201
|
Orré T, Rossier O, Giannone G. The inner life of integrin adhesion sites: From single molecules to functional macromolecular complexes. Exp Cell Res 2019; 379:235-244. [DOI: 10.1016/j.yexcr.2019.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
|
202
|
Wang Y, Zhang X, Tian J, Shan J, Hu Y, Zhai Y, Guo J. Talin promotes integrin activation accompanied by generation of tension in talin and an increase in osmotic pressure in neurite outgrowth. FASEB J 2019; 33:6311-6326. [PMID: 30768370 DOI: 10.1096/fj.201801949rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal polarization depends on the interaction of intracellular chemical and mechanical activities in which the cytoplasmic protein, talin, plays a pivotal role during neurite growth. To better understand the mechanism underlying talin function in neuronal polarization, we overexpressed several truncated forms of talin and found that the presence of the rod domain within the overexpressed talin is required for its positive effect on neurite elongation because the neurite number only increased when the talin head region was overexpressed. The tension in the talin rod was recognized using a Förster resonance energy transfer-based tension probe. Nerve growth factor treatment resulted in inward tension of talin elicited by microfilament force and outward osmotic pressure. By contrast, the glial scar-inhibitor aggrecan weakened these forces, suggesting that interactions between inward pull forces in the talin rod and outward osmotic pressure participate in neuronal polarization. Integrin activation is also involved in up-regulation of talin tension and osmotic pressure. Aggrecan stimuli resulted in up-regulation of docking protein 1 (DOK1), leading to the down-regulation of integrin activity and attenuation of the intracellular mechanical force. Our study suggests interactions between the intracellular inward tension in talin and the outward osmotic pressure as the effective channel for promoting neurite outgrowth, which can be up-regulated by integrin activation and down-regulated by DOK1.-Wang, Y., Zhang, X., Tian, J., Shan, J., Hu, Y., Zhai, Y., Guo, J. Talin promotes integrin activation accompanied by generation of tension in talin and an increase in osmotic pressure in neurite outgrowth.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaolong Zhang
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jilai Tian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfeng Hu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqian Zhai
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
203
|
Kelly GT, Faraj R, Zhang Y, Maltepe E, Fineman JR, Black SM, Wang T. Pulmonary Endothelial Mechanical Sensing and Signaling, a Story of Focal Adhesions and Integrins in Ventilator Induced Lung Injury. Front Physiol 2019; 10:511. [PMID: 31105595 PMCID: PMC6498899 DOI: 10.3389/fphys.2019.00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Patients with critical illness such as acute lung injury often undergo mechanical ventilation in the intensive care unit. Though lifesaving in many instances, mechanical ventilation often results in ventilator induced lung injury (VILI), characterized by overdistension of lung tissue leading to release of edemagenic agents, which further damage the lung and contribute to the mortality and progression of pulmonary inflammation. The endothelium is particularly sensitive, as VILI associated mechanical stress results in endothelial cytoskeletal rearrangement, stress fiber formation, and integrity loss. At the heart of these changes are integrin tethered focal adhesions (FAs) which participate in mechanosensing, structure, and signaling. Here, we present the known roles of FA proteins including c-Src, talin, FAK, paxillin, vinculin, and integrins in the sensing and response to cyclic stretch and VILI associated stress. Attention is given to how stretch is propagated from the extracellular matrix through integrins to talin and other FA proteins, as well as signaling cascades that include FA proteins, leading to stress fiber formation and other cellular responses. This unifying picture of FAs aids our understanding in an effort to prevent and treat VILI.
Collapse
Affiliation(s)
- Gabriel T Kelly
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Reem Faraj
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Yao Zhang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen M Black
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ting Wang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
204
|
Xie Y, Perrino BA. Quantitative in situ proximity ligation assays examining protein interactions and phosphorylation during smooth muscle contractions. Anal Biochem 2019; 577:1-13. [PMID: 30981700 DOI: 10.1016/j.ab.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Antibody-based in situ proximity ligation assays (isPLA) have the potential to study protein phosphorylation and protein interactions with spatial resolution in intact tissues. However, the application of isPLA at the tissue level is limited by a lack of appropriate positive and negative controls and the difficulty in accounting for changes in tissue shape. Here we demonstrate a set of experimental and computational approaches using gastric fundus smooth muscles to improve the validity of quantitative isPLA. Appropriate positive and negative biological controls and PLA technical controls were selected to ensure experimental rigor. To account for changes in morphology between relaxed and contracted smooth muscles, target PLA spots were normalized to smooth muscle myosin light chain 20 PLA spots or the cellular cross-sectional areas. We describe the computational steps necessary to filter out false-positive improperly sized spots and set the thresholds for counting true positive PLA spots to quantify the PLA signals. We tested our approach by examining protein phosphorylation and protein interactions in smooth muscle myofilament Ca2+ sensitization pathways from resting and contracted gastric fundus smooth muscles. In conclusion, our tissue-level isPLA method enables unbiased quantitation of protein phosphorylation and protein-protein interactions in intact smooth muscle tissues, suggesting the potential for quantitative isPLA applications in other types of intact tissues.
Collapse
Affiliation(s)
- Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada Reno, School of Medicine, MS 0352, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada Reno, School of Medicine, MS 0352, 1664 N Virginia St, Reno, NV, 89557, USA.
| |
Collapse
|
205
|
Lemke SB, Weidemann T, Cost AL, Grashoff C, Schnorrer F. A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLoS Biol 2019; 17:e3000057. [PMID: 30917109 PMCID: PMC6453563 DOI: 10.1371/journal.pbio.3000057] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/08/2019] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
Cells in developing organisms are subjected to particular mechanical forces that shape tissues and instruct cell fate decisions. How these forces are sensed and transmitted at the molecular level is therefore an important question, one that has mainly been investigated in cultured cells in vitro. Here, we elucidate how mechanical forces are transmitted in an intact organism. We studied Drosophila muscle attachment sites, which experience high mechanical forces during development and require integrin-mediated adhesion for stable attachment to tendons. Therefore, we quantified molecular forces across the essential integrin-binding protein Talin, which links integrin to the actin cytoskeleton. Generating flies expressing 3 Förster resonance energy transfer (FRET)-based Talin tension sensors reporting different force levels between 1 and 11 piconewton (pN) enabled us to quantify physiologically relevant molecular forces. By measuring primary Drosophila muscle cells, we demonstrate that Drosophila Talin experiences mechanical forces in cell culture that are similar to those previously reported for Talin in mammalian cell lines. However, in vivo force measurements at developing flight muscle attachment sites revealed that average forces across Talin are comparatively low and decrease even further while attachments mature and tissue-level tension remains high. Concomitantly, the Talin concentration at attachment sites increases 5-fold as quantified by fluorescence correlation spectroscopy (FCS), suggesting that only a small proportion of Talin molecules are mechanically engaged at any given time. Reducing Talin levels at late stages of muscle development results in muscle–tendon rupture in the adult fly, likely as a result of active muscle contractions. We therefore propose that a large pool of adhesion molecules is required to share high tissue forces. As a result, less than 15% of the molecules experience detectable forces at developing muscle attachment sites at the same time. Our findings define an important new concept of how cells can adapt to changes in tissue mechanics to prevent mechanical failure in vivo. The protein Talin links the transmembrane cell adhesion molecule integrin to the actin cytoskeleton. Quantitative FRET-based force measurements across Talin in vivo reveal that only few Talin molecules are under force during the development of muscle attachment sites. Cells in our body are constantly exposed to mechanical forces, which they need to sense and react to. In previous studies, fluorescent force sensors were developed to demonstrate that individual proteins in adhesion structures of a cell experience forces in the piconewton (pN) range. However, these cells were analyzed in isolation in an artificial plastic or glass environment. Here, we explored forces on adhesion proteins in their natural environment within a developing animal and used the muscle–tendon tissue in the fruit fly Drosophila as a model system. We made genetically modified fly lines with force sensors or controls inserted into the gene that produces the essential adhesion protein Talin. Using these force sensor flies, we found that only a small proportion of all the Talin proteins (<15%) present at developing muscle–tendon attachments experience detectable forces at the same time. Nevertheless, a large amount of Talin is accumulated at these attachments during fly development. We found that this large Talin pool is important to prevent rupture of the muscle–tendon connection in adult flies that produce high muscle forces during flight. In conclusion, we demonstrated that a large pool of Talin proteins is required for stable muscle–tendon attachment, likely with the individual Talin molecules dynamically sharing the mechanical load.
Collapse
Affiliation(s)
- Sandra B. Lemke
- Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail: (FS); (CG); (SBL)
| | | | - Anna-Lena Cost
- Max Planck Institute of Biochemistry, Martinsried, Germany
- University of Münster, Institute for Molecular Cell Biology, Münster, Germany
| | - Carsten Grashoff
- Max Planck Institute of Biochemistry, Martinsried, Germany
- University of Münster, Institute for Molecular Cell Biology, Münster, Germany
- * E-mail: (FS); (CG); (SBL)
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Aix Marseille University, CNRS, IBDM, Marseille, France
- * E-mail: (FS); (CG); (SBL)
| |
Collapse
|
206
|
Estrogen deficiency impairs integrin α vβ 3-mediated mechanosensation by osteocytes and alters osteoclastogenic paracrine signalling. Sci Rep 2019; 9:4654. [PMID: 30874595 PMCID: PMC6420496 DOI: 10.1038/s41598-019-41095-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
The integrin αvβ3 has been shown to play an important role in osteocyte mechanotransduction. It has been reported that there are fewer β3 integrin-containing cells in osteoporotic bone cells. Osteocytes cultured in vitro under estrogen deficient conditions demonstrate altered mechanotransduction. However, it is unknown whether the altered mechanotransduction in estrogen deficient osteocytes is directly associated with defective αvβ3 expression or signalling. The objective of this study is to investigate the role of estrogen deficiency for regulating MLO-Y4 cell morphology, αvβ3 expression, focal adhesion formation and mechanotransduction by osteocytes. Here, we report that estrogen withdrawal leads to a smaller focal adhesion area and reduced αvβ3 localisation at focal adhesion sites, resulting in an increased Rankl/Opg ratio and defective Cox-2 responses to oscillatory fluid flow. Interestingly, αvβ3 antagonism had a similar effect on focal adhesion assembly, Rankl/Opg ratio, and Cox-2 responses to oscillatory fluid flow. Taken together, our results provide the first evidence for a relationship between estrogen withdrawal and defective αvβ3-mediated signalling. Specifically, this study implicates estrogen withdrawal as a putative mechanism responsible for altered αvβ3 expression and resultant changes in downstream signalling in osteocytes during post-menopausal osteoporosis, which might provide an important, but previously unidentified, contribution to the bone loss cascade.
Collapse
|
207
|
Synthesis and Mechanochemical Activity of Peptide-Based Cu(I) Bis( N-heterocyclic carbene) Complexes. Biomimetics (Basel) 2019; 4:biomimetics4010024. [PMID: 31105209 PMCID: PMC6477612 DOI: 10.3390/biomimetics4010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
With the class of shock-absorbing proteins, nature created some of the most robust materials combining both mechanical strength and elasticity. Their excellent ability to dissipate energy to prevent surrounding cells from damage is an interesting property that regularly is exploited for applications in biomimetic materials. Similar to biomaterials, where mechanical stimuli are transmitted into a (bio)chemical response, mechanophoric catalysts transform mechanical energy into a chemical reaction. Force transmission is realized commonly by polymeric handles directing the applied force to the mechanophoric bond, which in turn leads to stress-induced activation of the catalyst. Therefore, shock-absorbing proteins able to take up and store mechanical energy elastically for subsequent force transduction to the labile bond seem to be perfect candidates to fulfill this task. Here, we report on the synthesis of two different latent mechanophoric copper(I) bis(N-heterocyclic carbene) complexes bearing either two carboxyl groups or two amino groups which allow conjugation reactions with either the N- or the C-terminus of amino acids or peptides. The chosen catalysts can be activated, for instance, by applying external mechanical force via ultrasound, removing one N-heterocyclic carbene (NHC) ligand. Post-modification of the mechanophoric catalysts via peptide coupling (Gly, Val) and first reactions showed that the mechanoresponsive behavior was still present after the coupling. Subsequent polycondensation of both catalysts lead to a polyamide including the Cu(I) moiety. Mechanochemical activation by ultrasound showed conversions in the copper(I)-catalyzed alkyne-azide “click” reaction (CuAAC) up to 9.9% proving the potential application for the time and spatial controlled CuAAC.
Collapse
|
208
|
Cost A, Khalaji S, Grashoff C. Genetically Encoded FRET‐Based Tension Sensors. ACTA ACUST UNITED AC 2019; 83:e85. [DOI: 10.1002/cpcb.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anna‐Lena Cost
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry Martinsried Germany
- Department of Quantitative Cell Biology, Institute of Molecular Cell BiologyUniversity of Münster Münster Germany
| | - Samira Khalaji
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry Martinsried Germany
- Department of Quantitative Cell Biology, Institute of Molecular Cell BiologyUniversity of Münster Münster Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry Martinsried Germany
- Department of Quantitative Cell Biology, Institute of Molecular Cell BiologyUniversity of Münster Münster Germany
| |
Collapse
|
209
|
Peterková L, Rimpelová S, Křížová I, Slepička P, Kasálková NS, Švorčík V, Ruml T. Biocompatibility of Ar plasma-treated fluorinated ethylene propylene: Adhesion and viability of human keratinocytes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:269-275. [PMID: 30948061 DOI: 10.1016/j.msec.2019.02.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
210
|
Isomursu A, Lerche M, Taskinen ME, Ivaska J, Peuhu E. Integrin signaling and mechanotransduction in regulation of somatic stem cells. Exp Cell Res 2019; 378:217-225. [PMID: 30817927 DOI: 10.1016/j.yexcr.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
Somatic stem cells are characterized by their capacity for self-renewal and differentiation, making them integral for normal tissue homeostasis. Different stem cell functions are strongly affected by the specialized microenvironment surrounding the cells. Consisting of soluble signaling factors, extracellular matrix (ECM) ligands and other cells, but also biomechanical cues such as the viscoelasticity and topography of the ECM, these factors are collectively known as the niche. Cell-ECM interactions are mediated largely by integrins, a class of heterodimeric cell adhesion molecules. Integrins bind their ligands in the extracellular space and associate with the cytoskeleton inside the cell, forming a direct mechanical link between the cells and their surroundings. Indeed, recent findings have highlighted the importance of integrins in translating biophysical cues into changes in cell signaling and function, a multistep process known as mechanotransduction. The mechanical properties of the stem cell niche are important, yet the underlying molecular details of integrin-mediated mechanotransduction in stem cells, especially the roles of the different integrin heterodimers, remain elusive. Here, we introduce the reader to the concept of integrin-mediated mechanotransduction, summarize current knowledge on the role of integrin signaling and mechanotransduction in regulation of somatic stem cell functions, and discuss open questions in the field.
Collapse
Affiliation(s)
- Aleksi Isomursu
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Martina Lerche
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Maria E Taskinen
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland; Department of Biochemistry and Food Chemistry, University of Turku, 20520 Turku, Finland.
| | - Emilia Peuhu
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland; FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, 20520 Turku, Finland.
| |
Collapse
|
211
|
Jahed Z, Haydari Z, Rathish A, Mofrad MRK. Kindlin Is Mechanosensitive: Force-Induced Conformational Switch Mediates Cross-Talk among Integrins. Biophys J 2019; 116:1011-1024. [PMID: 30819565 DOI: 10.1016/j.bpj.2019.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Mechanical stresses directly regulate the function of several proteins of the integrin-mediated focal adhesion complex as they experience intra- and extracellular forces. Kindlin is a largely overlooked member of the focal adhesion complex whose roles in cellular mechanotransduction are only recently being identified. Recent crystallographic experiments have revealed that kindlins can form dimers that bind simultaneously to two integrins, providing a mechanistic explanation of how kindlins may promote integrin activation and clustering. In this study, using the newly identified molecular structure, we modeled the response of the kindlin2 dimer in complex with integrin β1 to mechanical cytoskeletal forces on integrins. Using molecular dynamics simulations, we show that forces on integrins are directly transmitted to the kindlin2 dimerization site, resulting in a shift in an R577-S550/E553 interaction network at this site. Under force, R577 on one protomer switches from interacting with S550 to forming new hydrogen bonds with E553 on the neighboring protomer, resulting in the strengthening of the kindlin2 dimer in complex with integrin β1. This force-induced strengthening is similar to the catch-bond mechanisms that have previously been observed in other adhesion molecules. Based on our results, we propose that the kindlin2 dimer is mechanosensitive and can strengthen integrin-mediated focal adhesions under force by shifting the interactions at its dimerization sites.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Zainab Haydari
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Akshay Rathish
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
212
|
Wu P, Zhang T, Liu B, Fei P, Cui L, Qin R, Zhu H, Yao D, Martinez RJ, Hu W, An C, Zhang Y, Liu J, Shi J, Fan J, Yin W, Sun J, Zhou C, Zeng X, Xu C, Wang J, Evavold BD, Zhu C, Chen W, Lou J. Mechano-regulation of Peptide-MHC Class I Conformations Determines TCR Antigen Recognition. Mol Cell 2019; 73:1015-1027.e7. [PMID: 30711376 PMCID: PMC6408234 DOI: 10.1016/j.molcel.2018.12.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023]
Abstract
TCRs recognize cognate pMHCs to initiate T cell signaling and adaptive immunity. Mechanical force strengthens TCR-pMHC interactions to elicit agonist-specific catch bonds to trigger TCR signaling, but the underlying dynamic structural mechanism is unclear. We combined steered molecular dynamics (SMD) simulation, single-molecule biophysical approaches, and functional assays to collectively demonstrate that mechanical force induces conformational changes in pMHCs to enhance pre-existing contacts and activates new interactions at the TCR-pMHC binding interface to resist bond dissociation under force, resulting in TCR-pMHC catch bonds and T cell activation. Intriguingly, cancer-associated somatic mutations in HLA-A2 that may restrict these conformational changes suppressed TCR-pMHC catch bonds. Structural analysis also indicated that HLA polymorphism might alter the equilibrium of these conformational changes. Our findings not only reveal critical roles of force-induced conformational changes in pMHCs for activating TCR-pMHC catch bonds but also have implications for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Peng Wu
- Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tongtong Zhang
- Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Baoyu Liu
- Coulter Department of Biomedical Engineering, Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Panyu Fei
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lei Cui
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Qin
- Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huaying Zhu
- Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Danmei Yao
- Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ryan J Martinez
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Wei Hu
- Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenyi An
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, China
| | - Juan Fan
- Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chun Zhou
- School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Chinese Academy Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianan Wang
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Brian D Evavold
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wei Chen
- Department of Neurobiology, Institute of Neuroscience, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China.
| | - Jizhong Lou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
213
|
Jacquemet G, Stubb A, Saup R, Miihkinen M, Kremneva E, Hamidi H, Ivaska J. Filopodome Mapping Identifies p130Cas as a Mechanosensitive Regulator of Filopodia Stability. Curr Biol 2019; 29:202-216.e7. [PMID: 30639111 PMCID: PMC6345628 DOI: 10.1016/j.cub.2018.11.053] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Filopodia are adhesive cellular protrusions specialized in the detection of extracellular matrix (ECM)-derived cues. Although ECM engagement at focal adhesions is known to trigger the recruitment of hundreds of proteins ("adhesome") to fine-tune cellular behavior, the components of the filopodia adhesions remain undefined. Here, we performed a structured-illumination-microscopy-based screen to map the localization of 80 target proteins, linked to cell adhesion and migration, within myosin-X-induced filopodia. We demonstrate preferential enrichment of several adhesion proteins to either filopodia tips, filopodia shafts, or shaft subdomains, suggesting divergent, spatially restricted functions for these proteins. Moreover, proteins with phosphoinositide (PI) binding sites are particularly enriched in filopodia. This, together with the strong localization of PI(3,4)P2 in filopodia tips, predicts critical roles for PIs in regulating filopodia ultra-structure and function. Our mapping further reveals that filopodia adhesions consist of a unique set of proteins, the filopodome, that are distinct from classical nascent adhesions, focal adhesions, and fibrillar adhesions. Using live imaging, we observe that filopodia adhesions can give rise to nascent adhesions, which, in turn, form focal adhesions. We demonstrate that p130Cas (BCAR1) is recruited to filopodia tips via its C-terminal Cas family homology domain (CCHD) and acts as a mechanosensitive regulator of filopodia stability. Finally, we demonstrate that our map based on myosin-X-induced filopodia can be translated to endogenous filopodia and fascin- and IRSp53-mediated filopodia.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Aki Stubb
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rafael Saup
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
214
|
|
215
|
Abstract
Dystrophin is the largest protein isoform (427 kDa) expressed from the gene defective in Duchenne muscular dystrophy, a lethal muscle-wasting and genetically inherited disease. Dystrophin, localized within a cytoplasmic lattice termed costameres, connects the intracellular cytoskeleton of a myofiber through the cell membrane (sarcolemma) to the surrounding extracellular matrix. In spite of its mechanical regulation roles in stabilizing the sarcolemma during muscle contraction, the underlying molecular mechanism is still elusive. Here, we systematically investigated the mechanical stability and kinetics of the force-bearing central domain of human dystrophin that contains 24 spectrin repeats using magnetic tweezers. We show that the stochastic unfolding and refolding of central domain of dystrophin is able to keep the forces below 25 pN over a significant length change up to ∼800 nm in physiological level of pulling speeds. These results suggest that dystrophin may serve as a molecular shock absorber that defines the physiological level of force in the dystrophin-mediated force-transmission pathway during muscle contraction/stretch, thereby stabilizing the sarcolemma.
Collapse
Affiliation(s)
- Shimin Le
- Department of Physics, National University of Singapore, Singapore, 117551
| | - Miao Yu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Ladislav Hovan
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Zhihai Zhao
- Department of Physics, National University of Singapore, Singapore, 117551
| | - James Ervasti
- College of Biological Sciences, University of Minnesota, MN, USA, 55455
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
- Centre for BioImaging Sciences, National University of Singapore, Singapore, 117546
| |
Collapse
|
216
|
The extracellular matrix-myosin pathway in mechanotransduction: from molecule to tissue. Emerg Top Life Sci 2018; 2:727-737. [PMID: 33530663 PMCID: PMC7289002 DOI: 10.1042/etls20180043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/23/2022]
Abstract
Mechanotransduction via the extracellular matrix (ECM)–myosin pathway is involved in determining cell morphology during development and in coupling external transient mechanical stimuli to the reorganization of the cytoskeleton. Here, we present a review on the molecular mechanisms involved in this pathway and how they influence cellular development and organization. We investigate key proteins involved in the ECM–myosin pathway and discuss how specific binding events and conformational changes under force are related to mechanical signaling. We connect these molecular mechanisms with observed morphological changes at the cellular and organism level. Finally, we propose a model encompassing the biomechanical signals along the ECM–myosin pathway and how it could be involved in cell adhesion, cell migration, and tissue architecture.
Collapse
|
217
|
Kanoldt V, Fischer L, Grashoff C. Unforgettable force – crosstalk and memory of mechanosensitive structures. Biol Chem 2018; 400:687-698. [DOI: 10.1515/hsz-2018-0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
Abstract
Abstract
The ability of cells to sense and respond to mechanical stimuli is crucial for many developmental and homeostatic processes, while mechanical dysfunction of cells has been associated with numerous pathologies including muscular dystrophies, cardiovascular defects and epithelial disorders. Yet, how cells detect and process mechanical information is still largely unclear. In this review, we outline major mechanisms underlying cellular mechanotransduction and we summarize the current understanding of how cells integrate information from distinct mechanosensitive structures to mediate complex mechanoresponses. We also discuss the concept of mechanical memory and describe how cells store information on previous mechanical events for different periods of time.
Collapse
Affiliation(s)
- Verena Kanoldt
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Lisa Fischer
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
- Department of Quantitative Cell Biology , Institute of Molecular Cell Biology, University of Münster , 48149 Münster , Germany
| |
Collapse
|
218
|
Guttula D, Yao M, Baker K, Yang L, Goult BT, Doyle PS, Yan J. Calcium-mediated Protein Folding and Stabilization of Salmonella Biofilm-associated Protein A. J Mol Biol 2018; 431:433-443. [PMID: 30452884 DOI: 10.1016/j.jmb.2018.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
Biofilm-associated proteins (BAPs) are important for early biofilm formation (adhesion) by bacteria and are also found in mature biofilms. BapA from Salmonella is a ~386-kDa surface protein, comprising 27 tandem repeats predicted to be bacterial Ig-like (BIg) domains. Such tandem repeats are conserved for BAPs across different bacterial species, but the function of these domains is not completely understood. In this work, we report the first study of the mechanical stability of the BapA protein. Using magnetic tweezers, we show that the folding of BapA BIg domains requires calcium binding and the folded domains have differential mechanical stabilities. Importantly, we identify that >100 nM concentration of calcium is needed for folding of the BIg domains, and the stability of the folded BIg domains is regulated by calcium over a wide concentration range from sub-micromolar (μM) to millimolar (mM). Only at mM calcium concentrations, as found in the extracellular environment, do the BIg domains have the saturated mechanical stability. BapA has been suggested to be involved in Salmonella invasion, and it is likely a crucial mechanical component of biofilms. Therefore, our results provide new insights into the potential roles of BapA as a structural maintenance component of Salmonella biofilm and also Salmonella invasion.
Collapse
Affiliation(s)
- Durgarao Guttula
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore
| | - Mingxi Yao
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore
| | - Karen Baker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - Jie Yan
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore; Department of Physics, National University of Singapore (NUS), 117542, Republic of Singapore.
| |
Collapse
|
219
|
Lan PD, Kouza M, Kloczkowski A, Li MS. A topological order parameter for describing folding free energy landscapes of proteins. J Chem Phys 2018; 149:175101. [DOI: 10.1063/1.5050483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Pham Dang Lan
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Maksim Kouza
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Nationwide Children’s Hospital, Battelle Center for Mathematical Medicine, Columbus, Ohio 43215, USA
| | - Andrzej Kloczkowski
- Nationwide Children’s Hospital, Battelle Center for Mathematical Medicine, Columbus, Ohio 43215, USA
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Science, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
220
|
Ju RJ, Stehbens SJ, Haass NK. The Role of Melanoma Cell-Stroma Interaction in Cell Motility, Invasion, and Metastasis. Front Med (Lausanne) 2018; 5:307. [PMID: 30460237 PMCID: PMC6232165 DOI: 10.3389/fmed.2018.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
The importance of studying cancer cell invasion is highlighted by the fact that 90% of all cancer-related mortalities are due to metastatic disease. Melanoma metastasis is driven fundamentally by aberrant cell motility within three-dimensional or confined environments. Within this realm of cell motility, cytokines, growth factors, and their receptors are crucial for engaging signaling pathways, which both mediate crosstalk between cancer, stromal, and immune cells in addition to interactions with the surrounding microenvironment. Recently, the study of the mechanical biology of tumor cells, stromal cells and the mechanics of the microenvironment have emerged as important themes in driving invasion and metastasis. While current anti-melanoma therapies target either the MAPK signaling pathway or immune checkpoints, there are no drugs available that specifically inhibit motility and thus invasion and dissemination of melanoma cells during metastasis. One of the reasons for the lack of so-called "migrastatics" is that, despite decades of research, the precise biology of metastatic disease is still not fully understood. Metastatic disease has been traditionally lumped into a single classification, however what is now emergent is that the biology of melanoma metastasis is highly diverse, heterogeneous and exceedingly dynamic-suggesting that not all cases are created equal. The following mini-review discusses melanoma heterogeneity in the context of the emergent theme of mechanobiology and how it influences the tumor-stroma crosstalk during metastasis. Thus, highlighting future therapeutic options for migrastatics and mechanomedicines in the prevention and treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Robert J. Ju
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Samantha J. Stehbens
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Nikolas K. Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
221
|
Nikoofard N, Mashaghi A. Implications of Molecular Topology for Nanoscale Mechanical Unfolding. J Phys Chem B 2018; 122:9703-9712. [PMID: 30351148 DOI: 10.1021/acs.jpcb.8b09454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of unfolding pathways via mechanical methods depends on the circuit topology of a folded chain, which categorizes the arrangement of intrachain contacts into parallel, crossing, and series. Three unfolding strategies, namely, threading through a pore, pulling from the ends, and pulling by threading, are compared. Considering that some contacts may be unbreakable within the relevant forces, we also study the dependence of the unfolding efficiency on the chain topology. Our analysis reveals that the number of pathways and the efficiency of unfolding are critically determined by topology in a manner that depends on the employed mechanical approach, a significant result for interpretation of the unfolding experiments.
Collapse
Affiliation(s)
- Narges Nikoofard
- Institute of Nanoscience and Nanotechnology , University of Kashan , Kashan 51167-87317 , Iran
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Science , Leiden University , Leiden 2333 CC , The Netherlands
| |
Collapse
|
222
|
Shmilovich K, Popa I. Modeling Protein-Based Hydrogels under Force. PHYSICAL REVIEW LETTERS 2018; 121:168101. [PMID: 30387621 DOI: 10.1103/physrevlett.121.168101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Hydrogels made from structured polyprotein domains combine the properties of cross-linked polymers with the unfolding phase transition. The use of protein hydrogels as an ensemble approach to study the physics of domain unfolding is limited by the lack of scaling tools and by the complexity of the system. Here we propose a model to describe the biomechanical response of protein hydrogels based on the unfolding and extension of protein domains under force. Our model considers the contributions of the network dynamics of the molecules inside the gels, which have random cross-linking points and random topology. This model reproduces reported macroscopic viscoelastic effects and constitutes an important step toward using rheometry on protein hydrogels to scale down to the average mechanical response of protein molecules.
Collapse
Affiliation(s)
- Kirill Shmilovich
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, Wisconsin 53211, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
223
|
Goult BT, Yan J, Schwartz MA. Talin as a mechanosensitive signaling hub. J Cell Biol 2018; 217:3776-3784. [PMID: 30254032 PMCID: PMC6219721 DOI: 10.1083/jcb.201808061] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM), mediated by transmembrane receptors of the integrin family, is exquisitely sensitive to biochemical, structural, and mechanical features of the ECM. Talin is a cytoplasmic protein consisting of a globular head domain and a series of α-helical bundles that form its long rod domain. Talin binds to the cytoplasmic domain of integrin β-subunits, activates integrins, couples them to the actin cytoskeleton, and regulates integrin signaling. Recent evidence suggests switch-like behavior of the helix bundles that make up the talin rod domains, where individual domains open at different tension levels, exerting positive or negative effects on different protein interactions. These results lead us to propose that talin functions as a mechanosensitive signaling hub that integrates multiple extracellular and intracellular inputs to define a major axis of adhesion signaling.
Collapse
Affiliation(s)
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore.,Department of Physics, National University of Singapore, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Martin A Schwartz
- Wellcome Trust Centre for Matrix Research, University of Manchester, Manchester, UK.,Yale Cardiovascular Research Center and Departments of Internal Medicine (Cardiology), Cell Biology, and Biomedical Engineering, Yale School of Medicine, New Haven, CT
| |
Collapse
|
224
|
Shen J, Xie Y, Liu Z, Zhang S, Wang Y, Jia L, Wang Y, Cai Z, Ma H, Xiang M. Increased myocardial stiffness activates cardiac microvascular endothelial cell via VEGF paracrine signaling in cardiac hypertrophy. J Mol Cell Cardiol 2018; 122:140-151. [PMID: 30138627 DOI: 10.1016/j.yjmcc.2018.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 11/21/2022]
Abstract
When the heart is subjected to an increased workload, mechanical stretch together with neurohumoral stimuli activate the "fetal gene program" and induce cardiac hypertrophy to optimize output. Due to a lack of effective methods/models to quantify and modulate cardiac mechanical properties, the connection between these properties and the development of cardiac hypertrophy remains largely unexplored. Here, we utilized an atomic force microscope (AFM) to directly measure the elastic modulus of the hypertrophic myocardium induced by pressure overload. Additionally, we investigated the effects of extracellular elasticity on angiogenesis, which provides blood and nutrition to support cardiomyocyte hypertrophic growth in this process. In response to pressure overload, the myocardium rapidly developed hypertrophy and correspondingly demonstrated a high elastic modulus property. This mechanical feature correlated with enhanced angiogenesis. Mechanistically, we found that a high elastic modulus promoted cultured cardiomyocytes to synthesize and paracrine vascular endothelial growth factor (VEGF) to activate cardiac microvascular endothelial cells. Further analysis showed that the increased elastic modulus enhanced the interaction between Talin1 and integrin β1 to activate the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/hypoxia-inducible factor 1α (Hif-1α) pathway, which contributed to VEGF production. Thus, our study revealed a critical role of the elastic modulus in regulating angiogenesis during the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Jian Shen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yao Xie
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Zhenjie Liu
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Shuning Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Yaping Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Liangliang Jia
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yidong Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Zhejun Cai
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Hong Ma
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
225
|
Park SH, Lee CW, Lee JH, Park JY, Roshandell M, Brennan CA, Choe KM. Requirement for and polarized localization of integrin proteins during Drosophila wound closure. Mol Biol Cell 2018; 29:2137-2147. [PMID: 29995573 PMCID: PMC6249799 DOI: 10.1091/mbc.e17-11-0635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
Wound reepithelialization is an evolutionarily conserved process in which skin cells migrate as sheets to heal the breach and is critical to prevent infection but impaired in chronic wounds. Integrin heterodimers mediate attachment between epithelia and underlying extracellular matrix and also act in large signaling complexes. The complexity of the mammalian wound environment and evident redundancy among integrins has impeded determination of their specific contributions to reepithelialization. Taking advantage of the genetic tools and smaller number of integrins in Drosophila, we undertook a systematic in vivo analysis of integrin requirements in the reepithelialization of skin wounds in the larva. We identify αPS2-βPS and αPS3-βPS as the crucial integrin dimers and talin as the only integrin adhesion component required for reepithelialization. The integrins rapidly accumulate in a JNK-dependent manner in a few rows of cells surrounding a wound. Intriguingly, the integrins localize to the distal margin in these cells, instead of the frontal or lamellipodial distribution expected for proteins providing traction and recruit nonmuscle myosin II to the same location. These findings indicate that signaling roles of integrins may be important for epithelial polarization around wounds and lay the groundwork for using Drosophila to better understand integrin contributions to reepithelialization.
Collapse
Affiliation(s)
- Si-Hyoung Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan-wool Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Ji-Hyun Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Young Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Mobina Roshandell
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Catherine A. Brennan
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
226
|
Schwartz AD, Hall CL, Barney LE, Babbitt CC, Peyton SR. Integrin α 6 and EGFR signaling converge at mechanosensitive calpain 2. Biomaterials 2018; 178:73-82. [PMID: 29909039 PMCID: PMC6211197 DOI: 10.1016/j.biomaterials.2018.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 11/30/2022]
Abstract
Cells sense and respond to mechanical cues from the extracellular matrix (ECM) via integrins. ECM stiffness is known to enhance integrin clustering and response to epidermal growth factor (EGF), but we lack information on when or if these mechanosensitive growth factor receptors and integrins converge intracellularly. Towards closing this knowledge gap, we combined a biomaterial platform with transcriptomics, molecular biology, and functional assays to link integrin-mediated mechanosensing and epidermal growth factor receptor (EGFR) signaling. We found that high integrin α6 expression controlled breast cancer cell adhesion and motility on soft, laminin-coated substrates, and this mimicked the response of cells to EGF stimulation. The mechanisms that drove both mechanosensitive cell adhesion and motility converged on calpain 2, an intracellular protease important for talin cleavage and focal adhesion turnover. EGF stimulation enhanced adhesion and motility on soft substrates, but required integrin α6 and calpain 2 signaling. In sum, we identified a new role for integrin α6 mechanosensing in breast cancer, wherein cell adhesion to laminin on soft substrates mimicked EGF stimulation. We identified calpain 2, downstream of both integrin α6 engagement and EGFR phosphorylation, as a common intracellular signaling node, and implicate integrin α6 and calpain 2 as potential targets to inhibit the migration of cancer cells in stiff tumor environments.
Collapse
Affiliation(s)
- A D Schwartz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - C L Hall
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - L E Barney
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - C C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
227
|
Guo S, Tang Q, Yao M, You H, Le S, Chen H, Yan J. Structural-elastic determination of the force-dependent transition rate of biomolecules. Chem Sci 2018; 9:5871-5882. [PMID: 30079200 PMCID: PMC6050536 DOI: 10.1039/c8sc01319e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
The force-dependent unfolding/refolding of protein domains and ligand-receptor association/dissociation are crucial for mechanosensitive functions, while many aspects of how force affects the transition rate still remain poorly understood. Here, we report a new analytical expression of the force-dependent rate of molecules for transitions overcoming a single barrier. Unlike previous models derived in the framework of Kramers theory that requires a presumed one-dimensional free energy landscape, our model is derived based on the structural-elastic properties of molecules which are not restricted by the shape and dimensionality of the underlying free energy landscape. Importantly, the parameters of this model provide direct information on the structural-elastic features of the molecules between their transition and initial states. We demonstrate the applications of this model by applying it to explain force-dependent transition kinetics for several molecules and predict the structural-elastic properties of the transition states of these molecules.
Collapse
Affiliation(s)
- Shiwen Guo
- Mechanobiology Institute , National University of Singapore , Singapore 117411 . ; ; Tel: +65-6516-2620
| | - Qingnan Tang
- Department of Physics , National University of Singapore , Singapore 117551
| | - Mingxi Yao
- Mechanobiology Institute , National University of Singapore , Singapore 117411 . ; ; Tel: +65-6516-2620
| | - Huijuan You
- School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China 430030
| | - Shimin Le
- Department of Physics , National University of Singapore , Singapore 117551
| | - Hu Chen
- Department of Physics , Xiamen University , Xiamen , China 361005
| | - Jie Yan
- Mechanobiology Institute , National University of Singapore , Singapore 117411 . ; ; Tel: +65-6516-2620
- Department of Physics , National University of Singapore , Singapore 117551
- Centre for Bioimaging Sciences , National University of Singapore , Singapore 117557
| |
Collapse
|
228
|
LaCroix AS, Lynch AD, Berginski ME, Hoffman BD. Tunable molecular tension sensors reveal extension-based control of vinculin loading. eLife 2018; 7:33927. [PMID: 30024378 PMCID: PMC6053308 DOI: 10.7554/elife.33927] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/03/2018] [Indexed: 01/03/2023] Open
Abstract
Molecular tension sensors have contributed to a growing understanding of mechanobiology. However, the limited dynamic range and inability to specify the mechanical sensitivity of these sensors has hindered their widespread use in diverse contexts. Here, we systematically examine the components of tension sensors that can be altered to improve their functionality. Guided by the development of a first principles model describing the mechanical behavior of these sensors, we create a collection of sensors that exhibit predictable sensitivities and significantly improved performance in cellulo. Utilized in the context of vinculin mechanobiology, a trio of these new biosensors with distinct force- and extension-sensitivities reveal that an extension-based control paradigm regulates vinculin loading in a variety of mechanical contexts. To enable the rational design of molecular tension sensors appropriate for diverse applications, we predict the mechanical behavior, in terms of force and extension, of additional 1020 distinct designs. Cells must sense signals from their surroundings to play their roles within the body. These signals can be biochemical, such as growth-promoting substances, or mechanical, for example the stiffness or softness of the environment. Mechanical signals can be detected by load-bearing proteins, which stretch like tiny springs in response to forces. In animals, these proteins span the membrane separating the interior of the cell from the exterior. Externally, the proteins attach to structures around the cell; internally, they connect to the machinery that both generates forces and allows cells to respond to signals from outside. As such, load-bearing proteins form a direct mechanical link between cell and environment. Scientists use tools called molecular tension sensors to measure how much a load-bearing protein stretches in response to changes, and the force that is being applied to it. However, just like any other type of scale, these sensors only work over a certain range, which happens to be limited. This means that, for example, they cannot measure forces in tissues that are too soft (like the brain), or too stiff (such as bones). New sensors that can assess forces in these contexts are therefore needed, but so far research in this area has been slow due to a reliance on ‘trial-and-error’ approaches. Here, LaCroix et al. developed a new method to predict the sensitivity of molecular tension sensors inside cells. This was accomplished by examining several existing sensors, and identifying which components could be altered to change the properties of the sensors. Then, this information was used to create a computer model that could predict how new sensors would behave, and which range of forces they could measure. Finally, the sensors designed following this method were tested in mouse cells grown in the laboratory, and they worked better than their predecessors. The next step was for LaCroix et al. to use a trio of new sensors with different sensitivities to study the load-bearing protein vinculin in mouse cells. The goal was to figure out exactly how cells manage their load-bearing proteins. Indeed, it was widely assumed that a cell acts on a load-bearing protein by applying a force on it. In response, the protein would stretch by a certain amount, which can change depending on its properties – a ‘stiffer’ protein would stretch less. Unexpectedly, the new sensors showed that cells instead manipulate how much vinculin stretches, applying varying forces to achieve the same length of the protein in different environments. Improved molecular tension sensors will give scientists a better insight into how cells respond to their mechanical environment, which could help to direct cell behavior in tissues engineered in the laboratory. This knowledge is also directly relevant to human health, as the mechanical properties of many tissues change during disease, such as tumors stiffening during cancer.
Collapse
Affiliation(s)
- Andrew S LaCroix
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Andrew D Lynch
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Matthew E Berginski
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, United States
| |
Collapse
|
229
|
Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular Mechanotransduction: From Tension to Function. Front Physiol 2018; 9:824. [PMID: 30026699 PMCID: PMC6041413 DOI: 10.3389/fphys.2018.00824] [Citation(s) in RCA: 599] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Collapse
Affiliation(s)
- Fabiana Martino
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Ana R. Perestrelo
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Vladimír Vinarský
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Stefania Pagliari
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
230
|
Haining AWM, Rahikainen R, Cortes E, Lachowski D, Rice A, von Essen M, Hytönen VP, del Río Hernández A. Mechanotransduction in talin through the interaction of the R8 domain with DLC1. PLoS Biol 2018; 16:e2005599. [PMID: 30028837 PMCID: PMC6054372 DOI: 10.1371/journal.pbio.2005599] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/19/2018] [Indexed: 11/19/2022] Open
Abstract
The mechanical unfolding of proteins is a cellular mechanism for force transduction with potentially broad implications in cell fate. Despite this, the mechanism by which protein unfolding elicits differential downstream signalling pathways remains poorly understood. Here, we used protein engineering, atomic force microscopy, and biophysical tools to delineate how protein unfolding controls cell mechanics. Deleted in liver cancer 1 (DLC1) is a negative regulator of Ras homolog family member A (RhoA) and cell contractility that regulates cell behaviour when localised to focal adhesions bound to folded talin. Using a talin mutant resistant to force-induced unfolding of R8 domain, we show that talin unfolding determines DLC1 downstream signalling and, consequently, cell mechanics. We propose that this new mechanism of mechanotransduction may have implications for a wide variety of associated cellular processes.
Collapse
Affiliation(s)
- Alexander William M. Haining
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Rolle Rahikainen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdalena von Essen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Armando del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
231
|
Qian L, Bao Y, Duan W, Cui S. Effects of Water Content of the Mixed Solvent on the Single-Molecule Mechanics of Amylose. ACS Macro Lett 2018; 7:672-676. [PMID: 35632975 DOI: 10.1021/acsmacrolett.8b00375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is generally recognized that water is deeply involved in the structures and functions of DNA and proteins. For polysaccharides, however, the role of water remains unclear. Due to the force-induced conformational transition of the sugar rings, a fingerprint plateau can be observed in the single-chain force-extension (F-E) curves of amylose and some other polysaccharides in aqueous solutions. In this study, the effects of water content of the mixed solvents on the fingerprint plateau of amylose are explored by single-molecule AFM. The experimental results obtained in a series of water/alcohol mixed solvents clearly show that both the appearance and the fingerprint plateau height in the F-E curves of amylose are dependent on the water content. Since water is a good solvent for amylose but alcohols are not, the higher water content of a mixed solvent corresponds to a better solvent quality. Thus, the observed results can be associated with the solvent quality to amylose. The present study implies that water is not only a solvent but also an active constituent in the amylose solution.
Collapse
Affiliation(s)
- Lu Qian
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Bao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Weili Duan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
232
|
Henn DM, Holmes JA, Kent EW, Zhao B. Worm-to-Sphere Shape Transition of Thermoresponsive Linear Molecular Bottlebrushes in Moderately Concentrated Aqueous Solution. J Phys Chem B 2018; 122:7015-7025. [DOI: 10.1021/acs.jpcb.8b04767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel M. Henn
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jessica A. Holmes
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ethan W. Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
233
|
Gough RE, Goult BT. The tale of two talins - two isoforms to fine-tune integrin signalling. FEBS Lett 2018; 592:2108-2125. [PMID: 29723415 PMCID: PMC6032930 DOI: 10.1002/1873-3468.13081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022]
Abstract
Talins are cytoplasmic adapter proteins essential for integrin-mediated cell adhesion to the extracellular matrix. Talins control the activation state of integrins, link integrins to cytoskeletal actin, recruit numerous signalling molecules that mediate integrin signalling and coordinate recruitment of microtubules to adhesion sites via interaction with KANK (kidney ankyrin repeat-containing) proteins. Vertebrates have two talin genes, TLN1 and TLN2. Although talin1 and talin2 share 76% protein sequence identity (88% similarity), they are not functionally redundant, and the differences between the two isoforms are not fully understood. In this Review, we focus on the similarities and differences between the two talins in terms of structure, biochemistry and function, which hint at subtle differences in fine-tuning adhesion signalling.
Collapse
|
234
|
Whitewood AJ, Singh AK, Brown DG, Goult BT. Chlamydial virulence factor TarP mimics talin to disrupt the talin-vinculin complex. FEBS Lett 2018; 592:1751-1760. [PMID: 29710402 PMCID: PMC6001692 DOI: 10.1002/1873-3468.13074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 11/12/2022]
Abstract
Vinculin is a central component of mechanosensitive adhesive complexes that form between cells and the extracellular matrix. A myriad of infectious agents mimic vinculin binding sites (VBS), enabling them to hijack the adhesion machinery and facilitate cellular entry. Here, we report the structural and biochemical characterisation of VBS from the chlamydial virulence factor TarP. Whilst the affinities of isolated VBS peptides from TarP and talin for vinculin are similar, their behaviour in larger fragments is markedly different. In talin, VBS are cryptic and require mechanical activation to bind vinculin, whereas the TarP VBS are located in disordered regions, and so are constitutively active. We demonstrate that the TarP VBS can uncouple talin:vinculin complexes, which may lead to adhesion destabilisation.
Collapse
Affiliation(s)
| | | | - David G Brown
- School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
235
|
Mykuliak VV, Haining AWM, von Essen M, del Río Hernández A, Hytönen VP. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin. PLoS Comput Biol 2018; 14:e1006126. [PMID: 29698481 PMCID: PMC5940241 DOI: 10.1371/journal.pcbi.1006126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/08/2018] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD) simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM) to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins.
Collapse
Affiliation(s)
- Vasyl V. Mykuliak
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Alexander William M. Haining
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdaléna von Essen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Armando del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
- * E-mail: (AdRH); (VPH)
| | - Vesa P. Hytönen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
- * E-mail: (AdRH); (VPH)
| |
Collapse
|
236
|
Seetharaman S, Etienne-Manneville S. Integrin diversity brings specificity in mechanotransduction. Biol Cell 2018; 110:49-64. [DOI: 10.1111/boc.201700060] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shailaja Seetharaman
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
- Université Paris Descartes, Sorbonne Paris Cité; Paris 75006 France
| | - Sandrine Etienne-Manneville
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
| |
Collapse
|
237
|
Gauthier NC, Roca-Cusachs P. Mechanosensing at integrin-mediated cell–matrix adhesions: from molecular to integrated mechanisms. Curr Opin Cell Biol 2018; 50:20-26. [DOI: 10.1016/j.ceb.2017.12.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
238
|
Cardiomyocytes Sense Matrix Rigidity through a Combination of Muscle and Non-muscle Myosin Contractions. Dev Cell 2018; 44:326-336.e3. [PMID: 29396114 PMCID: PMC5807060 DOI: 10.1016/j.devcel.2017.12.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/09/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Mechanical properties are cues for many biological processes in health or disease. In the heart, changes to the extracellular matrix composition and cross-linking result in stiffening of the cellular microenvironment during development. Moreover, myocardial infarction and cardiomyopathies lead to fibrosis and a stiffer environment, affecting cardiomyocyte behavior. Here, we identify that single cardiomyocyte adhesions sense simultaneous (fast oscillating) cardiac and (slow) non-muscle myosin contractions. Together, these lead to oscillating tension on the mechanosensitive adaptor protein talin on substrates with a stiffness of healthy adult heart tissue, compared with no tension on embryonic heart stiffness and continuous stretching on fibrotic stiffness. Moreover, we show that activation of PKC leads to the induction of cardiomyocyte hypertrophy in a stiffness-dependent way, through activation of non-muscle myosin. Finally, PKC and non-muscle myosin are upregulated at the costameres in heart disease, indicating aberrant mechanosensing as a contributing factor to long-term remodeling and heart failure. Talin in cardiomyocytes is unstretched, cyclically stretched, or continuously stretched Talin stretching depends on stiffness, myofibrillar tension, and non-myofibrillar tension Non-myofibrillar contractility requires PKC, Src, FHOD1, and non-muscle myosin PKC and non-muscle myosin activity are enhanced in cardiac disease
Collapse
|
239
|
Pang SM, Le S, Yan J. Mechanical responses of the mechanosensitive unstructured domains in cardiac titin. Biol Cell 2017; 110:65-76. [DOI: 10.1111/boc.201700061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Si Ming Pang
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
| | - Shimin Le
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
- Department of Physics; National University of Singapore; 117542 Singapore
| | - Jie Yan
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
- Department of Physics; National University of Singapore; 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; 117546 Singapore
| |
Collapse
|
240
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
241
|
mDia1 senses both force and torque during F-actin filament polymerization. Nat Commun 2017; 8:1650. [PMID: 29162803 PMCID: PMC5698482 DOI: 10.1038/s41467-017-01745-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022] Open
Abstract
Formins, an important family of force-bearing actin-polymerizing factors, function as homodimers that bind with the barbed end of actin filaments through a ring-like structure assembled from dimerized FH2 domains. It has been hypothesized that force applied to formin may facilitate transition of the FH2 ring from an inhibitory closed conformation to a permissive open conformation, speeding up actin polymerization. We confirm this hypothesis for mDia1 dependent actin polymerization by stretching a single-actin filament in the absence of profilin using magnetic tweezers, and observe that increasing force from 0.5 to 10 pN can drastically speed up the actin polymerization rate. Further, we find that this force-promoted actin polymerization requires torsionally unconstrained actin filament, suggesting that mDia1 also senses torque. As actin filaments are subject to complex mechanical constraints in living cells, these results provide important insights into how formin senses these mechanical constraints and regulates actin organization accordingly.
Collapse
|
242
|
Baxter NJ, Zacharchenko T, Barsukov IL, Williamson MP. Pressure-Dependent Chemical Shifts in the R3 Domain of Talin Show that It Is Thermodynamically Poised for Binding to Either Vinculin or RIAM. Structure 2017; 25:1856-1866.e2. [PMID: 29153504 DOI: 10.1016/j.str.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/13/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022]
Abstract
Talin mediates attachment of the cell to the extracellular matrix. It is targeted by the Rap1 effector RIAM to focal adhesion sites and subsequently undergoes force-induced conformational opening to recruit the actin-interacting protein vinculin. The conformational switch involves the talin R3 domain, which binds RIAM when closed and vinculin when open. Here, we apply pressure to R3 and measure 1H, 15N, and 13C chemical shift changes, which are fitted using a simple model, and indicate that R3 is only 50% closed: the closed form is a four-helix bundle, while in the open state helix 1 is twisted out. Strikingly, a mutant of R3 that binds RIAM with an affinity similar to wild-type but more weakly to vinculin is shown to be 0.84 kJ mol-1 more stable when closed. These results demonstrate that R3 is thermodynamically poised to bind either RIAM or vinculin, and thus constitutes a good mechanosensitive switch.
Collapse
Affiliation(s)
- Nicola J Baxter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Thomas Zacharchenko
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Igor L Barsukov
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
243
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
244
|
Jansen K, Atherton P, Ballestrem C. Mechanotransduction at the cell-matrix interface. Semin Cell Dev Biol 2017; 71:75-83. [DOI: 10.1016/j.semcdb.2017.07.027] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 01/09/2023]
|
245
|
Zhao X, Zeng X, Lu C, Yan J. Studying the mechanical responses of proteins using magnetic tweezers. NANOTECHNOLOGY 2017; 28:414002. [PMID: 28766506 DOI: 10.1088/1361-6528/aa837e] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The mechanical stability of proteins has been extensively studied using AFM as a single-molecule force spectroscopy method. While this has led to many important results, these studies have been mainly limited to fast unfolding at a high-force regime due to the rapid mechanical drift in most AFM stretching experiments. Therefore, there is a gap between the knowledge obtained at a high-force regime and the mechanical properties of proteins at a lower force regime which is often more physiologically relevant. Recent studies have demonstrated that this gap can be addressed by stretching single protein molecules using magnetic tweezers, due to the excellent mechanical stability this technology offers. Here we review magnetic tweezers technology and its current application in studies of the force-dependent stability and interactions of proteins.
Collapse
Affiliation(s)
- Xiaodan Zhao
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | | | | | | |
Collapse
|
246
|
Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017; 28:3134-3155. [PMID: 28954860 PMCID: PMC5687017 DOI: 10.1091/mbc.e17-04-0228] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mechanosensing depicts the ability of a cell to sense mechanical cues, which under some circumstances is mediated by the surface receptors. In this review, a four-step model is described for receptor-mediated mechanosensing. Platelet GPIb, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Lining Ju
- Charles Perkins Centre and Heart Research Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Muaz Rushdi
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chenghao Ge
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
247
|
Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat Methods 2017; 14:1090-1096. [DOI: 10.1038/nmeth.4431] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
|
248
|
Daday C, Kolšek K, Gräter F. The mechano-sensing role of the unique SH3 insertion in plakin domains revealed by Molecular Dynamics simulations. Sci Rep 2017; 7:11669. [PMID: 28916774 PMCID: PMC5601466 DOI: 10.1038/s41598-017-11017-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/17/2017] [Indexed: 02/02/2023] Open
Abstract
The plakin family of proteins, important actors in cross-linking force-bearing structures in the cell, contain a curious SH3 domain insertion in their chain of spectrin repeats (SRs). While SH3 domains are known to mediate protein-protein interactions, here, its canonical binding site is autoinhibited by the preceding SR. Under force, however, this SH3 domain could be released, and possibly launch a signaling cascade. We performed large-scale force-probe molecular dynamics simulations, across two orders of magnitude of loading rates, to test this hypothesis, on two prominent members of the plakin family: desmoplakin and plectin, obligate proteins at desmosomes and hemidesmosomes, respectively. Our simulations show that force unravels the SRs and abolishes the autoinhibition of the SH3 domain, an event well separated from the unfolding of this domain. The SH3 domain is free and fully functional for a significant portion of the unfolding trajectories. The rupture forces required for the two proteins significantly decrease when the SH3 domain is removed, which implies that the SH3 domain also stabilizes this junction. Our results persist across all simulations, and support a force-sensing as well as a stabilizing role of the unique SH3 insertion, putting forward this protein family as a new class of mechano-sensors.
Collapse
Affiliation(s)
- Csaba Daday
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Katra Kolšek
- Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Frauke Gräter
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany. .,Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
| |
Collapse
|
249
|
Xu Z, Lei X, Tu Y, Tan ZJ, Song B, Fang H. Dynamic Cooperation of Hydrogen Binding and π Stacking in ssDNA Adsorption on Graphene Oxide. Chemistry 2017; 23:13100-13104. [DOI: 10.1002/chem.201701733] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Zhen Xu
- College of Mechanical Engineering; Shanghai University of Engineering Science; Shanghai 201620 P. R. China
| | - Xiaoling Lei
- Division of Interfacial Water and Key Laboratory of Interfacial, Physic and Technology; Shanghai Institute of Applied Physics; Chinese, Academy of Sciences, P.O. Box 800-204; Shanghai 201800 P. R. China
| | - Yusong Tu
- College of Physics Science and Technology; Yangzhou University; Jiangsu 225009 P. R. China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education; School of Physics and Technology; Wuhan University; Hubei 430072 P. R. China
| | - Bo Song
- Division of Interfacial Water and Key Laboratory of Interfacial, Physic and Technology; Shanghai Institute of Applied Physics; Chinese, Academy of Sciences, P.O. Box 800-204; Shanghai 201800 P. R. China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial, Physic and Technology; Shanghai Institute of Applied Physics; Chinese, Academy of Sciences, P.O. Box 800-204; Shanghai 201800 P. R. China
| |
Collapse
|
250
|
Röselová P, Obr A, Holoubek A, Grebeňová D, Kuželová K. Adhesion structures in leukemia cells and their regulation by Src family kinases. Cell Adh Migr 2017; 12:286-298. [PMID: 28678601 DOI: 10.1080/19336918.2017.1344796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interaction of leukemia blasts with the bone marrow extracellular matrix often results in protection of leukemia cells from chemotherapy and in persistence of the residual disease which is on the basis of subsequent relapses. The adhesion signaling pathways have been extensively studied in adherent cells as well as in mature haematopoietic cells, but the adhesion structures and signaling in haematopoietic stem and progenitor cells, either normal or malignant, are much less explored. We analyzed the interaction of leukemia cells with fibronectin (FN) using interference reflection microscopy, immunofluorescence, measurement of adherent cell fraction, real-time microimpedance measurement and live cell imaging. We found that leukemia cells form very dynamic adhesion structures similar to early stages of focal adhesions. In contrast to adherent cells, where Src family kinases (SFK) belong to important regulators of focal adhesion dynamics, we observed only minor effects of SFK inhibitor dasatinib on leukemia cell binding to FN. The relatively weak involvement of SFK in adhesion structure regulation might be associated with the lack of cytoskeletal mechanical tension in leukemia cells. On the other hand, active Lyn kinase was found to specifically localize to leukemia cell adhesion structures and a less firm cell attachment to FN was often associated with higher Lyn activity (this unexpectedly occurred also after cell treatment with the inhibitor SKI-1). Lyn thus may be important for signaling from integrin-associated complexes to other processes in leukemia cells.
Collapse
Affiliation(s)
- Pavla Röselová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Adam Obr
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Aleš Holoubek
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Dana Grebeňová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Kateřina Kuželová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| |
Collapse
|