201
|
Abstract
John Cacioppo has compared loneliness to hunger or thirst in that it signals that one needs to act and repair what is lacking. This paper reviews Cacioppo's and others' contributions to our understanding of neural mechanisms underlying social motivation in humans and in other social species. We focus particularly on the dopaminergic reward system and try to integrate evidence from animal models and human research. In rodents, objective social isolation leads to increased social motivation, mediated by the brains' mesolimbic dopamine system. In humans, social rejection can lead to either increased or decreased social motivation, and is associated with activity in the insular cortex; while chronic loneliness is typically associated with decreased social motivation but has been associated with altered dopaminergic responses in the striatum. This mixed pattern of cross-species similarities and differences may arise from the substantially different methods used to study unmet social needs across species, and suggests the need for more direct and deliberate cross-species comparative research in this critically important domain.
Collapse
Affiliation(s)
- Livia Tomova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kay Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
202
|
Off-Target Effects in Transgenic Mice: Characterization of Dopamine Transporter (DAT)-Cre Transgenic Mouse Lines Exposes Multiple Non-Dopaminergic Neuronal Clusters Available for Selective Targeting within Limbic Neurocircuitry. eNeuro 2019; 6:ENEURO.0198-19.2019. [PMID: 31481399 PMCID: PMC6873162 DOI: 10.1523/eneuro.0198-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022] Open
Abstract
Transgenic mouse lines are instrumental in our attempt to understand brain function. Promoters driving transgenic expression of the gene encoding Cre recombinase are crucial to ensure selectivity in Cre-mediated targeting of floxed alleles using the Cre-Lox system. For the study of dopamine (DA) neurons, promoter sequences driving expression of the Dopamine transporter (Dat) gene are often implemented and several DAT-Cre transgenic mouse lines have been found to faithfully direct Cre activity to DA neurons. While evaluating an established DAT-Cre mouse line, reporter gene expression was unexpectedly identified in cell somas within the amygdala. To indiscriminately explore Cre activity in DAT-Cre transgenic lines, systematic whole-brain analysis of two DAT-Cre mouse lines was performed upon recombination with different types of floxed reporter alleles. Results were compared with data available from the Allen Institute for Brain Science. The results identified restricted DAT-Cre-driven reporter gene expression in cell clusters within several limbic areas, including amygdaloid and mammillary subnuclei, septum and habenula, areas classically associated with glutamatergic and GABAergic neurotransmission. While no Dat gene expression was detected, ample co-localization between DAT-Cre-driven reporter and markers for glutamatergic and GABAergic neurons was found. Upon viral injection of a fluorescent reporter into the amygdala and habenula, distinct projections from non-dopaminergic DAT-Cre neurons could be distinguished. The study demonstrates that DAT-Cre transgenic mice, beyond their usefulness in recombination of floxed alleles in DA neurons, could be implemented as tools to achieve selective targeting in restricted excitatory and inhibitory neuronal populations within the limbic neurocircuitry.
Collapse
|
203
|
Takahashi D, Asaoka Y, Kimura K, Hara R, Arakaki S, Sakasai K, Suzuki H, Yamauchi N, Nomura H, Amano T, Minami M. Tonic Suppression of the Mesolimbic Dopaminergic System by Enhanced Corticotropin-Releasing Factor Signaling Within the Bed Nucleus of the Stria Terminalis in Chronic Pain Model Rats. J Neurosci 2019; 39:8376-8385. [PMID: 31451580 PMCID: PMC6794933 DOI: 10.1523/jneurosci.3047-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/01/2019] [Accepted: 08/16/2019] [Indexed: 02/02/2023] Open
Abstract
Although dysfunction of the mesolimbic dopaminergic system has been implicated in chronic pain, the underlying mechanisms remain to be elucidated. We hypothesized that increased inhibitory inputs to the neuronal pathway from the dorsolateral bed nucleus of the stria terminalis (dlBNST) to the ventral tegmental area (VTA) during chronic pain may induce tonic suppression of the mesolimbic dopaminergic system. To test this hypothesis, male Sprague Dawley rats were subjected to spinal nerve ligation to induce neuropathic pain and then spontaneous IPSCs (sIPSCs) were measured in this neuronal pathway. Whole-cell patch-clamp electrophysiology of brain slices containing the dlBNST revealed that the frequency of sIPSCs significantly increased in VTA-projecting dlBNST neurons 4 weeks after surgery. Next, the role of corticotropin-releasing factor (CRF) signaling within the dlBNST in the increased sIPSCs was examined. CRF increased the frequency of sIPSCs in VTA-projecting dlBNST neurons in sham-operated controls, but not in chronic pain rats. By contrast, NBI27914, a CRF type 1 receptor antagonist, decreased the frequency of sIPSCs in VTA-projecting dlBNST neurons in the chronic pain rats, but not in the control animals. In addition, histological analyses revealed the increased expression of CRF mRNA in the dlBNST. Finally, bilateral injections of NBI27914 into the dlBNST of chronic pain rats activated mesolimbic dopaminergic neurons and induced conditioned place preference. Together, these results suggest that the mesolimbic dopaminergic system is tonically suppressed during chronic pain by enhanced CRF signaling within the dlBNST via increased inhibitory inputs to VTA-projecting dlBNST neurons.SIGNIFICANCE STATEMENT The comorbidity of chronic pain and depression has long been recognized. Although dysfunction of the mesolimbic dopaminergic system has been implicated in both chronic pain and depression, the underlying mechanisms remain to be elucidated. Here, we show that the inhibitory inputs to the neuronal pathway from the dorsolateral bed nucleus of the stria terminalis (dlBNST) to the ventral tegmental area increase during chronic pain. This neuroplastic change is mediated by enhanced corticotropin-releasing factor signaling within the dlBNST that leads to tonic suppression of the mesolimbic dopaminergic system, which may be involved in the depressive mood and anhedonia under the chronic pain condition.
Collapse
Affiliation(s)
- Daiki Takahashi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuta Asaoka
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Kimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryuto Hara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Saya Arakaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Sakasai
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroe Suzuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Naoki Yamauchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroshi Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
204
|
Choi Y, Park H, Kang S, Jung H, Kweon H, Kim S, Choi I, Lee SY, Choi YE, Lee SH, Kim E. NGL-1/LRRC4C-Mutant Mice Display Hyperactivity and Anxiolytic-Like Behavior Associated With Widespread Suppression of Neuronal Activity. Front Mol Neurosci 2019; 12:250. [PMID: 31680855 PMCID: PMC6798069 DOI: 10.3389/fnmol.2019.00250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Netrin-G ligand-1 (NGL-1), encoded by Lrrc4c, is a post-synaptic adhesion molecule implicated in various brain disorders, including bipolar disorder, autism spectrum disorder, and developmental delay. Although previous studies have explored the roles of NGL-1 in the regulation of synapse development and function, the importance of NGL-1 for specific behaviors and the nature of related neural circuits in mice remain unclear. Here, we report that mice lacking NGL-1 (Lrrc4c–/–) show strong hyperactivity and anxiolytic-like behavior. They also display impaired spatial and working memory, but normal object-recognition memory and social interaction. c-Fos staining under baseline and anxiety-inducing conditions revealed suppressed baseline neuronal activity as well as limited neuronal activation in widespread brain regions, including the anterior cingulate cortex (ACC), motor cortex, endopiriform nucleus, bed nuclei of the stria terminalis, and dentate gyrus. Neurons in the ACC, motor cortex, and dentate gyrus exhibit distinct alterations in excitatory synaptic transmission and intrinsic neuronal excitability. These results suggest that NGL-1 is important for normal locomotor activity, anxiety-like behavior, and learning and memory, as well as synapse properties and excitability of neurons in widespread brain regions under baseline and anxiety-inducing conditions.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Suwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Ilsong Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Soo Yeon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Ye-Eun Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| |
Collapse
|
205
|
Mavrikaki M, Pantano L, Potter D, Rogers-Grazado MA, Anastasiadou E, Slack FJ, Amr SS, Ressler KJ, Daskalakis NP, Chartoff E. Sex-Dependent Changes in miRNA Expression in the Bed Nucleus of the Stria Terminalis Following Stress. Front Mol Neurosci 2019; 12:236. [PMID: 31636537 PMCID: PMC6788329 DOI: 10.3389/fnmol.2019.00236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/17/2019] [Indexed: 01/21/2023] Open
Abstract
Anxiety disorders disproportionately affect women compared to men, which may arise from sex differences in stress responses. MiRNAs are small non-coding RNAs known to regulate gene expression through actions on mRNAs. MiRNAs are regulated, in part, by factors such as stress and gonadal sex, and they have been implicated in the pathophysiology of multiple psychiatric disorders. Here, we assessed putative sex differences in miRNA expression in the bed nucleus of the stria terminalis (BNST) - a sexually dimorphic brain region implicated in anxiety - of adult male and female rats that had been exposed to social isolation (SI) stress throughout adolescence. To assess the translational utility of our results, we assessed if childhood trauma in humans resulted in changes in blood miRNA expression that are similar to those observed in rats. Male and female Sprague-Dawley rats underwent SI during adolescence or remained group housed (GH) and were tested for anxiety-like behavior in the elevated plus maze as adults. Small RNA sequencing was performed on tissue extracted from the BNST. Furthermore, we re-analyzed an already available small RNA sequencing data set from the Grady Trauma Project (GTP) from men and women to identify circulating miRNAs that are associated with childhood trauma exposure. Our results indicated that there were greater anxiogenic-like effects and changes in BNST miRNA expression in SI versus GH females compared to SI versus GH males. In addition, we found nine miRNAs that were regulated in both the BNST from SI compared to GH rats and in blood samples from humans exposed to childhood trauma. These studies emphasize the utility of rodent models in studying neurobiological mechanisms underlying psychiatric disorders and suggest that rodent models could be used to identify novel sex-specific pharmacotherapies for anxiety disorders.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Lorena Pantano
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, MA, United States
| | - David Potter
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | | | - Eleni Anastasiadou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sami S. Amr
- Translational Genomics Core, Partners Healthcare Personalized Medicine, Cambridge, MA, United States
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Nikolaos P. Daskalakis
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Elena Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| |
Collapse
|
206
|
Jarrin S, Finn DP. Optogenetics and its application in pain and anxiety research. Neurosci Biobehav Rev 2019; 105:200-211. [DOI: 10.1016/j.neubiorev.2019.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
|
207
|
Ethanol-induced conditioned place preference and aversion differentially alter plasticity in the bed nucleus of stria terminalis. Neuropsychopharmacology 2019; 44:1843-1854. [PMID: 30795004 PMCID: PMC6785142 DOI: 10.1038/s41386-019-0349-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/11/2023]
Abstract
Contextual cues associated with drugs of abuse, such as ethanol, can trigger craving and drug-seeking behavior. Pavlovian procedures, such as place conditioning, have been widely used to study the rewarding/aversive properties of drugs and the association between environmental cues and drug seeking. Previous research has shown that ethanol as an unconditioned stimulus can induce a strong conditioned place preference (CPP) or aversion (CPA) in rodents. However, the neural mechanisms underlying ethanol-induced reward and aversion have not been thoroughly investigated. The bed nucleus of the stria terminalis (BNST), an integral part of the extended amygdala, is engaged by both rewarding and aversive stimuli and plays a role in ethanol-seeking behavior. Here, we used ex-vivo slice physiology to probe learning-induced synaptic plasticity in the BNST following ethanol-induced CPP and CPA. Male DBA/2 J mice (2-3 months old) were conditioned using previously reported ethanol-induced CPP/CPA procedures. Ethanol-induced CPP was associated with increased neuronal excitability in the ventral BNST (vBNST). Conversely, ethanol-induced CPA resulted in a significant decrease in spontaneous glutamatergic transmission without alterations in GABAergic signaling. Ethanol-CPA also led to a significant increase in the paired-pulse ratio at excitatory synapses, suggestive of a decrease in presynaptic glutamate release. Collectively, these data demonstrate that the vBNST is involved in the modulation of contextual learning associated with both the rewarding and the aversive properties of ethanol in mice.
Collapse
|
208
|
Williams AR, Kim ES, Lattal KM. Behavioral and immunohistochemical characterization of rapid reconditioning following extinction of contextual fear. Learn Mem 2019; 26:1-16. [PMID: 31527183 PMCID: PMC6749931 DOI: 10.1101/lm.048439.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/12/2019] [Indexed: 01/27/2023]
Abstract
A fundamental property of extinction is that the behavior that is suppressed during extinction can be unmasked through a number of postextinction procedures. Of the commonly studied unmasking procedures (spontaneous recovery, reinstatement, contextual renewal, and rapid reacquisition), rapid reacquisition is the only approach that allows a direct comparison between the impact of a conditioning trial before or after extinction. Thus, it provides an opportunity to evaluate the ways in which extinction changes a subsequent learning experience. In five experiments, we investigate the behavioral and neurobiological mechanisms of postextinction reconditioning. We show that rapid reconditioning of unsignaled contextual fear after extinction in male Long-Evans rats is associative and not affected by the number or duration of extinction sessions that we examined. We then evaluate c-Fos expression and histone acetylation (H4K8) in the hippocampus, amygdala, prefrontal cortex, and bed nucleus of the stria terminalis. We find that in general, initial conditioning has a stronger impact on c-Fos expression and acetylation than does reconditioning after extinction. We discuss implications of these results for theories of extinction and the neurobiology of conditioning and extinction.
Collapse
Affiliation(s)
- Amy R Williams
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Earnest S Kim
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
209
|
Pati D, Marcinkiewcz CA, DiBerto JF, Cogan ES, McElligott ZA, Kash TL. Chronic intermittent ethanol exposure dysregulates a GABAergic microcircuit in the bed nucleus of the stria terminalis. Neuropharmacology 2019; 168:107759. [PMID: 31494142 DOI: 10.1016/j.neuropharm.2019.107759] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/25/2022]
Abstract
Neuroadaptations in brain regions that regulate emotional and reward-seeking behaviors have been suggested to contribute to pathological behaviors associated with alcohol-use disorder. One such region is the bed nucleus of the stria terminalis (BNST), which has been linked to both alcohol consumption and alcohol withdrawal-induced anxiety and depression. Recently, we identified a GABAergic microcircuit in the BNST that regulates anxiety-like behavior. In the present study, we examined how chronic alcohol exposure alters this BNST GABAergic microcircuit in mice. We selectively targeted neurons expressing corticotropin releasing factor (CRF) using a CRF-reporter mouse line and combined retrograde labeling to identify BNST projections to the ventral tegmental area (VTA) and lateral hypothalamus (LH). Following 72 h of withdrawal from four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure, the excitability of a sub-population of putative local CRF neurons that did not project to either VTA or LH (CRFnon-VTA/LH neurons) was increased. Withdrawal from CIE also increased excitability of non-CRF BNST neurons that project to both LH and VTA (BNSTnon-CRF-proj neurons). Furthermore, both populations of neurons had a reduction in spontaneous EPSC amplitude while frequency was unaltered. Withdrawal from chronic alcohol was accompanied by a significant increase in spontaneous IPSC frequency selectively in the BNSTnon-CRF-proj neurons. Together, these data suggest that withdrawal from chronic ethanol dysregulates local CRF-GABAergic microcircuit to inhibit anxiolytic outputs of the BNST which may contribute to enhanced anxiety during alcohol withdrawal and drive alcohol-seeking behavior. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Dipanwita Pati
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 2751, USA
| | - Elizabeth S Cogan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 2751, USA.
| |
Collapse
|
210
|
Banasikowski TJ, Hawken ER. The Bed Nucleus of the Stria Terminalis, Homeostatic Satiety, and Compulsions: What Can We Learn From Polydipsia? Front Behav Neurosci 2019; 13:170. [PMID: 31417376 PMCID: PMC6686835 DOI: 10.3389/fnbeh.2019.00170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022] Open
Abstract
A compulsive phenotype characterizes several neuropsychiatric illnesses - including but not limited to - schizophrenia and obsessive compulsive disorder. Because of its perceived etiological heterogeneity, it is challenging to disentangle the specific neurophysiology that precipitates compulsive behaving. Using polydipsia (or non-regulatory water drinking), we describe candidate neural substrates of compulsivity. We further postulate that aberrant neuroplasticity within cortically projecting structures [i.e., the bed nucleus of the stria terminalis (BNST)] and circuits that encode homeostatic emotions (thirst, hunger, satiety, etc.) underlie compulsive drinking. By transducing an inaccurate signal that fails to represent true homeostatic state, cortical structures cannot select appropriate and adaptive actions. Additionally, augmented dopamine (DA) reactivity in striatal projections to and from the frontal cortex contribute to aberrant homeostatic signal propagation that ultimately biases cortex-dependent behavioral selection. Responding becomes rigid and corresponds with both erroneous, inflexible encoding in both bottom-up structures and in top-down pathways. How aberrant neuroplasticity in circuits that encode homeostatic emotion result in the genesis and maintenance of compulsive behaviors needs further investigation.
Collapse
Affiliation(s)
- Tomek J Banasikowski
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| | - Emily R Hawken
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
211
|
Marcinkiewcz CA, Bierlein-De La Rosa G, Dorrier CE, McKnight M, DiBerto JF, Pati D, Gianessi CA, Hon OJ, Tipton G, McElligott ZA, Delpire E, Kash TL. Sex-Dependent Modulation of Anxiety and Fear by 5-HT 1A Receptors in the Bed Nucleus of the Stria Terminalis. ACS Chem Neurosci 2019; 10:3154-3166. [PMID: 31140276 DOI: 10.1021/acschemneuro.8b00594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) coordinates behavioral responses to stress through a variety of presynaptic and postsynaptic receptors distributed across functionally diverse neuronal networks in the central nervous system. Efferent 5-HT projections from the dorsal raphe nucleus (DRN) to the bed nucleus of the stria terminalis (BNST) are generally thought to enhance anxiety and aversive learning by activating 5-HT2C receptor (5-HT2CR) signaling in the BNST, although an opposing role for postsynaptic 5-HT1A receptors has recently been suggested. In the present study, we sought to delineate a role for postsynaptic 5-HT1A receptors in the BNST in aversive behaviors using a conditional knockdown of the 5-HT1A receptor. Both males and females were tested to dissect out sex-specific effects. We found that male mice have significantly reduced fear memory recall relative to female mice and inactivation of 5-HT1A receptor in the BNST increases contextual fear conditioning in male mice so that they resemble the females. This coincided with an increase in neuronal excitability in males, suggesting that 5-HT1A receptor deletion may enhance contextual fear recall by disinhibiting fear memory circuits in the BNST. Interestingly, 5-HT1A receptor knockdown did not significantly alter anxiety-like behavior in male or female mice, which is in agreement with previous findings that anxiety and fear are modulated by dissociable circuits in the BNST. Overall, these results suggest that BNST 5-HT1A receptors do not significantly alter behavior under basal conditions, but can act as a molecular brake that buffer against excessive activation of aversive circuits in more threatening contexts.
Collapse
Affiliation(s)
- Catherine A. Marcinkiewcz
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - Cayce E. Dorrier
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mackenzie McKnight
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jeffrey F. DiBerto
- Curriculum in Neurobiology, School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Dipanwati Pati
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carol A. Gianessi
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Olivia J. Hon
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Curriculum in Neurobiology, School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Greg Tipton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Curriculum in Neurobiology, School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Curriculum in Neurobiology, School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
212
|
Troyano-Rodriguez E, Wirsig-Wiechmann CR, Ahmad M. Neuroligin-2 Determines Inhibitory Synaptic Transmission in the Lateral Septum to Optimize Stress-Induced Neuronal Activation and Avoidance Behavior. Biol Psychiatry 2019; 85:1046-1055. [PMID: 30878196 PMCID: PMC6555663 DOI: 10.1016/j.biopsych.2019.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Investigations in the neocortex have revealed that the balance of excitatory and inhibitory synaptic transmission (E/I ratio) is important for proper information processing. The disturbance of this balance underlies many neuropsychiatric illnesses, including autism spectrum disorder and schizophrenia. However, little is known about the contribution of E/I balance to the functioning of subcortical brain regions, such as the lateral septum (LS), a structure that plays important roles in regulating anxiety-related behavior. METHODS We manipulated E/I balance in the mouse LS by localized conditional deletion of neuroligin-2, a postsynaptic cell adhesion protein located at gamma-aminobutyric acidergic synapses and important for inhibitory synaptic transmission. We then performed analyses of synaptic transmission in the LS, stress-induced expression of immediate early gene c-fos, and anxiety-related and depression-related behavior. RESULTS The absence of neuroligin-2 in the LS in the mature mouse brain resulted in postsynaptic impairment of inhibitory synaptic transmission. Importantly, the reduced inhibition and resulting E/I imbalance decreased the responsiveness of LS neurons to stress. Furthermore, this E/I imbalance in the LS was associated with impaired stress-induced activation of downstream hypothalamic nuclei and reduced avoidance behavior of the animals in the elevated plus maze. CONCLUSIONS Our results described the synaptic function of neuroligin-2 in the LS, uncovered a positive association between c-Fos-expressing neurons in the LS and downstream hypothalamic areas and avoidance behavior, and demonstrated that intact inhibitory synaptic transmission and proper E/I balance are required for the optimal functioning of this subcortical circuit.
Collapse
Affiliation(s)
| | | | - Mohiuddin Ahmad
- Department of Cell Biology and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
213
|
Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell 2019; 177:1873-1887.e17. [PMID: 31178122 PMCID: PMC6716797 DOI: 10.1016/j.cell.2019.05.006] [Citation(s) in RCA: 642] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Defining cell types requires integrating diverse single-cell measurements from multiple experiments and biological contexts. To flexibly model single-cell datasets, we developed LIGER, an algorithm that delineates shared and dataset-specific features of cell identity. We applied it to four diverse and challenging analyses of human and mouse brain cells. First, we defined region-specific and sexually dimorphic gene expression in the mouse bed nucleus of the stria terminalis. Second, we analyzed expression in the human substantia nigra, comparing cell states in specific donors and relating cell types to those in the mouse. Third, we integrated in situ and single-cell expression data to spatially locate fine subtypes of cells present in the mouse frontal cortex. Finally, we jointly defined mouse cortical cell types using single-cell RNA-seq and DNA methylation profiles, revealing putative mechanisms of cell-type-specific epigenomic regulation. Integrative analyses using LIGER promise to accelerate investigations of cell-type definition, gene regulation, and disease states.
Collapse
Affiliation(s)
- Joshua D Welch
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA.
| | - Velina Kozareva
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Ashley Ferreira
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Charles Vanderburg
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Carly Martin
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA; Massachusetts General Hospital, Department of Psychiatry, 55 Fruit Street, Boston, MA, USA.
| |
Collapse
|
214
|
de Miguel E, Vekovischeva O, Elsilä LV, Panhelainen A, Kankuri E, Aitta-Aho T, Korpi ER. Conditioned Aversion and Neuroplasticity Induced by a Superagonist of Extrasynaptic GABA A Receptors: Correlation With Activation of the Oval BNST Neurons and CRF Mechanisms. Front Mol Neurosci 2019; 12:130. [PMID: 31178693 PMCID: PMC6543524 DOI: 10.3389/fnmol.2019.00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/03/2019] [Indexed: 11/13/2022] Open
Abstract
THIP (gaboxadol), a superagonist of the δ subunit-containing extrasynaptic GABAA receptors, produces persistent neuroplasticity in dopamine (DA) neurons of the ventral tegmental area (VTA), similarly to rewarding drugs of abuse. However, unlike them THIP lacks abuse potential and induces conditioned place aversion in mice. The mechanism underlying the aversive effects of THIP remains elusive. Here, we show that mild aversive effects of THIP were detected 2 h after administration likely reflecting an anxiety-like state with increased corticosterone release and with central recruitment of corticotropin-releasing factor corticotropin-releasing factor receptor 1 (CRF1) receptors. A detailed immunohistochemical c-Fos expression mapping for THIP-activated brain areas revealed a correlation between the activation of CRF-expressing neurons in the oval nucleus of the bed nuclei of stria terminalis and THIP-induced aversive effects. In addition, the neuroplasticity of mesolimbic DA system (24 h after administration) and conditioned place aversion by THIP after four daily acute sessions were dependent on extrasynaptic GABAA receptors (abolished in δ-GABAA receptor knockout mice) and activation of the CRF1 receptors (abolished in wildtype mice by a CRF1 receptor antagonist). A selective THIP-induced activation of CRF-expressing neurons in the oval part of the bed nucleus of stria terminalis may constitute a novel mechanism for inducing plasticity in a population of VTA DA neurons and aversive behavioral states.
Collapse
Affiliation(s)
- Elena de Miguel
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olga Vekovischeva
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lauri V Elsilä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Teemu Aitta-Aho
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
215
|
Hawken ER, Normandeau CP, Gardner Gregory J, Cécyre B, Bouchard JF, Mackie K, Dumont ÉC. A novel GPR55-mediated satiety signal in the oval Bed Nucleus of the Stria Terminalis. Neuropsychopharmacology 2019; 44:1274-1283. [PMID: 30647449 PMCID: PMC6785105 DOI: 10.1038/s41386-018-0309-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
Abstract
Nestled within feeding circuits, the oval (ov) region of the Bed Nucleus of the Stria Terminalis (BNST) may be critical for monitoring energy balance through changes in synaptic strength. Here we report that bidirectional plasticity at ovBNST GABA synapses was tightly linked to the caloric state of male rats, seesawing between long-term potentiation (iLTP, fed) and depression (iLTD, food restricted). L-α-lysophosphatidylinositol (LPI) acting on GPR55 receptors and 2-arachidonoylglycerol (2-AG) through CB1R were respectively responsible for fed (iLTP) and food restricted (iLTD) states. Thus, we have characterized a potential gating mechanism within the ovBNST that may signal metabolic state within the rat brain feeding circuitry.
Collapse
Affiliation(s)
- E. R. Hawken
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - C. P. Normandeau
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - J. Gardner Gregory
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - B. Cécyre
- 0000 0001 2292 3357grid.14848.31École d’optométrie, Université de Montréal, Montréal, QC Canada
| | - J.-F. Bouchard
- 0000 0001 2292 3357grid.14848.31École d’optométrie, Université de Montréal, Montréal, QC Canada
| | - K. Mackie
- 0000 0001 0790 959Xgrid.411377.7Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana USA
| | - É. C. Dumont
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| |
Collapse
|
216
|
Chronic stress induces cell type-selective transcriptomic and electrophysiological changes in the bed nucleus of the stria terminalis. Neuropharmacology 2019; 150:80-90. [PMID: 30878403 DOI: 10.1016/j.neuropharm.2019.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 02/01/2023]
Abstract
Distinct regions and cell types in the anterolateral group of the bed nucleus of the stria terminalis (BNSTALG) act to modulate anxiety in opposing ways. A history of chronic stress increases anxiety-like behavior with lasting electrophysiological effects on the BNSTALG. However, the opposing circuits within the BNSTALG suggest that stress may have differential effects on the individual cell types that comprise these circuits to shift the balance to favor anxiogenesis. Yet, the effects of stress are generally examined by treating all neurons within a particular region of the BNST as a homogenoeus population. We used patch-clamp electrophysiology and single-cell quantitative reverse transcriptase PCR (scRT-PCR) to determine how chronic shock stress (CSS) affects electrophysiological and neurochemical properties of Type I, Type II, and Type III neurons in the BNSTALG. We report that CSS resulted in changes in the input resistance, time constant, action potential waveform, and firing rate of Type III but not Type I or II neurons. Additionally, only the Type III neurons exhibited an increase in Crf mRNA and a decrease in striatal-enriched protein tyrosine phosphatase (Ptpn5) mRNA after CSS. In contrast, only non-Type III cells showed a reduction in calcium-permeable AMPA receptor (CP-AMPAR) current and changes in mRNA expression of genes encoding AMPA receptor subunits after CSS. Importantly, none of the effects of CSS observed were seen in all cell types. Our results suggest that Type III neurons play a unique role in the BNSTALG circuit and represent a population of CRF neurons particularly sensitive to chronic stress.
Collapse
|
217
|
Steinman MQ, Duque-Wilckens N, Trainor BC. Complementary Neural Circuits for Divergent Effects of Oxytocin: Social Approach Versus Social Anxiety. Biol Psychiatry 2019; 85:792-801. [PMID: 30503164 PMCID: PMC6709863 DOI: 10.1016/j.biopsych.2018.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023]
Abstract
Oxytocin (OT) is widely known for promoting social interactions, but there is growing appreciation that it can sometimes induce avoidance of social contexts. The social salience hypothesis posed an innovative solution to these apparently opposing actions by proposing that OT enhances the salience of both positive and negative social interactions. The mesolimbic dopamine system was put forth as a likely system to evaluate social salience owing to its well-described role in motivation. Evidence from several sources supports the premise that OT acting within the nucleus accumbens and ventral tegmental area facilitates social reward and approach behavior. However, in aversive social contexts, additional pathways play critical roles in mediating the effects of OT. Recent data indicate that OT acts in the bed nucleus of the stria terminalis to induce avoidance of potentially dangerous social contexts. Here, we review evidence for neural circuits mediating the effects of OT in appetitive and aversive social contexts. Specifically, we propose that distinct but potentially overlapping circuits mediate OT-dependent social approach or social avoidance. We conclude that a broader and more inclusive consideration of neural circuits of social approach and avoidance is needed as the field continues to evaluate the potential of OT-based therapeutics.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Natalia Duque-Wilckens
- Department of Large Animal Clinical Sciences and Department of Physiology/Neuroscience, Michigan State University, East Lansing, Michigan
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, Davis, California.
| |
Collapse
|
218
|
Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol 2019; 527:2615-2633. [PMID: 30947365 DOI: 10.1002/cne.24695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope® revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.
Collapse
Affiliation(s)
- Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Craig M Smith
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
219
|
Goode TD, Ressler RL, Acca GM, Miles OW, Maren S. Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. eLife 2019; 8:46525. [PMID: 30946011 PMCID: PMC6456295 DOI: 10.7554/elife.46525] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) has been implicated in conditioned fear and anxiety, but the specific factors that engage the BNST in defensive behaviors are unclear. Here we examined whether the BNST mediates freezing to conditioned stimuli (CSs) that poorly predict the onset of aversive unconditioned stimuli (USs) in rats. Reversible inactivation of the BNST selectively reduced freezing to CSs that poorly signaled US onset (e.g., a backward CS that followed the US), but did not eliminate freezing to forward CSs even when they predicted USs of variable intensity. Additionally, backward (but not forward) CSs selectively increased Fos in the ventral BNST and in BNST-projecting neurons in the infralimbic region of the medial prefrontal cortex (mPFC), but not in the hippocampus or amygdala. These data reveal that BNST circuits regulate fear to unpredictable threats, which may be critical to the etiology and expression of anxiety.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Reed L Ressler
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Gillian M Acca
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Olivia W Miles
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| |
Collapse
|
220
|
Campbell RR, Domingo RD, Williams AR, Wroten MG, McGregor HA, Waltermire RS, Greentree DI, Goulding SP, Thompson AB, Lee KM, Quadir SG, Jimenez Chavez CL, Coelho MA, Gould AT, von Jonquieres G, Klugmann M, Worley PF, Kippin TE, Szumlinski KK. Increased Alcohol-Drinking Induced by Manipulations of mGlu5 Phosphorylation within the Bed Nucleus of the Stria Terminalis. J Neurosci 2019; 39:2745-2761. [PMID: 30737312 PMCID: PMC6445984 DOI: 10.1523/jneurosci.1909-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress, and glutamate transmission within this region has been implicated in the neurobiology of alcoholism. Herein, we used a combination of immunoblotting, neuropharmacological and transgenic procedures to investigate the role for metabotropic glutamate receptor 5 (mGlu5) signaling within the BNST in excessive drinking. We discovered that mGlu5 signaling in the BNST is linked to excessive alcohol consumption in a manner distinct from behavioral or neuropharmacological endophenotypes that have been previously implicated as triggers for heavy drinking. Our studies demonstrate that, in male mice, a history of chronic binge alcohol-drinking elevates BNST levels of the mGlu5-scaffolding protein Homer2 and activated extracellular signal-regulated kinase (ERK) in an adaptive response to limit alcohol consumption. Male and female transgenic mice expressing a point mutation of mGlu5 that cannot be phosphorylated by ERK exhibit excessive alcohol-drinking, despite greater behavioral signs of alcohol intoxication and reduced anxiety, and are insensitive to local manipulations of signaling in the BNST. These transgenic mice also show selective insensitivity to alcohol-aversion and increased novelty-seeking, which may be relevant to excessive drinking. Further, the insensitivity to alcohol-aversion exhibited by male mice can be mimicked by the local inhibition of ERK signaling within the BNST. Our findings elucidate a novel mGluR5-linked signaling state within BNST that plays a central and unanticipated role in excessive alcohol consumption.SIGNIFICANCE STATEMENT The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress and alcohol, and glutamate transmission within BNST is implicated in the neurobiology of alcoholism. The present study provides evidence that a history of excessive alcohol drinking increases signaling through the metabotropic glutamate receptor 5 (mGlu5) receptor within the BNST in an adaptive response to limit alcohol consumption. In particular, disruption of mGlu5 phosphorylation by extracellular signal-regulated kinase within this brain region induces excessive alcohol-drinking, which reflects a selective insensitivity to the aversive properties of alcohol intoxication. These data indicate that a specific signaling state of mGlu5 within BNST plays a central and unanticipated role in excessive alcohol consumption.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Racquel D Domingo
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Amy R Williams
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Melissa G Wroten
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Hadley A McGregor
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Ryan S Waltermire
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Daniel I Greentree
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Scott P Goulding
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Andrew B Thompson
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Kaziya M Lee
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Sema G Quadir
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - C Leonardo Jimenez Chavez
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Adam T Gould
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Georg von Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales 2052, Australia, and
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales 2052, Australia, and
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660,
| |
Collapse
|
221
|
Méndez-Ruette M, Linsambarth S, Moraga-Amaro R, Quintana-Donoso D, Méndez L, Tamburini G, Cornejo F, Torres RF, Stehberg J. The Role of the Rodent Insula in Anxiety. Front Physiol 2019; 10:330. [PMID: 30984021 PMCID: PMC6450210 DOI: 10.3389/fphys.2019.00330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 01/21/2023] Open
Abstract
The human insula has been consistently reported to be overactivated in all anxiety disorders, activation which has been suggested to be proportional to the level of anxiety and shown to decrease with effective anxiolytic treatment. Nonetheless, studies evaluating the direct role of the insula in anxiety are lacking. Here, we set out to investigate the role of the rodent insula in anxiety by either inactivating different insular regions via microinjections of glutamatergic AMPA receptor antagonist CNQX or activating them by microinjection of GABA receptor antagonist bicuculline in rats, before measuring anxiety-like behavior using the elevated plus maze. Inactivation of caudal and medial insular regions induced anxiogenic effects, while their activation induced anxiolytic effects. In contrast, inactivation of more rostral areas induced anxiolytic effects and their activation, anxiogenic effects. These results suggest that the insula in the rat has a role in the modulation of anxiety-like behavior in rats, showing regional differences; rostral regions have an anxiogenic role, while medial and caudal regions have an anxiolytic role, with a transition area around bregma +0.5. The present study suggests that the insula has a direct role in anxiety.
Collapse
Affiliation(s)
- Maxs Méndez-Ruette
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Sergio Linsambarth
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daisy Quintana-Donoso
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Luis Méndez
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Giovanni Tamburini
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Francisca Cornejo
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo F Torres
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
222
|
Hofmann D, Straube T. Resting-state fMRI effective connectivity between the bed nucleus of the stria terminalis and amygdala nuclei. Hum Brain Mapp 2019; 40:2723-2735. [PMID: 30829454 DOI: 10.1002/hbm.24555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) and the laterobasal nucleus (LB), centromedial nucleus (CM), and superficial nucleus (SF) of the amygdala form an interconnected dynamical system, whose combined activity mediates a variety of behavioral and autonomic responses in reaction to homeostatic challenges. Although previous research provided deeper insight into the structural and functional connections between these nuclei, studies investigating their resting-state functional magnetic resonance imaging (fMRI) connectivity were solely based on undirected connectivity measures. Here, we used high-quality data of 391 subjects from the Human Connectome Project to estimate the effective connectivity (EC) between the BNST, the LB, CM, and SF through spectral dynamic causal modeling, the relation of the EC estimates with age and sex as well as their stability over time. Our results reveal a time-stable asymmetric EC structure with positive EC between all amygdala nuclei, which strongly inhibited the BNST while the BNST exerted positive influence onto all amygdala nuclei. Simulation of the impulse response of the estimated system showed that this EC structure shapes partially antagonistic (out of phase) activity flow between the BNST and amygdala nuclei. Moreover, the BNST-LB and BNST-CM EC parameters were less negative in males. In conclusion, our data points toward partially separated information processing between BNST and amygdala nuclei in the resting-state.
Collapse
Affiliation(s)
- David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
223
|
Pomrenze MB, Tovar-Diaz J, Blasio A, Maiya R, Giovanetti SM, Lei K, Morikawa H, Hopf FW, Messing RO. A Corticotropin Releasing Factor Network in the Extended Amygdala for Anxiety. J Neurosci 2019; 39:1030-1043. [PMID: 30530860 PMCID: PMC6363927 DOI: 10.1523/jneurosci.2143-18.2018] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/24/2018] [Accepted: 12/01/2018] [Indexed: 11/21/2022] Open
Abstract
The central amygdala (CeA) is important for fear responses to discrete cues. Recent findings indicate that the CeA also contributes to states of sustained apprehension that characterize anxiety, although little is known about the neural circuitry involved. The stress neuropeptide corticotropin releasing factor (CRF) is anxiogenic and is produced by subpopulations of neurons in the lateral CeA and the dorsolateral bed nucleus of the stria terminalis (dlBST). Here we investigated the function of these CRF neurons in stress-induced anxiety using chemogenetics in male rats that express Cre recombinase from a Crh promoter. Anxiety-like behavior was mediated by CRF projections from the CeA to the dlBST and depended on activation of CRF1 receptors and CRF neurons within the dlBST. Our findings identify a CRFCeA→CRFdlBST circuit for generating anxiety-like behavior and provide mechanistic support for recent human and primate data suggesting that the CeA and BST act together to generate states of anxiety.SIGNIFICANCE STATEMENT Anxiety is a negative emotional state critical to survival, but persistent, exaggerated apprehension causes substantial morbidity. Identifying brain regions and neurotransmitter systems that drive anxiety can help in developing effective treatment. Much evidence in rodents indicates that neurons in the bed nucleus of the stria terminalis (BST) generate anxiety-like behaviors, but more recent findings also implicate neurons of the CeA. The neuronal subpopulations and circuitry that generate anxiety are currently subjects of intense investigation. Here we show that CeA neurons that release the stress neuropeptide corticotropin-releasing factor (CRF) drive anxiety-like behaviors in rats via a pathway to dorsal BST that activates local BST CRF neurons. Thus, our findings identify a CeA→BST CRF neuropeptide circuit that generates anxiety-like behavior.
Collapse
Affiliation(s)
| | | | | | - Rajani Maiya
- Department of Neuroscience
- Department of Neurology, University of Texas at Austin, Austin, Texas 78712, and
| | - Simone M Giovanetti
- Department of Neuroscience
- Department of Neurology, University of Texas at Austin, Austin, Texas 78712, and
| | - Kelly Lei
- Department of Neurology, University of California San Francisco, San Francisco, California 94158
| | | | - F Woodward Hopf
- Department of Neurology, University of California San Francisco, San Francisco, California 94158
| | - Robert O Messing
- Institute for Neuroscience,
- Department of Neuroscience
- Department of Neurology, University of Texas at Austin, Austin, Texas 78712, and
| |
Collapse
|
224
|
Fox AS, Shackman AJ. The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neurosci Lett 2019; 693:58-67. [PMID: 29195911 PMCID: PMC5976525 DOI: 10.1016/j.neulet.2017.11.056] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/30/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022]
Abstract
Anxiety disorders impose a staggering burden on public health, underscoring the need to develop a deeper understanding of the distributed neural circuits underlying extreme fear and anxiety. Recent work highlights the importance of the central extended amygdala, including the central nucleus of the amygdala (Ce) and neighboring bed nucleus of the stria terminalis (BST). Anatomical data indicate that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated to assemble states of fear and anxiety. Neuroimaging studies show that the Ce and BST are engaged by a broad spectrum of potentially threat-relevant cues. Mechanistic work demonstrates that the Ce and BST are critically involved in organizing defensive responses to a wide range of threats. Studies in rodents have begun to reveal the specific molecules, cells, and microcircuits within the central extended amygdala that underlie signs of fear and anxiety, but the relevance of these tantalizing discoveries to human experience and disease remains unclear. Using a combination of focal perturbations and whole-brain imaging, a new generation of nonhuman primate studies is beginning to close this gap. This work opens the door to discovering the mechanisms underlying neuroimaging measures linked to pathological fear and anxiety, to understanding how the Ce and BST interact with one another and with distal brain regions to govern defensive responses to threat, and to developing improved intervention strategies.
Collapse
Affiliation(s)
- Andrew S Fox
- Department of Psychology and University of California, Davis, CA 95616, United States; California National Primate Research Center, University of California, Davis, CA 95616, United States.
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, United States; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, United States; Maryland Neuroimaging Center, University of Maryland,College Park, MD 20742, United States.
| |
Collapse
|
225
|
Agnihotri SK, Sun L, Yee BK, Shen R, Akundi RS, Zhi L, Duncan MJ, Cass WA, Büeler H. PINK1 deficiency is associated with increased deficits of adult hippocampal neurogenesis and lowers the threshold for stress-induced depression in mice. Behav Brain Res 2019; 363:161-172. [PMID: 30735759 DOI: 10.1016/j.bbr.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is characterized by motor impairments and several non-motor features, including frequent depression and anxiety. Stress-induced deficits of adult hippocampal neurogenesis (AHN) have been linked with abnormal affective behavior in animals. It has been speculated that AHN defects may contribute to affective symptoms in PD, but this hypothesis remains insufficiently tested in animal models. Mice that lack the PD-linked kinase PINK1 show impaired differentiation of adult-born neurons in the hippocampus. Here, we examined the relationship between AHN deficits and affective behavior in PINK1-/- mice under basal (no stress) conditions and after exposure to chronic stress. PINK1 loss and corticosterone negatively and jointly affected AHN, leading to lower numbers of neural stem cells and newborn neurons in the dentate gyrus of corticosterone-treated PINK1-/- mice. Despite increased basal AHN deficits, PINK1-deficient mice showed normal affective behavior. However, lack of PINK1 sensitized mice to corticosterone-induced behavioral despair in the tail suspension test at a dose where wildtype mice were unaffected. Moreover, after two weeks of chronic restraint stress male PINK1-/- mice displayed increased immobility in the forced swim test, and protein expression of the glucocorticoid receptor in the hippocampus was reduced. Thus, while impaired AHN as such is insufficient to cause affective dysfunction in this PD model, PINK1 deficiency may lower the threshold for chronic stress-induced depression in PD. Finally, PINK1-deficient mice displayed reduced basal voluntary wheel running but normal rotarod performance, a finding whose mechanisms remain to be determined.
Collapse
Affiliation(s)
- Sandeep K Agnihotri
- School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Liuke Sun
- School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ruifang Shen
- School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Ravi S Akundi
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, USA
| | - Lianteng Zhi
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, USA
| | - Marilyn J Duncan
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, USA
| | - Wayne A Cass
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, USA
| | - Hansruedi Büeler
- School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China.
| |
Collapse
|
226
|
Mohan V, Gomez JR, Maness PF. Expression and Function of Neuron-Glia-Related Cell Adhesion Molecule (NrCAM) in the Amygdalar Pathway. Front Cell Dev Biol 2019; 7:9. [PMID: 30766872 PMCID: PMC6365415 DOI: 10.3389/fcell.2019.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 11/25/2022] Open
Abstract
Neuron-Glia related cell adhesion molecule (NrCAM) is a candidate autism risk factor that promotes axon guidance through cytoskeletal linkages in developing brain but its role in limbic circuitry has not been investigated. In situ hybridization (ISH) and immunofluorescence staining showed that NrCAM is expressed in the developing amygdalar pathway of mouse embryos during outgrowth of projections in the stria terminalis, a major limbic tract that interconnects the central amygdala (CeA) with key targets in the bed nucleus of the stria terminalis (BNST). Analysis of fiber tracts in NrCAM mutant mice by Neurofilament protein immunohistochemistry showed pronounced defasciculation and misprojection of fibers in the ST. The defasciculation phenotype may result from impairment in NrCAM homophilic inter-axonal adhesion or axon repulsion from the secreted ligand Semaphorin 3F, which is expressed in limbic areas in proximity to the ST. Behavioral testing indicated that NrCAM null mice were impaired in context-dependent fear conditioning, in accord with altered amygdala-BNST connectivity, but displayed normal cued (tone-shock) conditioning. Results are consistent with the novel finding that NrCAM mediates fasciculation of axon fibers in the ST important for proper amygdalar-BNST circuitry and response to contextual fear conditioning.
Collapse
Affiliation(s)
- Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Julia R Gomez
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
227
|
Uchida K, Otsuka H, Morishita M, Tsukahara S, Sato T, Sakimura K, Itoi K. Female-biased sexual dimorphism of corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis. Biol Sex Differ 2019; 10:6. [PMID: 30691514 PMCID: PMC6350317 DOI: 10.1186/s13293-019-0221-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 01/06/2019] [Indexed: 12/03/2022] Open
Abstract
Background The bed nucleus of the stria terminalis (BNST) contains the highest density of corticotropin-releasing factor (CRF)-producing neurons in the brain. CRF-immunoreactive neurons show a female-biased sexual dimorphism in the dorsolateral BNST in the rat. Since CRF neurons cannot be immunostained clearly with available CRF antibodies in the mouse, we used a mouse line, in which modified yellow fluorescent protein (Venus) was inserted to the CRF gene, and the Neo cassette was removed, to examine the morphological characteristics of CRF neurons in the dorsolateral BNST. Developmental changes of CRF neurons were examined from postnatal stages to adulthood. Gonadectomy (GDX) was carried out in adult male and female mice to examine the effects of sex steroids on the number of CRF neurons in the dorsolateral BNST. Methods The number of Venus-expressing neurons, stained by immunofluorescence, was compared between male and female mice over the course of development. GDX was carried out in adult mice. Immunohistochemistry, in combination with Nissl staining, was carried out, and the effects of sex or gonadal steroids were examined by estimating the number of Venus-expressing neurons, as well as the total number of neurons or glial cells, in each BNST subnucleus, using a stereological method. Results Most Venus-expressing neurons co-expressed Crf mRNA in the dorsolateral BNST. They constitute a group of neurons without calbindin immunoreactivity, which makes a contrast to the principal nucleus of the BNST that is characterized by calbindin immunostaining. In the dorsolateral BNST, the number of Venus-expressing neurons increased across developmental stages until adulthood. Sexual difference in the number of Venus-expressing neurons was not evident by postnatal day 5. In adulthood, however, there was a significant female predominance in the number of Venus expressing neurons in two subnuclei of the dorsolateral BNST, i.e., the oval nucleus of the BNST (ovBNST) and the anterolateral BNST (alBNST). The number of Venus-expressing neurons was smaller significantly in ovariectomized females compared with proestrous females in either ovBNST or alBNST, and greater significantly in orchiectomized males compared with gonadally intact males in ovBNST. The total number of neurons was also greater significantly in females than in males in ovBNST and alBNST, but it was not affected by GDX. Conclusion Venus-expressing CRF neurons showed female-biased sexual dimorphism in ovBNST and alBNST of the mouse. Expression of Venus in these subnuclei was controlled by gonadal steroids.
Collapse
Affiliation(s)
- Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan.
| | - Hiroko Otsuka
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan
| | - Masahiro Morishita
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Shinji Tsukahara
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Tatsuya Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata City, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan.
| |
Collapse
|
228
|
Wang TX, Wu YE, Xu W, Gong WK, Ni J, Qu WM, Huang ZL. The anxiolytic effects of Bai Le Mian capsule, a traditional Chinese hypnotic in mice. Sleep Biol Rhythms 2019. [DOI: 10.1007/s41105-018-00199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
229
|
Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse. Brain Struct Funct 2019; 224:1067-1095. [PMID: 30610368 DOI: 10.1007/s00429-018-01825-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022]
Abstract
The central extended amygdala (EAc) is a forebrain macrosystem which has been widely implicated in reward, fear, anxiety, and pain. Its two key structures, the lateral bed nucleus of the stria terminalis (BSTL) and the central nucleus of the amygdala (CeA), share similar mesoscale connectivity. However, it is not known whether they also share similar cell-specific neuronal circuits. We addressed this question using tract-tracing and immunofluorescence to reveal the EAc microcircuits involving two neuronal populations expressing either protein kinase C delta (PKCδ) or somatostatin (SOM). PKCδ and SOM are expressed predominantly in the dorsal BSTL (BSTLD) and in the lateral/capsular parts of CeA (CeL/C). We found that, in both BSTLD and CeL/C, PKCδ+ cells are the main recipient of extra-EAc inputs from the lateral parabrachial nucleus (LPB), while SOM+ cells constitute the main source of long-range projections to extra-EAc targets, including LPB and periaqueductal gray. PKCδ+ cells can also integrate inputs from the basolateral nucleus of the amygdala or insular cortex. Within EAc, PKCδ+, but not SOM+ neurons, serve as the major source of inputs to the ventral BSTL and to the medial part of CeA. However, both cell types can be involved in mutual connections between BSTLD and CeL/C. These results unveil the pivotal positions of PKCδ+ and SOM+ neurons in organizing parallel cell-specific neuronal circuits within CeA and BSTL, but also between them, which further reinforce the notion of EAc as a structural and functional macrosystem.
Collapse
|
230
|
Hassell JE, Nguyen KT, Gates CA, Lowry CA. The Impact of Stressor Exposure and Glucocorticoids on Anxiety and Fear. Curr Top Behav Neurosci 2019; 43:271-321. [PMID: 30357573 DOI: 10.1007/7854_2018_63] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders and trauma- and stressor-related disorders, such as posttraumatic stress disorder (PTSD), are common and are associated with significant economic and social burdens. Although trauma and stressor exposure are recognized as a risk factors for development of anxiety disorders and trauma or stressor exposure is recognized as essential for diagnosis of PTSD, the mechanisms through which trauma and stressor exposure lead to these disorders are not well characterized. An improved understanding of the mechanisms through which trauma or stressor exposure leads to development and persistence of anxiety disorders or PTSD may result in novel therapeutic approaches for the treatment of these disorders. Here, we review the current state-of-the-art theories, with respect to mechanisms through which stressor exposure leads to acute or chronic exaggeration of avoidance or anxiety-like defensive behavioral responses and fear, endophenotypes in both anxiety disorders and trauma- and stressor-related psychiatric disorders. In this chapter, we will explore physiological responses and neural circuits involved in the development of acute and chronic exaggeration of anxiety-like defensive behavioral responses and fear states, focusing on the role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid hormones.
Collapse
Affiliation(s)
- J E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - K T Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - C A Gates
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - C A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Denver Veterans Affairs Medical Center (VAMC), Denver, CO, USA.
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA.
| |
Collapse
|
231
|
Maracle AC, Normandeau CP, Dumont ÉC, Olmstead MC. Dopamine in the oval bed nucleus of the stria terminalis contributes to compulsive responding for sucrose in rats. Neuropsychopharmacology 2019; 44:381-389. [PMID: 30030542 PMCID: PMC6300551 DOI: 10.1038/s41386-018-0149-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022]
Abstract
Binge eating disorder (BED) is characterized by periods of excessive food intake combined with subjective feelings of loss of control. We examined whether sucrose bingeing itself leads to uncontrolled or compulsive responding and whether this effect is magnified following a period of abstinence. We then assessed dopamine (DA) modulation of inhibitory synaptic transmission in the oval bed nucleus of the stria terminalis (ovBNST) as a neural correlate of compulsive responding and whether this behavioral effect could be disrupted by DA blockade in the ovBNST. Over 28 days, male Long-Evans rats (n = 8-16 per group) had access to 10% sucrose and food (12 or 24 h), 0.1% saccharin and food (12 h), or food alone (12 h). Compulsive responding was assessed following 1 or 28 days of sucrose abstinence using a conditioned suppression paradigm. Only rats given 12 h access to sucrose developed binge-like intake, manifested as copious intake within the first hour; compulsive responding was significantly elevated in this group following 28 days of abstinence. In parallel, the effect of DA on ovBNST inhibitory transmission switched from a reduction to a potentiation; the effect, although observable after 1 day, was more pronounced and sustained following 28 days of abstinence. Intra-ovBNST infusions of a DA D1 receptor antagonist (0.8 µg/µl SCH-23390) reversed the blockade of conditioned suppression, thereby confirming the causal relationship between ovBNST DA modulation of γ-aminobutyric acid transmission and alterations in conditioned suppression following binge-like intake of sucrose.
Collapse
Affiliation(s)
- Amanda C Maracle
- Department of Psychology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Catherine P Normandeau
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Éric C Dumont
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Mary C Olmstead
- Department of Psychology, Queen's University, Kingston, ON, K7L 3N6, Canada.
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
232
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
233
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
234
|
Abstract
The neural mechanisms underlying emotional valence are at the interface between perception and action, integrating inputs from the external environment with past experiences to guide the behavior of an organism. Depending on the positive or negative valence assigned to an environmental stimulus, the organism will approach or avoid the source of the stimulus. Multiple convergent studies have demonstrated that the amygdala complex is a critical node of the circuits assigning valence. Here we examine the current progress in identifying valence coding properties of neural populations in different nuclei of the amygdala, based on their activity, connectivity, and gene expression profile.
Collapse
Affiliation(s)
- Michele Pignatelli
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA
| | - Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000 Bordeaux, France
| |
Collapse
|
235
|
22 kHz and 55 kHz ultrasonic vocalizations differentially influence neural and behavioral outcomes: Implications for modeling anxiety via auditory stimuli in the rat. Behav Brain Res 2018; 360:134-145. [PMID: 30521931 DOI: 10.1016/j.bbr.2018.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 11/20/2022]
Abstract
The communicative role of ultrasonic vocalizations (USVs) in rats is well established, with distinct USVs indicative of different affective states. USVs in the 22 kHz range are typically emitted by adult rats when in anxiety- or fear-provoking situations (e.g. predator odor, social defeat), while 55 kHz range USVs are typically emitted in appetitive situations (e.g., play, anticipation of reward). Previous work indicates that USVs (real-time and playback) can effectively communicate these affective states and influence changes in behavior and neural activity of the receiver. Changes in cFos activation following 22 kHz USVs have been seen in cortical and limbic regions involved in anxiety, including the basolateral amygdala (BLA). However, it is unclear how USV playback influences cFos activity within the bed nucleus of the stria terminalis (BNST), a region also thought to be critical in processing anxiety-related information, and the nucleus accumbens, a region associated with reward. The present work sought to characterize distinct behavioral, physiological, and neural responses in rats presented with aversive (22 kHz) compared to appetitive (55 kHz) USVs or silence. Our findings show that rats exposed to 22 kHz USVs: 1) engage in anxiety-like behaviors in the elevated zero maze, and 2) show distinct patterns of cFos activation within the BLA and BNST that contrast those seen in 55 kHz playback and silence. Specifically, 22 kHz USVs increased cFos density in the anterodorsal nuclei, while 55 kHz playback increased cFos in the oval nucleus of the BNST, without significant changes within the nucleus accumbens. These results provide important groundwork for leveraging ethologically-relevant stimuli in the rat to improve our understanding of anxiety-related responses in both typical and pathological populations.
Collapse
|
236
|
Penner AE, Stoddard J. Clinical Affective Neuroscience. J Am Acad Child Adolesc Psychiatry 2018; 57:906-908. [PMID: 30522733 PMCID: PMC6607912 DOI: 10.1016/j.jaac.2018.07.877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 10/27/2022]
Abstract
Affective neuroscience is a promising young field in neuroscience for understanding the basis of many types of psychopathology. It describes the scientific investigation of the neural basis of affect, emotion, and feelings. These phenomena arise from mental processes that are not always directly observable, which complicates discovering their neural basis. Nevertheless, as it has done for other inferred processes, such as memory and language, neuroscience should transform our emotion-based patient formulations and lead to novel, targeted therapeutics for emotional issues. In this Translations article, we aim to provide a brief introduction to affective neuroscience for clinicians, beginning with defining key terms and then reviewing clinical applications.
Collapse
|
237
|
Flexible Adaptation of Brain Networks during Stress. J Neurosci 2018; 37:3992-3994. [PMID: 28404811 DOI: 10.1523/jneurosci.0224-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
|
238
|
Nicholson JR, Sommer B. The research domain criteria framework in drug discovery for neuropsychiatric diseases: focus on negative valence. Brain Neurosci Adv 2018; 2:2398212818804030. [PMID: 32166151 PMCID: PMC7058263 DOI: 10.1177/2398212818804030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022] Open
Abstract
Drug discovery, particularly in the field of central nervous system, has had very limited success in the last few decades. A likely contributor is the poor translation between preclinical and clinical phases. The Research Domain Criteria of the National Institutes of Mental Health is a framework which aims to identify new ways of classifying mental illnesses that are based on observable behaviour and neurobiological measures, and to provide a guiding and evolving framework to improve the translation from preclinical to clinical research. At the core of the Research Domain Criteria approach is the assumption that the dimensional constructs described can be assessed across different units of analysis, thus enabling a more precise quantitative understanding of their neurobiological underpinnings, increasing the likelihood of identifying new and effective therapeutic approaches. In the present review, we discuss how the Research Domain Criteria can be applied to drug discovery with the domain Negative Valence, construct Potential Threat (‘Anxiety’) as an example. We will discuss the evidence supporting the utility of the Research Domain Criteria approach and evaluate how close we are to achieving a common thread of translational research from gene to self-report.
Collapse
Affiliation(s)
- Janet R Nicholson
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bernd Sommer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
239
|
Boukersi H, Lebaili N, Samson N, Granon S. Implication of regional brain serotonergic neurons in dorsal and median Raphé nuclei in adaptation to water lacking in Gerbillus tarabuli. J Chem Neuroanat 2018. [DOI: 10.1016/j.jchemneu.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
240
|
Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018; 38:9446-9458. [PMID: 30381436 PMCID: PMC6209837 DOI: 10.1523/jneurosci.1676-18.2018] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.
Collapse
Affiliation(s)
- Laszlo Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102,
| | - Peter Gombkoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Gina Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095
| | - Lorna W Role
- Department of Neurobiology and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Mala Ananth
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Prithviraj Rajebhosale
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - David A Talmage
- Department of Pharmacological Sciences and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Michael E Hasselmo
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Holger Dannenberg
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Victor H Minces
- Department of Cognitive Science, University of California, San Diego 92093
| | - Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego 92093
| |
Collapse
|
241
|
Barrett LF, Finlay BL. Concepts, Goals and the Control of Survival-Related Behaviors. Curr Opin Behav Sci 2018; 24:172-179. [PMID: 31157289 DOI: 10.1016/j.cobeha.2018.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Scientists have long studied the actions that impact basic survival in various domains of life, such as defense, foraging, reproduction, thermoregulation, and so on, as if such actions will reveal the nature of emotion. Each domain of survival came to be characterized by a repertoire of distinct actions, and each action was thought to be caused by a dedicated neural circuit, called a survival circuit. Survival circuits are thought to be triggered by sensory events in the world, quickly producing obligatory, stereotypic reflexes as well as more flexible, deliberate responses. In this paper, we consider recent evidence from behavioral ecology that even so-called "reflexes" are better understood as purposeful, flexible actions that unfold across a range of temporal trajectories. They are highly context-dependent and tailored to the requirements of the situation. We then consider evidence from the neuroscience of motor control that motor actions are assembled by neural populations, not triggered by simple circuits. We end by considering the value of these suggestions for understanding the species-general vs. species-specific contributions to emotion.
Collapse
Affiliation(s)
- Lisa Feldman Barrett
- Department of Psychology, Northeastern University.,Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Barbara L Finlay
- Behavioral and Evolutionary Neuroscience Group, Department of Psychology, Cornell University
| |
Collapse
|
242
|
Tye KM. Neural Circuit Motifs in Valence Processing. Neuron 2018; 100:436-452. [PMID: 30359607 PMCID: PMC6590698 DOI: 10.1016/j.neuron.2018.10.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023]
Abstract
How do our brains determine whether something is good or bad? How is this computational goal implemented in biological systems? Given the critical importance of valence processing for survival, the brain has evolved multiple strategies to solve this problem at different levels. The psychological concept of "emotional valence" is now beginning to find grounding in neuroscience. This review aims to bridge the gap between psychology and neuroscience on the topic of emotional valence processing. Here, I highlight a subset of studies that exemplify circuit motifs that repeatedly appear as implementational systems in valence processing. The motifs I identify as being important in valence processing include (1) Labeled Lines, (2) Divergent Paths, (3) Opposing Components, and (4) Neuromodulatory Gain. Importantly, the functionality of neural substrates in valence processing is dynamic, context-dependent, and changing across short and long timescales due to synaptic plasticity, competing mechanisms, and homeostatic need.
Collapse
Affiliation(s)
- Kay M Tye
- Picower Institute for Learning and Memory, Dept of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Salk Institute for Biological Sciences, La Jolla, CA 92037, USA.
| |
Collapse
|
243
|
Josselyn SA. The past, present and future of light-gated ion channels and optogenetics. eLife 2018; 7:42367. [PMID: 30343681 PMCID: PMC6197853 DOI: 10.7554/elife.42367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 01/15/2023] Open
Abstract
The discovery of the mechanisms underlying light-gated ion channels called channelrhodospins and the subsequent development of optogenetics illustrates how breakthroughs in science and technology can span multiple levels of scientific inquiry. Our knowledge of how channelrhodopsins work emerged from research at the microscopic level that investigated the structure and function of algal proteins. Optogenetics, on the other hand, exploits the power of channelrhodospins and similar proteins to investigate phenomena at the supra-macroscopic level, notably the neural circuits involved in animal behavior that may be relevant for understanding neuropsychiatric disease. This article is being published to celebrate Peter Hegemann, Karl Deisseroth and Ed Boyden receiving a 2018 Canada Gairdner International Award "for the discovery of light-gated ion channel mechanisms, and for the discovery of optogenetics, a technology that has revolutionized neuroscience".
Collapse
Affiliation(s)
- Sheena A Josselyn
- Program in Neurosciences
& Mental HealthHospital for Sick
ChildrenTorontoCanada
- Department of
PsychologyUniversity of
TorontoTorontoCanada
- Department of
PhysiologyUniversity of
TorontoTorontoCanada
- Institute of Medical
SciencesUniversity of
TorontoTorontoCanada
- Brain, Mind &
Consciousness ProgramCanadian Institute for Advanced
ResearchTorontoCanada
| |
Collapse
|
244
|
Dopamine D2 receptor-mediated circuit from the central amygdala to the bed nucleus of the stria terminalis regulates impulsive behavior. Proc Natl Acad Sci U S A 2018; 115:E10730-E10739. [PMID: 30348762 PMCID: PMC6233075 DOI: 10.1073/pnas.1811664115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Impulsivity is closely associated with addictive disorders, and changes in the brain dopamine system have been proposed to affect impulse control in reward-related behaviors. However, the central neural pathways through which the dopamine system controls impulsive behavior are still unclear. We found that the absence of the D2 dopamine receptor (D2R) increased impulsive behavior in mice, whereas restoration of D2R expression specifically in the central amygdala (CeA) of D2R knockout mice (Drd2 -/- ) normalized their enhanced impulsivity. Inhibitory synaptic output from D2R-expressing neurons in the CeA underlies modulation of impulsive behavior because optogenetic activation of D2R-positive inhibitory neurons that project from the CeA to the bed nucleus of the stria terminalis (BNST) attenuate such behavior. Our identification of the key contribution of D2R-expressing neurons in the CeA → BNST circuit to the control of impulsive behavior reveals a pathway that could serve as a target for approaches to the management of neuropsychiatric disorders associated with impulsivity.
Collapse
|
245
|
Yamauchi N, Takahashi D, Sugimura YK, Kato F, Amano T, Minami M. Activation of the neural pathway from the dorsolateral bed nucleus of the stria terminalis to the central amygdala induces anxiety-like behaviors. Eur J Neurosci 2018; 48:3052-3061. [PMID: 30240530 DOI: 10.1111/ejn.14165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 09/02/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) and the central amygdala (CeA) comprise a forebrain unit that has been described as the "extended amygdala". These two nuclei send dense projections to each other and have been implicated in the regulation of negative emotional states, including anxiety and fear. The present study employed an optogenetic technique to examine whether stimulation of CeA-projecting dorsolateral BNST (dlBNST) neuron terminals would influence anxiety-like behaviors in male Sprague-Dawley rats. Photostimulation of CeA-projecting dlBNST neuron terminals produced anxiogenic effects in an elevated plus maze test. This finding is inconsistent with previous reports showing that optogenetic stimulation of BNST neurons projecting to the lateral hypothalamus (LH) and ventral tegmental area (VTA) produces anxiolytic rather than anxiogenic effects. To address this issue, electrophysiological analyses were conducted to characterize dlBNST neurons projecting to the CeA, LH, and VTA. dlBNST neurons can be electrophysiologically classified into three distinct cell types (types I-III) according to their responses to depolarizing and hyperpolarizing current injections. Whole-cell patch-clamp recordings revealed that more than 60% of the CeA-projecting dlBNST neurons were type II, whereas approximately 80% of the LH- and VTA-projecting dlBNST neurons were type III. These electrophysiological results will help elucidate the mechanisms underlying the heterogeneity of BNST neurons during the regulation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Naoki Yamauchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Daiki Takahashi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yae K Sugimura
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
246
|
Garcia-Garcia AL, Canetta S, Stujenske JM, Burghardt NS, Ansorge MS, Dranovsky A, Leonardo ED. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT 1A receptor-dependent manner. Mol Psychiatry 2018; 23:1990-1997. [PMID: 28761080 PMCID: PMC5794659 DOI: 10.1038/mp.2017.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT1A antagonist. Finally, we demonstrate that activation of 5-HT1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT1A receptors under naturalistic conditions.
Collapse
Affiliation(s)
- Alvaro L. Garcia-Garcia
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| | - Sarah Canetta
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Joseph M. Stujenske
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
| | - Nesha S. Burghardt
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065
| | - Mark S. Ansorge
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Alex Dranovsky
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| | - E. David Leonardo
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| |
Collapse
|
247
|
Russell AL, Handa RJ, Wu TJ. Sex-Dependent Effects of Mild Blast-induced Traumatic Brain Injury on Corticotropin-releasing Factor Receptor Gene Expression: Potential Link to Anxiety-like Behaviors. Neuroscience 2018; 392:1-12. [PMID: 30248435 DOI: 10.1016/j.neuroscience.2018.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/18/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) affects 1.7 million people in the United States every year, resulting in increased risk of death and disabilities. A significant portion of TBIs experienced by military personnel are induced by explosive blast devices. Active duty military personnel are especially vulnerable to mild blast-induced (mb)TBI and the associated long-term effects, such as anxiety disorders. Additionally, females are at an increased risk of being diagnosed with anxiety-related disorders. The mechanism by which mbTBI results in anxiety disorders in males and females is unknown. The sexually dimorphic corticotropin-releasing factor (CRF) is a brain signaling system linked to anxiety. CRF and its family of related peptides modulate anxiety-related behaviors by binding to CRF receptor subtypes 1 and 2 (CRFR1, CRFR2, respectively). These receptors are distributed throughout limbic structures that control behaviors related to emotion, memory, and arousal. Therefore, the aim of this study was to understand the link between mbTBI and anxiety by examining the impact of mbTBI on the CRFR system in male and female mice. mbTBI increased anxiety-like behaviors in both males and females (p < 0.05). In the present study, mbTBI did not alter CRFR1 gene expression in males or females. However, mbTBI disrupted CRFR2 gene expression in different limbic structures in males and females. In males, mbTBI increased baseline CRFR2 gene expression in the ventral hippocampus (p < 0.05) and decreased restraint-induced expression in the anterior bed nucleus of the stria terminalis (aBNST) and amygdala (p < 0.05). In females, mbTBI decreased restraint-induced CRFR2 gene expression in the dorsal hippocampus (p < 0.05). The inherent sex differences and the mbTBI-induced decrease in restraint-induced CRFR2 gene expression may contribute to anxiety-like behaviors. The results of the present study show that the response to mbTBI within the limbic structures modulates anxiety in a sex-dependent manner. The studies further suggest that CRFR2 may serve as a potential target to mitigate mbTBI effects.
Collapse
Affiliation(s)
- Ashley L Russell
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
248
|
Harris NA, Winder DG. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors. ACS Chem Neurosci 2018; 9:2173-2187. [PMID: 29851347 PMCID: PMC6146063 DOI: 10.1021/acschemneuro.8b00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.
Collapse
Affiliation(s)
- Nicholas A. Harris
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
- Vanderbilt J.F. Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
249
|
Mood variations decoded from multi-site intracranial human brain activity. Nat Biotechnol 2018; 36:954-961. [DOI: 10.1038/nbt.4200] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
|
250
|
Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci 2018; 19:535-551. [PMID: 30054570 PMCID: PMC6148363 DOI: 10.1038/s41583-018-0039-7] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a prevalent, debilitating and sometimes deadly consequence of exposure to severe psychological trauma. Although effective treatments exist for some individuals, they are limited. New approaches to intervention, treatment and prevention are therefore much needed. In the past few years, the field has rapidly developed a greater understanding of the dysfunctional brain circuits underlying PTSD, a shift in understanding that has been made possible by technological revolutions that have allowed the observation and perturbation of the macrocircuits and microcircuits thought to underlie PTSD-related symptoms. These advances have allowed us to gain a more translational knowledge of PTSD, have provided further insights into the mechanisms of risk and resilience and offer promising avenues for therapeutic discovery.
Collapse
Affiliation(s)
- Robert J Fenster
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Lauren A M Lebois
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|