201
|
Xu L, Zeng Z, Zhang W, Ren G, Ling X, Huang F, Xie P, Su Y, Zhang XK, Zhou H. RXRα ligand Z-10 induces PML-RARα cleavage and APL cell apoptosis through disrupting PML-RARα/RXRα complex in a cAMP-independent manner. Oncotarget 2017; 8:12311-12322. [PMID: 28129653 PMCID: PMC5355346 DOI: 10.18632/oncotarget.14812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/27/2016] [Indexed: 01/25/2023] Open
Abstract
The major oncogenic driver of acute promyelocytic leukemia (APL) is the fusion protein PML-RARα originated from the chromosomal translocation t(15;17). All-trans retinoic acid (ATRA) and arsenic trioxide cure most patients by directly targeting PML-RARα. However, major issues including the resistance of ATRA and arsenic therapy still remain in APL clinical management. Here we showed that compound Z-10, a nitro-ligand of retinoid X receptor α (RXRα), strongly promoted the cAMP-independent apoptosis of both ATRA- sensitive and resistant NB4 cells via the induction of caspase-mediated PML-RARα degradation. RXRα was vital for the stability of both PML-RARα and RARα likely through the interactions. The binding of Z-10 to RXRα dramatically inhibited the interaction of RXRα with PML-RARα but not with RARα, leading to Z-10's selective induction of PML-RARα but not RARα degradation. Z-36 and Z-38, two derivatives of Z-10, had improved potency of inducing PML-RARα reduction and NB4 cell apoptosis. Hence, RXRα ligand Z-10 and its derivatives could target both ATRA- sensitive and resistant APL cells through their distinct acting mechanism, and are potential drug leads for APL treatment.
Collapse
Affiliation(s)
- Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Gaoang Ren
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Xiaobin Ling
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Fengyu Huang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Peizhen Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China.,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China.,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
202
|
Wiechmann S, Gärtner A, Kniss A, Stengl A, Behrends C, Rogov VV, Rodriguez MS, Dötsch V, Müller S, Ernst A. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation. J Biol Chem 2017; 292:15340-15351. [PMID: 28784659 DOI: 10.1074/jbc.m117.794255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/04/2017] [Indexed: 11/06/2022] Open
Abstract
Posttranslational modifications by small ubiquitin-like modifiers (SUMOs) regulate many cellular processes, including genome integrity, gene expression, and ribosome biogenesis. The E2-conjugating enzyme Ubc9 catalyzes the conjugation of SUMOs to ϵ-amino groups of lysine residues in target proteins. Attachment of SUMO moieties to internal lysines in Ubc9 itself can further lead to the formation of polymeric SUMO chains. Mono- and poly-SUMOylations of target proteins provide docking sites for distinct adapter and effector proteins important for regulating discrete SUMO-regulated pathways. However, molecular tools to dissect pathways depending on either mono- or poly-SUMOylation are largely missing. Using a protein-engineering approach, we generated high-affinity SUMO2 variants by phage display that bind the back side binding site of Ubc9 and function as SUMO-based Ubc9 inhibitors (SUBINs). Importantly, we found that distinct SUBINs primarily inhibit poly-SUMO chain formation, whereas mono-SUMOylation was not impaired. Proof-of-principle experiments demonstrated that in a cellular context, SUBINs largely prevent heat shock-triggered poly-SUMOylation. Moreover, SUBINs abrogated arsenic-induced degradation of promyelocytic leukemia protein. We propose that the availability of the new chain-selective SUMO inhibitors reported here will enable a thorough investigation of poly-SUMO-mediated cellular processes, such as DNA damage responses and cell cycle progression.
Collapse
Affiliation(s)
- Svenja Wiechmann
- From the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Anne Gärtner
- From the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Andreas Stengl
- From the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christian Behrends
- From the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Manuel S Rodriguez
- Institut des Technologies Avancées en Sciences du Vivant-UPS and IPBS-CNRS, 1 Place Pierre Potier Oncopole entrèe B, BP 50624, 31106 Toulouse Cedex 1, France
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Stefan Müller
- From the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany,
| | - Andreas Ernst
- From the Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, and
| |
Collapse
|
203
|
Yin Q, Sides M, Parsons CH, Flemington EK, Lasky JA. Arsenic trioxide inhibits EBV reactivation and promotes cell death in EBV-positive lymphoma cells. Virol J 2017. [PMID: 28637474 PMCID: PMC5480106 DOI: 10.1186/s12985-017-0784-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Epstein-Barr Virus (EBV) is associated with hematopoietic malignancies, such as Burkitt’s lymphoma, post-transplantation lymphoproliferative disorder, and diffuse large B-cell lymphoma. The current approach for EBV-associated lymphoma involves chemotherapy to eradicate cancer cells, however, normal cells may be injured and organ dysfunction may occur with currently employed regimens. This research is focused on employing arsenic trioxide (ATO) as EBV-specific cancer therapy takes advantage of the fact the EBV resides within the malignant cells. Methods and results Our research reveals that low ATO inhibits EBV gene expression and genome replication. EBV spontaneous reactivation starts as early as 6 h after re-suspending EBV-positive Mutu cells in RPMI media in the absence of ATO, however this does not occur in Mutu cells cultured with ATO. ATO’s inhibition of EBV spontaneous reactivation is dose dependent. The expression of the EBV immediate early gene Zta and early gene BMRF1 is blocked with low concentrations of ATO (0.5 nM – 2 nM) in EBV latency type I cells and EBV-infected PBMC cells. The combination of ATO and ganciclovir further diminishes EBV gene expression. ATO-mediated reduction of EBV gene expression can be rescued by co-treatment with the proteasome inhibitor MG132, indicating that ATO promotes ubiquitin conjugation and proteasomal degradation of EBV genes. Co-immunoprecipitation assays with antibodies against Zta pulls down more ubiquitin in ATO treated cell lysates. Furthermore, MG132 reverses the inhibitory effect of ATO on anti-IgM-, PMA- and TGF-β-mediated EBV reactivation. Thus, mechanistically ATO’s inhibition of EBV gene expression occurs via the ubiquitin pathway. Moreover, ATO treatment results in increased cell death in EBV-positive cells compared to EBV-negative cells, as demonstrated by both MTT and trypan blue assays. ATO-induced cell death in EBV-positive cells is dose dependent. ATO and ganciclovir in combination further enhances cell death specifically in EBV-positive cells. Conclusion ATO-mediated inhibition of EBV lytic gene expression results in cell death selectively in EBV-positive lymphocytes, suggesting that ATO may potentially serve as a drug to treat EBV-related lymphomas in the clinical setting.
Collapse
Affiliation(s)
- Qinyan Yin
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Mark Sides
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.,Department of Internal Medicine, University of Texas Medical Branch, 300 University Blvd, Galveston, TX, 77550, USA
| | - Christopher H Parsons
- Department of Internal Medicine, Louisiana University School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Joseph A Lasky
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
204
|
Zhang L, Xie F, Zhang J, Dijke PT, Zhou F. SUMO-triggered ubiquitination of NR4A1 controls macrophage cell death. Cell Death Differ 2017. [PMID: 28622293 DOI: 10.1038/cdd.2017.29] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nuclear receptor NR4A1 has been implicated as a key regulator in a wide range of pathophysiological responses. As an immediate early response gene, NR4A1 can be rapidly and potently induced by a variety of stimuli. Its induction is followed by its rapid degradation, but the mechanism by which NR4A1 is degraded remains poorly understood. Here we show that nuclear receptor NR4A1 is sumoylated by SUMO2/3. Upon poly-SUMO modification, NR4A1 can be targeted by the SUMO-dependent E3 ubiquitin ligase RNF4 for polyubiquitination and subsequent degradation. The SUMO E3 ligase PIAS3 promotes SUMOylation and polyubiquitination of NR4A1, while the SUMO protease SENP1 acts to de-conjugate SUMO. We demonstrate that this pathway is important for rapid degradation of NR4A1 after induced by stress. Moreover, we identify two SUMO modification sites in NR4A1 that are critical for maintaining low levels of NR4A1 expression. Mutation of these two NR4A1 SUMO modification sites enhances the stability of NR4A1. Importantly, we show that SUMOylation is critical in controlling NR4A1 function in inflammatory cytokine signaling and controlling macrophage cell death. SUMOylation and subsequent ubiquitination on NR4A1 mitigates its inhibition of innate immune signaling, such as TNF-α- and IL-1β-induced NF-κB activation. This mechanism of sequential SUMOylation and ubiquitination, which together control the degradation of NR4A1, could be exploited for the therapeutic treatment of diseases with NR4A1 involvement.
Collapse
Affiliation(s)
- Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, PR China
| | - Juan Zhang
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC Leiden, The Netherlands
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
205
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
206
|
Abstract
Ubiquitylation is essential for signal transduction as well as cell division and differentiation in all eukaryotes. Substrate modifications range from a single ubiquitin molecule to complex polymeric chains, with different types of ubiquitylation often eliciting distinct outcomes. The recent identification of novel chain topologies has improved our understanding of how ubiquitylation establishes precise communication within cells. Here, we discuss how the increasing complexity of ubiquitylation is employed to ensure robust and faithful signal transduction in eukaryotic cells.
Collapse
|
207
|
Yalçin Z, Selenz C, Jacobs JJL. Ubiquitination and SUMOylation in Telomere Maintenance and Dysfunction. Front Genet 2017; 8:67. [PMID: 28588610 PMCID: PMC5440461 DOI: 10.3389/fgene.2017.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Telomeres are essential nucleoprotein structures at linear chromosomes that maintain genome integrity by protecting chromosome ends from being recognized and processed as damaged DNA. In addition, they limit the cell’s proliferative capacity, as progressive loss of telomeric DNA during successive rounds of cell division eventually causes a state of telomere dysfunction that prevents further cell division. When telomeres become critically short, the cell elicits a DNA damage response resulting in senescence, apoptosis or genomic instability, thereby impacting on aging and tumorigenesis. Over the past years substantial progress has been made in understanding the role of post-translational modifications in telomere-related processes, including telomere maintenance, replication and dysfunction. This review will focus on recent findings that establish an essential role for ubiquitination and SUMOylation at telomeres.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| | - Carolin Selenz
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| | - Jacqueline J L Jacobs
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| |
Collapse
|
208
|
Yonezawa T, Takahashi H, Shikata S, Liu X, Tamura M, Asada S, Fukushima T, Fukuyama T, Tanaka Y, Sawasaki T, Kitamura T, Goyama S. The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1. J Biol Chem 2017; 292:12528-12541. [PMID: 28536267 DOI: 10.1074/jbc.m117.785675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Indexed: 12/18/2022] Open
Abstract
RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Chromosomal translocations involving the RUNX1 gene are associated with several types of leukemia, including acute myeloid leukemia driven by a leukemogenic fusion protein RUNX1-RUNX1T1. Previous studies have shown that RUNX1 is an unstable protein and is subjected to proteolytic degradation mediated by the ubiquitin-proteasome pathway. However, the precise mechanisms of RUNX1 ubiquitination have not been fully understood. Furthermore, much less is known about the mechanisms to regulate the stability of RUNX1-RUNX1T1. In this study, we identified several RUNX1-interacting E3 ubiquitin ligases using a novel high-throughput binding assay. Among them, we found that STUB1 bound to RUNX1 and induced its ubiquitination and degradation mainly in the nucleus. Immunofluorescence analyses revealed that the STUB1-induced ubiquitination also promoted nuclear export of RUNX1, which probably contributes to the reduced transcriptional activity of RUNX1 in STUB1-overexpressing cells. STUB1 also induced ubiquitination of RUNX1-RUNX1T1 and down-regulated its expression. Importantly, STUB1 overexpression showed a substantial growth-inhibitory effect in myeloid leukemia cells that harbor RUNX1-RUNX1T1, whereas it showed only a marginal effect in other non-RUNX1-RUNX1T1 leukemia cells and normal human cord blood cells. Taken together, these data suggest that the E3 ubiquitin ligase STUB1 is a negative regulator of both RUNX1 and RUNX1-RUNX1T1. Activation of STUB1 could be a promising therapeutic strategy for RUNX1-RUNX1T1 leukemia.
Collapse
Affiliation(s)
- Taishi Yonezawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Hirotaka Takahashi
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shiori Shikata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Xiaoxiao Liu
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Moe Tamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639.
| |
Collapse
|
209
|
Forlani G, Tosi G, Turrini F, Poli G, Vicenzi E, Accolla RS. Tripartite Motif-Containing Protein 22 Interacts with Class II Transactivator and Orchestrates Its Recruitment in Nuclear Bodies Containing TRIM19/PML and Cyclin T1. Front Immunol 2017; 8:564. [PMID: 28555140 PMCID: PMC5430032 DOI: 10.3389/fimmu.2017.00564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023] Open
Abstract
Among interferon (IFN) inducible antiviral factors both tripartite motif-containing protein 22 (TRIM22) and class II transactivator (CIITA) share the capacity of repressing human immunodeficiency virus type 1 (HIV-1) proviral transcription. TRIM22 is constitutively expressed in a subset of U937 cell clones poorly permissive to HIV-1 replication, whereas CIITA has been shown to inhibit virus multiplication in both T lymphocytic and myeloid cells, including poorly HIV-1 permissive U937 cells, by suppressing Tat-mediated transactivation of HIV-1 transcription. Therefore, we tested whether TRIM22 and CIITA could form a nuclear complex potentially endowed with HIV-1 repressive functions. Indeed, we observed that TRIM22, independent of its E3 ubiquitin ligase domain, interacts with CIITA and promotes its recruitment into nuclear bodies. Importantly, TRIM19/promyelocytic leukemia (PML) protein, another repressor of HIV-1 transcription also acting before proviral integration, colocalize in these nuclear bodies upon TRIM22 expression induced by IFN-γ. Finally, tTRIM22 nuclear bodies also contained CyclinT1, a crucial elongation factor of HIV-1 primary transcripts. These findings show that TRIM22 nuclear bodies are a site of recruitment of factors crucial for the regulation of HIV-1 transcription and highlight the potential existence of a concerted action between TRIM22, CIITA, and TRIM19/PML to maintain a state of proviral latency, at least in myeloid cells.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanna Tosi
- Laboratory of General Pathology and Immunology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Filippo Turrini
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Roberto S Accolla
- Laboratory of General Pathology and Immunology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
210
|
Chemical ubiquitination for decrypting a cellular code. Biochem J 2017; 473:1297-314. [PMID: 27208213 PMCID: PMC5298413 DOI: 10.1042/bj20151195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized.
Collapse
|
211
|
All-trans retinoic acid and arsenic trioxide fail to derepress the monocytic differentiation driver Irf8 in acute promyelocytic leukemia cells. Cell Death Dis 2017; 8:e2782. [PMID: 28492552 PMCID: PMC5520717 DOI: 10.1038/cddis.2017.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
All-trans retinoic acid (ATRA) and/or arsenic trioxide (ATO) administration leads to granulocytic maturation and/or apoptosis of acute promyelocytic leukemia (APL) cells mainly by targeting promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα). Yet, ~10–15% of APL patients are not cured by ATRA- and ATO-based therapies, and a potential failure of ATRA and ATO in completely reversing PML/RARα-driven oncogenic alterations has not been comprehensively examined. Here we characterized the in vivo primary responses of dysregulated genes in APL cells treated with ATRA and ATO using a GFP-labeled APL model. Although induced granulocytic differentiation of APL cells was evident after ATRA or ATO administration, the expression of the majority of dysregulated genes in the c-Kit+ APL progenitors was not consistently corrected. Irf8, whose expression increased along with spontaneous differentiation of the APL progenitors in vivo, represented such a PML/RARα-dysregulated gene that was refractory to ATRA/ATO signaling. Interestingly, Irf8 induction, but not its knockdown, decreased APL leukemogenic potential through driving monocytic maturation. Thus, we reveal that certain PML/RARα-dysregulated genes that are refractory to ATRA/ATO signaling are potentially crucial regulators of the immature status and leukemogenic potential of APL cells, which can be exploited for the development of new therapeutic strategies for ATRA/ATO-resistant APL cases.
Collapse
|
212
|
Chang HR, Munkhjargal A, Kim MJ, Park SY, Jung E, Ryu JH, Yang Y, Lim JS, Kim Y. The functional roles of PML nuclear bodies in genome maintenance. Mutat Res 2017; 809:99-107. [PMID: 28521962 DOI: 10.1016/j.mrfmmm.2017.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
In the nucleus, there are several membraneless structures called nuclear bodies. Among them, promyelocytic leukemia nuclear bodies (PML-NBs) are involved in multiple genome maintenance pathways including the DNA damage response, DNA repair, telomere homeostasis, and p53-associated apoptosis. In response to DNA damage, PML-NBs are coalesced and divided by a fission mechanism, thus increasing their number. PML-NBs also play a role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Clinically, the dominant negative PML-RARα fusion protein expressed in acute promyelocytic leukemia (APL) inhibits the transactivation of downstream factors and disrupts PML function, revealing the tumor suppressor role of PML-NBs. All-trans retinoic acid and arsenic trioxide treatment has been implemented for promyelocytic leukemia to target the PML-RARα fusion protein. PML-NBs are associated with various factors implicated in genome maintenance, and are found at the sites of DNA damage. Their interaction with proteins such as p53 indicates that PML-NBs may play a significant role in apoptosis and cancer. Decades of research have revealed the importance of PML-NBs in diverse cellular pathways, yet the underlying molecular mechanisms and exact functions of PML-NBs remain elusive. In this review, PML protein modifications and the functional relevance of PML-NB and its associated factors in genome maintenance will be discussed.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Anudari Munkhjargal
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Myung-Jin Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Seon Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Eunyoung Jung
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
213
|
Rabellino A, Andreani C, Scaglioni PP. The Role of PIAS SUMO E3-Ligases in Cancer. Cancer Res 2017; 77:1542-1547. [PMID: 28330929 DOI: 10.1158/0008-5472.can-16-2958] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
SUMOylation modifies the interactome, localization, activity, and lifespan of its target proteins. This process regulates several cellular machineries, including transcription, DNA damage repair, cell-cycle progression, and apoptosis. Accordingly, SUMOylation is critical in maintaining cellular homeostasis, and its deregulation leads to the corruption of a plethora of cellular processes that contribute to disease states. Among the proteins involved in SUMOylation, the protein inhibitor of activated STAT (PIAS) E3-ligases were initially described as transcriptional coregulators. Recent findings also indicate that they have a role in regulating protein stability and signaling transduction pathways. PIAS proteins interact with up to 60 cellular partners affecting several cellular processes, most notably immune regulation and DNA repair, but also cellular proliferation and survival. Here, we summarize the current knowledge about their role in tumorigenesis and cancer-related processes. Cancer Res; 77(7); 1542-7. ©2017 AACR.
Collapse
Affiliation(s)
- Andrea Rabellino
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas.,Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,QIMR Berghofer Medical Research Institute, Brisbane City, Queensland, Australia
| | - Cristina Andreani
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas.,Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pier Paolo Scaglioni
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
214
|
Kamynina E, Lachenauer ER, DiRisio AC, Liebenthal RP, Field MS, Stover PJ. Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci U S A 2017; 114:E2319-E2326. [PMID: 28265077 PMCID: PMC5373342 DOI: 10.1073/pnas.1619745114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As2O3 exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As2O3 inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As2O3-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.
Collapse
Affiliation(s)
- Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Erica R Lachenauer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
- Graduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Aislyn C DiRisio
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | | | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853;
- Graduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
215
|
Tessier S, Martin-Martin N, de Thé H, Carracedo A, Lallemand-Breitenbach V. Promyelocytic Leukemia Protein, a Protein at the Crossroad of Oxidative Stress and Metabolism. Antioxid Redox Signal 2017; 26:432-444. [PMID: 27758112 DOI: 10.1089/ars.2016.6898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cellular metabolic activity impacts the production of reactive oxygen species (ROS), both positively through mitochondrial oxidative processes and negatively by promoting the production of reducing agents (including NADPH and reduced glutathione). A defined metabolic state in cancer cells is critical for cell growth and long-term self-renewal, and such state is intrinsically associated with redox balance. Promyelocytic leukemia protein (PML) regulates several biological processes, at least in part, through its ability to control the assembly of PML nuclear bodies (PML NBs). Recent Advances: PML is oxidation-prone, and oxidative stress promotes NB biogenesis. These nuclear subdomains recruit many nuclear proteins and regulate their SUMOylation and other post-translational modifications. Some of these cargos-such as p53, SIRT1, AKT, and mammalian target of rapamycin (mTOR)-are key regulators of cell fate. PML was also recently shown to regulate oxidation. CRITICAL ISSUES While it was long considered primarily as a tumor suppressor protein, PML-regulated metabolic switch uncovered that this protein could promote survival and/or stemness of some normal or cancer cells. In this study, we review the recent findings on this multifunctional protein. FUTURE DIRECTIONS Studying PML scaffolding functions as well as its fine role in the activation of p53 or fatty acid oxidation will bring new insights in how PML could bridge oxidative stress, senescence, cell death, and metabolism. Antioxid. Redox Signal. 26, 432-444.
Collapse
Affiliation(s)
- Sarah Tessier
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| | | | - Hugues de Thé
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France .,6 AP-HP, Service de Biochimie, Hôpital St. Louis , Paris, France
| | - Arkaitz Carracedo
- 5 CIC bioGUNE , Bizkaia Technology Part, Derio, Spain .,7 IKERBASQUE , Basque Foundation for Science, Bilbao, Spain .,8 Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Valérie Lallemand-Breitenbach
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| |
Collapse
|
216
|
Hu L, Yang F, Lu L, Dai W. Arsenic-induced sumoylation of Mus81 is involved in regulating genomic stability. Cell Cycle 2017; 16:802-811. [PMID: 28318385 DOI: 10.1080/15384101.2017.1302628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic environmental exposure to metal toxicants such as chromium and arsenic is closely related to the development of several types of common cancers. Genetic and epigenetic studies in the past decade reveal that post-translational modifications of histones play a role in metal carcinogenesis. However, exact molecular mechanisms of metal carcinogenesis remain to be elucidated. In this study we found that As2O3, an environmental metal toxicant, upregulated overall modifications of many cellular proteins by SUMO2/3. Sumoylated proteins from arsenic-treated cells constitutively expressing His6-SUMO2 were pulled down by Ni-IDA resin under denaturing conditions. Mass spectrometric analysis revealed over 100 proteins that were potentially modified by sumoylation. Mus81, a DNA endonuclease involved in homologous recombination repair, was among the identified proteins whose sumoylation was increased after treatment with As2O3. We further showed that K10 and K524 were 2 lysine residues essential for Mus81 sumoylation. Moreover, we demonstrated that Mus81 sumoylation is important for normal mitotic chromosome congression and that cells expressing SUMO-resistant Mus81 mutants displayed compromised DNA damage responses after exposure to metal toxins such as Cr(VI) and arsenic.
Collapse
Affiliation(s)
- Liyan Hu
- a Department of Environmental Medicine , New York University Langone Medical Center , Tuxedo , NY , USA
| | - Feikun Yang
- b University of Pennsylvania , Philadelphia , PA , USA
| | - Lou Lu
- c Division of Molecular Medicine, Department of Medicine , David Geffen School of Medicine, University of California Los Angeles , Torrance , CA , USA
| | - Wei Dai
- a Department of Environmental Medicine , New York University Langone Medical Center , Tuxedo , NY , USA
| |
Collapse
|
217
|
McCulloch D, Brown C, Iland H. Retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia: current perspectives. Onco Targets Ther 2017; 10:1585-1601. [PMID: 28352191 PMCID: PMC5359123 DOI: 10.2147/ott.s100513] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) with a unique morphological appearance, associated coagulopathy and canonical balanced translocation of genetic material between chromosomes 15 and 17. APL was first described as a distinct subtype of AML in 1957 by Dr Leif Hillestad who recognized the pattern of an acute leukemia associated with fibrinolysis, hypofibrinogenemia and catastrophic hemorrhage. In the intervening years, the characteristic morphology of APL has been described fully with both classical hypergranular and variant microgranular forms. Both are characterized by a balanced translocation between the long arms of chromosomes 15 and 17, [t(15;17)(q24;q21)], giving rise to a unique fusion gene PML-RARA and an abnormal chimeric transcription factor (PML-RARA), which disrupts normal myeloid differentiation programs. The success of current treatments for APL is in marked contrast to the vast majority of patients with non-promyelocytic AML. The overall prognosis in non-promyelocytic AML is poor, and although there has been an improvement in overall survival in patients aged <60 years, only 30%-40% of younger patients are still alive 5 years after diagnosis. APL therapy has diverged from standard AML therapy through the empirical discovery of two agents that directly target the molecular basis of the disease. The evolution of treatment over the last 4 decades to include all-trans retinoic acid and arsenic trioxide, with chemotherapy limited to patients with high-risk disease, has led to complete remission in 90%-100% of patients in trials and rates of overall survival between 86% and 97%.
Collapse
Affiliation(s)
- Derek McCulloch
- Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Christina Brown
- Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Harry Iland
- Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
218
|
Pfeiffer A, Luijsterburg MS, Acs K, Wiegant WW, Helfricht A, Herzog LK, Minoia M, Böttcher C, Salomons FA, van Attikum H, Dantuma NP. Ataxin-3 consolidates the MDC1-dependent DNA double-strand break response by counteracting the SUMO-targeted ubiquitin ligase RNF4. EMBO J 2017; 36:1066-1083. [PMID: 28275011 PMCID: PMC5391139 DOI: 10.15252/embj.201695151] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
The SUMO‐targeted ubiquitin ligase RNF4 functions at the crossroads of the SUMO and ubiquitin systems. Here, we report that the deubiquitylation enzyme (DUB) ataxin‐3 counteracts RNF4 activity during the DNA double‐strand break (DSB) response. We find that ataxin‐3 negatively regulates ubiquitylation of the checkpoint mediator MDC1, a known RNF4 substrate. Loss of ataxin‐3 markedly decreases the chromatin dwell time of MDC1 at DSBs, which can be fully reversed by co‐depletion of RNF4. Ataxin‐3 is recruited to DSBs in a SUMOylation‐dependent fashion, and in vitro it directly interacts with and is stimulated by recombinant SUMO, defining a SUMO‐dependent mechanism for DUB activity toward MDC1. Loss of ataxin‐3 results in reduced DNA damage‐induced ubiquitylation due to impaired MDC1‐dependent recruitment of the ubiquitin ligases RNF8 and RNF168, and reduced recruitment of 53BP1 and BRCA1. Finally, ataxin‐3 is required for efficient MDC1‐dependent DSB repair by non‐homologous end‐joining and homologous recombination. Consequently, loss of ataxin‐3 sensitizes cells to ionizing radiation and poly(ADP‐ribose) polymerase inhibitor. We propose that the opposing activities of RNF4 and ataxin‐3 consolidate robust MDC1‐dependent signaling and repair of DSBs.
Collapse
Affiliation(s)
- Annika Pfeiffer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Klara Acs
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela Helfricht
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura K Herzog
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Melania Minoia
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Böttcher
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Florian A Salomons
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
219
|
Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation - a mechanistic view. Biomol Concepts 2017; 8:13-36. [PMID: 28284030 DOI: 10.1515/bmc-2016-0030] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.
Collapse
Affiliation(s)
- Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Heekyoung Lee
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| |
Collapse
|
220
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
221
|
Abstract
Protein SUMOylation represents an important regulatory event that changes the activities of numerous proteins. Recent evidence demonstrates that polySUMO chains can act as a trigger to direct the ubiquitin ligase RNF4 to substrates to cause their turnover through the ubiquitin pathway. RNF4 uses multiple SUMO interaction motifs (SIMs) to bind to these chains. However, in addition to polySUMO chains, a multimeric binding surface created by the simultaneous SUMOylation of multiple residues on a protein or complex could also provide a platform for the recruitment of multi-SIM proteins like RNF4. Here we demonstrate that multiSUMOylated ETV4 can bind to RNF4 and that a unique combination of SIMs is required for RNF4 to interact with this multiSUMOylated platform. Thus RNF4 can bind to proteins that are either polySUMOylated through a single site or multiSUMOylated on several sites and raises the possibility that such multiSIM-multiSUMO interactions might be more widespread.
Collapse
Affiliation(s)
- Elisa Aguilar-Martinez
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Baoqiang Guo
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
222
|
Liu C, Liu W, Ye Y, Li W. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat Commun 2017; 8:14274. [PMID: 28165462 PMCID: PMC5303827 DOI: 10.1038/ncomms14274] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination of a subset of proteins by ubiquitin chain elongation factors (E4), represented by Ufd2p in Saccharomyces cerevisiae, is a pivotal regulator for many biological processes. However, the mechanism of Ufd2p-mediated ubiquitination is largely unclear. Here, we show that Ufd2p catalyses K48-linked multi-monoubiquitination on K29-linked ubiquitin chains assembled by the ubiquitin ligase (Ufd4p), resulting in branched ubiquitin chains. This reaction depends on the interaction of K29-linked ubiquitin chains with two N-terminal loops of Ufd2p. Only following the addition of K48-linked ubiquitin to substrates modified with K29-linked ubiquitin chains, can the substrates be escorted to the proteasome for degradation. We demonstrate that this ubiquitin chain linkage switching reaction is essential for ERAD, oleic acid and acid pH resistance in yeast. Thus, our results suggest that Ufd2p functions by switching ubiquitin chain linkages to allow the degradation of proteins modified with a ubiquitin linkage, which is normally not targeted to the proteasome. How ubiquitination affects the proteins it modifies varies according to the type of linkage between ubiquitin moieties. Here, Liu et al. show how yeast Udf2p promotes K48 linkage formation onto K29-linked chains to generate branched K29-K48 ubiquitin chains that target its substrate to the proteasome.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
223
|
The Human Cytomegalovirus IE1 Protein Antagonizes PML Nuclear Body-Mediated Intrinsic Immunity via the Inhibition of PML De Novo SUMOylation. J Virol 2017; 91:JVI.02049-16. [PMID: 27903803 DOI: 10.1128/jvi.02049-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
PML nuclear bodies (NBs) are accumulations of cellular proteins embedded in a scaffold-like structure built by SUMO-modified PML/TRIM19. PML and other NB proteins act as cellular restriction factors against human cytomegalovirus (HCMV); however, this intrinsic defense is counteracted by the immediate early protein 1 (IE1) of HCMV. IE1 directly interacts with the PML coiled-coil domain via its globular core region and disrupts NB foci by inducing a loss of PML SUMOylation. Here, we demonstrate that IE1 acts via abrogating the de novo SUMOylation of PML. In order to overcome reversible SUMOylation dynamics, we made use of a cell-based assay that combines inducible IE1 expression with a SUMO mutant resistant to SUMO proteases. Interestingly, we observed that IE1 expression did not affect preSUMOylated PML; however, it clearly prevented de novo SUMO conjugation. Consistent results were obtained by in vitro SUMOylation assays, demonstrating that IE1 alone is sufficient for this effect. Furthermore, IE1 acts in a selective manner, since K160 was identified as the main target lysine. This is strengthened by the fact that IE1 also prevents As2O3-mediated hyperSUMOylation of K160, thereby blocking PML degradation. Since IE1 did not interfere with coiled-coil-mediated PML dimerization, we propose that IE1 affects PML autoSUMOylation either by directly abrogating PML E3 ligase function or by preventing access to SUMO sites. Thus, our data suggest a novel mechanism for how a viral protein counteracts a cellular restriction factor by selectively preventing the de novo SUMOylation at specific lysine residues without affecting global protein SUMOylation. IMPORTANCE The human cytomegalovirus IE1 protein acts as an important antagonist of a cellular restriction mechanism that is mediated by subnuclear structures termed PML nuclear bodies. This function of IE1 is required for efficient viral replication and thus constitutes a potential target for antiviral strategies. In this paper, we further elucidate the molecular mechanism for how IE1 antagonizes PML NBs. We show that tight binding of IE1 to PML interferes with the de novo SUMOylation of a distinct lysine residue that is also the target of stress-mediated hyperSUMOylation of PML. This is of importance since it represents a novel mechanism used by a viral antagonist of intrinsic immunity. Furthermore, it highlights the possibility of developing small molecules that specifically abrogate this PML-antagonistic activity of IE1 and thus inhibit viral replication.
Collapse
|
224
|
Liu Y, Zhao D, Qiu F, Zhang LL, Liu SK, Li YY, Liu MT, Wu D, Wang JX, Ding XQ, Liu YX, Dong CJ, Shao XQ, Yang BF, Chu WF. Manipulating PML SUMOylation via Silencing UBC9 and RNF4 Regulates Cardiac Fibrosis. Mol Ther 2017; 25:666-678. [PMID: 28143738 DOI: 10.1016/j.ymthe.2016.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/10/2016] [Accepted: 12/25/2016] [Indexed: 01/25/2023] Open
Abstract
The promyelocytic leukemia protein (PML) is essential in the assembly of dynamic subnuclear structures called PML nuclear bodies (PML-NBs), which are involved in regulating diverse cellular functions. However, the possibility of PML being involved in cardiac disease has not been examined. In mice undergoing transverse aortic constriction (TAC) and arsenic trioxide (ATO) injection, transforming growth factor β1 (TGF-β1) was upregulated along with dynamic alteration of PML SUMOylation. In cultured neonatal mouse cardiac fibroblasts (NMCFs), ATO, angiotensin II (Ang II), and fetal bovine serum (FBS) significantly triggered PML SUMOylation and the assembly of PML-NBs. Inhibition of SUMOylated PML by silencing UBC9, the unique SUMO E2-conjugating enzyme, reduced the development of cardiac fibrosis and partially improved cardiac function in TAC mice. In contrast, enhancing SUMOylated PML accumulation, by silencing RNF4, a poly-SUMO-specific E3 ubiquitin ligase, accelerated the induction of cardiac fibrosis and promoted cardiac function injury. PML colocalized with Pin1 (a positive regulator for TGF-β1 mRNA expression in PML-NBs) and increased TGF-β1 activity. These findings suggest that the UBC9/PML/RNF4 axis plays a critical role as an important SUMO pathway in cardiac fibrosis. Modulating the protein levels of the pathway provides an attractive therapeutic target for the treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Dan Zhao
- Department of Clinical Pharmacy, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The 2nd Affiliated Hospital, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Fang Qiu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Ling-Ling Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Shang-Kun Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Yuan-Yuan Li
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Mei-Tong Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Di Wu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Jia-Xin Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Xiao-Qing Ding
- Department of Clinical Pharmacy, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The 2nd Affiliated Hospital, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Yan-Xin Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Chang-Jiang Dong
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Xiao-Qi Shao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Bao-Feng Yang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China.
| | - Wen-Feng Chu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China.
| |
Collapse
|
225
|
Jiang YH, Chen YJ, Wang C, Lan YF, Yang C, Wang QQ, Hussain L, Maimaitiying Y, Islam K, Naranmandura H. Phenylarsine Oxide Can Induce the Arsenite-Resistance Mutant PML Protein Solubility Changes. Int J Mol Sci 2017; 18:ijms18020247. [PMID: 28125064 PMCID: PMC5343784 DOI: 10.3390/ijms18020247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Arsenic trioxide (As2O3) has recently become one of the most effective drugs for treatment of patient with acute promyelocytic leukemia (APL), and its molecular mechanism has also been largely investigated. However, it has been reported that As2O3 resistant patients are frequently found in relapsed APL after consolidation therapy, which is due to the point mutations in B-box type 2 motifs of promyelocytic leukemia (PML) gene. In the present study, we for the first time establish whether organic arsenic species phenylarsine oxide (PAO) could induce the mutant PML-IV (A216V) protein solubility changes and degradation. Here, three different PML protein variants (i.e., PML-IV, PML-V and mutant PML-A216V) were overexpressed in HEK293T cells and then exposed to PAO in time- and dose-dependent manners. Interestingly, PAO is found to have potential effect on induction of mutant PML-IV (A216V) protein solubility changes and degradation, but no appreciable effects were found following exposure to high concentrations of iAsIII, dimethylarsinous acid (DMAIII) and adriamycin (doxorubicin), even though they cause cell death. Our current data strongly indicate that PAO has good effects on the mutant PML protein solubility changes, and it may be helpful for improving the therapeutic strategies for arsenic-resistant APL treatments in the near future.
Collapse
Affiliation(s)
- Yu Han Jiang
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Ye Jia Chen
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Chao Wang
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
| | - Yong Fei Lan
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
| | - Chang Yang
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Qian Qian Wang
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Liaqat Hussain
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yasen Maimaitiying
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Khairul Islam
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public health, Zhejiang University, Hangzhou 310058, China.
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
226
|
Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol 2017; 24:325-336. [DOI: 10.1038/nsmb.3366] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
|
227
|
Lamoliatte F, McManus FP, Maarifi G, Chelbi-Alix MK, Thibault P. Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun 2017; 8:14109. [PMID: 28098164 PMCID: PMC5253644 DOI: 10.1038/ncomms14109] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022] Open
Abstract
Crosstalk between the SUMO and ubiquitin pathways has recently been reported. However, no approach currently exists to determine the interrelationship between these modifications. Here, we report an optimized immunoaffinity method that permits the study of both protein ubiquitylation and SUMOylation from a single sample. This method enables the unprecedented identification of 10,388 SUMO sites in HEK293 cells. The sequential use of SUMO and ubiquitin remnant immunoaffinity purification facilitates the dynamic profiling of SUMOylated and ubiquitylated proteins in HEK293 cells treated with the proteasome inhibitor MG132. Quantitative proteomic analyses reveals crosstalk between substrates that control protein degradation, and highlights co-regulation of SUMOylation and ubiquitylation levels on deubiquitinase enzymes and the SUMOylation of proteasome subunits. The SUMOylation of the proteasome affects its recruitment to promyelocytic leukemia protein (PML) nuclear bodies, and PML lacking the SUMO interacting motif fails to colocalize with SUMOylated proteasome further demonstrating that this motif is required for PML catabolism.
Collapse
Affiliation(s)
- Frédéric Lamoliatte
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7.,Department of Chemistry, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Francis P McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Ghizlane Maarifi
- INSERM UMR-S1124, Université Paris Descartes, 75006 Paris, France
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7.,Department of Chemistry, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7.,Department of Biochemistry, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
228
|
Abstract
The promyelocytic leukemia protein (PML) is the main organizer of stress-responsive subnuclear structures called PML nuclear bodies. These structures recruit multiple interactors and modulate their abundance or their posttranslational modifications, notably by the SUMO ubiquitin-like modifiers. The involvement of PML in antiviral responses is well established. In contrast, the role of PML in bacterial infection remains poorly characterized. Here, we show that PML restricts infection by the pathogenic bacterium Listeria monocytogenes but not by Salmonella enterica serovar Typhimurium. During infection, PML undergoes oxidation-mediated multimerization, associates with the nuclear matrix, and becomes de-SUMOylated due to the pore-forming activity of the Listeria toxin listeriolysin O (LLO). These events trigger an antibacterial response that is not observed during in vitro infection by an LLO-defective Listeria mutant, but which can be phenocopied by specific induction of PML de-SUMOylation. Using transcriptomic and proteomic microarrays, we also characterized a network of immunity genes and cytokines, which are regulated by PML in response to Listeria infection but independently from the listeriolysin O toxin. Our study thus highlights two mechanistically distinct complementary roles of PML in host responses against bacterial infection. IMPORTANCE The promyelocytic leukemia protein (PML) is a eukaryotic protein that can polymerize in discrete nuclear assemblies known as PML nuclear bodies (NBs) and plays essential roles in many different cellular processes. Key to its function, PML can be posttranslationally modified by SUMO, a ubiquitin-like modifier. Identification of the role of PML in antiviral defenses has been deeply documented. In contrast, the role of PML in antibacterial defenses remains elusive. Here, we identify two mechanistically distinct complementary roles of PML in antibacterial responses against pathogens such as Listeria: (i) we show that PML regulates the expression of immunity genes in response to bacterial infection, and (ii) we unveil the fact that modification of PML SUMOylation by bacterial pore-forming toxins is sensed as a danger signal, leading to a restriction of bacterial intracellular multiplication. Taken together, our data reinforce the concept that intranuclear bodies can dynamically regulate important processes, such as defense against invaders.
Collapse
|
229
|
Chhunchha B, Kubo E, Fatma N, Singh DP. Sumoylation-deficient Prdx6 gains protective function by amplifying enzymatic activity and stability and escapes oxidative stress-induced aberrant Sumoylation. Cell Death Dis 2017; 8:e2525. [PMID: 28055018 PMCID: PMC5386354 DOI: 10.1038/cddis.2016.424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/17/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023]
Abstract
Aberrant Sumoylation of protein(s) in response to oxidative stress or during aging is known to be involved in etiopathogenesis of many diseases. Upon oxidative stress, Peroxiredoxin (Prdx) 6 is aberrantly Sumoylated by Sumo1, resulting in loss of functions and cell death. We identified lysines (K) 122 and 142 as the major Sumo1 conjugation sites in Prdx6. Intriguingly, the mutant Prdx6 K122/142 R (arginine) gained protective efficacy, increasing in abundance and promoting glutathione (GSH) peroxidase and acidic calcium-independent phospholipase A2 (aiPLA2) activities. Using lens epithelial cells derived from targeted inactivation of Prdx6−/− gene and relative enzymatic and stability assays, we discovered dramatic increases in GSH-peroxidase (30%) and aiPLA2 (37%) activities and stability in the K122/142 R mutant, suggesting Sumo1 destabilized Prdx6 integrity. Prdx6−/−LECs with EGFP-Sumo1 transduced or co-expressed with mutant TAT-HA-Prdx6K122/142 R or pGFP-Prdx6K122/142 R were highly resistant to oxidative stress, demonstrating mutant protein escaped and interrupted the Prdx6 aberrant Sumoylation-mediated cell death pathway. Mutational analysis of functional sites showed that both peroxidase and PLA2 active sites were necessary for mutant Prdx6 function, and that Prdx6 phosphorylation (at T177 residue) was essential for optimum PLA2 activity. Our work reveals the involvement of oxidative stress-induced aberrant Sumoylation in dysregulation of Prdx6 function. Mutant Prdx6 at its Sumo1 sites escapes and abates this adverse process by maintaining its integrity and gaining function. We propose that the K122/142R mutant of Prdx6 in the form of a TAT-fusion protein may be an easily applicable intervention for pathobiology of cells related to aberrant Sumoylation signaling in aging or oxidative stress.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Nigar Fatma
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
230
|
Abstract
Mitosis is the stage of the cell cycle during which replicated chromosomes must be precisely divided to allow the formation of two daughter cells possessing equal genetic material. Much of the careful spatial and temporal organization of mitosis is maintained through post-translational modifications, such as phosphorylation and ubiquitination, of key cellular proteins. Here, we will review evidence that sumoylation, conjugation to the SUMO family of small ubiquitin-like modifiers, also serves essential regulatory roles during mitosis. We will discuss the basic biology of sumoylation, how the SUMO pathway has been implicated in particular mitotic functions, including chromosome condensation, centromere/kinetochore organization and cytokinesis, and what cellular proteins may be the targets underlying these phenomena.
Collapse
Affiliation(s)
- Debaditya Mukhopadhyay
- Section on Cell Cycle Regulation, Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institutes of Health, 18 Library Drive, Room 106, Building 18T, Bethesda, MD, 20892, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institutes of Health, 18 Library Drive, Room 106, Building 18T, Bethesda, MD, 20892, USA.
| |
Collapse
|
231
|
The Molecular Interface Between the SUMO and Ubiquitin Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:99-110. [DOI: 10.1007/978-3-319-50044-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
232
|
Abstract
Protein SUMOylation represents an important regulatory event that changes the activities of numerous proteins. Recent evidence demonstrates that polySUMO chains can act as a trigger to direct the ubiquitin ligase RNF4 to substrates to cause their turnover through the ubiquitin pathway. RNF4 uses multiple SUMO interaction motifs (SIMs) to bind to these chains. However, in addition to polySUMO chains, a multimeric binding surface created by the simultaneous SUMOylation of multiple residues on a protein or complex could also provide a platform for the recruitment of multi-SIM proteins like RNF4. Here we demonstrate that multiSUMOylated ETV4 can bind to RNF4 and that a unique combination of SIMs is required for RNF4 to interact with this multiSUMOylated platform. Thus RNF4 can bind to proteins that are either polySUMOylated through a single site or multiSUMOylated on several sites and raises the possibility that such multiSIM-multiSUMO interactions might be more widespread.
Collapse
|
233
|
Todorović TR, Vukašinović J, Portalone G, Suleiman S, Gligorijević N, Bjelogrlić S, Jovanović K, Radulović S, Anđelković K, Cassar A, Filipović NR, Schembri-Wismayer P. (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. MEDCHEMCOMM 2016; 8:103-111. [PMID: 30108695 DOI: 10.1039/c6md00501b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Cobalt complexes with semi- and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(ii) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.
Collapse
Affiliation(s)
- Tamara R Todorović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Jelena Vukašinović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Gustavo Portalone
- Department of Chemistry , Sapienza University of Rome , P.le Aldo Moro 5 , 00185 Rome , Italy
| | - Sherif Suleiman
- Anatomy Department , Faculty of Medicine and Surgery , University of Malta , Malta .
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Snezana Bjelogrlić
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Katarina Jovanović
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Katarina Anđelković
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Analisse Cassar
- Anatomy Department , Faculty of Medicine and Surgery , University of Malta , Malta .
| | - Nenad R Filipović
- Faculty of Agriculture , University of Belgrade , Nemanjina 6 , 11081 Belgrade , Serbia .
| | | |
Collapse
|
234
|
Zhou W, Cheng L, Shi Y, Ke SQ, Huang Z, Fang X, Chu CW, Xie Q, Bian XW, Rich JN, Bao S. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget 2016; 6:37300-15. [PMID: 26510911 PMCID: PMC4741931 DOI: 10.18632/oncotarget.5836] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/01/2015] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal brain tumor. Tumor relapse in GBM is inevitable despite maximal therapeutic interventions. Glioma stem cells (GSCs) have been found to be critical players in therapeutic resistance and tumor recurrence. Therapeutic drugs targeting GSCs may significantly improve GBM treatment. In this study, we demonstrated that arsenic trioxide (As2O3) effectively disrupted GSCs and inhibited tumor growth in the GSC-derived orthotopic xenografts by targeting the promyelocytic leukaemia (PML). As2O3 treatment induced rapid degradation of PML protein along with severe apoptosis in GSCs. Disruption of the endogenous PML recapitulated the inhibitory effects of As2O3 treatment on GSCs both in vitro and in orthotopic tumors. Importantly, As2O3 treatment dramatically reduced GSC population in the intracranial GBM xenografts and increased the survival of mice bearing the tumors. In addition, As2O3 treatment preferentially inhibited cell growth of GSCs but not matched non-stem tumor cells (NSTCs). Furthermore, As2O3 treatment or PML disruption potently diminished c-Myc protein levels through increased poly-ubiquitination and proteasome degradation of c-Myc. Our study indicated a potential implication of As2O3 in GBM treatment and highlighted the important role of PML/c-Myc axis in the maintenance of GSCs.
Collapse
Affiliation(s)
- Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lin Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yu Shi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Susan Q Ke
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cheng-wei Chu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qi Xie
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
235
|
Castro PH, Couto D, Freitas S, Verde N, Macho AP, Huguet S, Botella MA, Ruiz-Albert J, Tavares RM, Bejarano ER, Azevedo H. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 92:143-59. [PMID: 27325215 DOI: 10.1007/s11103-016-0500-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Sumoylation is an essential post-translational regulator of plant development and the response to environmental stimuli. SUMO conjugation occurs via an E1-E2-E3 cascade, and can be removed by SUMO proteases (ULPs). ULPs are numerous and likely to function as sources of specificity within the pathway, yet most ULPs remain functionally unresolved. In this report we used loss-of-function reverse genetics and transcriptomics to functionally characterize Arabidopsis thaliana ULP1c and ULP1d SUMO proteases. GUS reporter assays implicated ULP1c/d in various developmental stages, and subsequent defects in growth and germination were uncovered using loss-of-function mutants. Microarray analysis evidenced not only a deregulation of genes involved in development, but also in genes controlled by various drought-associated transcriptional regulators. We demonstrated that ulp1c ulp1d displayed diminished in vitro root growth under low water potential and higher stomatal aperture, yet leaf transpirational water loss and whole drought tolerance were not significantly altered. Generation of a triple siz1 ulp1c ulp1d mutant suggests that ULP1c/d and the SUMO E3 ligase SIZ1 may display separate functions in development yet operate epistatically in response to water deficit. We provide experimental evidence that Arabidopsis ULP1c and ULP1d proteases act redundantly as positive regulators of growth, and operate mainly as isopeptidases downstream of SIZ1 in the control of water deficit responses.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Daniel Couto
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- The Sainsbury Laboratory, Colney Lane, Norwich, NR4 7UH, UK
| | - Sara Freitas
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno Verde
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alberto P Macho
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 201602, Shanghai, China
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, 2 rue G. Crémieux, CP 5708, 91057, Evry Cedex, France
| | - Miguel Angel Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Molecular y Bioquímica, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Rui Manuel Tavares
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Herlânder Azevedo
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
236
|
Guturi KKN, Bohgaki M, Bohgaki T, Srikumar T, Ng D, Kumareswaran R, El Ghamrasni S, Jeon J, Patel P, Eldin MS, Bristow R, Cheung P, Stewart GS, Raught B, Hakem A, Hakem R. RNF168 and USP10 regulate topoisomerase IIα function via opposing effects on its ubiquitylation. Nat Commun 2016; 7:12638. [PMID: 27558965 PMCID: PMC5007378 DOI: 10.1038/ncomms12638] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Topoisomerase IIα (TOP2α) is essential for chromosomal condensation and segregation, as well as genomic integrity. Here we report that RNF168, an E3 ligase mutated in the human RIDDLE syndrome, interacts with TOP2α and mediates its ubiquitylation. RNF168 deficiency impairs decatenation activity of TOP2α and promotes mitotic abnormalities and defective chromosomal segregation. Our data also indicate that RNF168 deficiency, including in human breast cancer cell lines, confers resistance to the anti-cancer drug and TOP2 inhibitor etoposide. We also identify USP10 as a deubiquitylase that negatively regulates TOP2α ubiquitylation and restrains its chromatin association. These findings provide a mechanistic link between the RNF168/USP10 axis and TOP2α ubiquitylation and function, and suggest a role for RNF168 in the response to anti-cancer chemotherapeutics that target TOP2.
Collapse
Affiliation(s)
- Kiran Kumar Naidu Guturi
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Miyuki Bohgaki
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Toshiyuki Bohgaki
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Tharan Srikumar
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Deborah Ng
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Ramya Kumareswaran
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Samah El Ghamrasni
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Justin Jeon
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Parasvi Patel
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Mohamed Saad Eldin
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Rob Bristow
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Peter Cheung
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Grant S Stewart
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Brian Raught
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Anne Hakem
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Razqallah Hakem
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
237
|
Martín-Martín N, Piva M, Urosevic J, Aldaz P, Sutherland JD, Fernández-Ruiz S, Arreal L, Torrano V, Cortazar AR, Planet E, Guiu M, Radosevic-Robin N, Garcia S, Macías I, Salvador F, Domenici G, Rueda OM, Zabala-Letona A, Arruabarrena-Aristorena A, Zúñiga-García P, Caro-Maldonado A, Valcárcel-Jiménez L, Sánchez-Mosquera P, Varela-Rey M, Martínez-Chantar ML, Anguita J, Ibrahim YH, Scaltriti M, Lawrie CH, Aransay AM, Iovanna JL, Baselga J, Caldas C, Barrio R, Serra V, dM Vivanco M, Matheu A, Gomis RR, Carracedo A. Stratification and therapeutic potential of PML in metastatic breast cancer. Nat Commun 2016; 7:12595. [PMID: 27553708 PMCID: PMC4999521 DOI: 10.1038/ncomms12595] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/12/2016] [Indexed: 01/15/2023] Open
Abstract
Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.
Collapse
Affiliation(s)
| | - Marco Piva
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Jelena Urosevic
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
| | - Paula Aldaz
- Oncology Area, Biodonostia Institute, 20014 San Sebastian, Spain
| | | | | | - Leire Arreal
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Verónica Torrano
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Ana R. Cortazar
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Evarist Planet
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marc Guiu
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
| | - Nina Radosevic-Robin
- ERTICa Research Group, University of Auvergne EA4677, Clermont-Ferrand, France
- Biodiagnostics Laboratory OncoGenAuvergne, Pathology Unit, Jean Perrin Comprehensive Cancer Center, 63000 Clermont-Ferrand, France
| | - Stephane Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
| | - Iratxe Macías
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Fernando Salvador
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
| | - Giacomo Domenici
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | - Marta Varela-Rey
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Maria Luz Martínez-Chantar
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Juan Anguita
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- IKERBASQUE, Basque foundation for science, 48013 Bilbao, Spain
| | - Yasir H. Ibrahim
- Experimental Therapeutics Group, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Weill Cornell Medicine, New York 10021, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, 10065 New York, USA
| | - Charles H. Lawrie
- Oncology Area, Biodonostia Institute, 20014 San Sebastian, Spain
- IKERBASQUE, Basque foundation for science, 48013 Bilbao, Spain
| | - Ana M. Aransay
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
| | - Jose Baselga
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 10065 New York, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Maria dM Vivanco
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Institute, 20014 San Sebastian, Spain
- IKERBASQUE, Basque foundation for science, 48013 Bilbao, Spain
| | - Roger R. Gomis
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- IKERBASQUE, Basque foundation for science, 48013 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), 48949 Leioa, Spain
| |
Collapse
|
238
|
Ganesan S, Alex AA, Chendamarai E, Balasundaram N, Palani HK, David S, Kulkarni U, Aiyaz M, Mugasimangalam R, Korula A, Abraham A, Srivastava A, Padua RA, Chomienne C, George B, Balasubramanian P, Mathews V. Rationale and efficacy of proteasome inhibitor combined with arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia 2016; 30:2169-2178. [PMID: 27560113 PMCID: PMC5097069 DOI: 10.1038/leu.2016.227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/12/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Abstract
Arsenic trioxide (ATO) mediates PML-RARA (promyelocytic leukemia-retinoic acid receptor-α) oncoprotein degradation via the proteasome pathway and this degradation appears to be critical for achieving cure in acute promyeloytic leukemia (APL). We have previously demonstrated significant micro-environment-mediated drug resistance (EMDR) to ATO in APL. Here we demonstrate that this EMDR could be effectively overcome by combining a proteasome inhibitor (bortezomib) with ATO. A synergistic effect on combining these two agents in vitro was noted in both ATO-sensitive and ATO-resistant APL cell lines. The mechanism of this synergy involved downregulation of the nuclear factor-κB pathway, increase in unfolded protein response (UPR) and an increase in reactive oxygen species generation in the malignant cell. We also noted that PML-RARA oncoprotein is effectively cleared with this combination in spite of proteasome inhibition by bortezomib, and that this clearance is mediated through a p62-dependent autophagy pathway. We further demonstrated that proteasome inhibition along with ATO had an additive effect in inducing autophagy. The beneficial effect of this combination was further validated in an animal model and in an on-going clinical trial. This study raises the potential of a non-myelotoxic proteasome inhibitor replacing anthracyclines in the management of high-risk and relapsed APL.
Collapse
Affiliation(s)
- S Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - A A Alex
- Department of Haematology, Christian Medical College, Vellore, India
| | - E Chendamarai
- Department of Haematology, Christian Medical College, Vellore, India
| | - N Balasundaram
- Department of Haematology, Christian Medical College, Vellore, India
| | - H K Palani
- Department of Haematology, Christian Medical College, Vellore, India
| | - S David
- Department of Haematology, Christian Medical College, Vellore, India
| | - U Kulkarni
- Department of Haematology, Christian Medical College, Vellore, India
| | - M Aiyaz
- Genotypic Technology, Bengaluru, India
| | | | - A Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | - A Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - A Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - R A Padua
- UMR-S1131, Hôpital Saint Louis, Paris, France.,Institut Universitaire d' Hématologie, Universite Paris Diderot, Paris, France
| | - C Chomienne
- UMR-S1131, Hôpital Saint Louis, Paris, France.,Institut Universitaire d' Hématologie, Universite Paris Diderot, Paris, France
| | - B George
- Department of Haematology, Christian Medical College, Vellore, India
| | - P Balasubramanian
- Department of Haematology, Christian Medical College, Vellore, India
| | - V Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| |
Collapse
|
239
|
Tang H, Jin Y, Jin S, Tan Z, Peng Z, Kuang Y. Arsenite inhibits the function of CD133 + CD13 + liver cancer stem cells by reducing PML and Oct4 protein expression. Tumour Biol 2016; 37:14103-14115. [PMID: 27517564 DOI: 10.1007/s13277-016-5195-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) can form new tumors and contribute to post-operative recurrence and metastasis. We showed that CD133+CD13+ hepatocytes isolated from HuH7 cells and primary HCC cells display biochemical and functional characteristics typical of CSCs, suggesting that CD133+CD13+ hepatocytes in primary HCC tumors function as CSCs. We also found that arsenite treatment reduced the viability and stemness of CD133+CD13+ hepatocytes, enhanced the sensitivity of HuH7 cells to pirarubicin, and reduced the tumorigenicity of CD133+CD13+ hepatocytes xenografts in mice. The effects of sodium arsenite treatment in CD133+CD13+ hepatocytes were mediated by the post-transcriptional suppression of PML expression and the inhibition of Oct4, Sox2, and Klf4 expression at the transcriptional level. Incomplete rescue of Oct4 expression in arsenic-treated cells ectopically expressing an siRNA-resistant PML transcript suggested that OCT4 regulation in liver CSCs involves other factors in addition to PML. Our findings provide evidence of a specific role for PML in regulating Oct4 levels in liver CSCs and highlight the clinical importance of arsenic for improving the efficacy of other chemotherapeutic agents and the prevention of post-operative HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Huaming Tang
- Department of Hepaticbiliary Surgery, Kai Xian Poeples Hospital of Chongqing City, 8#, Ankang Road, Hanfeng Street, Kai County, Chongqing city, 405400, China
| | - Yukai Jin
- the Clinical Medical Department, Peking Union Medical College, Zijing Department, Tsinghua University, 328A 27#, Beijing City, China
| | - Shilong Jin
- Department of Hepaticbiliary Surgery, Kai Xian Poeples Hospital of Chongqing City, 8#, Ankang Road, Hanfeng Street, Kai County, Chongqing city, 405400, China.
| | - Zhiming Tan
- Department of Hepaticbiliary Surgery, Kai Xian Poeples Hospital of Chongqing City, 8#, Ankang Road, Hanfeng Street, Kai County, Chongqing city, 405400, China
| | - Zhang Peng
- Department of Hepaticbiliary Surgery, Kai Xian Poeples Hospital of Chongqing City, 8#, Ankang Road, Hanfeng Street, Kai County, Chongqing city, 405400, China
| | - Yuanli Kuang
- Department of Hepaticbiliary Surgery, Kai Xian Poeples Hospital of Chongqing City, 8#, Ankang Road, Hanfeng Street, Kai County, Chongqing city, 405400, China
| |
Collapse
|
240
|
Ferhi O, Pérès L, Tessier S, de Thé H, Lallemand-Breitenbach V. Comment on "SUMO deconjugation is required for arsenic-triggered ubiquitylation of PML". Sci Signal 2016; 9:tc1. [PMID: 27507651 DOI: 10.1126/stke.9.440.tc1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fasci et al proposed that a SENP1-mediated switch from SUMO2 to SUMO1 conjugation on Lys(65) in promyelocytic leukemia protein (PML) is required for arsenic-induced PML degradation, the basis for the antileukemic activity of arsenic. We found that PML or PML/RARA (retinoic acid receptor α) mutants that cannot be SUMO-conjugated on this specific site nevertheless underwent immediate arsenic-triggered SUMO modification. Moreover, these mutants were efficiently degraded in cells and even in vivo, demonstrating that SUMOylation of Lys(65) was dispensable for arsenic response. The existence and putative role of a SUMO switch on PML should thus be reassessed.
Collapse
Affiliation(s)
- Omar Ferhi
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris 75010, France. INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital Saint Louis, Paris 75010, France. CNRS UMR 7212, Hôpital Saint Louis, Paris 75010, France
| | - Laurent Pérès
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris 75010, France. INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital Saint Louis, Paris 75010, France. CNRS UMR 7212, Hôpital Saint Louis, Paris 75010, France
| | - Sarah Tessier
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris 75010, France. INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital Saint Louis, Paris 75010, France. CNRS UMR 7212, Hôpital Saint Louis, Paris 75010, France
| | - Hugues de Thé
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris 75010, France. INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital Saint Louis, Paris 75010, France. CNRS UMR 7212, Hôpital Saint Louis, Paris 75010, France. Assistance Publique des Hôpitaux de Paris, Oncologie Moléculaire, Hôpital Saint Louis, Paris 75010, France. Collège de France, PSL (Paris Sciences et Lettres) University, Paris, 75231 Paris Cedex 05, France.
| | - Valérie Lallemand-Breitenbach
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris 75010, France. INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Hôpital Saint Louis, Paris 75010, France. CNRS UMR 7212, Hôpital Saint Louis, Paris 75010, France.
| |
Collapse
|
241
|
Fasci D, Anania V, Lill J, Salvesen G. Response to Comment on "SUMO deconjugation is required for arsenic-triggered ubiquitylation of PML". Sci Signal 2016; 9:tc2. [PMID: 27507652 DOI: 10.1126/scisignal.aad9777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arsenic trioxide chemotherapy cures acute promyelocytic leukemia by inducing the ubiquitylation of an oncogenic fusion protein containing promyelocytic leukemia protein (PML) subsequent to modification of PML by SUMO1 and SUMO2. We proposed that the SUMO switch at Lys(65) of PML enhanced subsequent SUMO2 conjugation to Lys(160) and consequent RNF4-dependent ubiquitylation of PML. Ferhi et al note differences between their experimental system and ours regarding the outcome and mechanisms of SUMO-dependent PML signaling. When confronted by apparently contradictory data, it is appropriate to drill down to where the differences could lie.
Collapse
Affiliation(s)
- Domenico Fasci
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Veronica Anania
- Proteomics and Biological Resources, Genentech Research and Early Development, South San Francisco, CA 92056, USA
| | - Jennie Lill
- Proteomics and Biological Resources, Genentech Research and Early Development, South San Francisco, CA 92056, USA
| | - Guy Salvesen
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
242
|
Matsumoto H, Saitoh H. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition. Biochem Biophys Res Commun 2016; 476:153-8. [PMID: 27181354 DOI: 10.1016/j.bbrc.2016.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022]
Abstract
We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus.
Collapse
Affiliation(s)
- Hotaru Matsumoto
- Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto, Japan
| | - Hisato Saitoh
- Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto, Japan; Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
243
|
Wang QQ, Zhou XY, Zhang YF, Bu N, Zhou J, Cao FL, Naranmandura H. Methylated arsenic metabolites bind to PML protein but do not induce cellular differentiation and PML-RARα protein degradation. Oncotarget 2016. [PMID: 26213848 PMCID: PMC4694856 DOI: 10.18632/oncotarget.4662] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Arsenic trioxide (As2O3) is one of the most effective therapeutic agents used for patients with acute promyelocytic leukemia (APL). The probable explanation for As2O3-induced cell differentiation is the direct targeting of PML-RARα oncoprotein by As2O3, which results in initiation of PML-RARa degradation. However, after injection, As2O3 is rapidly methylated in body to different intermediate metabolites such as trivalent monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII), therefore, it remains unknown that which arsenic specie is actually responsible for the therapeutic effects against APL. Here we have shown the role of As2O3 (as iAsIII) and its intermediate metabolites (i.e., MMAIII/DMAIII) in NB4 cells. Inorganic iAsIII predominantly showed induction of cell differentiation, while MMAIII and DMAIII specifically showed to induce mitochondria and endoplasmic reticulum-mediated apoptosis, respectively. On the other hand, in contrast to iAsIII, MMAIII showed stronger binding affinity for ring domain of PML recombinant protein, however, could not induce PML protein SUMOylation and ubiquitin/proteasome degradation. In summary, our results suggest that the binding of arsenicals to the ring domain of PML proteins is not associated with the degradation of PML-RARa fusion protein. Moreover, methylated arsenicals can efficiently lead to cellular apoptosis, however, they are incapable of inducing NB4 cell differentiation.
Collapse
Affiliation(s)
- Qian Qian Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Yi Zhou
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Fang Zhang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Na Bu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin Zhou
- Department of Hematology and Oncology, The First Clinical College of Harbin Medical University, Harbin 150086, China
| | - Feng Lin Cao
- Department of Hematology and Oncology, The First Clinical College of Harbin Medical University, Harbin 150086, China
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
244
|
Abstract
Small ubiquitin-like modifiers (SUMOs) are essential for the regulation of several cellular processes and are potential therapeutic targets owing to their involvement in diseases such as cancer and Alzheimer disease. In the past decade, we have witnessed a rapid expansion of proteomic approaches for identifying sumoylated proteins, with recent advances in detecting site-specific sumoylation. In this Analysis, we combined all human SUMO proteomics data currently available into one cohesive database. We provide proteomic evidence for sumoylation of 3,617 proteins at 7,327 sumoylation sites, and insight into SUMO group modification by clustering the sumoylated proteins into functional networks. The data support sumoylation being a frequent protein modification (on par with other major protein modifications) with multiple nuclear functions, including in transcription, mRNA processing, DNA replication and the DNA-damage response.
Collapse
|
245
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
246
|
Koidl S, Eisenhardt N, Fatouros C, Droescher M, Chaugule VK, Pichler A. The SUMO2/3 specific E3 ligase ZNF451-1 regulates PML stability. Int J Biochem Cell Biol 2016; 79:478-487. [PMID: 27343429 DOI: 10.1016/j.biocel.2016.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
The small ubiquitin related modifier SUMO regulates protein functions to maintain cell homeostasis. SUMO attachment is executed by the hierarchical action of E1, E2 and E3 enzymes of which E3 ligases ensure substrate specificity. We recently identified the ZNF451 family as novel class of SUMO2/3 specific E3 ligases and characterized their function in SUMO chain formation. The founding member, ZNF451isoform1 (ZNF451-1) partially resides in PML bodies, nuclear structures organized by the promyelocytic leukemia gene product PML. As PML and diverse PML components are well known SUMO substrates the question arises whether ZNF451-1 is involved in their sumoylation. Here, we show that ZNF451-1 indeed functions as SUMO2/3 specific E3 ligase for PML and selected PML components in vitro. Mutational analysis indicates that substrate sumoylation employs an identical biochemical mechanism as we described for SUMO chain formation. In vivo, ZNF451-1 RNAi depletion leads to PML stabilization and an increased number of PML bodies. By contrast, PML degradation upon arsenic trioxide treatment is not ZNF451-1 dependent. Our data suggest a regulatory role of ZNF451-1 in fine-tuning physiological PML levels in a RNF4 cooperative manner in the mouse neuroblastoma N2a cell-line.
Collapse
Affiliation(s)
- Stefanie Koidl
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Mathias Droescher
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Viduth K Chaugule
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Andrea Pichler
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany.
| |
Collapse
|
247
|
Apostolov A, Litim-Mecheri I, Oravecz A, Goepp M, Kirstetter P, Marchal P, Ittel A, Mauvieux L, Chan S, Kastner P. Sumoylation Inhibits the Growth Suppressive Properties of Ikaros. PLoS One 2016; 11:e0157767. [PMID: 27315244 PMCID: PMC4912065 DOI: 10.1371/journal.pone.0157767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/03/2016] [Indexed: 01/01/2023] Open
Abstract
The Ikaros transcription factor is a tumor suppressor that is also important for lymphocyte development. How post-translational modifications influence Ikaros function remains partially understood. We show that Ikaros undergoes sumoylation in developing T cells that correspond to mono-, bi- or poly-sumoylation by SUMO1 and/or SUMO2/3 on three lysine residues (K58, K240 and K425). Sumoylation occurs in the nucleus and requires DNA binding by Ikaros. Sumoylated Ikaros is less effective than unsumoylated forms at inhibiting the expansion of murine leukemic cells, and Ikaros sumoylation is abundant in human B-cell acute lymphoblastic leukemic cells, but not in healthy peripheral blood leukocytes. Our results suggest that sumoylation may be important in modulating the tumor suppressor function of Ikaros.
Collapse
Affiliation(s)
- Apostol Apostolov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Isma Litim-Mecheri
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Marie Goepp
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Peggy Kirstetter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Patricia Marchal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Antoine Ittel
- Laboratoire d’Hématologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire d’Hématologie Cellulaire, EA 3430, Institut d’Hématologie et d’Immunologie, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Laurent Mauvieux
- Laboratoire d’Hématologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire d’Hématologie Cellulaire, EA 3430, Institut d’Hématologie et d’Immunologie, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
248
|
Rabellino A, Melegari M, Tompkins VS, Chen W, Van Ness BG, Teruya-Feldstein J, Conacci-Sorrell M, Janz S, Scaglioni PP. PIAS1 Promotes Lymphomagenesis through MYC Upregulation. Cell Rep 2016; 15:2266-2278. [PMID: 27239040 DOI: 10.1016/j.celrep.2016.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 01/06/2023] Open
Abstract
The MYC proto-oncogene is a transcription factor implicated in a broad range of cancers. MYC is regulated by several post-translational modifications including SUMOylation, but the functional impact of this post-translational modification is still unclear. Here, we report that the SUMO E3 ligase PIAS1 SUMOylates MYC. We demonstrate that PIAS1 promotes, in a SUMOylation-dependent manner, MYC phosphorylation at serine 62 and dephosphorylation at threonine 58. These events reduce the MYC turnover, leading to increased transcriptional activity. Furthermore, we find that MYC is SUMOylated in primary B cell lymphomas and that PIAS1 is required for the viability of MYC-dependent B cell lymphoma cells as well as several cancer cell lines of epithelial origin. Finally, Pias1-null mice display endothelial defects reminiscent of Myc-null mice. Taken together, these results indicate that PIAS1 is a positive regulator of MYC.
Collapse
Affiliation(s)
- Andrea Rabellino
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Margherita Melegari
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Van S Tompkins
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian G Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Maralice Conacci-Sorrell
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siegfried Janz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
249
|
SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. Sci Rep 2016; 6:26509. [PMID: 27211601 PMCID: PMC4876461 DOI: 10.1038/srep26509] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) are PML-based nuclear structures that regulate various cellular processes. SUMOylation, the process of covalently conjugating small ubiquitin-like modifiers (SUMOs), is required for both the formation and the disruption of PML-NBs. However, detailed mechanisms of how SUMOylation regulates these processes remain unknown. Here we report that SUMO5, a novel SUMO variant, mediates the growth and disruption of PML-NBs. PolySUMO5 conjugation of PML at lysine 160 facilitates recruitment of PML-NB components, which enlarges PML-NBs. SUMO5 also increases polySUMO2/3 conjugation of PML, resulting in RNF4-mediated disruption of PML-NBs. The acute promyelocytic leukemia oncoprotein PML-RARα blocks SUMO5 conjugation of PML, causing cytoplasmic displacement of PML and disruption of PML-NBs. Our work not only identifies a new member of the SUMO family but also reveals the mechanistic basis of the PML-NB life cycle in human cells.
Collapse
|
250
|
Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea. mBio 2016; 7:mBio.00379-16. [PMID: 27190215 PMCID: PMC4895103 DOI: 10.1128/mbio.00379-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself was not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. This study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N-terminal degron and stimulates proteasome-mediated proteolysis.
Collapse
|