.4% of individuals had positive, negative, and inconclusive results, respectively. The most commonly altered genes included folliculin (FLCN) and fumarate hydratase (FH), which were altered in 1.8% and 1.3% of patients, respectively. Tuberous Sclerosis Complex 2 (TSC2), mesenchymal epithelial transition factor proto-oncogene (MET), and PMS1 homolog 2 (PMS2) had the highest rates of variants of unknown significance, which were identified in 2.7%, 2.2%, and 1.7% of patients, respectively. Early age of onset was the only factor that was identified as predictive of a positive test on multivariate analysis (odds ratio, 0.975; P = .0052) and may be the only identifying characteristic of low-penetrant syndromes, such as those associated with MITF (melanogenesis-associated transcription factor) mutations, which do not have singular histology or a family history of kidney cancer. CONCLUSIONS Panel tests may be particularly useful for patients who lack distinguishing clinical characteristics of known hereditary kidney cancer syndromes. The current results support the use of early age of onset for genetic counseling and/or testing. Cancer 2017;123:4363-71. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Kevin A Nguyen
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Jamil S Syed
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | | | - Holly LaDuca
- Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California
| | - Ansh M Bhagat
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | | | - Timothy K O'Rourke
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, Connecticut
| | - Karina L Brierley
- Yale Cancer Genetics and Prevention Program, Smilow Cancer Hospital, New Haven, Connecticut
| | - Erin W Hofstatter
- Department of Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut
| | - Brian Shuch
- Department of Urology, Yale School of Medicine, New Haven, Connecticut.,Department of Radiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
220
|
Bonet C, Luciani F, Ottavi JF, Leclerc J, Jouenne FM, Boncompagni M, Bille K, Hofman V, Bossis G, Marco de Donatis G, Strub T, Cheli Y, Ohanna M, Luciano F, Marchetti S, Rocchi S, Birling MC, Avril MF, Poulalhon N, Luc T, Hofman P, Lacour JP, Davidson I, Bressac-de Paillerets B, Ballotti R, Marine JC, Bertolotto C. Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression. J Natl Cancer Inst 2017; 109:3071266. [PMID: 28376192 DOI: 10.1093/jnci/djw340] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023] Open
Abstract
Background MITF encodes an oncogenic lineage-specific transcription factor in which a germline mutation ( MITFE318K ) was identified in human patients predisposed to both nevus formation and, among other tumor types, melanoma. The molecular mechanisms underlying the oncogenic activity of MITF E318K remained uncharacterized. Methods Here, we compared the SUMOylation status of endogenous MITF by proximity ligation assay in melanocytes isolated from wild-type (n = 3) or E318K (n = 4) MITF donors. We also used a newly generated Mitf E318K knock-in (KI) mouse model to assess the role of Mitf E318K (n = 7 to 13 mice per group) in tumor development in vivo and performed transcriptomic analysis of the tumors to identify the molecular mechanisms. Finally, using immortalized or normal melanocytes (wild-type or E318K MITF, n = 2 per group), we assessed the role of MITF E318K on the induction of senescence mediated by BRAF V600E . All statistical tests were two-sided. Results We demonstrated a decrease in endogenous MITF SUMOylation in melanocytes from MITF E318K patients (mean of cells with hypoSUMOylated MITF, MITF E318K vs MITF WT , 94% vs 44%, difference = 50%, 95% CI = 21.8% to 67.2%, P = .004). The Mitf E318K mice were slightly hypopigmented (mean melanin content Mitf WT vs Mitf E318K/+ , 0.54 arbitrary units [AU] vs 0.36 AU, difference = -0.18, 95% CI = -0.36 to -0.007, P = .04). We provided genetic evidence that Mitf E318K enhances BRaf V600E -induced nevus formation in vivo (mean nevus number for Mitf E318K , BRaf V600E vs Mitf WT , BRaf V600E , 68 vs 44, difference = 24, 95% CI = 9.1 to 38.9, P = .006). Importantly, although Mitf E318K was not sufficient to cooperate with BRaf V600E alone in promoting metastatic melanoma, it accelerated tumor formation on a BRaf V600E , Pten-deficient background (median survival, Mitf E318K/+ = 42 days, 95% CI = 31 to 46 vs Mitf WT = 51 days, 95% CI = 50 to 55, P < .001). Transcriptome analysis suggested a decrease in senescence in tumors from Mitf E318K mice. We confirmed this hypothesis by in vitro experiments, demonstrating that Mitf E318K impaired the ability of human melanocytes to undergo BRAF V600E -induced senescence. Conclusions We characterized the functions of melanoma-associated MITF E318K mutations. Our results demonstrate that MITF E318K reduces the program of senescence to potentially favor melanoma progression in vivo.
Collapse
Affiliation(s)
- Caroline Bonet
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Flavie Luciani
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Jean-François Ottavi
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Justine Leclerc
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | | | - Marina Boncompagni
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Karine Bille
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Véronique Hofman
- University of Nice Sophia-Antipolis, UFR Médecine, Nice, France.,Inserm, ERI21/EA 4319, Nice, France
| | | | | | - Thomas Strub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - Yann Cheli
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Mickaël Ohanna
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | | | | | - Stéphane Rocchi
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Marie-Christine Birling
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,Institut Clinique de la Souris-Mouse Clinical Institute, Illkirch, France
| | - Marie-Françoise Avril
- AP-HP, Hôpital Cochin -Tarnier, Service de Dermatologie et Faculté Paris Descartes, Paris, France
| | - Nicolas Poulalhon
- Centre Hospitalier Universitaire de Lyon, Department of Dermatology, Lyon, France
| | - Thomas Luc
- Centre Hospitalier Universitaire de Lyon, Department of Dermatology, Lyon, France
| | - Paul Hofman
- University of Nice Sophia-Antipolis, UFR Médecine, Nice, France.,Inserm, ERI21/EA 4319, Nice, France
| | | | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - Brigitte Bressac-de Paillerets
- Service de Génétique, Institut de Cancérologie Gustave Roussy, Villejuif, France.,INSERM U1186, Immunologie intégrative des tumeurs et génétique oncologique, Paris, France
| | - Robert Ballotti
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Jean-Christophe Marine
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Corine Bertolotto
- INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, Nice, France.,University of Nice Sophia-Antipolis, UFR Médecine, Nice, France
| |
Collapse
|
221
|
Arozarena I, Wellbrock C. Targeting invasive properties of melanoma cells. FEBS J 2017; 284:2148-2162. [PMID: 28196297 DOI: 10.1111/febs.14040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 02/11/2024]
Abstract
Melanoma is a skin cancer notorious for its metastatic potential. As an initial step of the metastatic cascade, melanoma cells part from the primary tumour and invade the surrounding tissue, which is crucial for their dissemination and the formation of distant secondary tumours. Over the last two decades, our understanding of both, general and melanoma specific mechanisms of invasion has significantly improved, but to date no efficient therapeutic strategy tackling the invasive properties of melanoma cells has reached the clinic. In this review, we assess the major contributions towards the understanding of the molecular biology of melanoma cell invasion with a focus on melanoma specific traits. These traits are based on the neural crest origin of melanoma cells and explain their intrinsic invasive nature. A particular emphasis is given not only to lineage specific signalling mediated by TGFβ, and noncanonical and canonical WNT signalling, but also to the role of PDE5A and RHO-GTPases in modulating modes of melanoma cell invasion. We discuss existing caveats in the current understanding of the metastatic properties of melanoma cells, as well as the relevance of the 'phenotype switch' model and 'co-operativity' between different phenotypes in heterogeneous tumours. At the centre of these phenotypes is the lineage commitment factor microphthalmia-associated transcription factor, one of the most crucial regulators of the balance between de-differentiation (neural crest specific gene expression) and differentiation (melanocyte specific gene expression) that defines invasive and noninvasive melanoma cell phenotypes. Finally, we provide insight into the current evidence linking resistance to targeted therapies to invasive properties of melanoma cells.
Collapse
Affiliation(s)
- Imanol Arozarena
- Cancer Signalling Group, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| |
Collapse
|
222
|
The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. J Transl Med 2017; 97:649-656. [PMID: 28263292 DOI: 10.1038/labinvest.2017.9] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Certain transcription factors have vital roles in lineage development, including specification of cell types and control of differentiation. Microphthalmia-associated transcription factor (MITF) is a key transcription factor for melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes to promote melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis, including genes encoding proteins involved in apoptosis (eg, BCL2) and the cell cycle (eg, CDK2). Loss-of-function mutations of MITF cause Waardenburg syndrome type IIA, whose phenotypes include depigmentation due to melanocyte loss, whereas amplification or specific mutation of MITF can be an oncogenic event that is seen in a subset of familial or sporadic melanomas. In this article, we review basic features of MITF biological function and highlight key unresolved questions regarding this remarkable transcription factor.
Collapse
|
223
|
Ballotti R, Bertolotto C. Deregulated MITF sumoylation: A route to melanoma. Mol Cell Oncol 2017; 4:e1331154. [PMID: 28868345 DOI: 10.1080/23723556.2017.1331154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Metastatic melanoma is a deadly form of skin cancer. Extraordinary breakthroughs have been recently achieved in the treatment of the disease,1 leading to objective increase in patient survival. However, early detection of potential dangerous melanocytic lesions remains the best strategy to avoid metastatic dissemination, which is still the main cause of death in melanoma patients. In 2011, our team identified a germline mutation in microphthalmia-associated transcription factor (MITFE318K ) that predisposes carriers to melanoma. Recently, we demonstrated that this mutation interfered with oncogene-induced senescence, one of the first events that should be overcome to allow melanoma development. Therefore, our works provide important clues on the early steps of melanomagenesis and as such might be useful for prevention or early therapeutic interventions in at risk-patients.
Collapse
Affiliation(s)
- Robert Ballotti
- INSERM, U1065 (Équipe 1), Equipe Labélisée ARC 2016, C3M, Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Corine Bertolotto
- INSERM, U1065 (Équipe 1), Equipe Labélisée ARC 2016, C3M, Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France
| |
Collapse
|
224
|
Ma J, Guo W, Li C. Ubiquitination in melanoma pathogenesis and treatment. Cancer Med 2017; 6:1362-1377. [PMID: 28544818 PMCID: PMC5463089 DOI: 10.1002/cam4.1069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive skin cancers with fiercely increasing incidence and mortality. Since the progressive understanding of the mutational landscape and immunologic pathogenic factors in melanoma, the targeted therapy and immunotherapy have been recently established and gained unprecedented improvements for melanoma treatment. However, the prognosis of melanoma patients remains unoptimistic mainly due to the resistance and nonresponse to current available drugs. Ubiquitination is a posttranslational modification which plays crucial roles in diverse cellular biological activities and participates in the pathogenesis of various cancers, including melanoma. Through the regulation of multiple tumor promoters and suppressors, ubiquitination is emerging as the key contributor and therefore a potential therapeutic target for melanoma. Herein, we summarize the current understanding of ubiquitination in melanoma, from mechanistic insights to clinical progress, and discuss the prospect of ubiquitination modification in melanoma treatment.
Collapse
Affiliation(s)
- Jinyuan Ma
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
225
|
Saiyed FK, Hamilton EC, Austin MT. Pediatric melanoma: incidence, treatment, and prognosis. Pediatric Health Med Ther 2017; 8:39-45. [PMID: 29388632 PMCID: PMC5774597 DOI: 10.2147/phmt.s115534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The purpose of this review is to outline recent advancements in diagnosis, treatment, and prevention of pediatric melanoma. Despite the recent decline in incidence, it continues to be the deadliest form of skin cancer in children and adolescents. Pediatric melanoma presents differently from adult melanoma; thus, the traditional asymmetry, border irregularity, color variegation, diameter >6 mm, and evolution (ABCDE) criteria have been modified to include features unique to pediatric melanoma (amelanotic, bleeding/bump, color uniformity, de novo/any diameter, evolution of mole). Surgical and medical management of pediatric melanoma continues to derive guidelines from adult melanoma treatment. However, more drug trials are being conducted to determine the specific impact of drug combinations on pediatric patients. Alongside medical and surgical treatment, prevention is a central component of battling the incidence, as ultraviolet (UV)-related mutations play a central role in the vast majority of pediatric melanoma cases. Aggressive prevention measures targeting sun safety and tanning bed usage have shown positive sun-safety behavior trends, as well as the potential to decrease melanomas that manifest later in life. As research into the field of pediatric melanoma continues to expand, a prevention paradigm needs to continue on a community-wide level.
Collapse
Affiliation(s)
- Faiez K Saiyed
- Department of Pediatric Surgery, McGovern Medical School
| | | | - Mary T Austin
- Department of Pediatric Surgery, McGovern Medical School
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
226
|
Abstract
Cutaneous melanoma (CM) and uveal melanoma (UM) derive from cutaneous and uveal melanocytes that share the same embryonic origin and display the same cellular function. However, the etiopathogenesis and biological behaviors of these melanomas are very different. CM and UM display distinct landscapes of genetic alterations and show different metastatic routes and tropisms. Hence, therapeutic improvements achieved in the last few years for the treatment of CM have failed to ameliorate the clinical outcomes of patients with UM. The scope of this review is to discuss the differences in tumorigenic processes (etiologic factors and genetic alterations) and tumor biology (gene expression and signaling pathways) between CM and UM. We develop hypotheses to explain these differences, which might provide important clues for research avenues and the identification of actionable vulnerabilities suitable for the development of new therapeutic strategies for metastatic UM.
Collapse
Affiliation(s)
- Charlotte Pandiani
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Guillaume E Béranger
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Justine Leclerc
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Corine Bertolotto
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| |
Collapse
|
227
|
Motzik A, Amir E, Erlich T, Wang J, Kim BG, Han JM, Kim JH, Nechushtan H, Guo M, Razin E, Tshori S. Post-translational modification of HINT1 mediates activation of MITF transcriptional activity in human melanoma cells. Oncogene 2017; 36:4732-4738. [DOI: 10.1038/onc.2017.81] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/21/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
|
228
|
Rosonina E, Akhter A, Dou Y, Babu J, Sri Theivakadadcham VS. Regulation of transcription factors by sumoylation. Transcription 2017; 8:220-231. [PMID: 28379052 PMCID: PMC5574528 DOI: 10.1080/21541264.2017.1311829] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Transcription factors (TFs) are among the most frequently detected targets of sumoylation, and effects of the modification have been studied for about 200 individual TFs to date. TF sumoylation is most often associated with reduced target gene expression, which can be mediated by enhanced interactions with corepressors or by interference with protein modifications that promote transcription. However, recent studies show that sumoylation also regulates gene expression by controlling the levels of TFs that are associated with chromatin. SUMO can mediate this by modulating TF DNA-binding activity, promoting clearance of TFs from chromatin, or indirectly, by influencing TF abundance or localization.
Collapse
Affiliation(s)
- Emanuel Rosonina
- a Department of Biology , York University , Toronto , ON , Canada
| | - Akhi Akhter
- a Department of Biology , York University , Toronto , ON , Canada
| | - Yimo Dou
- a Department of Biology , York University , Toronto , ON , Canada
| | - John Babu
- a Department of Biology , York University , Toronto , ON , Canada
| | | |
Collapse
|
229
|
Nguyen KA, Syed JS, Shuch B. Hereditary Kidney Cancer Syndromes and Surgical Management of the Small Renal Mass. Urol Clin North Am 2017; 44:155-167. [PMID: 28411908 DOI: 10.1016/j.ucl.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The management of patients with hereditary kidney cancers presents unique challenges to clinicians. In addition to an earlier age of onset compared with patients with sporadic kidney cancer, those with hereditary kidney cancer syndromes often present with bilateral and/or multifocal renal tumors and are at risk for multiple de novo lesions. This population of patients may also present with extrarenal manifestations, which adds an additional layer of complexity. Physicians who manage these patients should be familiar with the underlying clinical characteristics of each hereditary kidney cancer syndrome and the suggested surgical approaches and recommendations of genetic testing for at-risk individuals.
Collapse
Affiliation(s)
- Kevin A Nguyen
- Department of Urology, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06520, USA
| | - Jamil S Syed
- Department of Urology, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06520, USA
| | - Brian Shuch
- Department of Radiology, Yale School of Medicine, PO Box 208058, New Haven, CT 06520-8058, USA; Department of Urology, Yale School of Medicine, PO Box 208058, New Haven, CT 06520-8058, USA.
| |
Collapse
|
230
|
Leachman SA, Lucero OM, Sampson JE, Cassidy P, Bruno W, Queirolo P, Ghiorzo P. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev 2017; 36:77-90. [PMID: 28283772 PMCID: PMC5385190 DOI: 10.1007/s10555-017-9661-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several distinct melanoma syndromes have been defined, and genetic tests are available for the associated causative genes. Guidelines for melanoma genetic testing have been published as an informal "rule of twos and threes," but these guidelines apply to CDKN2A testing and are not intended for the more recently described non-CDKN2A melanoma syndromes. In order to develop an approach for the full spectrum of hereditary melanoma patients, we have separated melanoma syndromes into two types: "melanoma dominant" and "melanoma subordinate." Syndromes in which melanoma is a predominant cancer type are considered melanoma dominant, although other cancers, such as mesothelioma or pancreatic cancers, may also be observed. These syndromes are associated with defects in CDKN2A, CDK4, BAP1, MITF, and POT1. Melanoma-subordinate syndromes have an increased but lower risk of melanoma than that of other cancer(s) seen in the syndrome, such as breast and ovarian cancer or Cowden syndrome. Many of these melanoma-subordinate syndromes are associated with well-established predisposition genes (e.g., BRCA1/2, PTEN). It is likely that these predisposition genes are responsible for the increased susceptibility to melanoma as well but with lower penetrance than that observed for the dominant cancer(s) in those syndromes. In this review, we describe our extension of the "rule of twos and threes" for melanoma genetic testing. This algorithm incorporates an understanding of the spectrum of cancers and genes seen in association with melanoma to create a more comprehensive and tailored approach to genetic testing.
Collapse
Affiliation(s)
- Sancy A Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Olivia M Lucero
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jone E Sampson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Pamela Cassidy
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy.
| |
Collapse
|
231
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
232
|
Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, Debatin KM, Deubzer H, Dirksen U, Eckert C, Eggert A, Erlacher M, Fleischhack G, Frühwald MC, Gnekow A, Goehring G, Graf N, Hanenberg H, Hauer J, Hero B, Hettmer S, von Hoff K, Horstmann M, Hoyer J, Illig T, Kaatsch P, Kappler R, Kerl K, Klingebiel T, Kontny U, Kordes U, Körholz D, Koscielniak E, Kramm CM, Kuhlen M, Kulozik AE, Lamottke B, Leuschner I, Lohmann DR, Meinhardt A, Metzler M, Meyer LH, Moser O, Nathrath M, Niemeyer CM, Nustede R, Pajtler KW, Paret C, Rasche M, Reinhardt D, Rieß O, Russo A, Rutkowski S, Schlegelberger B, Schneider D, Schneppenheim R, Schrappe M, Schroeder C, von Schweinitz D, Simon T, Sparber-Sauer M, Spix C, Stanulla M, Steinemann D, Strahm B, Temming P, Thomay K, von Bueren AO, Vorwerk P, Witt O, Wlodarski M, Wössmann W, Zenker M, Zimmermann S, Pfister SM, Kratz CP. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 2017; 173:1017-1037. [PMID: 28168833 DOI: 10.1002/ajmg.a.38142] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.
Collapse
Affiliation(s)
- Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stefan S Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Arndt Borkhardt
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Ines B Brecht
- General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Gabriele Calaminus
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hedwig Deubzer
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Uta Dirksen
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Michael C Frühwald
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Astrid Gnekow
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Gudrun Goehring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Helmut Hanenberg
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany.,Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Hauer
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Barbara Hero
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Simone Hettmer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Horstmann
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hoyer
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kornelius Kerl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Thomas Klingebiel
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Körholz
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Ewa Koscielniak
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Michaela Kuhlen
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Britta Lamottke
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University of Kiel, Kiel, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Andrea Meinhardt
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Olga Moser
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Michaela Nathrath
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany.,Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich, Neuherberg, Germany.,Pediatric Oncology Center, Technical University Munich, Munich, Germany
| | - Charlotte M Niemeyer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Nustede
- Department of Surgery, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Kristian W Pajtler
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Mareike Rasche
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Dirk Reinhardt
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Thorsten Simon
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Monika Sparber-Sauer
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Claudia Spix
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Brigitte Strahm
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Petra Temming
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre O von Bueren
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Peter Vorwerk
- Pediatric Oncology, Otto von Guericke University Children's Hospital, Magdeburg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcin Wlodarski
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Willy Wössmann
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Zimmermann
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Stefan M Pfister
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
233
|
Kumar D, Gorain M, Kundu G, Kundu GC. Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma. Mol Cancer 2017; 16:7. [PMID: 28137308 PMCID: PMC5282877 DOI: 10.1186/s12943-016-0578-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/25/2016] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a form of cancer that initiates in melanocytes. Melanoma has multiple phenotypically distinct subpopulation of cells, some of them have embryonic like plasticity which are involved in self-renewal, tumor initiation, metastasis and progression and provide reservoir of therapeutically resistant cells. Cancer stem cells (CSCs) can be identified and characterized based on various unique cell surface and intracellular markers. CSCs exhibit different molecular pattern with respect to non-CSCs. They maintain their stemness and chemoresistant features through specific signaling cascades. CSCs are weak in immunogenicity and act as immunosupressor in the host system. Melanoma treatment becomes difficult and survival is greatly reduced when the patient develop metastasis. Standard conventional oncology treatments such as chemotherapy, radiotherapy and surgical resection are only responsible for shrinking the bulk of the tumor mass and tumor tends to relapse. Thus, targeting CSCs and their microenvironment niche addresses the alternative of traditional cancer therapy. Combined use of CSCs targeted and traditional therapies may kill the bulk tumor and CSCs and offer a promising therapeutic strategy for the management of melanoma.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Gautam Kundu
- Deapartment of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.
| |
Collapse
|
234
|
Dong B, Gao Y, Kang X, Gao H, Zhang J, Guo H, You MJ, Xue W, Cheng J, Huang Y. SENP1 promotes proliferation of clear cell renal cell carcinoma through activation of glycolysis. Oncotarget 2016; 7:80435-80449. [PMID: 27741516 PMCID: PMC5348332 DOI: 10.18632/oncotarget.12606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
Metabolic shift toward aerobic glycolysis is a fundamental element contributing to the development and progression of clear cell renal cell carcinoma (ccRCC). We and others previously observed enhanced glycolysis and diminished tricarboxylic acid (TCA) cycle activity in ccRCC tissue. Here, by integrated gene expression and metabolomic analyses of 36 matched pairs of tumor and adjacent normal tissues, we showed that expression of Sentrin/SUMO-specific protease 1 (SENP1) is positively associated with glycolysis levels in ccRCC. Moreover, SENP1 knockdown in RCC4/VHL cells downregulated expression of key glycolytic enzymes under normoxic and hypoxic conditions and inhibited cell proliferation under hypoxic conditions, possibly due to ineffective deSUMOylation and stablization of Hif-1α related to the SENP-1 deficiency. Finally, SENP1 expression correlated positively with tumor pathological grade and was an indicator of poor overall survival and advanced tumor progression in ccRCC. Altered VHL gene function is found in 60-90% ccRCC cases of ccRCC, but therapies targeting VHL-related signaling pathways have been ineffective, spurring exploration of alternative pathological signaling events. Our results provide a possible mechanistic explanation for the role of SENP1 in the initiation and development of ccRCC with normal VHL activity, and identifies SENP1 as a potential treatment target for the disease.
Collapse
Affiliation(s)
- Baijun Dong
- Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yujing Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xunlei Kang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongchang Gao
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Jin Zhang
- Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Guo
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, USA
- Current address: North Shore LIJ Health System, New York, USA
| | - Mingjian J You
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, USA
- The Graduate School of Biomedical Science, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Wei Xue
- Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Huang
- Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
235
|
Lin WM, Fisher DE. Signaling and Immune Regulation in Melanoma Development and Responses to Therapy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:75-102. [PMID: 27959628 DOI: 10.1146/annurev-pathol-052016-100208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanoma is a complex and genomically diverse malignancy, and new genes and signaling pathways involved in pathogenesis continue to be discovered. Mechanistic insights into gene and immune regulation in melanoma have led to the development of numerous successful and innovative pharmacologic agents over recent years. Multiple targeted therapies and immunotherapies have already entered the clinic, becoming new standards of care and transforming the prognosis for many patients with malignant melanoma. In this review, we provide an overview of the current understanding of signaling and immune regulation in melanoma and implications for responses to treatment, organized in the framework of hallmark characteristics in cancer.
Collapse
Affiliation(s)
- William M Lin
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114;
| |
Collapse
|
236
|
Jarrett SG, D'Orazio JA. Hormonal Regulation of the Repair of UV Photoproducts in Melanocytes by the Melanocortin Signaling Axis. Photochem Photobiol 2016; 93:245-258. [PMID: 27645605 DOI: 10.1111/php.12640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022]
Abstract
Melanoma is the deadliest form of skin cancer because of its propensity to spread beyond the primary site of disease and because it resists many forms of treatment. Incidence of melanoma has been increasing for decades. Although ultraviolet radiation (UV) has been identified as the most important environmental causative factor for melanoma development, UV-protective strategies have had limited efficacy in melanoma prevention. UV mutational burden correlates with melanoma development and tumor progression, underscoring the importance of UV in melanomagenesis. However, besides amount of UV exposure, melanocyte UV mutational load is influenced by the robustness of nucleotide excision repair, the genome maintenance pathway charged with removing UV photoproducts before they cause permanent mutations in the genome. In this review, we highlight the importance of the melanocortin hormonal signaling axis on regulating efficiency of nucleotide excision repair in melanocytes. By understanding the molecular mechanisms by which nucleotide excision repair can be increased, it may be possible to prevent many cases of melanoma by reducing UV mutational burden over time.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY
| | - John A D'Orazio
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY.,Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY.,Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY.,Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY
| |
Collapse
|
237
|
Bourseguin J, Bonet C, Renaud E, Pandiani C, Boncompagni M, Giuliano S, Pawlikowska P, Karmous-Benailly H, Ballotti R, Rosselli F, Bertolotto C. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells. Sci Rep 2016; 6:36539. [PMID: 27827420 PMCID: PMC5101529 DOI: 10.1038/srep36539] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.
Collapse
Affiliation(s)
- Julie Bourseguin
- CNRS UMR 8200, Gustave Roussy, Villejuif, F-94805 France.,Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.,Equipe Labellisée "ARC", C3M, Nice, F-06204, France
| | - Caroline Bonet
- Equipe Labellisée "ARC", C3M, Nice, F-06204, France.,Inserm, U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, C3M, Nice, F-06204, France.,Université Nice Sophia-Antipolis, UFR Médecine, Nice, F-06107, France
| | - Emilie Renaud
- CNRS UMR 8200, Gustave Roussy, Villejuif, F-94805 France.,Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.,Equipe Labellisée "ARC", C3M, Nice, F-06204, France
| | - Charlotte Pandiani
- Equipe Labellisée "ARC", C3M, Nice, F-06204, France.,Inserm, U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, C3M, Nice, F-06204, France.,Université Nice Sophia-Antipolis, UFR Médecine, Nice, F-06107, France
| | - Marina Boncompagni
- Equipe Labellisée "ARC", C3M, Nice, F-06204, France.,Inserm, U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, C3M, Nice, F-06204, France.,Université Nice Sophia-Antipolis, UFR Médecine, Nice, F-06107, France
| | - Sandy Giuliano
- Equipe Labellisée "ARC", C3M, Nice, F-06204, France.,Inserm, U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, C3M, Nice, F-06204, France.,Université Nice Sophia-Antipolis, UFR Médecine, Nice, F-06107, France
| | - Patrycja Pawlikowska
- CNRS UMR 8200, Gustave Roussy, Villejuif, F-94805 France.,Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.,Equipe Labellisée "ARC", C3M, Nice, F-06204, France
| | | | - Robert Ballotti
- Equipe Labellisée "ARC", C3M, Nice, F-06204, France.,Inserm, U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, C3M, Nice, F-06204, France.,Université Nice Sophia-Antipolis, UFR Médecine, Nice, F-06107, France
| | - Filippo Rosselli
- CNRS UMR 8200, Gustave Roussy, Villejuif, F-94805 France.,Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.,Equipe Labellisée "ARC", C3M, Nice, F-06204, France
| | - Corine Bertolotto
- Equipe Labellisée "ARC", C3M, Nice, F-06204, France.,Inserm, U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, C3M, Nice, F-06204, France.,Université Nice Sophia-Antipolis, UFR Médecine, Nice, F-06107, France
| |
Collapse
|
238
|
Wang J, Fang P, Chase P, Tshori S, Razin E, Spicer TP, Scampavia L, Hodder P, Guo M. Development of an HTS-Compatible Assay for Discovery of Melanoma-Related Microphthalmia Transcription Factor Disruptors Using AlphaScreen Technology. SLAS DISCOVERY 2016; 22:58-66. [PMID: 27827304 DOI: 10.1177/1087057116675274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microphthalmia transcription factor (MITF) is a master transcription factor expressed in melanocytes, essential for melanocyte survival, differentiation, and pigment formation, and is a key oncogenic factor in melanoma initiation, migration, and treatment resistance. Although identified as an important therapeutic target for melanoma, clinical inhibitors directly targeting the MITF protein are not available. Based on the functional state of MITF, we have designed an MITF dimerization-based AlphaScreen (MIDAS) assay that sensitively and specifically mirrors the dimerization of MITF in vitro. This assay is further exploited for identification of the MITF dimer disruptor for high-throughput screening. A pilot screen against a library of 1280 pharmacologically active compounds indicates that the MIDAS assay performance exhibits exceptional results with a Z' factor of 0.81 and a signal-to-background (S/B) ratio of 3.92 while identifying initial hit compounds that yield an ability to disrupt MITF-DNA interaction. The results presented demonstrate that the MIDAS assay is ready to screen large chemical libraries in order to discover novel modulators of MITF for potential melanoma treatment.
Collapse
Affiliation(s)
- Jing Wang
- 1 Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,2 State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pengfei Fang
- 1 Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,2 State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peter Chase
- 4 Scripps Research Institute Molecular Screening Center, Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.,PH-Amgen, Inc., Thousand Oaks, CA; PC-Bristol-Myers Squibb, Princeton, NJ
| | - Sagi Tshori
- 5 Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ehud Razin
- 5 Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Timothy P Spicer
- 4 Scripps Research Institute Molecular Screening Center, Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Louis Scampavia
- 4 Scripps Research Institute Molecular Screening Center, Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Peter Hodder
- 4 Scripps Research Institute Molecular Screening Center, Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.,PH-Amgen, Inc., Thousand Oaks, CA; PC-Bristol-Myers Squibb, Princeton, NJ
| | - Min Guo
- 1 Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,2 State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,3 Kangma BioTech Ltd., 781 Cailun Road, Shanghai 201203, China
| |
Collapse
|
239
|
Di Lorenzo S, Fanale D, Corradino B, Caló V, Rinaldi G, Bazan V, Giordano A, Cordova A, Russo A. Absence of germline CDKN2A mutation in Sicilian patients with familial malignant melanoma: Could it be a population-specific genetic signature? Cancer Biol Ther 2016; 17:83-90. [PMID: 26650572 DOI: 10.1080/15384047.2015.1108494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Germline CDKN2A mutations have been described in 25% to 40% of melanoma families from several countries. Sicilian population is genetically different from the people of Europe and Northern Italy because of its historical background, therefore familial melanoma could be due to genes different from high-penetrance CDKN2A gene. Four hundred patients with cutaneous melanoma were observed in a 6-years period at the Plastic Surgery Unit of the University of Palermo. Forty-eight patients have met the criteria of the Italian Society of Human Genetics (SIGU) for the diagnosis of familial melanoma and were screened for CDKN2A and CDK4 mutations. Mutation testing revealed that none of the families carried mutations in CDK4 and only one patient harboured the rare CDKN2A p.R87W mutation. Unlike other studies, we have not found high mutation rate of CDKN2A in patients affected by familial melanoma or multiple melanoma. This difference could be attributed to different factors, including the genetic heterogeneity of the Sicilian population. It is likely that, as in the Australian people, the inheritance of familial melanoma in this island of the Mediterranean Sea is due to intermediate/low-penetrance susceptibility genes, which, together with environmental factors (as latitude and sun exposure), could determine the occurrence of melanoma.
Collapse
Affiliation(s)
- Sara Di Lorenzo
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Daniele Fanale
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Bartolo Corradino
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Valentina Caló
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Gaetana Rinaldi
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Viviana Bazan
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Antonio Giordano
- c Sbarro Institute for Cancer Research and Molecular Medicine, Temple University , Philadelphia , PA 19122 , USA
| | - Adriana Cordova
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Antonio Russo
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| |
Collapse
|
240
|
Chromatin Association of Gcn4 Is Limited by Post-translational Modifications Triggered by its DNA-Binding in Saccharomyces cerevisiae. Genetics 2016; 204:1433-1445. [PMID: 27770033 DOI: 10.1534/genetics.116.194134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae transcription factor Gcn4 is expressed during amino acid starvation, and its abundance is controlled by ubiquitin-mediated proteolysis. Cdk8, a kinase component of the RNA polymerase II Mediator complex, phosphorylates Gcn4, which triggers its ubiquitination/proteolysis, and is thought to link Gcn4 degradation with transcription of target genes. In addition to phosphorylation and ubiquitination, we previously showed that Gcn4 becomes sumoylated in a DNA-binding dependent manner, while a nonsumoylatable form of Gcn4 showed increased chromatin occupancy, but only if Cdk8 was present. To further investigate how the association of Gcn4 with chromatin is regulated, here we examine determinants for Gcn4 sumoylation, and how its post-translational modifications are coordinated. Remarkably, artificially targeting Gcn4 that lacks its DNA binding domain to a heterologous DNA site restores sumoylation at its natural modification sites, indicating that DNA binding is sufficient for the modification to occur in vivo Indeed, we find that neither transcription of target genes nor phosphorylation are required for Gcn4 sumoylation, but blocking its sumoylation alters its phosphorylation and ubiquitination patterns, placing Gcn4 sumoylation upstream of these Cdk8-mediated modifications. Strongly supporting a role for sumoylation in limiting its association with chromatin, a hyper-sumoylated form of Gcn4 shows dramatically reduced DNA occupancy and expression of target genes. Importantly, we find that Cdk8 is at least partly responsible for clearing hyper-sumoylated Gcn4 from DNA, further implicating sumoylation as a stimulus for Cdk8-mediated phosphorylation and degradation. These results support a novel function for SUMO in marking the DNA-bound form of a transcription factor, which triggers downstream processes that limit its association with chromatin, thus preventing uncontrolled expression of target genes.
Collapse
|
241
|
Mu W, Lu HM, Chen J, Li S, Elliott AM. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing. J Mol Diagn 2016; 18:923-932. [PMID: 27720647 DOI: 10.1016/j.jmoldx.2016.07.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
Next-generation sequencing (NGS) has rapidly replaced Sanger sequencing as the method of choice for diagnostic gene-panel testing. For hereditary-cancer testing, the technical sensitivity and specificity of the assay are paramount as clinicians use results to make important clinical management and treatment decisions. There is significant debate within the diagnostics community regarding the necessity of confirming NGS variant calls by Sanger sequencing, considering that numerous laboratories report having 100% specificity from the NGS data alone. Here we report our results from 20,000 hereditary-cancer NGS panels spanning 47 genes, in which all 7845 nonpolymorphic variants were Sanger- sequenced. Of these, 98.7% were concordant between NGS and Sanger sequencing and 1.3% were identified as NGS false-positives, located mainly in complex genomic regions (A/T-rich regions, G/C-rich regions, homopolymer stretches, and pseudogene regions). Simulating a false-positive rate of zero by adjusting the variant-calling quality-score thresholds decreased the sensitivity of the assay from 100% to 97.8%, resulting in the missed detection of 176 Sanger-confirmed variants, the majority in complex genomic regions (n = 114) and mosaic mutations (n = 7). The data illustrate the importance of setting quality thresholds for panel testing only after thousands of samples have been processed and the necessity of Sanger confirmation of NGS variants to maintain the highest possible sensitivity.
Collapse
Affiliation(s)
- Wenbo Mu
- Ambry Genetics, Aliso Viejo, California
| | | | | | - Shuwei Li
- Ambry Genetics, Aliso Viejo, California
| | | |
Collapse
|
242
|
Hosier GW, Roberts MT. Initial response of renal cell carcinoma to vemurafenib in a patient treated for metastatic melanoma. Can Urol Assoc J 2016; 10:E306-E308. [PMID: 27695585 DOI: 10.5489/cuaj.3652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vemurafenib is a selective inhibitor of overactive BRAF oncogene with a substitution of lysine for glutamic acid at residue 600 (BRAFV600E), a mutation expressed in approximately 50% of all melanomas. We report a case of a patient with metastatic melanoma treated with vemurafenib, who subsequently presented with a biopsy-proven conventional renal cell carcinoma (RCC). We observed an initial complete regression of the mass while on vemurafenib. This was unexpected, given that vemurafenib is a specific inhibitor of BRAFV600E and most RCCs do not harbour this mutation.
Collapse
Affiliation(s)
| | - Matthew T Roberts
- Division of Urology, Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
243
|
Riazalhosseini Y, Lathrop M. Precision medicine from the renal cancer genome. Nat Rev Nephrol 2016; 12:655-666. [DOI: 10.1038/nrneph.2016.133] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
244
|
Read J, Symmons J, Palmer JM, Montgomery GW, Martin NG, Hayward NK. Increased incidence of bladder cancer, lymphoid leukaemia, and myeloma in a cohort of Queensland melanoma families. Fam Cancer 2016; 15:651-63. [PMID: 27108303 DOI: 10.1007/s10689-016-9907-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Familial cancer risk has been proposed as a shared feature of many cancers, and overall susceptibility is influenced by combinations of low to moderate risk polymorphisms, rare high penetrance germline mutations, and modulation of risk by environmental and genetic factors. Clustering of melanoma occurs in approximately 10 % of families, and an over-representation of additional cancers has been noticed in some 'melanoma' families. The degree to which other cancers aggregate in families affected by melanoma has not been well defined. Therefore, this study aimed to assess the risk of cancers other than melanoma in a cohort of 178 'intermediate risk' melanoma families, not selected for specific genetic mutations. Families designated as 'intermediate risk' had two first degree relatives (FDRs) affected by melanoma when ascertained between 1982 and 1990, and were followed up over a 33 year period to assess new occurrences of cancer. We included 414 melanoma cases and 529 FDRs, comprising 25,264 person years of observation. Standardised incidence ratios and their 95 % confidence intervals were calculated for all invasive cancers, comparing observed to expected cases of cancer based on age and sex specific incidence rates for the Queensland population. Statistically significant increases were found for bladder cancer in females (observed, 7; expected, 1.99; SIR, 3.52; 95 % CI 1.41-7.25), lymphoid leukaemia in females (observed, 6; expected, 1.75; SIR, 3.43; 95 % CI 1.26-7.46), and myeloma in female melanoma cases (observed, 4; expected, 0.82; SIR, 4.89; 95 % CI 1.33-12.52). Over-representation of bladder cancer, lymphoid leukaemia, and myeloma in females of the cohort may suggest sex-dependent co-modifiers, and it is possible that specific combinations of polymorphisms predispose to certain cancer types.
Collapse
Affiliation(s)
- Jazlyn Read
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia.
- The University of Queensland, Brisbane, QLD, Australia.
| | - Judith Symmons
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
245
|
Abstract
Kidney cancer is not a single disease but is made up of a number of different types of cancer classified by histology that are disparate in presentation, clinical course, and genetic basis. Studies of families with inherited renal cell carcinoma (RCC) have provided the basis for our understanding of the causative genes and altered metabolic pathways in renal cancer with different histologies. Von Hippel-Lindau disease was the first renal cancer disorder with a defined genetic basis. Over the next two decades, the genes responsible for a number of other inherited renal cancer syndromes including hereditary papillary renal carcinoma, Birt-Hogg-Dube´syndrome, hereditary leiomyomatosis and renal cell carcinoma, and succinate dehydrogenase-associated renal cancer were identified. Recently, renal cell carcinoma has been confirmed as part of the clinical phenotype in individuals from families with BAP1-associated tumor predisposition syndrome and MiTF-associated cancer syndrome. Here we summarize the clinical characteristics of and causative genes for these and other inherited RCC syndromes, the pathways that are dysregulated when the inherited genes are mutated, and recommended clinical management of patients with these inherited renal cancer syndromes.
Collapse
Affiliation(s)
- Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Basic Science Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
246
|
Abstract
Malignant melanoma is a rare, often fatal form of skin cancer with a complex multigenic etiology. The incidence of melanoma is increasing at an alarming rate. A number of heritable factors contribute to a patient's overall melanoma risk, including response to ultraviolet light, nevus number, and pigmentation characteristics, such as eye and hair color. Approximately 5%-10% of melanoma cases are familial, yet the majority of familial cases lack identifiable germ-line mutations in known susceptibility genes. Additionally, most familial melanomas lack germ-line mutations in genes that are commonly mutated in sporadic melanoma. Candidate and systematic genome-wide association studies have led to an improved understanding of the risk factors for melanoma and the identification of susceptibility genes. In this review, we provide an overview of the major risk factors and known genes implicated in familial melanoma susceptibility.
Collapse
Affiliation(s)
- Jason E Hawkes
- Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Amanda Truong
- Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Laurence J Meyer
- Department of Dermatology, University of Utah, Salt Lake City, UT; Veterans Administration Hospital, Salt Lake City, UT.
| |
Collapse
|
247
|
Mangas C, Potrony M, Mainetti C, Bianchi E, Carrozza Merlani P, Mancarella Eberhardt A, Maspoli-Postizzi E, Marazza G, Marcollo-Pini A, Pelloni F, Sessa C, Simona B, Puig-Butillé JA, Badenas C, Puig S. Genetic susceptibility to cutaneous melanoma in southern Switzerland: role of CDKN2A, MC1R and MITF. Br J Dermatol 2016; 175:1030-1037. [PMID: 27473757 DOI: 10.1111/bjd.14897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nearly 10% of all cases of cutaneous melanoma (CM) occur in patients with a personal or family history of the disease. OBJECTIVES To obtain information about genetic predisposition to CM in Ticino, the southern region of Switzerland, a zone with moderate-to-high CM incidence. METHODS We identified germline mutations in highly CM-associated genes (CDKN2A and CDK4) and low/medium-penetrance variants (MC1R and MITF) in patients with multiple primary CMs or individuals with one or more CM and a positive family history for CM or pancreatic cancer among first- or second-degree relatives. Healthy blood donors (n = 146) were included as a control group. RESULTS From July 2010 to July 2012, 57 patients (41 pedigrees) were included. Twenty-six were melanoma-prone families (with at least two cases) and 15 had multiple CMs. Pancreatic cancer was found in six families. The CDKN2A mutation p.V126D was identified in seven patients (four families) with a founder effect, whereas CDKN2A A148T was detected in seven cases (five families) and seven healthy donors (odds ratio 2·76, 95% confidence interval 0·83-9·20). At least one MC1R melanoma-associated polymorphism was detected in 32 patients (78%) and 97 healthy donors (66%), with more than one polymorphism in 12 patients (29%) and 25 healthy donors (17%). The MITF variant p.E318K was identified in four patients from three additional pedigrees (7%) and one healthy control (0·7%). CONCLUSIONS Inclusion criteria for the Ticino population for genetic assessment should follow the rule of two (two affected individuals in a family or a patient with multiple CMs), as we detected a CDKN2A mutation in almost 10% of our pedigrees (four of 41), MITF p.E318K in 7% (three of 41) and a higher number of MC1R variants than in the control population.
Collapse
Affiliation(s)
- C Mangas
- Dermatologia Ente Ospedaliero Cantonale (EOC), Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland. ,
| | - M Potrony
- Melanoma Unit, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - C Mainetti
- Dermatologia Ente Ospedaliero Cantonale (EOC), Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
| | - E Bianchi
- Private Dermatology Practice, Lugano, Switzerland
| | | | | | | | - G Marazza
- Dermatologia Ente Ospedaliero Cantonale (EOC), Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
| | | | - F Pelloni
- Private Dermatology Practice, Lugano, Switzerland
| | - C Sessa
- Istituto Oncologico della Svizzera Italiana (IOSI), Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
| | - B Simona
- Private Dermatology Practice, Locarno, Switzerland
| | - J A Puig-Butillé
- Melanoma Unit, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic of Barcelona, Spain
| | - C Badenas
- Melanoma Unit, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic of Barcelona, Spain
| | - S Puig
- Melanoma Unit, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
248
|
Vishwamitra D, Curry CV, Shi P, Alkan S, Amin HM. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein. Neoplasia 2016; 17:742-754. [PMID: 26476082 PMCID: PMC4611074 DOI: 10.1016/j.neo.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX.
| |
Collapse
|
249
|
Ciccarese C, Di Nunno V, Montironi R, Fiorentino M, Brunelli M, Tortora G, Ardizzoni A, Massari F. The role of precision medicine for the treatment of metastatic renal cell carcinoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1214057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chiara Ciccarese
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Vincenzo Di Nunno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata (AOUI), University of Verona, Verona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Andrea Ardizzoni
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | |
Collapse
|
250
|
Ciccarese C, Brunelli M, Montironi R, Fiorentino M, Iacovelli R, Heng D, Tortora G, Massari F. The prospect of precision therapy for renal cell carcinoma. Cancer Treat Rev 2016; 49:37-44. [PMID: 27453294 DOI: 10.1016/j.ctrv.2016.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 02/01/2023]
Abstract
The therapeutic landscape of renal cell carcinoma (RCC) has greatly expanded in the last decade. From being a malignancy orphan of effective therapies, kidney cancer has become today a tumor with several treatment options. Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). In this complex scenario it is important to find prognostic and predictive factors that can help in decision making in the treatment of mRCC.
Collapse
Affiliation(s)
- Chiara Ciccarese
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata (AOUI), University of Verona, Verona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, Italy
| | - Roberto Iacovelli
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Daniel Heng
- Department of Medical Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Giampaolo Tortora
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | | |
Collapse
|