201
|
Congreve M, Oswald C, Marshall FH. Applying Structure-Based Drug Design Approaches to Allosteric Modulators of GPCRs. Trends Pharmacol Sci 2017. [PMID: 28648526 DOI: 10.1016/j.tips.2017.05.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structural insights have been revealed from X-ray co-complexes of a range of G protein-coupled receptors (GPCRs) and their allosteric ligands. The understanding of how small molecules can modulate the function of this important class of receptors by binding to a diverse range of pockets on and inside the proteins has had a profound impact on the structure-based drug design (SBDD) of new classes of therapeutic agents. The types of allosteric pockets and the mode of modulation as well as the advantages and disadvantages of targeting allosteric pockets (as opposed to the natural orthosteric site) are considered in the context of these new structural findings.
Collapse
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Ltd, Biopark, Welwyn Garden City, UK
| | | | | |
Collapse
|
202
|
Grisshammer R. New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors. Protein Sci 2017; 26:1493-1504. [PMID: 28547763 DOI: 10.1002/pro.3200] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/12/2023]
Abstract
Three-dimensional structure determination of integral membrane proteins has advanced in unprecedented detail our understanding of mechanistic events of how ion channels, transporters, receptors, and enzymes function. This exciting progress required a tremendous amount of methods development, as exemplified here with G protein-coupled receptors (GPCRs): Optimizing the production of GPCRs in recombinant hosts; increasing the probability of crystal formation using high-affinity ligands, nanobodies, and minimal G proteins for co-crystallization, thus stabilizing receptors into one conformation; using the T4 lysozyme technology and other fusion partners to promote crystal contacts; advancing crystallization methods including the development of novel detergents, and miniaturization and automation of the lipidic cubic phase crystallization method; the concept of conformational thermostabilization of GPCRs; and developing microfocus X-ray synchrotron technologies to analyze small GPCR crystals. However, despite immense progress to explain how GPCRs function, many receptors pose intractable hurdles to structure determination at this time. Three emerging methods, serial femtosecond crystallography, micro electron diffraction, and single particle electron cryo-microscopy, hold promise to overcome current limitations in structural membrane biology.
Collapse
Affiliation(s)
- Reinhard Grisshammer
- Department of Health and Human Services, Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, Maryland, 20852
| |
Collapse
|
203
|
Galambos J, Bielik A, Wágner G, Domány G, Kóti J, Béni Z, Szigetvári Á, Sánta Z, Orgován Z, Bobok A, Kiss B, Mikó-Bakk ML, Vastag M, Sághy K, Krasavin M, Gál K, Greiner I, Szombathelyi Z, Keserű GM. Discovery of 4-amino-3-arylsulfoquinolines, a novel non-acetylenic chemotype of metabotropic glutamate 5 (mGlu 5 ) receptor negative allosteric modulators. Eur J Med Chem 2017; 133:240-254. [DOI: 10.1016/j.ejmech.2017.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/09/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|
204
|
Bian Y, Feng Z, Yang P, Xie XQ. Integrated In Silico Fragment-Based Drug Design: Case Study with Allosteric Modulators on Metabotropic Glutamate Receptor 5. AAPS JOURNAL 2017; 19:1235-1248. [PMID: 28560482 DOI: 10.1208/s12248-017-0093-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
GPCR allosteric modulators target at the allosteric binding pockets of G protein-coupled receptors (GPCRs) with indirect influence on the effects of an orthosteric ligand. Such modulators exhibit significant advantages compared to the corresponding orthosteric ligands, including better chemical tractability or physicochemical properties, improved selectivity, and reduced risk of oversensitization towards their receptors. Metabotropic glutamate receptor 5 (mGlu5), a member of class C GPCRs, is a promising therapeutic target for treating many central nervous system diseases. The crystal structure of mGlu5 in the complex with the negative allosteric modulator mavoglurant was recently reported, providing a fundamental model for designing new allosteric modulators. Computational fragment-based drug discovery represents a powerful scaffold-hopping and lead structure-optimization tool for drug design. In the present work, a set of integrated computational methodologies was first used, such as fragment library generation and retrosynthetic combinatorial analysis procedure (RECAP) for novel compound generation. Then, the compounds generated were assessed by benchmark dataset verification, docking studies, and QSAR model simulation. Subsequently, structurally diverse compounds, with reported or unreported scaffolds, can be observed from top 20 in silico synthesized compounds, which were predicted to be potential mGlu5 modulators. In silico compounds with reported scaffolds may fill SAR holes in known, patented series of mGlu5 modulators. And the generation of compounds without reported tests on mGluR indicates that our approach is doable for exploring and designing novel compounds. Our case study of designing allosteric modulators on mGlu5 demonstrated that the established computational fragment-based approach is a useful methodology for facilitating new compound design in the future.
Collapse
Affiliation(s)
- Yuemin Bian
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Peng Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.
| |
Collapse
|
205
|
Harpsøe K, Boesgaard MW, Munk C, Bräuner-Osborne H, Gloriam DE. Structural insight to mutation effects uncover a common allosteric site in class C GPCRs. Bioinformatics 2017; 33:1116-1120. [PMID: 28011766 PMCID: PMC5408886 DOI: 10.1093/bioinformatics/btw784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
Motivation Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry. Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. Results We uncover one common site for both positive and negative modulators with different amino acid layouts that can be utilized to obtain selectivity. Additionally, we show a large potential for structure-based modulator design, especially for four orphan receptors with high similarity to the crystal structures. Availability and Implementation All collated mutagenesis data is available in the GPCRdb mutation browser at http://gpcrdb.org/mutations/ and can be analyzed online or downloaded in excel format. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael W Boesgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Munk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- To whom correspondence should be addressed.
| |
Collapse
|
206
|
Foster DJ, Conn PJ. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron 2017; 94:431-446. [PMID: 28472649 PMCID: PMC5482176 DOI: 10.1016/j.neuron.2017.03.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) play critical roles in regulating brain function. Recent advances have greatly expanded our understanding of these receptors as complex signaling machines that can adopt numerous conformations and modulate multiple downstream signaling pathways. While agonists and antagonists have traditionally been pursued to target GPCRs, allosteric modulators provide several mechanistic advantages, including the ability to distinguish between closely related receptor subtypes. Recently, the discovery of allosteric ligands that confer bias and modulate some, but not all, of a given receptor's downstream signaling pathways can provide pharmacological modulation of brain circuitry with remarkable precision. In addition, allosteric modulators with unprecedented specificity have been developed that can differentiate between subpopulations of a given receptor subtype based on the receptor's dimerization state. These advances are not only providing insight into the biological roles of specific receptor populations, but hold great promise for treating numerous CNS disorders.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
207
|
Investigating the molecular mechanism of positive and negative allosteric modulators in the calcium-sensing receptor dimer. Sci Rep 2017; 7:46355. [PMID: 28417952 PMCID: PMC5394417 DOI: 10.1038/srep46355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
Allosteric modulators that are targeting the calcium-sensing receptor (CaSR) hold great therapeutic potential, and elucidating the molecular basis for modulation would thus benefit the development of novel therapeutics. In the present study, we aimed at investigating the mechanism of allosteric modulation in CaSR by testing dimers carrying mutations in the allosteric site of one or both of the subunits. To ensure measurements on a well-defined dimer composition, we applied a trans-activation system in which only the specific heterodimer of two loss-of-function mutants responded to agonist. Although one of these mutants was potentiated by a positive allosteric modulator, we showed that receptor activity was further potentiated in a trans-activation heterodimer containing a single allosteric site, however only when the allosteric site was located in the subunit responsible for G protein coupling. On the contrary, preventing activation in both subunits was necessary for obtaining full inhibition by a negative allosteric modulator. These findings correlate with the proposed activation mechanism of the metabotropic glutamate receptors (mGluRs), in which only a single transmembrane domain is activated at a time. CaSR and mGluRs belong to the class C G protein-coupled receptors, and our findings thus suggest that the activation mechanism is common to this subfamily.
Collapse
|
208
|
Freyd T, Warszycki D, Mordalski S, Bojarski AJ, Sylte I, Gabrielsen M. Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS One 2017; 12:e0173889. [PMID: 28323850 PMCID: PMC5360267 DOI: 10.1371/journal.pone.0173889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system, and disturbances in the GABAergic system have been implicated in numerous neurological and neuropsychiatric diseases. The GABAB receptor is a heterodimeric class C G protein-coupled receptor (GPCR) consisting of GABAB1a/b and GABAB2 subunits. Two GABAB receptor ligand binding sites have been described, namely the orthosteric GABA binding site located in the extracellular GABAB1 Venus fly trap domain and the allosteric binding site found in the GABAB2 transmembrane domain. To date, the only experimentally solved three-dimensional structures of the GABAB receptor are of the Venus fly trap domain. GABAB receptor allosteric modulators, however, show great therapeutic potential, and elucidating the structure of the GABAB2 transmembrane domain may lead to development of novel drugs and increased understanding of the allosteric mechanism of action. Despite the lack of x-ray crystal structures of the GABAB2 transmembrane domain, multiple crystal structures belonging to other classes of GPCRs than class A have been released within the last years. More closely related template structures are now available for homology modelling of the GABAB receptor. Here, multiple homology models of the GABAB2 subunit of the GABAB receptor have been constructed using templates from class A, B and C GPCRs, and docking of five clusters of positive allosteric modulators and decoys has been undertaken to select models that enrich the active compounds. Using this ligand-guided approach, eight GABAB2 homology models have been chosen as possible structural representatives of the transmembrane domain of the GABAB2 subunit. To the best of our knowledge, the present study is the first to describe homology modelling of the transmembrane domain of the GABAB2 subunit and the docking of positive allosteric modulators in the receptor.
Collapse
Affiliation(s)
- Thibaud Freyd
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Dawid Warszycki
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Stefan Mordalski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Mari Gabrielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
209
|
Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists. Proc Natl Acad Sci U S A 2017; 114:2568-2573. [PMID: 28228527 DOI: 10.1073/pnas.1700001114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sweet taste in humans is mediated by the TAS1R2/TAS1R3 G protein-coupled receptor (GPCR), which belongs to the class C family that also includes the metabotropic glutamate and γ-aminobutyric acid receptors. We report here the predicted 3D structure of the full-length TAS1R2/TAS1R3 heterodimer, including the Venus Flytrap Domains (VFDs) [in the closed-open (co) active conformation], the cysteine-rich domains (CRDs), and the transmembrane domains (TMDs) at the TM56/TM56 interface. We observe that binding of agonists to VFD2 of TAS1R2 leads to major conformational changes to form a TM6/TM6 interface between TMDs of TAS1R2 and TAS1R3, which is consistent with the activation process observed biophysically on the metabotropic glutamate receptor 2 homodimer. We find that the initial effect of the agonist is to pull the bottom part of VFD3/TAS1R3 toward the bottom part of VFD2/TAS1R2 by ∼6 Å and that these changes get transmitted from VFD2 of TAS1R2 (where agonists bind) through the VFD3 and the CRD3 to the TMD3 of TAS1R3 (which couples to the G protein). These structural transformations provide a detailed atomistic mechanism for the activation process in GPCR, providing insights and structural details that can now be validated through mutation experiments.
Collapse
|
210
|
Lundström L, Bissantz C, Beck J, Dellenbach M, Woltering TJ, Wichmann J, Gatti S. Reprint of Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2. Neuropharmacology 2017; 115:115-127. [PMID: 28216000 DOI: 10.1016/j.neuropharm.2016.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022]
Abstract
The metabotropic glutamate receptor 2 (mGlu2) plays an important role in the presynaptic control of glutamate release and several mGlu2 positive allosteric modulators (PAMs) have been under assessment for their potential as antipsychotics. The binding mode of mGlu2 PAMs is better characterized in functional terms while few data are available on the relationship between allosteric and orthosteric binding sites. Pharmacological studies characterizing binding and effects of two different chemical series of mGlu2 PAMs are therefore carried out here using the radiolabeled mGlu2 agonist 3[H]-LY354740 and mGlu2 PAM 3[H]-2,2,2-TEMPS. A multidimensional approach to the PAM mechanism of action shows that mGlu2 PAMs increase the affinity of 3[H]-LY354740 for the orthosteric site of mGlu2 as well as the number of 3[H]-LY354740 binding sites. 3[H]-2,2,2-TEMPS binding is also enhanced by the presence of LY354740. New residues in the allosteric rat mGlu2 binding pocket are identified to be crucial for the PAMs ligand binding, among these Tyr3.40 and Asn5.46. Also of remark, in the described experimental conditions S731A (Ser5.42) residue is important only for the mGlu2 PAM LY487379 and not for the compound PAM-1: an example of the structural differences among these mGlu2 PAMs. This study provides a summary of the information generated in the past decade on mGlu2 PAMs adding a detailed molecular investigation of PAM binding mode. Differences among mGlu2 PAM compounds are discussed as well as the mGlu2 regions interacting with mGlu2 PAM and NAM agents and residues driving mGlu2 PAM selectivity. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- L Lundström
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - C Bissantz
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - J Beck
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - M Dellenbach
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - T J Woltering
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - J Wichmann
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - S Gatti
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland.
| |
Collapse
|
211
|
Gómez-Santacana X, Dalton JA, Rovira X, Pin JP, Goudet C, Gorostiza P, Giraldo J, Llebaria A. Positional isomers of bispyridine benzene derivatives induce efficacy changes on mGlu 5 negative allosteric modulation. Eur J Med Chem 2017; 127:567-576. [DOI: 10.1016/j.ejmech.2017.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/21/2022]
|
212
|
Leach K, Gregory KJ. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol Res 2017; 116:105-118. [DOI: 10.1016/j.phrs.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
213
|
Gómez-Santacana X, Pittolo S, Rovira X, Lopez M, Zussy C, Dalton JAR, Faucherre A, Jopling C, Pin JP, Ciruela F, Goudet C, Giraldo J, Gorostiza P, Llebaria A. Illuminating Phenylazopyridines To Photoswitch Metabotropic Glutamate Receptors: From the Flask to the Animals. ACS CENTRAL SCIENCE 2017; 3:81-91. [PMID: 28149957 PMCID: PMC5269660 DOI: 10.1021/acscentsci.6b00353] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Phenylazopyridines are photoisomerizable compounds with high potential to control biological functions with light. We have obtained a series of phenylazopyridines with light dependent activity as negative allosteric modulators (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5). Here we describe the factors needed to achieve an operational molecular photoisomerization and its effective translation into in vitro and in vivo receptor photoswitching, which includes zebrafish larva motility and the regulation of the antinociceptive effects in mice. The combination of light and some specific phenylazopyridine ligands displays atypical pharmacological profiles, including light-dependent receptor overactivation, which can be observed both in vitro and in vivo. Remarkably, the localized administration of light and a photoswitchable compound in the peripheral tissues of rodents or in the brain amygdalae results in an illumination-dependent analgesic effect. The results reveal a robust translation of the phenylazopyridine photoisomerization to a precise photoregulation of biological activity.
Collapse
Affiliation(s)
- Xavier Gómez-Santacana
- MCS,
Laboratory of Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Institut
de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Silvia Pittolo
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Xavier Rovira
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Marc Lopez
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat
de Barcelona, Barcelona, Spain
- Institut
de Neurociències, Universitat de
Barcelona, Barcelona, Spain
| | - Charleine Zussy
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - James A. R. Dalton
- Institut
de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Adèle Faucherre
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Chris Jopling
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Francisco Ciruela
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat
de Barcelona, Barcelona, Spain
- Institut
de Neurociències, Universitat de
Barcelona, Barcelona, Spain
| | - Cyril Goudet
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Jesús Giraldo
- Institut
de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Network Biomedical Research Center on Mental Health
(CIBERSAM), Madrid, Spain
| | - Pau Gorostiza
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Network
Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Madrid, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Amadeu Llebaria
- MCS,
Laboratory of Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona, Spain
| |
Collapse
|
214
|
Chéron JB, Golebiowski J, Antonczak S, Fiorucci S. The anatomy of mammalian sweet taste receptors. Proteins 2017; 85:332-341. [PMID: 27936499 DOI: 10.1002/prot.25228] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/09/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023]
Abstract
All sweet-tasting compounds are detected by a single G-protein coupled receptor (GPCR), the heterodimer T1R2-T1R3, for which no experimental structure is available. The sweet taste receptor is a class C GPCR, and the recently published crystallographic structures of metabotropic glutamate receptor (mGluR) 1 and 5 provide a significant step forward for understanding structure-function relationships within this family. In this article, we recapitulate more than 600 single point site-directed mutations and available structural data to obtain a critical alignment of the sweet taste receptor sequences with respect to other class C GPCRs. Using this alignment, a homology 3D-model of the human sweet taste receptor is built and analyzed to dissect out the role of key residues involved in ligand binding and those responsible for receptor activation. Proteins 2017; 85:332-341. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jean-Baptiste Chéron
- Université Côte d'azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Jérôme Golebiowski
- Université Côte d'azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
- Department of Brain and Cognitive Science, DGIST (Daegu Gyeongbuk Institute of Science & Technology), Daegu, Korea
| | - Serge Antonczak
- Université Côte d'azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Sébastien Fiorucci
- Université Côte d'azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| |
Collapse
|
215
|
Congreve M, Bortolato A, Brown G, Cooke R. Modeling and Design for Membrane Protein Targets. COMPREHENSIVE MEDICINAL CHEMISTRY III 2017:145-188. [DOI: 10.1016/b978-0-12-409547-2.12358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
216
|
Switching Activity of Allosteric Modulators Controlled by a Cluster of Residues Forming a Pressure Point in the mGluR5 GPCR. ADVANCES IN QUANTUM CHEMISTRY 2017. [DOI: 10.1016/bs.aiq.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
217
|
Alfonzo-Méndez MA, Alcántara-Hernández R, García-Sáinz JA. Novel Structural Approaches to Study GPCR Regulation. Int J Mol Sci 2016; 18:E27. [PMID: 28025563 PMCID: PMC5297662 DOI: 10.3390/ijms18010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Upon natural agonist or pharmacological stimulation, G protein-coupled receptors (GPCRs) are subjected to posttranslational modifications, such as phosphorylation and ubiquitination. These posttranslational modifications allow protein-protein interactions that turn off and/or switch receptor signaling as well as trigger receptor internalization, recycling or degradation, among other responses. Characterization of these processes is essential to unravel the function and regulation of GPCR. METHODS In silico analysis and methods such as mass spectrometry have emerged as novel powerful tools. Both approaches have allowed proteomic studies to detect not only GPCR posttranslational modifications and receptor association with other signaling macromolecules but also to assess receptor conformational dynamics after ligand (agonist/antagonist) association. RESULTS this review aims to provide insights into some of these methodologies and to highlight how their use is enhancing our comprehension of GPCR function. We present an overview using data from different laboratories (including our own), particularly focusing on free fatty acid receptor 4 (FFA4) (previously known as GPR120) and α1A- and α1D-adrenergic receptors. From our perspective, these studies contribute to the understanding of GPCR regulation and will help to design better therapeutic agents.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Rocío Alcántara-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
218
|
Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol 2016; 7:563. [PMID: 28018229 PMCID: PMC5156698 DOI: 10.3389/fphys.2016.00563] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Parathyroid hormone (PTH) defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well-established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR).
Collapse
Affiliation(s)
- Arthur D Conigrave
- Faculties of Science and Medicine, School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
219
|
Successful Strategies to Determine High-Resolution Structures of GPCRs. Trends Pharmacol Sci 2016; 37:1055-1069. [DOI: 10.1016/j.tips.2016.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/26/2022]
|
220
|
Pin JP, Bettler B. Organization and functions of mGlu and GABAB receptor complexes. Nature 2016; 540:60-68. [DOI: 10.1038/nature20566] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023]
|
221
|
Lundström L, Bissantz C, Beck J, Dellenbach M, Woltering T, Wichmann J, Gatti S. Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2. Neuropharmacology 2016; 111:253-265. [DOI: 10.1016/j.neuropharm.2016.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 02/02/2023]
|
222
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
223
|
Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors. Sci Rep 2016; 6:37290. [PMID: 27849063 PMCID: PMC5110974 DOI: 10.1038/srep37290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals.
Collapse
|
224
|
Janero DR, Thakur GA. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opin Drug Discov 2016; 11:1223-1237. [PMID: 27712124 DOI: 10.1080/17460441.2016.1245289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands. These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential. Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints. Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity. In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs. Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.
Collapse
Affiliation(s)
- David R Janero
- a Center for Drug Discovery; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences; Department of Chemistry and Chemical Biology, College of Science; and Health Sciences Entrepreneurs , Northeastern University , Boston , MA , USA
| | - Ganesh A Thakur
- b Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
225
|
Lu M, Wu B. Structural studies of G protein-coupled receptors. IUBMB Life 2016; 68:894-903. [PMID: 27766738 DOI: 10.1002/iub.1578] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/08/2016] [Indexed: 11/08/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest membrane protein family. These receptors sense a variety of signaling molecules, activate multiple intracellular signal pathways, and act as the targets of over 40% of marketed drugs. Recent progress on GPCR structural studies provides invaluable insights into the structure-function relationship of the GPCR superfamily, deepening our understanding about the molecular mechanisms of GPCR signal transduction. Here, we review recent breakthroughs on GPCR structure determination and the structural features of GPCRs, and take the structures of chemokine receptor CCR5 and purinergic receptors P2Y1 R and P2Y12 R as examples to discuss the importance of GPCR structures on functional studies and drug discovery. In addition, we discuss the prospect of GPCR structure-based drug discovery. © 2016 IUBMB Life, 68(11):894-903, 2016.
Collapse
Affiliation(s)
- Mengjie Lu
- CAS Key laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Beili Wu
- CAS Key laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| |
Collapse
|
226
|
Allosteric binding: structures reveal new ways to tame G protein-coupled receptors. Future Med Chem 2016; 8:2005-2007. [PMID: 27739332 DOI: 10.4155/fmc-2016-0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
227
|
Ngo T, Kufareva I, Coleman JL, Graham RM, Abagyan R, Smith NJ. Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br J Pharmacol 2016; 173:2934-51. [PMID: 26837045 PMCID: PMC5341249 DOI: 10.1111/bph.13452] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/18/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
GPCRs are the most successful pharmaceutical targets in history. Nevertheless, the pharmacology of many GPCRs remains inaccessible as their endogenous or exogenous modulators have not been discovered. Tools that explore the physiological functions and pharmacological potential of these 'orphan' GPCRs, whether they are endogenous and/or surrogate ligands, are therefore of paramount importance. Rates of receptor deorphanization determined by traditional reverse pharmacology methods have slowed, indicating a need for the development of more sophisticated and efficient ligand screening approaches. Here, we discuss the use of structure-based ligand discovery approaches to identify small molecule modulators for exploring the function of orphan GPCRs. These studies have been buoyed by the growing number of GPCR crystal structures solved in the past decade, providing a broad range of template structures for homology modelling of orphans. This review discusses the methods used to establish the appropriate signalling assays to test orphan receptor activity and provides current examples of structure-based methods used to identify ligands of orphan GPCRs. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Tony Ngo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - James Lj Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Nicola J Smith
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.
| |
Collapse
|
228
|
Hannan FM, Babinsky VN, Thakker RV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J Mol Endocrinol 2016; 57:R127-42. [PMID: 27647839 PMCID: PMC5064759 DOI: 10.1530/jme-16-0124] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
The extracellular calcium (Ca(2+) o)-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca(2+) o concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca(2+) o homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα11) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα11 to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK Department of Musculoskeletal BiologyInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Valerie N Babinsky
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
229
|
Mechanism of Assembly and Cooperativity of Homomeric and Heteromeric Metabotropic Glutamate Receptors. Neuron 2016; 92:143-159. [PMID: 27641494 DOI: 10.1016/j.neuron.2016.08.036] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Accepted: 08/19/2016] [Indexed: 11/23/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to a wide variety of extracellular stimuli. GPCR dimerization may expand signaling diversity and tune functionality, but little is known about the mechanisms of subunit assembly and interaction or the signaling properties of heteromers. Using single-molecule subunit counting on class C metabotropic glutamate receptors (mGluRs), we map dimerization determinants and define a heterodimerization profile. Intersubunit fluorescence resonance energy transfer measurements reveal that interactions between ligand-binding domains control the conformational rearrangements underlying receptor activation. Selective liganding with photoswitchable tethered agonists conjugated to one or both subunits of covalently linked mGluR2 homodimers reveals that receptor activation is highly cooperative. Strikingly, this cooperativity is asymmetric in mGluR2/mGluR3 heterodimers. Our results lead to a model of cooperative activation of mGluRs that provides a framework for understanding how class C GPCRs couple extracellular binding to dimer reorganization and G protein activation.
Collapse
|
230
|
Cid JM, Tresadern G, Vega JA, de Lucas AI, Del Cerro A, Matesanz E, Linares ML, García A, Iturrino L, Pérez-Benito L, Macdonald GJ, Oehlrich D, Lavreysen H, Peeters L, Ceusters M, Ahnaou A, Drinkenburg W, Mackie C, Somers M, Trabanco AA. Discovery of 8-Trifluoromethyl-3-cyclopropylmethyl-7-[(4-(2,4-difluorophenyl)-1-piperazinyl)methyl]-1,2,4-triazolo[4,3-a]pyridine (JNJ-46356479), a Selective and Orally Bioavailable mGlu2 Receptor Positive Allosteric Modulator (PAM). J Med Chem 2016; 59:8495-507. [PMID: 27579727 DOI: 10.1021/acs.jmedchem.6b00913] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Positive allosteric modulators of the metabotropic glutamate 2 receptor have generated great interest in the past decade. There is mounting evidence of their potential as therapeutic agents in the treatment of multiple central nervous system disorders. We have previously reported substantial efforts leading to potent and selective mGlu2 PAMs. However, finding compounds with the optimal combination of in vitro potency and good druglike properties has remained elusive, in part because of the hydrophobic nature of the allosteric binding site. Herein, we report on the lead optimization process to overcome the poor solubility inherent to the advanced lead 6. Initial prototypes already showed significant improvements in solubility while retaining good functional activity but displayed new liabilities associated with metabolism and hERG inhibition. Subsequent subtle modifications efficiently addressed those issues leading to the identification of compound 27 (JNJ-46356479). This new lead represents a more balanced profile that offers a significant improvement on the druglike attributes compared to previously reported leads.
Collapse
Affiliation(s)
- Jose María Cid
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Gary Tresadern
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Juan Antonio Vega
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Ana Isabel de Lucas
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Alcira Del Cerro
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Encarnación Matesanz
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - María Lourdes Linares
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Aránzazu García
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Laura Iturrino
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Laura Pérez-Benito
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona , Bellaterra 08193, Spain
| | - Gregor J Macdonald
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Hilde Lavreysen
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Luc Peeters
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Marc Ceusters
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Abdellah Ahnaou
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | | | - Claire Mackie
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Marijke Somers
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Andrés A Trabanco
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| |
Collapse
|
231
|
Niclosamide is a Negative Allosteric Modulator of Group I Metabotropic Glutamate Receptors: Implications for Neuropathic Pain. Pharm Res 2016; 33:3044-3056. [DOI: 10.1007/s11095-016-2027-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/22/2016] [Indexed: 01/04/2023]
|
232
|
Lenselink E, Louvel J, Forti AF, van Veldhoven JPD, de Vries H, Mulder-Krieger T, McRobb FM, Negri A, Goose J, Abel R, van
Vlijmen HWT, Wang L, Harder E, Sherman W, IJzerman AP, Beuming T. Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation. ACS OMEGA 2016; 1:293-304. [PMID: 30023478 PMCID: PMC6044636 DOI: 10.1021/acsomega.6b00086] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 05/11/2023]
Abstract
The rapid growth of structural information for G-protein-coupled receptors (GPCRs) has led to a greater understanding of their structure, function, selectivity, and ligand binding. Although novel ligands have been identified using methods such as virtual screening, computationally driven lead optimization has been possible only in isolated cases because of challenges associated with predicting binding free energies for related compounds. Here, we provide a systematic characterization of the performance of free-energy perturbation (FEP) calculations to predict relative binding free energies of congeneric ligands binding to GPCR targets using a consistent protocol and no adjustable parameters. Using the FEP+ package, first we validated the protocol, which includes a full lipid bilayer and explicit solvent, by predicting the binding affinity for a total of 45 different ligands across four different GPCRs (adenosine A2AAR, β1 adrenergic, CXCR4 chemokine, and δ opioid receptors). Comparison with experimental binding affinity measurements revealed a highly predictive ranking correlation (average spearman ρ = 0.55) and low root-mean-square error (0.80 kcal/mol). Next, we applied FEP+ in a prospective project, where we predicted the affinity of novel, potent adenosine A2A receptor (A2AR) antagonists. Four novel compounds were synthesized and tested in a radioligand displacement assay, yielding affinity values in the nanomolar range. The affinity of two out of the four novel ligands (plus three previously reported compounds) was correctly predicted (within 1 kcal/mol), including one compound with approximately a tenfold increase in affinity compared to the starting compound. Detailed analyses of the simulations underlying the predictions provided insights into the structural basis for the two cases where the affinity was overpredicted. Taken together, these results establish a protocol for systematically applying FEP+ to GPCRs and provide guidelines for identifying potent molecules in drug discovery lead optimization projects.
Collapse
Affiliation(s)
- Eelke
B. Lenselink
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Julien Louvel
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Anna F. Forti
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Jacobus P. D. van Veldhoven
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Henk de Vries
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Thea Mulder-Krieger
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Fiona M. McRobb
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Ana Negri
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Joseph Goose
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Herman W. T. van
Vlijmen
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Lingle Wang
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Edward Harder
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Woody Sherman
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Adriaan P. IJzerman
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
- E-mail: . Phone: +31-71-5274651. Fax: +31-71-5274277 (A.P.I.)
| | - Thijs Beuming
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
- E-mail: . Phone: +1 (212) 548-2333. Fax: +1 (212) 295-5801 (T.B.)
| |
Collapse
|
233
|
Shiroishi M, Moriya M, Ueda T. Micro-scale and rapid expression screening of highly expressed and/or stable membrane protein variants in Saccharomyces cerevisiae. Protein Sci 2016; 25:1863-72. [PMID: 27479358 DOI: 10.1002/pro.2993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/16/2016] [Accepted: 07/29/2016] [Indexed: 11/07/2022]
Abstract
Purification of milligram quantities of target proteins is required for structural and biophysical studies. However, mammalian membrane proteins, many of which are important therapeutic targets, are too unstable to be expressed in heterologous hosts and to be solubilized by detergents. One of the most promising ways to overcome these limitations is to stabilize the membrane proteins by generating variants via introduction of truncated flexible regions, fusion partners, and site-directed mutagenesis. Therefore, an effective screening strategy is a key to obtaining successful protein stabilization. Herein, we report the micro-scale and high-throughput screening of stabilized membrane protein variants using Saccharomyces cerevisiae as a host. All steps of the screening, including cultivation and disruption of cells, solubilization of the target protein, and the pretreatment for fluorescence-detected size exclusion chromatography (FSEC), could be performed in a 96-well microplate format. We demonstrated that the dispersion among wells was small, enabling detection of a small but important improvement in the protein stability. We also demonstrated that the thermally stable mutants of a human G protein-coupled receptor could be distinguished based on an increase of the peak height in the FSEC profile, which was well correlated with increased ligand binding activity of the protein. This strategy represents a significant platform for handling numerous mutants, similar to alanine scanning.
Collapse
Affiliation(s)
- Mitsunori Shiroishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Mai Moriya
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
234
|
Vaidehi N, Bhattacharya S. Allosteric communication pipelines in G-protein-coupled receptors. Curr Opin Pharmacol 2016; 30:76-83. [PMID: 27497048 DOI: 10.1016/j.coph.2016.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
The binding of ligands to G-protein-coupled receptors (GPCRs) in the extracellular region transmits the signal to the intracellular region to initiate coupling to effector proteins. The mechanism of this allosteric communication remains largely unexplored. Knowledge of the residues involved in the pipeline of the allosteric communication from the extracellular to the intracellular region will provide means to (a) design ligands with bias in potency towards one signaling pathway over others, and (b) design allosteric modulators that show subtype selectivity in GPCRs. In this review we describe the current state of the computational methods that provide insights into the allosteric communication in GPCRs and elucidate how this information can be used to design allosteric modulators.
Collapse
Affiliation(s)
- Nagarajan Vaidehi
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | - Supriyo Bhattacharya
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
235
|
Magnani F, Serrano-Vega MJ, Shibata Y, Abdul-Hussein S, Lebon G, Miller-Gallacher J, Singhal A, Strege A, Thomas JA, Tate CG. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc 2016; 11:1554-71. [PMID: 27466713 PMCID: PMC5268090 DOI: 10.1038/nprot.2016.088] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thermostability of an integral membrane protein (MP) in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals that are suitable for structure determination. However, many mammalian MPs are too unstable for crystallization. We developed a thermostabilization strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes ∼6-12 months to thermostabilize a G-protein-coupled receptor (GPCR) containing 300 amino acid (aa) residues. The resulting thermostabilized MPs are more easily crystallized and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs because it is possible to determine multiple structures of the thermostabilized receptors bound to low-affinity ligands. Protocols and advice are given on how to develop thermostability assays for MPs and how to combine mutations to make an optimally stable mutant suitable for structural studies. The steps in the procedure include the generation of ∼300 site-directed mutants by Ala/Leu scanning mutagenesis, the expression of each mutant in mammalian cells by transient transfection and the identification of thermostable mutants using a thermostability assay that is based on binding of an (125)I-labeled radioligand to the unpurified, detergent-solubilized MP. Individual thermostabilizing point mutations are then combined to make an optimally stable MP that is suitable for structural biology and other biophysical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ankita Singhal
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Annette Strege
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jennifer A. Thomas
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
236
|
Munk C, Harpsøe K, Hauser AS, Isberg V, Gloriam DE. Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Curr Opin Pharmacol 2016; 30:51-58. [PMID: 27475047 DOI: 10.1016/j.coph.2016.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of human membrane proteins, as well as drug targets. A recent boom in GPCR structural biology has provided detailed images of receptor ligand binding sites and interactions on the molecular level. An ever-increasing number of ligands is reported that exhibit activity through multiple receptors, binding in allosteric sites, and bias towards different intracellular signalling pathways. Furthermore, a wealth of single point mutants has accumulated in literature and public databases. Integrating these structural and mutagenesis data will help elucidate new GPCR ligand binding sites, and ultimately design drugs with tailored pharmacological activity.
Collapse
Affiliation(s)
- Christian Munk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Vignir Isberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark.
| |
Collapse
|
237
|
Vickery ON, Machtens JP, Zachariae U. Membrane potentials regulating GPCRs: insights from experiments and molecular dynamics simulations. Curr Opin Pharmacol 2016; 30:44-50. [PMID: 27474871 PMCID: PMC5080454 DOI: 10.1016/j.coph.2016.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/27/2023]
Abstract
G-protein coupled receptors (GPCRs) form the largest class of membrane proteins in humans and the targets of most present drugs. Membrane potential is one of the defining characteristics of living cells. Recent work has shown that the membrane voltage, and changes thereof, modulates signal transduction and ligand binding in GPCRs. As it may allow differential signalling patterns depending on tissue, cell type, and the excitation status of excitable cells, GPCR voltage sensitivity could have important implications for their pharmacology. This review summarises recent experimental insights on GPCR voltage regulation and the role of molecular dynamics simulations in identifying the structural basis of GPCR voltage-sensing. We discuss the potential significance for drug design on GPCR targets from excitable and non-excitable cells.
Collapse
Affiliation(s)
- Owen N Vickery
- Physics, School of Science and Engineering, University of Dundee, Nethergate Dundee DD1 4NH, UK; Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ulrich Zachariae
- Physics, School of Science and Engineering, University of Dundee, Nethergate Dundee DD1 4NH, UK; Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
238
|
Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, Subramanyam P, Brown AP, Brennan SC, Mun HC, Bush M, Chen Y, Nguyen TX, Cao B, Chang DD, Quick M, Conigrave AD, Colecraft HM, McDonald P, Fan QR. Structural mechanism of ligand activation in human calcium-sensing receptor. eLife 2016; 5. [PMID: 27434672 PMCID: PMC4977154 DOI: 10.7554/elife.13662] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+ homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+ and PO43- ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ ions stabilize the active state, PO43- ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. DOI:http://dx.doi.org/10.7554/eLife.13662.001 Calcium ions regulate many processes in the human body. The calcium-sensing receptor, called CaSR, is responsible for maintaining a stable level of calcium ions in the blood. This receptor can detect small changes in the concentration of calcium ions, and activates signalling events within the cell to restore the level of calcium ions back to normal. Abnormal activity of this receptor is associated with severe diseases in humans CaSR is found in the surface membrane of cells and belongs to a family of proteins called G-protein coupled receptors. Much of the protein extends out of the cell and interacts with calcium ions, phosphate ions and certain other molecules such as amino acids. However, it was not well understood how these small molecules bind to CaSR and how this activates the receptor. Geng et al. have now used a technique called X-ray crystallography to view the three-dimensional structure of the exterior domain of CaSR in its resting state and active state. These structures revealed that, contrary to expectations, calcium ions are not the main activator of the receptor. Instead, Geng et al. found that CaSR adopts an inactive state in the absence or presence of calcium ions, while the active state only forms when an amino acid is bound. Furthermore investigation showed that calcium ions are needed to stabilise the active form, while phosphate ions keep the inactive form stable. Geng et al. also identified the shape changes that must occur as CaSR transitions from its inactive to its active state. In particular, an amino acid binding to the exterior domain causes it to close like a venus flytrap, which is a crucial step in activating the receptor. Taken together, the findings show that the amino acids and calcium ions act jointly to fully activate CaSR. The next steps are to determine the structure of the entire receptor with and without its small molecule partners and to use these structures to design drugs that can alter CaSR’s activity in order to treat human diseases. DOI:http://dx.doi.org/10.7554/eLife.13662.002
Collapse
Affiliation(s)
- Yong Geng
- Department of Pharmacology, Columbia University, New York, United States.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lidia Mosyak
- Department of Pharmacology, Columbia University, New York, United States
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Hao Zuo
- Department of Pharmacology, Columbia University, New York, United States
| | - Emmanuel Sturchler
- Department of Molecular Therapeutics, The Scripps Translational Science Institute, Jupiter, United States
| | - Tat Cheung Cheng
- Department of Pharmacology, Columbia University, New York, United States
| | - Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Alice P Brown
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Sarah C Brennan
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Hee-Chang Mun
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Martin Bush
- Department of Pharmacology, Columbia University, New York, United States
| | - Yan Chen
- Department of Pharmacology, Columbia University, New York, United States
| | - Trang X Nguyen
- Department of Psychiatry, Columbia University, New York, United States
| | - Baohua Cao
- Department of Pharmacology, Columbia University, New York, United States
| | - Donald D Chang
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Matthias Quick
- Department of Psychiatry, Columbia University, New York, United States
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Patricia McDonald
- Department of Molecular Therapeutics, The Scripps Translational Science Institute, Jupiter, United States
| | - Qing R Fan
- Department of Pharmacology, Columbia University, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States
| |
Collapse
|
239
|
Gregory KJ, Velagaleti R, Thal DM, Brady RM, Christopoulos A, Conn PJ, Lapinsky DJ. Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators. ACS Chem Biol 2016; 11:1870-9. [PMID: 27115427 DOI: 10.1021/acschembio.6b00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of current drug targets. In particular, small-molecule allosteric modulators offer substantial potential for selectively "tuning" GPCR activity. However, there remains a critical need for experimental strategies that unambiguously determine direct allosteric ligand-GPCR interactions, to facilitate both chemical biology studies and rational structure-based drug design. We now report the development and use of first-in-class clickable allosteric photoprobes for a GPCR based on metabotropic glutamate receptor 5 (mGlu5) negative allosteric modulator (NAM) chemotypes. Select acetylenic mGlu5 NAM lead compounds were rationally modified to contain either a benzophenone or an aryl azide as a photoreactive functional group, enabling irreversible covalent attachment to mGlu5 via photoactivation. Additionally, a terminal alkyne or an aliphatic azide was incorporated as a click chemistry handle, allowing chemoselective attachment of fluorescent moieties to the irreversibly mGlu5-bound probe via tandem photoaffinity labeling-bioorthogonal conjugation. These clickable photoprobes retained submicromolar affinity for mGlu5 and negative cooperativity with glutamate, interacted with the "common allosteric-binding site," displayed slow binding kinetics, and could irreversibly label mGlu5 following UV exposure. We depleted the number of functional mGlu5 receptors using an irreversibly bound NAM to elucidate and delineate orthosteric agonist affinity and efficacy. Finally, successful conjugation of fluorescent dyes via click chemistry was demonstrated for each photoprobe. In the future, these clickable photoprobes are expected to aid our understanding of the structural basis of mGlu5 allosteric modulation. Furthermore, tandem photoaffinity labeling-bioorthogonal conjugation is expected to be a broadly applicable experimental strategy across the entire GPCR superfamily.
Collapse
Affiliation(s)
- Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Ranganadh Velagaleti
- Division
of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, United States
| | - David M. Thal
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Ryan M. Brady
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - P. Jeffrey Conn
- Vanderbilt
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David J. Lapinsky
- Division
of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
240
|
Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: Implications for optimizing preclinical neuroscience drug discovery. Neuropharmacology 2016; 115:60-72. [PMID: 27392634 DOI: 10.1016/j.neuropharm.2016.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Allosteric modulators, that exhibit no intrinsic agonist activity, offer the advantage of spatial and temporal fine-tuning of endogenous agonist activity, allowing the potential for increased selectivity, reduced adverse effects and improved clinical outcomes. Some allosteric ligands can differentially activate and/or modulate distinct signaling pathways arising from the same receptor, phenomena referred to as 'biased agonism' and 'biased modulation'. Emerging evidence for CNS disorders with glutamatergic dysfunction suggests the metabotropic glutamate receptor subtype 5 (mGlu5) is a promising target. Current mGlu5 allosteric modulators have largely been classified based on modulation of intracellular calcium (iCa2+) responses to orthosteric agonists alone. We assessed eight mGlu5 allosteric modulators previously classified as mGlu5 PAMs or PAM-agonists representing four distinct chemotypes across multiple measures of receptor activity, to explore their potential for engendering biased agonism and/or modulation. Relative to the reference orthosteric agonist, DHPG, the eight allosteric ligands exhibited distinct biased agonism fingerprints for iCa2+ mobilization, IP1 accumulation and ERK1/2 phosphorylation in HEK293A cells stably expressing mGlu5 and in cortical neuron cultures. VU0424465, DPFE and VU0409551 displayed the most disparate biased signaling fingerprints in both HEK293A cells and cortical neurons that may account for the marked differences observed previously for these ligands in vivo. Select mGlu5 allosteric ligands also showed 'probe dependence' with respect to their cooperativity with different orthosteric agonists, as well as biased modulation for the magnitude of positive cooperativity observed. Unappreciated biased agonism and modulation may contribute to unanticipated effects (both therapeutic and adverse) when translating from recombinant systems to preclinical models. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
241
|
Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. Molecular dynamics simulations and structure-based network analysis reveal structural and functional aspects of G-protein coupled receptor dimer interactions. J Comput Aided Mol Des 2016; 30:489-512. [PMID: 27349423 DOI: 10.1007/s10822-016-9919-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/22/2016] [Indexed: 01/25/2023]
Abstract
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
Collapse
Affiliation(s)
- Fotis A Baltoumas
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Margarita C Theodoropoulou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
- Department of Computer Science and Biomedical Informatics, University of Central Greece, 35131, Lamia, Greece
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| |
Collapse
|
242
|
Jazayeri A, Andrews SP, Marshall FH. Structurally Enabled Discovery of Adenosine A 2A Receptor Antagonists. Chem Rev 2016; 117:21-37. [PMID: 27333206 DOI: 10.1021/acs.chemrev.6b00119] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade there has been a revolution in the field of G protein-coupled receptor (GPCR) structural biology. Many years of innovative research from different areas have come together to fuel this significant change in the fortunes of this field, which for many years was characterized by the paucity of high-resolution structures. The determination to succeed has been in part due to the recognized importance of these proteins as drug targets, and although the pharmaceutical industry has been focusing on these receptors, it can be justifiably argued and demonstrated that many of the approved and commercially successful GPCR drugs can be significantly improved to increase efficacy and/or reduce undesired side effects. In addition, many validated targets in this class remain to be drugged. It is widely recognized that application of structure-based drug design approaches can help medicinal chemists a long way toward discovering better drugs. The achievement of structural biologists in providing high-resolution insight is beginning to transform drug discovery efforts, and there are a number of GPCR drugs that have been discovered by use of structural information that are in clinical development. This review aims to highlight the key developments that have brought success to GPCR structure resolution efforts and exemplify the practical application of structural information for the discovery of adenosine A2A receptor antagonists that have potential to treat multiple conditions.
Collapse
Affiliation(s)
- Ali Jazayeri
- Heptares Therapeutics Limited , BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, United Kingdom
| | - Stephen P Andrews
- Heptares Therapeutics Limited , BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, United Kingdom
| | - Fiona H Marshall
- Heptares Therapeutics Limited , BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, United Kingdom
| |
Collapse
|
243
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
244
|
O'Brien DE, Conn PJ. Neurobiological Insights from mGlu Receptor Allosteric Modulation. Int J Neuropsychopharmacol 2016; 19:pyv133. [PMID: 26647381 PMCID: PMC4886670 DOI: 10.1093/ijnp/pyv133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/15/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022] Open
Abstract
Allosteric modulation of metabotropic glutamate (mGlu) receptors offers a promising pharmacological approach to normalize neural circuit dysfunction associated with various psychiatric and neurological disorders. As mGlu receptor allosteric modulators progress through discovery and clinical development, both technical advances and novel tool compounds are providing opportunities to better understand mGlu receptor pharmacology and neurobiology. Recent advances in structural biology are elucidating the structural determinants of mGlu receptor-negative allosteric modulation and supplying the means to resolve active, allosteric modulator-bound mGlu receptors. The discovery and characterization of allosteric modulators with novel pharmacological profiles is uncovering the biological significance of their intrinsic agonist activity, biased mGlu receptor modulation, and novel mGlu receptor heterodimers. The development and exploitation of optogenetic and optopharmacological tools is permitting a refined spatial and temporal understanding of both mGlu receptor functions and their allosteric modulation in intact brain circuits. Together, these lines of research promise to provide a more refined understanding of mGlu receptors and their allosteric modulation that will inform the development of mGlu receptor allosteric modulators as neurotherapeutics in the years to come.
Collapse
Affiliation(s)
- Daniel E O'Brien
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee (Drs O'Brien and Conn)
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee (Drs O'Brien and Conn).
| |
Collapse
|
245
|
Pi M, Kapoor K, Ye R, Nishimoto SK, Smith JC, Baudry J, Quarles LD. Evidence for Osteocalcin Binding and Activation of GPRC6A in β-Cells. Endocrinology 2016; 157:1866-80. [PMID: 27007074 PMCID: PMC4870875 DOI: 10.1210/en.2015-2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The possibility that G protein-coupled receptor family C member A (GPRC6A) is the osteocalcin (Ocn)-sensing G protein-coupled receptor that directly regulates pancreatic β-cell functions is controversial. In the current study, we found that Ocn and an Ocn-derived C-terminal hexapeptide directly activate GPRC6A-dependent ERK signaling in vitro. Computational models probe the structural basis of Ocn binding to GPRC6A and predict that the C-terminal hexapeptide docks to the extracellular side of the transmembrane domain of GPRC6A. Consistent with the modeling, mutations in the computationally identified binding pocket of GPRC6A reduced Ocn and C-terminal hexapeptide activation of this receptor. In addition, selective deletion of Gprc6a in β-cells (Gprc6a(β)(-cell-cko)) by crossing Gprc6a(flox/flox) mice with Ins2-Cre mice resulted in reduced pancreatic weight, islet number, insulin protein content, and insulin message expression. Both islet size and β-cell proliferation were reduced in Gprc6a(β)(-cell-cko) compared with control mice. Gprc6a(β)(-cell-cko) exhibited abnormal glucose tolerance, but normal insulin sensitivity. Islets isolated from Gprc6a(β)(-cell-cko) mice showed reduced insulin simulation index in response to Ocn. These data establish the structural basis for Ocn direct activation of GPRC6A and confirm a role for GPRC6A in regulating β-cell proliferation and insulin secretion.
Collapse
Affiliation(s)
- Min Pi
- Departments of Medicine (M.P., R.Y., L.D.Q.) and Microbiology, Immunology and Biochemistry (S.K.N.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics (K.K., J.C.S., J.B.), Oak Ridge, Tennessee 37830; and Department of Biochemistry and Cellular and Molecular Biology (J.C.S.), University of Tennessee, Knoxville, Tennessee 37996
| | - Karan Kapoor
- Departments of Medicine (M.P., R.Y., L.D.Q.) and Microbiology, Immunology and Biochemistry (S.K.N.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics (K.K., J.C.S., J.B.), Oak Ridge, Tennessee 37830; and Department of Biochemistry and Cellular and Molecular Biology (J.C.S.), University of Tennessee, Knoxville, Tennessee 37996
| | - Ruisong Ye
- Departments of Medicine (M.P., R.Y., L.D.Q.) and Microbiology, Immunology and Biochemistry (S.K.N.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics (K.K., J.C.S., J.B.), Oak Ridge, Tennessee 37830; and Department of Biochemistry and Cellular and Molecular Biology (J.C.S.), University of Tennessee, Knoxville, Tennessee 37996
| | - Satoru Kenneth Nishimoto
- Departments of Medicine (M.P., R.Y., L.D.Q.) and Microbiology, Immunology and Biochemistry (S.K.N.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics (K.K., J.C.S., J.B.), Oak Ridge, Tennessee 37830; and Department of Biochemistry and Cellular and Molecular Biology (J.C.S.), University of Tennessee, Knoxville, Tennessee 37996
| | - Jeremy C Smith
- Departments of Medicine (M.P., R.Y., L.D.Q.) and Microbiology, Immunology and Biochemistry (S.K.N.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics (K.K., J.C.S., J.B.), Oak Ridge, Tennessee 37830; and Department of Biochemistry and Cellular and Molecular Biology (J.C.S.), University of Tennessee, Knoxville, Tennessee 37996
| | - Jerome Baudry
- Departments of Medicine (M.P., R.Y., L.D.Q.) and Microbiology, Immunology and Biochemistry (S.K.N.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics (K.K., J.C.S., J.B.), Oak Ridge, Tennessee 37830; and Department of Biochemistry and Cellular and Molecular Biology (J.C.S.), University of Tennessee, Knoxville, Tennessee 37996
| | - Leigh Darryl Quarles
- Departments of Medicine (M.P., R.Y., L.D.Q.) and Microbiology, Immunology and Biochemistry (S.K.N.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics (K.K., J.C.S., J.B.), Oak Ridge, Tennessee 37830; and Department of Biochemistry and Cellular and Molecular Biology (J.C.S.), University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
246
|
Litim N, Morissette M, Di Paolo T. Metabotropic glutamate receptors as therapeutic targets in Parkinson's disease: An update from the last 5 years of research. Neuropharmacology 2016; 115:166-179. [PMID: 27055772 DOI: 10.1016/j.neuropharm.2016.03.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Disturbance of glutamate neurotransmission in Parkinson's disease (PD) and l-DOPA induced dyskinesia (LID) is well documented. This review focuses on advances during the past five years on pharmacological modulation of metabotropic glutamate (mGlu) receptors in relation to anti-parkinsonian activity, LID attenuation, and neuroprotection. Drug design and characterization have led to the development of orthosteric agonists binding the same site as glutamate and Positive and Negative Allosteric modulators (PAMs and NAMs) binding sites different from the orthosteric site and offering subtype selectivity. Inhibition of group I (mGlu1 and mGlu5) receptors with NAMs and activation of group II (mGlu2 and 3 receptors) and group III (mGlu 4, 7 and 8 receptors) with PAMs and orthosteric agonists have shown their potential to inhibit glutamate release and attenuate excitotoxicity. Earlier and recent studies have led to the development of mGlu5 receptors NAMs to reduce LID and for neuroprotection, mGlu3 receptor agonists for neuroprotection while mGlu4 receptor PAMs and agonists for antiparkinsonian effects and neuroprotection. Furthermore, homo- and heterodimers of mGlu receptors are documented and highlight the complexity of the functioning of these receptors. Research on partial allosteric modulators and biased mGlu receptor allosteric modulators offer new glutamatergic drugs with better therapeutic effects and less off target adverse activity. Thus these various mGlu receptor targets will enable the development of novel drugs with improved clinical effects for normalization of glutamate transmission, treat PD and LID relief. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
247
|
Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications. PLoS Comput Biol 2016; 12:e1004805. [PMID: 27028541 PMCID: PMC4814114 DOI: 10.1371/journal.pcbi.1004805] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/11/2016] [Indexed: 11/23/2022] Open
Abstract
The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs. These residues can be used to make testable hypotheses about the structural basis of receptor function and about the molecular basis of disease-associated single nucleotide polymorphisms. G-protein coupled receptors (GPCRs) are a large superfamily of integral membrane proteins that share a characteristic 7 transmembrane helix fold. They detect various molecules outside of the cell and signal their presence to the inside of the cell. At least half of the 800 human GPCRs are potential drug targets, so understanding their structure and function is critical. Experimental structures are now available for at least one receptor from each GPCR class. The structure of the 7 helix fold is highly conserved even for receptors with very low sequence similarity. We analyze the available experimental structures and compare the common inter-helical contacts. Our analysis leads to a unified sequence-structure alignment of the GPCR superfamily that can then be used as the starting point for structure prediction of all other GPCRs. A key result of our analysis is a list of conserved contact residues and activation “hot-spots” residues that are critical for GPCR folding and function. We propose that mutations and natural variants of amino acids at these locations in the GPCRs can dramatically influence their activation state and alter intracellular signaling. This provides hypotheses for the molecular mechanisms underlying disease causing mutants for any GPCR.
Collapse
|
248
|
Weiss DR, Bortolato A, Tehan B, Mason JS. GPCR-Bench: A Benchmarking Set and Practitioners' Guide for G Protein-Coupled Receptor Docking. J Chem Inf Model 2016; 56:642-51. [PMID: 26958710 DOI: 10.1021/acs.jcim.5b00660] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Virtual screening is routinely used to discover new ligands and in particular new ligand chemotypes for G protein-coupled receptors (GPCRs). To prepare for a virtual screen, we often tailor a docking protocol that will enable us to select the best candidates for further screening. To aid this, we created GPCR-Bench, a publically available docking benchmarking set in the spirit of the DUD and DUD-E reference data sets for validation studies, containing 25 nonredundant high-resolution GPCR costructures with an accompanying set of diverse ligands and computational decoy molecules for each target. Benchmarking sets are often used to compare docking protocols; however, it is important to evaluate docking methods not by "retrospective" hit rates but by the actual likelihood that they will produce novel prospective hits. Therefore, docking protocols must not only rank active molecules highly but also produce good poses that a chemist will select for purchase and screening. Currently, no simple objective machine-scriptable function exists that can do this; instead, docking hit lists must be subjectively examined in a consistent way to compare between docking methods. We present here a case study highlighting considerations we feel are of importance when evaluating a method, intended to be useful as a practitioners' guide.
Collapse
Affiliation(s)
- Dahlia R Weiss
- Heptares Therapeutics Ltd. , BioPark, Broadwater Road, Welwyn Garden City, Herts, AL7 3AX, U.K
| | - Andrea Bortolato
- Heptares Therapeutics Ltd. , BioPark, Broadwater Road, Welwyn Garden City, Herts, AL7 3AX, U.K
| | - Benjamin Tehan
- Heptares Therapeutics Ltd. , BioPark, Broadwater Road, Welwyn Garden City, Herts, AL7 3AX, U.K
| | - Jonathan S Mason
- Heptares Therapeutics Ltd. , BioPark, Broadwater Road, Welwyn Garden City, Herts, AL7 3AX, U.K
| |
Collapse
|
249
|
Zhao J, Deng Y, Jiang Z, Qing H. G Protein-Coupled Receptors (GPCRs) in Alzheimer's Disease: A Focus on BACE1 Related GPCRs. Front Aging Neurosci 2016; 8:58. [PMID: 27047374 PMCID: PMC4805599 DOI: 10.3389/fnagi.2016.00058] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The G protein coupled receptors (GPCRs) have been considered as one of the largest families of validated drug targets, which involve in almost overall physiological functions and pathological processes. Meanwhile, Alzheimer’s disease (AD), the most common type of dementia, affects thinking, learning, memory and behavior of elderly people, that has become the hotspot nowadays for its increasing risks and incurability. The above fields have been intensively studied, and the link between the two has been demonstrated, whereas the way how GPCRs perturb AD progress are yet to be further explored given their complexities. In this review, we summarized recent progress regarding the GPCRs interacted with β-site APP cleaving enzyme 1 (BACE1), a key secretase in AD pathogenesis. Then we discussed the current findings on the regulatory roles of GPCRs on BACE1, and the possibility for pharmaceutical treatment of AD patients by the allosteric modulators and biased ligands of GPCRs. We hope this review can provide new insights into the understanding of mechanistic link between GPCRs and BACE1, and highlight the potential of GPCRs as therapeutic target for AD.
Collapse
Affiliation(s)
- Juan Zhao
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Zhaotan Jiang
- School of Physics, Beijing Institute of Technology Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology Beijing, China
| |
Collapse
|
250
|
Leach K, Gregory KJ, Kufareva I, Khajehali E, Cook AE, Abagyan R, Conigrave AD, Sexton PM, Christopoulos A. Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Res 2016; 26:574-92. [PMID: 27002221 DOI: 10.1038/cr.2016.36] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/18/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022] Open
Abstract
Drugs that allosterically target the human calcium-sensing receptor (CaSR) have substantial therapeutic potential, but are currently limited. Given the absence of high-resolution structures of the CaSR, we combined mutagenesis with a novel analytical approach and molecular modeling to develop an "enriched" picture of structure-function requirements for interaction between Ca(2+)o and allosteric modulators within the CaSR's 7 transmembrane (7TM) domain. An extended cavity that accommodates multiple binding sites for structurally diverse ligands was identified. Phenylalkylamines bind to a site that overlaps with a putative Ca(2+)o-binding site and extends towards an extracellular vestibule. In contrast, the structurally and pharmacologically distinct AC-265347 binds deeper within the 7TM domains. Furthermore, distinct amino acid networks were found to mediate cooperativity by different modulators. These findings may facilitate the rational design of allosteric modulators with distinct and potentially pathway-biased pharmacological effects.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Elham Khajehali
- Drug Discovery Biology, Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna E Cook
- Drug Discovery Biology, Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Arthur D Conigrave
- School of Molecular Bioscience, Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|