201
|
Vera E, Canela A, Fraga MF, Esteller M, Blasco MA. Epigenetic regulation of telomeres in human cancer. Oncogene 2008; 27:6817-33. [PMID: 18762811 DOI: 10.1038/onc.2008.289] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypomethylation of repeated elements in the genome is a common feature of human cancer, however, the direct consequences of this epigenetic defect for cancer biology are still largely unknown. Telomeres are specialized chromatin structures at the ends of eukaryotic chromosomes formed by tandem repeats of G-rich sequences and associated proteins, which have an essential role in chromosome end protection and genomic stability. Telomeric DNA repeats cannot be methylated, however, the adjacent subtelomeric DNA is heavily methylated in humans. Here, we show that the methylation status of subtelomeric DNA repeats negatively correlates with telomere length and telomere recombination in a large panel of human cancer cell lines. These findings suggest that tumor telomere length and integrity can be influenced by epigenetic factors. Finally, we show that treatment of human cancer cell lines with demethylating drugs results in hypomethylation of subtelomeric repeats and increased telomere recombination, which in turn may facilitate telomere elongation. All together, these findings suggest that tumor telomere length and integrity can be influenced by the epigenetic status of cancer cells.
Collapse
Affiliation(s)
- E Vera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | | | | | | | | |
Collapse
|
202
|
Abstract
The retinoblastoma (RB) tumour suppressor gene is functionally inactivated in a broad range of paediatric and adult cancers, and a plethora of cellular functions and partners have been identified for the RB protein. Data from human tumours and studies from mouse models indicate that loss of RB function contributes to both cancer initiation and progression. However, we still do not know the identity of the cell types in which RB normally prevents cancer initiation in vivo, and the specific functions of RB that suppress distinct aspects of the tumorigenic process are poorly understood.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
203
|
McCord RA, Broccoli D. Telomeric chromatin: roles in aging, cancer and hereditary disease. Mutat Res 2008; 647:86-93. [PMID: 18778718 DOI: 10.1016/j.mrfmmm.2008.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/30/2008] [Accepted: 08/07/2008] [Indexed: 01/03/2023]
Abstract
Over the last several years there has been an explosion in our understanding of the organization of telomeric chromatin in mammals. As in other regions of the genome, chromatin composition at the telomere regulates structure, which defines function. Mammalian telomeres, similar to what has been demonstrated for telomeres of other eukaryotes, carry marks of heterochromatin and alteration in this underlying epigenetic code has effects on telomere replication and recombination. Experiments aimed at determining links between changes in telomeric chromatin and possible roles in aging and disease are beginning to emerge. The rapid refinement of our knowledge of the structure and alterations in telomeric chromatin over the last several years makes it likely that we are just seeing the tip of the iceberg.
Collapse
Affiliation(s)
- R A McCord
- Stanford University School of Medicine, Department of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
204
|
Abstract
Novel murine models of retinoblastoma based on Rb gene deletion in concert with inactivation of Rb family members have recently been developed. These new Rb knockout models of retinoblastoma provide excellent tools for pre-clinical studies and for the exploration of the genetics of tumorigenesis driven by RB inactivation. This review focuses on the developmental consequences of Rb deletion in the retina and the genetic interactions between Rb and the two other members of the pocket protein family, p107 (Rbl1) and p130 (Rbl2). There is increasing appreciation that homozygous RB mutations are insufficient for human retinoblastoma. Identifying and understanding secondary gene alterations that cooperate with RB inactivation in tumorigenesis may be facilitated by mouse models. Recent investigation of the p53 pathway in retinoblastoma, and evidence of spatial topology to early murine retinoblastoma are also discussed in this review.
Collapse
|
205
|
Wen H, Andrejka L, Ashton J, Karess R, Lipsick JS. Epigenetic regulation of gene expression by Drosophila Myb and E2F2-RBF via the Myb-MuvB/dREAM complex. Genes Dev 2008; 22:601-14. [PMID: 18316477 DOI: 10.1101/gad.1626308] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Drosophila Myb oncoprotein, the E2F2 transcriptional repressor, and the RBF and Mip130/LIN-9 tumor suppressor proteins reside in a conserved Myb-MuvB (MMB)/dREAM complex. We now show that Myb is required in vivo for the expression of Polo kinase and components of the spindle assembly checkpoint (SAC). Surprisingly, the highly conserved DNA-binding domain was not essential for assembly of Myb into MMB/dREAM, for transcriptional regulation in vivo, or for rescue of Myb-null mutants to adult viability. E2F2, RBF, and Mip130/LIN-9 acted in opposition to Myb by repressing the expression of Polo and SAC genes in vivo. Remarkably, the absence of both Myb and Mip130, or of both Myb and E2F2, caused variegated expression in which high or low levels of Polo were stably inherited through successive cell divisions in imaginal wing discs. Restoration of Myb resulted in a uniformly high level of Polo expression similar to that seen in wild-type tissue, whereas restoration of Mip130 or E2F2 extinguished Polo expression. Our results demonstrate epigenetic regulation of gene expression by Myb, Mip130/LIN-9, and E2F2-RBF in vivo, and also provide an explanation for the ability of Mip130-null mutants to rescue the lethality of Myb-null mutants in vivo.
Collapse
Affiliation(s)
- Hong Wen
- Department of Pathology and Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
206
|
Abstract
Disruption of the Rb (retinoblastoma protein)/E2F cell-cycle pathway and Ras activation are two of the most frequent events in cancer, and both of these mutations place oncogenic stress on cells to increase DNA replication. In the present study, we demonstrate that these mutations have an additive effect on induction of members of the RecQ DNA helicase family. RecQ activity is important for genomic stability, initiation of DNA replication and telomere maintenance, and mutation of the BLM (Bloom's syndrome gene), WRN (Werner's syndrome gene) or RECQL4 (Rothmund–Thomson syndrome gene) family members leads to premature aging syndromes characterized by genetic instability and telomere loss. RecQ family members are frequently overexpressed in cancers, and overexpression of BLM has been shown to cause telomere elongation. Concomitant with induction of RecQ genes in response to Rb family mutation and Ras activation, we show an increase in the number of telomeric repeats. We suggest that this induction of RecQ genes in response to common oncogenic mutations may explain the up-regulation of the genes seen in cancers, and it may provide a means for transformed cells to respond to an increased demand for DNA replication.
Collapse
|
207
|
Yang H, Pesavento JJ, Starnes TW, Cryderman DE, Wallrath LL, Kelleher NL, Mizzen CA. Preferential dimethylation of histone H4 lysine 20 by Suv4-20. J Biol Chem 2008; 283:12085-92. [PMID: 18296440 PMCID: PMC2335358 DOI: 10.1074/jbc.m707974200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 02/07/2008] [Indexed: 02/02/2023] Open
Abstract
Post-translational modifications of histone tails direct nuclear processes including transcription, DNA repair, and chromatin packaging. Lysine 20 of histone H4 is mono-, di-, or trimethylated in vivo, but the regulation and significance of these methylations is poorly understood. The SET domain proteins PR-Set7 and Suv4-20 have been implicated in mono- and trimethylation, respectively; however, enzymes that dimethylate lysine 20 have not been identified. Here we report that Drosophila Suv4-20 is a mixed product specificity methyltransferase that dimethylates approximately 90% and trimethylates less than 5% of total H4 at lysine 20 in S2 cells. Trimethylation, but not dimethylation, is reduced in Drosophila larvae lacking HP1, suggesting that an interaction with HP1 regulates the product specificity of Suv4-20 and enrichment of trimethyllysine 20 within heterochromatin. Similar to the Drosophila enzyme, human Suv4-20h1/h2 enzymes generate di- and trimethyllysine 20. PR-Set7 and Suv4-20 are both required for normal levels of methylation, suggesting they have non-redundant functions. Alterations in the level of lysine 20 methylation following knock-down or overexpression of Suv4-20 did not affect lysine 16 acetylation, revealing that these two modifications are not competitive in vivo. Depletion of Suv4-20h1/h2 in HeLa cells impaired the formation of 53BP1 foci, suggesting dimethyllysine 20 is required for a proper DNA damage response. Collectively, the data indicate that Suv4-20 generates nearly ubiquitous dimethylation that facilitates the DNA damage response and selective trimethylation that is involved in heterochromatin formation.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
208
|
Longworth MS, Herr A, Ji JY, Dyson NJ. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev 2008; 22:1011-24. [PMID: 18367646 PMCID: PMC2335323 DOI: 10.1101/gad.1631508] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/07/2008] [Indexed: 11/24/2022]
Abstract
The Drosophila retinoblastoma family of proteins (RBF1 and RBF2) and their mammalian homologs (pRB, p130, and p107) are best known for their regulation of the G1/S transition via the repression of E2F-dependent transcription. However, RB family members also possess additional functions. Here, we report that rbf1 mutant larvae have extensive defects in chromatin condensation during mitosis. We describe a novel interaction between RBF1 and dCAP-D3, a non-SMC component of the Condensin II complex that links RBF1 to the regulation of chromosome structure. RBF1 physically interacts with dCAP-D3, RBF1 and dCAP-D3 partially colocalize on polytene chromosomes, and RBF1 is required for efficient association of dCAP-D3 with chromatin. dCap-D3 mutants also exhibit chromatin condensation defects, and mutant alleles of dCap-D3 suppress cellular and developmental phenotypes induced by the overexpression of RBF1. Interestingly, this interaction is conserved between flies and humans. The re-expression of pRB into a pRB-deficient human tumor cell line promotes chromatin association of hCAP-D3 in a manner that depends on the LXCXE-binding cleft of pRB. These results uncover an unexpected link between pRB/RBF1 and chromatin condensation, providing a mechanism by which the functional inactivation of RB family members in human tumor cells may contribute to genome instability.
Collapse
Affiliation(s)
- Michelle S. Longworth
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Anabel Herr
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jun-Yuan Ji
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nicholas J. Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
209
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 746] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
210
|
Håkelien AM, Delbarre E, Gaustad KG, Buendia B, Collas P. Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects. Exp Cell Res 2008; 314:1869-80. [PMID: 18396274 DOI: 10.1016/j.yexcr.2008.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/22/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
Autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) is characterized by muscle wasting and is caused by mutations in the LMNA gene encoding A-type lamins. Overexpression of the EDMD lamin A R453W mutation in C2C12 myoblasts impairs myogenic differentiation. We show here the influence of stable expression of the R453W and of the Dunnigan-type partial lipodystrophy R482W mutation of lamin A in C2C12 cells on transcription and epigenetic regulation of the myogenin (Myog) gene and on global chromatin organization. Expression of R453W-, but not R482W-lamin A, impairs activation of Myog and maintains a repressive chromatin state on the Myog promoter upon induction of differentiation, marked by H3 lysine (K) 9 dimethylation and failure to hypertrimethylate H3K4. Cells expressing WT-LaA also fail to hypertrimethylate H3K4. No defect occurs at the level of Myog promoter DNA methylation in any of the clones. Expression of R453W-lamin A and to a lesser extent R482W-lamin A in undifferentiated C2C12 cells redistributes H3K9me3 from pericentric heterochromatin. R453W-lamin A also elicits a redistribution of H3K27me3 from inactive X (Xi) and partial decondensation of Xi, but maintains Xist expression and coating of Xi, indicating that Xi remains inactivated. Our results argue that gene-specific and genome-wide chromatin rearrangements may constitute a molecular basis for laminopathies.
Collapse
Affiliation(s)
- Anne-Mari Håkelien
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
211
|
Bagnyukova TV, Tryndyak VP, Montgomery B, Churchwell MI, Karpf AR, James SR, Muskhelishvili L, Beland FA, Pogribny IP. Genetic and epigenetic changes in rat preneoplastic liver tissue induced by 2-acetylaminofluorene. Carcinogenesis 2008; 29:638-46. [PMID: 18204080 DOI: 10.1093/carcin/bgm303] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genotoxic carcinogens, including 2-acetylaminofluorene (2-AAF), in addition to exerting their genotoxic effects, often cause a variety of non-genotoxic alterations in cells. It is believed that these non-genotoxic effects may be indispensable events in tumorigenesis; however, there is insufficient knowledge to clarify the role of carcinogens in both the genetic and epigenetic changes in premalignant tissues and a lack of conclusive information on the link between epigenetic alterations and carcinogenic exposure. In the current study, we investigated whether or not the mechanism of 2-AAF-induced hepatocarcinogenesis consists of both genotoxic (genetic) and non-genotoxic (epigenetic) alterations. Male and female Sprague-Dawley rats were fed NIH-31 diet containing 0.02% of 2-AAF for 6, 12, 18 or 24 weeks. The levels of DNA adducts obtained from 2-AAF in liver and kidney tissues were assessed by high-performance liquid chromatography combined with electrospray tandem mass spectrometry (HPLC-ES-MS/MS). N-(Deoxyguanosine-8-yl)-2-aminofluorene was the major adduct detected at all time points in both tissues. Global DNA methylation in the livers and kidneys, as determined by an HpaII-based cytosine extension assay and by HPLC-ES-MS/MS, did not change over the 24-week period. In the livers of male rats, there was a progressive decrease of global and long interspersed nucleotide element-1-associated histone H4 lysine 20 trimethylation, as well as hypermethylation of the p16(INK4A) gene. These epigenetic changes were not observed in the livers of female rats or the kidneys of both sexes. Importantly, morphological evidence of formation and progression of neoplastic process was observed in the liver of male rats only. In conclusion, we have demonstrated that exposure of rats to genotoxic hepatocarcinogen 2-AAF, in addition to formation of 2-AAF-specific DNA lesions, resulted in substantial alterations in cellular epigenetic status.
Collapse
Affiliation(s)
- Tetyana V Bagnyukova
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 2008; 15:268-79. [PMID: 18311151 PMCID: PMC2990406 DOI: 10.1038/nsmb.1399] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 02/06/2008] [Indexed: 01/04/2023]
Abstract
Dicer initiates RNA interference by generating small RNAs involved in various silencing pathways. Dicer participates in centromeric silencing, but its role in the epigenetic regulation of other chromatin domains has not been explored. Here we show that Dicer1 deficiency in Mus musculus leads to decreased DNA methylation, concomitant with increased telomere recombination and telomere elongation. These DNA-methylation defects correlate with decreased expression of Dnmt1, Dnmt3a and Dnmt3b DNA methyltransferases (Dnmts), and methylation levels can be recovered by their overexpression. We identify the retinoblastoma-like 2 protein (Rbl2) as responsible for decreased Dnmt expression in Dicer1-null cells, suggesting the existence of Dicer-dependent small RNAs that target Rbl2. We identify the miR-290 cluster as being downregulated in Dicer1-deficient cells and show that it silences Rbl2, thereby controlling Dnmt expression. These results identify a pathway by which miR-290 directly regulates Rbl2-dependent Dnmt expression, indirectly affecting telomere-length homeostasis.
Collapse
Affiliation(s)
- Roberta Benetti
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid E-28029, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Garcia SN, Pereira-Smith O. MRGing Chromatin Dynamics and Cellular Senescence. Cell Biochem Biophys 2008; 50:133-41. [DOI: 10.1007/s12013-008-9006-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 12/15/2007] [Indexed: 11/28/2022]
|
214
|
Telomere stability and telomerase in mesenchymal stem cells. Biochimie 2008; 90:33-40. [DOI: 10.1016/j.biochi.2007.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/10/2007] [Indexed: 01/25/2023]
|
215
|
Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2007; 10:228-36. [DOI: 10.1038/ncb1685] [Citation(s) in RCA: 588] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 12/12/2007] [Indexed: 12/11/2022]
|
216
|
Abstract
Telomere shortening occurs concomitant with organismal aging, and it is accelerated in the context of human diseases associated with mutations in telomerase, such as some cases of dyskeratosis congenita, idiopathic pulmonary fibrosis and aplastic anemia. People with these diseases, as well as Terc-deficient mice, show decreased lifespan coincidental with a premature loss of tissue renewal, which suggests that telomerase is rate-limiting for tissue homeostasis and organismal survival. These findings have gained special relevance as they suggest that telomerase activity and telomere length can directly affect the ability of stem cells to regenerate tissues. If this is true, stem cell dysfunction provoked by telomere shortening may be one of the mechanisms responsible for organismal aging in both humans and mice. Here, we will review the current evidence linking telomere shortening to aging and stem cell dysfunction.
Collapse
Affiliation(s)
- Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernandez Almagro, 28019 Madrid, Spain.
| |
Collapse
|
217
|
Benetti R, Gonzalo S, Jaco I, Schotta G, Klatt P, Jenuwein T, Blasco MA. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. ACTA ACUST UNITED AC 2007; 178:925-36. [PMID: 17846168 PMCID: PMC2064618 DOI: 10.1083/jcb.200703081] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-20h enzymes are responsible for this histone modification at telomeres. Cells deficient for Suv4-20h2 or for both Suv4-20h1 and Suv4-20h2 show decreased levels of H4K20me3 at telomeres and subtelomeres in the absence of changes in H3K9me3. These epigenetic alterations are accompanied by telomere elongation, indicating a role for Suv4-20h HMTases in telomere length control. Finally, cells lacking either the Suv4-20h or Suv39h HMTases show increased frequencies of telomere recombination in the absence of changes in subtelomeric DNA methylation. These results demonstrate the importance of chromatin architecture in the maintenance of telomere length homeostasis and reveal a novel role for histone lysine methylation in controlling telomere recombination.
Collapse
Affiliation(s)
- Roberta Benetti
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
218
|
Peng GH, Chen S. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum Mol Genet 2007; 16:2433-52. [PMID: 17656371 PMCID: PMC2276662 DOI: 10.1093/hmg/ddm200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The homeodomain transcription factor Crx is required for expression of many photoreceptor genes in the mammalian retina. The mechanism by which Crx activates transcription remains to be determined. Using protein-protein interaction assays, Crx was found to interact with three co-activator proteins (complexes): STAGA, Cbp and p300, all of which possess histone acetyl-transferase (HAT) activity. To determine the role of Crx-HAT interactions in target gene chromatin modification and transcriptional activation, quantitative RT-PCR and chromatin immunoprecipitation were performed on Crx target genes, rod and cone opsins, in developing mouse retina. Although cone opsins are transcribed earlier than rhodopsin during development, the transcription of each gene is preceded by the same sequence of events in their promoter and enhancer regions: (i) binding of Crx, followed by (ii) binding of HATs, (iii) the acetylation of histone H3, then (iv) binding of other photoreceptor transcription factors (Nrl and Nr2e3) and RNA polymerase II. In Crx knockout mice (Crx(-/-)), the association of HATs and AcH3 with target promoter/enhancer regions was significantly decreased, which correlates with aberrant opsin transcription and photoreceptor dysfunction in these mice. Similar changes to the opsin chromatin were seen in Y79 retinoblastoma cells, where opsin genes are barely transcribed. These defects in Y79 cells can be reversed by expressing a recombinant Crx or applying histone deacetylase inhibitors. Altogether, these results suggest that one mechanism for Crx-mediated transcriptional activation is to recruit HATs to photoreceptor gene chromatin for histone acetylation, thereby inducing and maintaining appropriate chromatin configurations for transcription.
Collapse
Affiliation(s)
- Guang-Hua Peng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
219
|
Auriche C, Di Domenico EG, Ascenzioni F. Budding yeast with human telomeres: a puzzling structure. Biochimie 2007; 90:108-15. [PMID: 17954006 DOI: 10.1016/j.biochi.2007.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 09/13/2007] [Indexed: 12/11/2022]
Abstract
Telomeres share some common features among eukaryotes, with few exceptions such as the fruit fly Drosophila that uses transposons as telomeres, they consist of G-rich repetitive DNA that is elongated by telomerase and/or alternative pathways depending on recombination. Telomere structure comprises both cis-acting satellite DNA (telomeric DNA) and proteins that interact directly and/or indirectly with the underlying DNA. Telomeric DNAs are surprisingly conserved among the vertebrates and very similar in most eukaryotes, but present some differences in yeast such as Saccharomyces cerevisiae. The telomeric proteins are more variable although the basic mechanisms which control telomere lengthening and capping are very similar, in fact orthologues of the yeast telomeric proteins, which have been studied first, have been identified in other organisms. Here we describe the structure of human telomeres in budding yeast as compared to canonical yeast and mammalian telomeres taking into consideration the more recent findings highlighting the mechanisms that are responsible for chromosome end protection and lengthening, and the role of chromatin organization in telomere function. This yeast represents a model for the study of mammalian telomeres that could be reconstituted step-by-step in all their components, moreover it could be useful for the assembly of mammalian artificial chromosome.
Collapse
Affiliation(s)
- Cristina Auriche
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Roma, Italy
| | | | | |
Collapse
|
220
|
Endings in the middle: current knowledge of interstitial telomeric sequences. Mutat Res 2007; 658:95-110. [PMID: 17921045 DOI: 10.1016/j.mrrev.2007.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 01/24/2023]
Abstract
Interstitial telomeric sequences (ITSs) consist of tandem repeats of the canonical telomeric repeat and are common in mammals. They are localized at intrachromosomal sites, including those repeats located close to the centromeres and those found at interstitial sites, i.e., between the centromeres and the telomeres. ITSs might originate from ancestral intrachromosomal rearrangements (inversions and fusions), from differential crossing-over or from the repair of double-strand break during evolution. Three classes of ITSs have been described in the human genome, namely, short ITSs, long subtelomeric ITSs and fusion ITSs. The fourth class of ITSs, pericentromeric ITSs, has been found in other species. The function of ITSs can be inferred from the association of heritable diseases with ITS polymorphic variants, both in copy number and sequence. This is one of the most attractive aspects of ITS studies because it leads to new and useful markers for genetic linkage studies, forensic applications, and detection of genetic instability in tumors. Some ITSs also might be hotspots of chromosome breakage, rearrangement and amplification sites, based on the type of clastogens and the nature of ITSs. This study will contribute new knowledge with respect to ITSs' biology and mechanism, prevalence of diseases, risk evaluation and prevention of related diseases, thus facilitates the design of early detection markers for diseases caused by genomic instability.
Collapse
|
221
|
Nittis T, Guittat L, Stewart SA. Alternative lengthening of telomeres (ALT) and chromatin: is there a connection? Biochimie 2007; 90:5-12. [PMID: 17935854 DOI: 10.1016/j.biochi.2007.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/24/2007] [Indexed: 12/31/2022]
Abstract
The acquisition of cellular immortality is a critical step in the tumorigenic process that requires stabilization of the telomeres, nucleoprotein structures at the termini of chromosomes. While the majority of human tumors stabilize their telomeres through activation of telomerase (hTERT), a significant portion (10-15%) utilize a poorly understood alternative mechanism of telomere maintenance referred to as ALT (Alternative Lengthening of Telomeres). Strikingly, the ALT mechanism is more prevalent in tumors arising from tissues of mesenchymal origin than in those of epithelial origin. This observation suggests that cell type specific mechanisms favor the activation of the ALT mechanism versus telomerase in human tumorigenesis. In addition, the presence of an alternative mechanism of telomere maintenance raises the possibility that telomerase-positive tumors undergoing anti-telomerase therapies might escape by activating the ALT pathway. For these reasons, delineating the ALT mechanism is critical for our understanding of the tumorigenic process and the development of ALT-specific anti-neoplastic therapies. Recent studies have demonstrated that epigenetic modifications at telomeres have a profound effect on telomere length, and may also be linked to the ALT mechanism. In this review we focus on these recent advances and their implications in telomere maintenance.
Collapse
Affiliation(s)
- Thalia Nittis
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
222
|
Pageau GJ, Hall LL, Ganesan S, Livingston DM, Lawrence JB. The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer 2007; 7:628-33. [PMID: 17611545 DOI: 10.1038/nrc2172] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest has recently reawakened in whether loss of the heterochromatic X chromosome (Barr body) is prevalent in certain breast and ovarian cancers, and new insights into the mechanisms involved have emerged. Mitotic segregation errors commonly explain the loss of the inactive X chromosome (Xi), but compromise of Xi heterochromatin in some cancers may signal broader deficits of nuclear heterochromatin. The debated link between BRCA1 and Xi might reflect a general relationship between BRCA1 and heterochromatin, which could connect BRCA1 to both epigenetic and genetic instability. We suggest that heterochromatic instability is a common but largely unexplored mechanism, leading to widespread genomic misregulation and the evolution of some cancers.
Collapse
Affiliation(s)
- Gayle J Pageau
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | |
Collapse
|
223
|
Adams PD. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 2007; 397:84-93. [PMID: 17544228 PMCID: PMC2755200 DOI: 10.1016/j.gene.2007.04.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/09/2007] [Indexed: 11/18/2022]
Abstract
Cellular senescence is an important tumor suppression process, and a possible contributor to tissue aging. Senescence is accompanied by extensive changes in chromatin structure. In particular, many senescent cells accumulate specialized domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), which are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. This article reviews our current understanding of the structure, assembly and function of these SAHF at a cellular level. The possible contribution of SAHF to tumor suppression and tissue aging is also critically discussed.
Collapse
Affiliation(s)
- Peter D Adams
- W446, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
224
|
Bandyopadhyay D, Curry JL, Lin Q, Richards HW, Chen D, Hornsby PJ, Timchenko NA, Medrano EE. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell 2007; 6:577-91. [PMID: 17578512 PMCID: PMC1974778 DOI: 10.1111/j.1474-9726.2007.00308.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The retinoblastoma (RB)/p16(INK4a) pathway regulates senescence of human melanocytes in culture and oncogene-induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently detected in p16(INK4a)-positive, senescent intradermal melanocytic nevi but not in proliferating, recurrent nevus cells that localize to the epidermal/dermal junction. To assess the role of HDAC1 in the senescence of melanocytes and nevi, we used tetracycline-based inducible expression systems in cultured melanocytic cells. We found that HDAC1 drives a sequential and cooperative activity of chromatin remodeling effectors, including transient recruitment of Brahma (Brm1) into RB/HDAC1 mega-complexes, formation of heterochromatin protein 1 beta (HP1 beta)/SUV39H1 foci, methylation of H3-K9, stable association of RB with chromatin and significant global heterochromatinization. These chromatin changes coincide with expression of typical markers of senescence, including the senescent-associated beta-galactosidase marker. Notably, formation of RB/HP1 beta foci and early tethering of RB to chromatin depends on intact Brm1 ATPase activity. As cells reached senescence, ejection of Brm1 from chromatin coincided with its dissociation from HP1 beta/RB and relocalization to protein complexes of lower molecular weight. These results provide new insights into the role of the RB pathway in regulating cellular senescence and implicate HDAC1 as a likely mediator of early chromatin remodeling events.
Collapse
Affiliation(s)
- Debdutta Bandyopadhyay
- Department of Dermatology, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Yamasaki F, Kajiwara Y, Hama S, Murakami T, Hidaka T, Saito T, Yoshioka H, Sugiyama K, Arita K, Kurisu K. Retinoblastoma protein prevents staurosporine-induced cell death in a retinoblastoma-defective human glioma cell line. Pathobiology 2007; 74:22-31. [PMID: 17496430 DOI: 10.1159/000101048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 12/29/2006] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the mechanism of staurosporine-induced glioma cell death and cell cycle arrest using adenovirus-mediated gene transfection, as well as the function of retinoblastoma (Rb) and genetic instability induced by staurosporine. METHODS Cell cycle regulation, cell death and nuclear abnormalities induced by staurosporine were examined using an adenovirus vector expressing Rb, p16 or p21 genes in human glioma cell lines. RESULTS The Rb-defective SF-539 cell line was resistant to staurosporine compared with cell lines expressing intact Rb. SF-539 glioma cells exposed to staurosporine became multinucleated and then died. Multinucleation was prevented in SF-539 cells transfected with the Rb gene, thus decreasing the death rate of these cells. CONCLUSIONS These results imply that enforced Rb expression protects cells from genomic instability induced by staurosporine regardless of its upstream molecular effects.
Collapse
Affiliation(s)
- Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Srinivasan SV, Mayhew CN, Schwemberger S, Zagorski W, Knudsen ES. RB loss promotes aberrant ploidy by deregulating levels and activity of DNA replication factors. J Biol Chem 2007; 282:23867-77. [PMID: 17556357 DOI: 10.1074/jbc.m700542200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retinoblastoma tumor suppressor (RB) is functionally inactivated in many human cancers. Classically, RB functions to repress E2F-mediated transcription and inhibit cell cycle progression. Consequently, RB ablation leads to loss of cell cycle control and aberrant expression of E2F target genes. Emerging evidence indicates a role for RB in maintenance of genomic stability. Here, mouse adult fibroblasts were utilized to demonstrate that aberrant DNA content in RB-deficient cells occurs concomitantly with an increase in levels and chromatin association of DNA replication factors. Furthermore, following exposure to nocodazole, RB-proficient cells arrest with 4 n DNA content, whereas RB-deficient cells bypass the mitotic block, continue DNA synthesis, and accumulate cells with higher ploidy and micronuclei. Under this condition, RB-deficient cells also retain high levels of tethered replication factors, MCM7 and PCNA, indicating that DNA replication occurs in these cells under nonpermissive conditions. Exogenous expression of replication factors Cdc6 or Cdt1 in RB-proficient cells does not recapitulate the RB-deficient cell phenotype. However, ectopic E2F expression in RB-proficient cells elevated ploidy and bypassed the response to nocodazole-induced cessation of DNA replication in a manner analogous to RB loss. Collectively, these results demonstrate that deregulated S phase control is a key mechanism by which RB-deficient cells acquire elevated ploidy.
Collapse
Affiliation(s)
- Seetha V Srinivasan
- Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
227
|
Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 2007; 1100:60-74. [PMID: 17460165 DOI: 10.1196/annals.1395.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The risk of having cancer increases with age probably because progenitor cells from mature organisms accumulate enough molecular lesions to evade the homeostatic control of their tissular contexts. Molecular lesions can be genetic (mutations, deletions, or translocations) and/or epigenetic. Epigenetic signaling, including DNA methylation and histone modification, is essential for normal development and becomes altered during Aging and by cancer. Several epigenetic alterations, such as global hypomethylation and CpG island hypermethylation, are progressively accumulated during Aging and directly contribute to cell transformation. Intriguingly, others, such as those involved in the control of telomere length and several epigenetic enzymes belonging to the family of nicotinamide adenine dinucleotide (NAD)(+) dependent deacetylases known as sirtuins, exhibit a well-defined progression during Aging that is dramatically reverted in transformed cells. We discuss the biological significance of both groups of epigenetic modifications in terms of their relative contribution to ontogenic development, senescence, and cell proliferation.
Collapse
Affiliation(s)
- Mario F Fraga
- Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain.
| | | | | |
Collapse
|
228
|
Lu J, Ruhf ML, Perrimon N, Leder P. A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. Proc Natl Acad Sci U S A 2007; 104:9381-6. [PMID: 17517653 PMCID: PMC1890503 DOI: 10.1073/pnas.0610279104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Regulation of chromatin structure is critical in many fundamental cellular processes. Previous studies have suggested that the Rb tumor suppressor may recruit multiple chromatin regulatory proteins to repress E2F, a key regulator of cell proliferation and differentiation. Taking advantage of the evolutionary conservation of the E2F pathway, we have conducted a genome-wide RNAi screen in cultured Drosophila cells for genes required for repression of E2F activity. Among the genes identified are components of the putative Domino chromatin remodeling complex, as well as the Polycomb Group (PcG) protein-like fly tumor suppressor, L3mbt, and the related CG16975/dSfmbt. These factors are recruited to E2F-responsive promoters through physical association with E2F and are required for repression of endogenous E2F target genes. Surprisingly, their inhibitory activities on E2F appear to be independent of Rb. In Drosophila, domino mutation enhances cell proliferation induced by E2F overexpression and suppresses a loss-of-function cyclin E mutation. These findings suggest that potential chromatin regulation mediated by Domino and PcG-like factors plays an important role in controlling E2F activity and cell growth.
Collapse
Affiliation(s)
- Jianrong Lu
- Department of Genetics, Harvard Medical School, Boston, MA 02115; and
- To whom correspondence should be addressed at the present address:
Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, P.O. Box 103633, Gainesville, FL 32610. E-mail:
| | - Marie-Laure Ruhf
- Genome Research Institute, University of Cincinnati, Cincinnati, OH 45237
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Philip Leder
- Department of Genetics, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
229
|
Zellinger B, Riha K. Composition of plant telomeres. ACTA ACUST UNITED AC 2007; 1769:399-409. [PMID: 17383025 DOI: 10.1016/j.bbaexp.2007.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 02/01/2007] [Accepted: 02/09/2007] [Indexed: 12/15/2022]
Abstract
Telomeres are essential elements of eukaryotic chromosomes that differentiate native chromosome ends from deleterious DNA double-strand breaks (DSBs). This is achieved by assembling chromosome termini in elaborate high-order nucleoprotein structures that in most organisms encompass telomeric DNA, specific telomere-associated proteins as well as general chromatin and DNA repair factors. Although the individual components of telomeric chromatin are evolutionary highly conserved, cross species comparisons have revealed a remarkable flexibility in their utilization at telomeres. This review outlines the strategies used for chromosome end protection and maintenance in mammals, yeast and flies and discusses current progress in deciphering telomere structure in plants.
Collapse
Affiliation(s)
- Barbara Zellinger
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | | |
Collapse
|
230
|
De La Rosa-Velázquez IA, Rincón-Arano H, Benítez-Bribiesca L, Recillas-Targa F. Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res 2007; 67:2577-85. [PMID: 17363576 DOI: 10.1158/0008-5472.can-06-2024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic misregulation is a more common feature in human cancer than previously anticipated. In the present investigation, we identified CCCTC-binding factor (CTCF), the multivalent 11-zinc-finger nuclear factor, as a regulator that favors a particular local chromatin conformation of the human retinoblastoma gene promoter. We show that its binding contributes to Rb gene promoter epigenetic stability. Ablation of the CTCF binding site from the human Rb gene promoter induced a rapid epigenetic silencing of reporter gene expression in an integrated genome context. CTCF DNA binding is methylation sensitive, and the methylated Rb-CTCF site is recognized by the Kaiso methyl-CpG-binding protein. This is the first evidence suggesting that CTCF protects the Rb gene promoter, a classic CpG island, against DNA methylation, and when such control region is abnormally methylated Kaiso, and probably its associated repressor complex, induce epigenetic silencing of the promoter. Our results identify CTCF as a novel epigenetic regulator of the human retinoblastoma gene promoter.
Collapse
Affiliation(s)
- Inti A De La Rosa-Velázquez
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, México D.F., México
| | | | | | | |
Collapse
|
231
|
Siddiqui H, Fox SR, Gunawardena RW, Knudsen ES. Loss of RB compromises specific heterochromatin modifications and modulates HP1alpha dynamics. J Cell Physiol 2007; 211:131-7. [PMID: 17245754 DOI: 10.1002/jcp.20913] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterochromatin domains are important for gene silencing, centromere organization, and genomic stability. These genomic domains are marked with specific histone modifications, heterochromatin protein 1 (HP1) binding and DNA methylation. The retinoblastoma tumor suppressor, RB mediates transcriptional repression and functionally interacts with a number of factors that are involved in heterochromatin biology including HP1, Suv39h1, DNMT1, and components of the SWI/SNF chromatin remodeling complex. To analyze the specific influence of RB loss on chromatin modification, mouse adult fibroblasts (MAFs) derived from Rb(loxP/loxP) mice were utilized to acutely knockout RB. In this setting, target genes of RB are deregulated. Additionally, changes in histone modifications were observed. Specifically, histone H4 lysine 20 trimethylation was absent from heterochromatin domains following loss of RB and there were changes in the relative levels of histone modifications between RB-proficient and deficient cells. While RB loss significantly altered the modifications associated with heterochromatin domains, these domains were readily identified and efficiently mediated the recruitment of HP1alpha. Kinetic analyses of HP1alpha within the heterochromatin domains present in RB-deficient cells indicated that loss of RB retarded HP1alpha dynamics, indicating that HP1alpha is paradoxically more tightly associated with heterochromatin in the absence of RB function. Combined, these analyses demonstrate that loss of RB has global effects on chromatin modifications and dynamics.
Collapse
Affiliation(s)
- Hasan Siddiqui
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA.
| | | | | | | |
Collapse
|
232
|
Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M, Salomoni P, Adams PD. Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 2007; 27:2452-65. [PMID: 17242198 PMCID: PMC1899904 DOI: 10.1128/mcb.01592-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/23/2006] [Accepted: 12/27/2006] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence is an irreversible proliferation arrest triggered by short chromosome telomeres, activated oncogenes, and cell stress and mediated by the pRB and p53 tumor suppressor pathways. One of the earliest steps in the senescence program is translocation of a histone chaperone, HIRA, into promyelocytic leukemia (PML) nuclear bodies. This relocalization precedes other markers of senescence, including the appearance of specialized domains of facultative heterochromatin called senescence-associated heterochromatin foci (SAHF) and cell cycle exit. SAHF represses expression of proliferation-promoting genes, thereby driving exit from the cell cycle. HIRA bound to another histone chaperone, ASF1a, drives formation of SAHF. Here, we show that HIRA's translocation to PML bodies occurs in response to all senescence triggers tested. Dominant negative HIRA mutants that block HIRA's localization to PML bodies prevent formation of SAHF, as does a PML-RARalpha fusion protein which disrupts PML bodies, directly supporting the idea that localization of HIRA to PML bodies is required for formation of SAHF. Significantly, translocation of HIRA to PML bodies occurs in the absence of functional pRB and p53 tumor suppressor pathways. However, our evidence indicates that downstream of HIRA's localization to PML bodies, the HIRA/ASF1a pathway cooperates with pRB and p53 to make SAHF, with the HIRA/ASF1a and pRB pathways acting in parallel. We present evidence that convergence of the HIRA/ASF1a and pRB pathways occurs through a DNAJ-domain protein, DNAJA2.
Collapse
Affiliation(s)
- Xiaofen Ye
- Department of Basic Science, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
Increasing evidence indicates that chromatin modifications are important regulators of mammalian telomeres. Telomeres provide well studied paradigms of heterochromatin formation in yeast and flies, and recent studies have shown that mammalian telomeres and subtelomeric regions are also enriched in epigenetic marks that are characteristic of heterochromatin. Furthermore, the abrogation of master epigenetic regulators, such as histone methyltransferases and DNA methyltransferases, correlates with loss of telomere-length control, and telomere shortening to a critical length affects the epigenetic status of telomeres and subtelomeres. These links between epigenetic status and telomere-length regulation provide important new avenues for understanding processes such as cancer development and ageing, which are characterized by telomere-length defects.
Collapse
Affiliation(s)
- María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid E-28029, Spain.
| |
Collapse
|
234
|
Takahashi A, Ohtani N, Hara E. Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control. Cell Div 2007; 2:10. [PMID: 17343761 PMCID: PMC1838411 DOI: 10.1186/1747-1028-2-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma (Rb) tumor suppressor gene product, pRb, has an established role in the implementation of cellular senescence, the state of irreversible G1 cell cycle arrest provoked by diverse oncogenic stresses. In murine cells, senescence cell cycle arrest can be reversed by subsequent inactivation of pRb, indicating that pRb is required not only for the onset of cellular senescence, but also for the maintenance of senescence program in murine cells. However, in human cells, once pRb is fully activated by p16INK4a, senescence cell cycle arrest becomes irreversible and is no longer revoked by subsequent inactivation of pRb, suggesting that p16INK4a/Rb-pathway activates an alternative mechanism to irreversibly block the cell cycle in human senescent cells. Here, we discuss the molecular mechanism underlying the irreversibility of senescence cell cycle arrest and its potential towards tumor suppression.
Collapse
Affiliation(s)
- Akiko Takahashi
- Division of Protein Information, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503 Japan
| | - Naoko Ohtani
- Division of Protein Information, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503 Japan
| | - Eiji Hara
- Division of Protein Information, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503 Japan
| |
Collapse
|
235
|
Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 2007; 619:30-7. [PMID: 17343880 DOI: 10.1016/j.mrfmmm.2006.12.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/20/2006] [Accepted: 12/29/2006] [Indexed: 12/31/2022]
Abstract
Micro RNAs (miRNAs) are small non-coding RNA molecules that function as negative regulators of gene expression. They play a crucial role in the regulation of genes involved in the control of development, cell proliferation, apoptosis, and stress response. Although miRNA levels are substantially altered in tumors, their role in carcinogenesis, specifically at the early pre-cancerous stages, has not been established. Here we report that exposure of Fisher 344 rats to tamoxifen, a potent hepatocarcinogen in rats, for 24 weeks leads to substantial changes in the expression of miRNA genes in the liver. We noted a significant up-regulation of known oncogenic miRNAs, such as the 17-92 cluster, miR-106a, and miR-34. Furthermore, we confirmed the corresponding changes in the expression of proteins targeted by these miRNAs, which include important cell cycle regulators, chromatin modifiers, and expression regulators implicated in carcinogenesis. All these miRNA changes correspond to previously reported alterations in full-fledged tumors, including hepatocellular carcinomas. Thus, our findings indicate that miRNA changes occur prior to tumor formation and are not merely a consequence of a transformed state.
Collapse
|
236
|
Affiliation(s)
- Michael T Hemann
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
237
|
Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 2007; 39:243-50. [PMID: 17237781 DOI: 10.1038/ng1952] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/28/2006] [Indexed: 11/08/2022]
Abstract
Mammalian telomeres have epigenetic marks of constitutive heterochromatin. Here, we study the impact of telomere length on the maintenance of heterochromatin domains at telomeres. Telomerase-deficient Terc(-/-) mice with short telomeres show decreased trimethylation of histone 3 at Lys9 (H3K9) and histone 4 at Lys20 (H4K20) in telomeric and subtelomeric chromatin as well as decreased CBX3 binding accompanied by increased H3 and H4 acetylation at these regions. Subtelomeric DNA methylation is also decreased in conjunction with telomere shortening in Terc(-/-) mice. In contrast, telomere repeat factors 1 and 2 show normal binding to telomeres independent of telomere length. These results indicate that loss of telomeric repeats leads to a change in the architecture of telomeric and subtelomeric chromatin consisting of loss of heterochromatic features leading to a more 'open' chromatin state. These observations highlight the importance of telomere repeats in the establishment of constitutive heterochromatin at mammalian telomeres and subtelomeres and point to histone modifications as important in counting telomere repeats.
Collapse
Affiliation(s)
- Roberta Benetti
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain
| | | | | |
Collapse
|
238
|
Recillas-Targa F, De La Rosa-Velázquez IA, Soto-Reyes E, Benítez-Bribiesca L. Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med 2007; 10:554-68. [PMID: 16989720 PMCID: PMC3933142 DOI: 10.1111/j.1582-4934.2006.tb00420.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genetic and epigenetic regulations are essential mechanisms that ensure proper early and subsequent mammalian programming of diverse cellular processes. These mechanisms affect transcriptional regulation, stem cell determination and cell cycle control, including senescence and aging. It is not surprising that perturbation of the exquisite balance between genetic and epigenetic regulation can lead to diverse diseases, including cancer. Histone covalent modifications and DNA methylation do not explain all epigenetic phenomena. We describe a previously unsuspected epigenetic factor and propose the incorporation of the 11-zinc finger CCCTC-binding factor, known as CTCF as a novel and multifunctional epigenetic regulator.
Collapse
Affiliation(s)
- Felix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, México.
| | | | | | | |
Collapse
|
239
|
Abstract
Activation of E2F transcription factors is thought to drive the expression of genes essential for the transition of cells from G1 to S phase and for the initiation of DNA replication. However, this textbook view of E2Fs is increasingly under challenge. Here we discuss an alternative model for how E2Fs may work.
Collapse
Affiliation(s)
- Benjamin D Rowland
- Division of Molecular Carcinogenesis and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
240
|
Wu MY, Tsai TF, Beaudet AL. Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev 2006; 20:2859-70. [PMID: 17043311 PMCID: PMC1619944 DOI: 10.1101/gad.1452206] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by deficiency of imprinted gene expression from paternal or maternal chromosome 15q11-q13, respectively. Genomic imprinting of the PWS/AS domain is regulated through a bipartite cis-acting imprinting center (PWS-IC/AS-IC) within and upstream of the SNRPN promoter. Here, we show that two Rb-binding protein-related genes, Rbbp1/Arid4a and Rbbp1l1/Arid4b, are involved in the regulation of imprinting of the IC. We recovered these two genes from gene trap mutagenesis selecting for altered expression of an Snrpn-EGFP fusion gene strategy. RBBP1/ARID4A is an Rb-binding protein. RBBP1/ARID4A interacts with RBBP1L1/ARID4B and with the Snrpn promoter, implying that both are part of a protein complex. To further elucidate their roles on regulation of imprinting, we deleted the Rbbp1/Arid4a and Rbbp1l1/Arid4b genes in mice. Combined homozygous deficiency for Rbbp1/Arid4a and heterozygous deficiency for Rbbp1l1/Arid4b altered epigenetic modifications at the PWS-IC with reduced trimethylation of histone H4K20 and H3K9 and reduced DNA methylation, changing the maternal allele toward a more paternal epigenotype. Importantly, mutations of Rbbp1/Arid4a, Rbbp1l1/Arid4b, or Rb suppressed an AS imprinting defect caused by a mutation at the AS-IC. These data identify Rbbp1/Arid4a and Rbbp1l1/Arid4b as new members of epigenetic complexes regulating genomic imprinting at the PWS/AS domain.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/physiology
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Crosses, Genetic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Embryo, Mammalian/cytology
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Genomic Imprinting
- Humans
- Mice
- Mice, Transgenic
- Models, Genetic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Retinoblastoma-Binding Protein 1
- Stem Cells/cytology
Collapse
Affiliation(s)
- Mei-Yi Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
241
|
Abstract
Ageing is often defined in the context of telomerase activity and telomere length regulation. Most somatic cells have limited replication ability and undergo senescence eventually. Stem cells are unique as they possess more abundant telomerase activity and are able to maintain telomere lengths for a longer period. Embryonic stem cells are particularly resistant to ageing and can be propagated indefinitely. Remarkably, adult somatic cells can be reprogrammed to an ESC-like state by various means including cell fusion, exposure to ESC cell-free extracts, enforced expression of specific molecules, and somatic cell nuclear transfer. Thus, the rejuvenation of an 'aged' state can be effected by the activation of specific key molecules in the cell. Here, we argue that cellular ageing is a reversible process, and this is determined by the balance of biological molecules which directly or indirectly control telomere length and telomerase activity, either through altering gene expression and/or modulating the epigenetic state of the chromatin.
Collapse
Affiliation(s)
- Wai-Leong Tam
- Stem Cell & Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | |
Collapse
|
242
|
Thomas D, Kansara M. Epigenetic modifications in osteogenic differentiation and transformation. J Cell Biochem 2006; 98:757-69. [PMID: 16598744 DOI: 10.1002/jcb.20850] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Almost all tumors are characterized by both architectural and cellular abnormalities in differentiation. Osteoblast development is relatively well understood, making osteosarcoma a good model for understanding how tumorigenesis perturbs normal differentiation. We argue that there are two key transition points in normal cellular differentiation that are the focus of oncogenic events, in both of which epigenetic processes are critical. The first is the transition from an uncommitted pluripotent precursor (mesenchymal stem cell) to the 'transit-amplifying compartment' of the osteoblast lineage. This transition, normally exquisitely regulated in space and time, is abnormal in cancer. The second involves termination of lineage expansion, equally tightly regulated under normal circumstances. In cancer, the mechanisms that mandate eventual cessation of cell division are almost universally disrupted. This model predicts that key differentiation genes in bone, such as RUNX2, act in an oncogenic fashion to initiate entry into a proliferative phase of cell differentiation, and anti-oncogenically into the post-mitotic state, resulting in ambivalent roles in tumorigenesis. Polycomb genes exemplify epigenetic processes in the stem cell compartment and tumorigenesis, and are implicated in skeletal development in vivo. The epigenetic functions of the retinoblastoma protein, which plays a key role in tumorigenesis in bone, is discussed in the context of terminal cell cycle exit.
Collapse
Affiliation(s)
- David Thomas
- Ian Potter Foundation Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, Victoria 3002, Melbourne, Australia.
| | | |
Collapse
|
243
|
Knudsen ES, Knudsen KE. Retinoblastoma tumor suppressor: where cancer meets the cell cycle. Exp Biol Med (Maywood) 2006; 231:1271-81. [PMID: 16816134 DOI: 10.1177/153537020623100713] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma tumor suppressor gene, Rb, was the first tumor suppressor identified and plays a fundamental role in regulation of progression through the cell cycle. This review details facets of RB protein function in cell cycle control and focuses on specific questions that remain intensive areas of investigation.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Cell Biology and University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA.
| | | |
Collapse
|
244
|
Heit R, Underhill DA, Chan G, Hendzel MJ. Epigenetic regulation of centromere formation and kinetochore functionThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:605-18. [PMID: 16936832 DOI: 10.1139/o06-080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the midst of an increasingly detailed understanding of the molecular basis of genome regulation, we still only vaguely understand the relationship between molecular biochemistry and the structure of the chromatin inside of cells. The centromere is a structurally and functionally unique region of each chromosome and provides an example in which the molecular understanding far exceeds the understanding of the structure and function relationships that emerge on the chromosomal scale. The centromere is located at the primary constriction of the chromosome. During entry into mitosis, the centromere specifies the assembly site of the kinetochore, the structure that binds to microtubules to enable transport of the chromosomes into daughter cells. The epigenetic contributions to the molecular organization and function of the centromere are reviewed in the context of structural mechanisms of chromatin function.
Collapse
Affiliation(s)
- Ryan Heit
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | | | | | | |
Collapse
|
245
|
Abstract
Melanoma is the most lethal of human skin cancers and its incidence is increasing worldwide [L.K. Dennis (1999). Arch. Dermatol. 135, 275; C. Garbe et al. (2000). Cancer 89, 1269]. Melanomas often metastasize early during the course of the disease and are then highly intractable to current therapeutic regimens [M.F. Demierre and G. Merlino (2004). Curr. Oncol. Rep. 6, 406]. Consequently, understanding the factors that maintain melanocyte homeostasis and prevent their neoplastic transformation into melanoma is of utmost interest from the perspective of therapeutic interdiction. This review will focus on the role of the pocket proteins (PPs), Rb1 (retinoblastoma protein), retinoblastoma-like 1 (Rbl1 also known as p107) and retinoblastoma-like 2 (Rbl2 also known as p130), in melanocyte homeostasis, with particular emphasis on their functions in the cell cycle and the DNA damage repair response. The potential mechanisms of PP deregulation in melanoma and the possibility of PP-independent pathways to melanoma development will also be considered. Finally, the role of the PP family in ultraviolet radiation (UVR)-induced melanoma and the precise contribution that each PP family member makes to melanocyte homeostasis will be discussed in the context of a number of genetically engineered mouse models.
Collapse
Affiliation(s)
- Ian D Tonks
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
246
|
Flores I, Benetti R, Blasco MA. Telomerase regulation and stem cell behaviour. Curr Opin Cell Biol 2006; 18:254-60. [PMID: 16617011 DOI: 10.1016/j.ceb.2006.03.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/28/2006] [Indexed: 12/17/2022]
Abstract
Telomerase expression is restricted to a few cell types of the adult organism, most notably germ cells and stem/progenitor cells. Telomerase activity in germ cells is sufficient to prevent telomere shortening with age. Stem cells, however, do not have sufficient telomerase to prevent telomere shortening associated with continuous tissue renewal with increasing age. Indeed, telomerase levels in the adult organism are thought to be rate-limiting for longevity. This is supported by rare human syndromes caused by mutations in telomerase components, which are characterized by premature loss of tissue renewal and premature death. More recently, the role of telomerase and telomere length in stem cells is starting to be elucidated.
Collapse
Affiliation(s)
- Ignacio Flores
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain
| | | | | |
Collapse
|
247
|
Isaac CE, Francis SM, Martens AL, Julian LM, Seifried LA, Erdmann N, Binné UK, Harrington L, Sicinski P, Bérubé NG, Dyson NJ, Dick FA. The retinoblastoma protein regulates pericentric heterochromatin. Mol Cell Biol 2006; 26:3659-71. [PMID: 16612004 PMCID: PMC1447412 DOI: 10.1128/mcb.26.9.3659-3671.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/09/2005] [Accepted: 02/03/2006] [Indexed: 12/22/2022] Open
Abstract
The retinoblastoma protein (pRb) has been proposed to regulate cell cycle progression in part through its ability to interact with enzymes that modify histone tails and create a repressed chromatin structure. We created a mutation in the murine Rb1 gene that disrupted pRb's ability to interact with these enzymes to determine if it affected cell cycle control. Here, we show that loss of this interaction slows progression through mitosis and causes aneuploidy. Our experiments reveal that while the LXCXE binding site mutation does not disrupt pRb's interaction with the Suv4-20h histone methyltransferases, it dramatically reduces H4-K20 trimethylation in pericentric heterochromatin. Disruption of heterochromatin structure in this chromosomal region leads to centromere fusions, chromosome missegregation, and genomic instability. These results demonstrate the surprising finding that pRb uses the LXCXE binding cleft to control chromatin structure for the regulation of events beyond the G(1)-to-S-phase transition.
Collapse
Affiliation(s)
- Christian E Isaac
- Cancer Research Labs, 790 Commissioners Road East, London, Ontario, Canada, N6A 4L6
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 2006; 8:416-24. [PMID: 16565708 DOI: 10.1038/ncb1386] [Citation(s) in RCA: 438] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 02/23/2006] [Indexed: 01/17/2023]
Abstract
Here, we describe a role for mammalian DNA methyltransferases (DNMTs) in telomere length control. Mouse embryonic stem (ES) cells genetically deficient for DNMT1, or both DNMT3a and DNMT3b have dramatically elongated telomeres compared with wild-type controls. Mammalian telomere repeats (TTAGGG) lack the canonical CpG methylation site. However, we demonstrate that mouse subtelomeric regions are heavily methylated, and that this modification is decreased in DNMT-deficient cells. We show that other heterochromatic marks, such as histone 3 Lys 9 (H3K9) and histone 4 Lys 20 (H4K20) trimethylation, remain at both subtelomeric and telomeric regions in these cells. Lack of DNMTs also resulted in increased telomeric recombination as indicated by sister-chromatid exchanges involving telomeric sequences, and by the presence of 'alternative lengthening of telomeres' (ALT)-associated promyelocytic leukaemia (PML) bodies (APBs). This increased telomeric recombination may lead to telomere-length changes, although our results do not exclude a potential involvement of telomerase and telomere-binding proteins in the aberrant telomere elongation observed in DNMT-deficient cells. Together, these results demonstrate a previously unappreciated role for DNA methylation in maintaining telomere integrity.
Collapse
Affiliation(s)
- Susana Gonzalo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| | | | | | | | | | | | | |
Collapse
|
249
|
McManus KJ, Biron VL, Heit R, Underhill DA, Hendzel MJ. Dynamic Changes in Histone H3 Lysine 9 Methylations. J Biol Chem 2006; 281:8888-97. [PMID: 16373353 DOI: 10.1074/jbc.m505323200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone methylation is unique among post-translational histone modifications by virtue of its stability. It is thought to be a relatively stable and heritable epigenetic mark for gene-specific regulation. In this study, we use quantitative in situ approaches to investigate the cell cycle dynamics of methylated isoforms of histone H3 lysine 9. Contrary to the expected stability of trimethylated lysines, our results for trimethylated lysine 9 (tMeK9) of H3 demonstrate that the genomic content of this methylation undergoes significant changes as cells progress through mitosis. Unexpectedly, there is a loss of tMeK9 that appears to reflect a robust demethylase activity that is active during the period between anaphase and cytokinesis. Subsequent investigations of mitoses in tMeK9-deficient cells revealed defects in chromosome congression and segregation that are distinct from the increased cohesion at centromeres previously reported in association with the loss of tMeK9. Collectively, these results identify a mitosis-specific trimethylation of Lys9 in pericentromeric heterochromatin that functions in the faithful segregation of chromosomes.
Collapse
Affiliation(s)
- Kirk J McManus
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | | | | | | | | |
Collapse
|
250
|
Eissenberg JC, Shilatifard A. Leaving a mark: the many footprints of the elongating RNA polymerase II. Curr Opin Genet Dev 2006; 16:184-90. [PMID: 16503129 DOI: 10.1016/j.gde.2006.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 02/13/2006] [Indexed: 01/08/2023]
Abstract
The elongation phase of transcription by RNA polymerase II involves a complex choreography of events besides the polymerization of RNA. In addition to coordinating the processing of the nascent transcript, elongating RNA polymerase II recruits histone methyltransferases to methylate lysines 4 and 36 of histone H3 in nucleosomes in the body of actively transcribed genes. Methylation at these sites is genetically implicated in marking actively transcribed genes. Recent studies link transcriptional elongation by RNA polymerase II to H3K9 methylation and the recruitment of the HP1 family protein HP1gamma. These findings expand the role for RNA polymerase II elongation in targeting chromatin modifications to include a histone methyl mark more commonly associated with gene silencing.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A Doisy Department of Biochemistry and Molecular Biology and the Cancer Center, St Louis University School of Medicine, 1402 South Grand Boulevard, St Louis, MO 63104, USA
| | | |
Collapse
|