201
|
Zhang C, Quan R, Wang J. Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet 2018; 27:R79-R88. [DOI: 10.1093/hmg/ddy120] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Renfu Quan
- Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang, China
| | - Jinfu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
202
|
Casanova JL, Abel L. Human genetics of infectious diseases: Unique insights into immunological redundancy. Semin Immunol 2018; 36:1-12. [PMID: 29254755 PMCID: PMC5910248 DOI: 10.1016/j.smim.2017.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 01/18/2023]
Abstract
For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious conditions.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU.
| |
Collapse
|
203
|
CRISPR genetic screens to discover host–virus interactions. Curr Opin Virol 2018; 29:87-100. [DOI: 10.1016/j.coviro.2018.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022]
|
204
|
Sharma S, Petsalaki E. Application of CRISPR-Cas9 Based Genome-Wide Screening Approaches to Study Cellular Signalling Mechanisms. Int J Mol Sci 2018; 19:E933. [PMID: 29561791 PMCID: PMC5979383 DOI: 10.3390/ijms19040933] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/26/2022] Open
Abstract
The cellular signalling process is a highly complex mechanism, involving multiple players, which together orchestrate the cell's response to environmental changes and perturbations. Given the multitude of genes that participate in the process of cellular signalling, its study in a genome-wide manner has proven challenging. Recent advances in gene editing technologies, including clustered regularly-interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) approaches, have opened new opportunities to investigate global regulatory signalling programs of cells in an unbiased manner. In this review, we focus on how the application of pooled genetic screening approaches using the CRISPR/Cas9 system has contributed to a systematic understanding of cellular signalling processes in normal and disease contexts.
Collapse
Affiliation(s)
- Sumana Sharma
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Evangelia Petsalaki
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
205
|
Breslow DK, Hoogendoorn S, Kopp AR, Morgens DW, Vu BK, Kennedy MC, Han K, Li A, Hess GT, Bassik MC, Chen JK, Nachury MV. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat Genet 2018; 50:460-471. [PMID: 29459677 PMCID: PMC5862771 DOI: 10.1038/s41588-018-0054-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
Abstract
Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ-tubulin and ε-tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sascha Hoogendoorn
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam R Kopp
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brandon K Vu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret C Kennedy
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gaelen T Hess
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Ophthalmology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
206
|
Dong Z, Dong F, Yu X, Huang L, Jiang Y, Hu Z, Chen P, Lu C, Pan M. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System. Front Microbiol 2018; 9:209. [PMID: 29503634 PMCID: PMC5820291 DOI: 10.3389/fmicb.2018.00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 01/19/2023] Open
Abstract
The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 (ie-1) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xinbo Yu
- College of Biotechnology, Southwest University, Chongqing, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yaming Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
207
|
CRISPR-Cas9 Genetic Analysis of Virus-Host Interactions. Viruses 2018; 10:v10020055. [PMID: 29385696 PMCID: PMC5850362 DOI: 10.3390/v10020055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus–host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR–Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein–Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus–host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens.
Collapse
|
208
|
Chen S, Yu X, Guo D. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses 2018; 10:E40. [PMID: 29337866 PMCID: PMC5795453 DOI: 10.3390/v10010040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.
Collapse
Affiliation(s)
- Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiao Yu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Deyin Guo
- School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
209
|
Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas based antiviral strategies against HIV-1. Virus Res 2018; 244:321-332. [PMID: 28760348 DOI: 10.1016/j.virusres.2017.07.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022]
Abstract
In bacteria and archaea, the clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas) confer adaptive immunity against exogenous DNA elements. This CRISPR-Cas system has been turned into an effective tool for editing of eukaryotic DNA genomes. Pathogenic viruses that have a double-stranded DNA (dsDNA) genome or that replicate through a dsDNA intermediate can also be targeted with this DNA editing tool. Here, we review how CRISPR-Cas was used in novel therapeutic approaches against the human immunodeficiency virus type-1 (HIV-1), focusing on approaches that aim to permanently inactivate all virus genomes or to prevent viral persistence in latent reservoirs.
Collapse
Affiliation(s)
- Gang Wang
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Na Zhao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
210
|
Henser-Brownhill T, Monserrat J, Scaffidi P. Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays. Epigenetics 2018; 12:1065-1075. [PMID: 29327641 PMCID: PMC5810758 DOI: 10.1080/15592294.2017.1395121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas9 system has revolutionized genome engineering, allowing precise modification of DNA in various organisms. The most popular method for conducting CRISPR-based functional screens involves the use of pooled lentiviral libraries in selection screens coupled with next-generation sequencing. Screens employing genome-scale pooled small guide RNA (sgRNA) libraries are demanding, particularly when complex assays are used. Furthermore, pooled libraries are not suitable for microscopy-based high-content screens or for systematic interrogation of protein function. To overcome these limitations and exploit CRISPR-based technologies to comprehensively investigate epigenetic mechanisms, we have generated a focused sgRNA library targeting 450 epigenetic regulators with multiple sgRNAs in human cells. The lentiviral library is available both in an arrayed and pooled format and allows temporally-controlled induction of gene knock-out. Characterization of the library showed high editing activity of most sgRNAs and efficient knock-out at the protein level in polyclonal populations. The sgRNA library can be used for both selection and high-content screens, as well as for targeted investigation of selected proteins without requiring isolation of knock-out clones. Using a variety of functional assays we show that the library is suitable for both in vitro and in vivo applications, representing a unique resource to study epigenetic mechanisms in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Josep Monserrat
- Cancer Epigenetics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paola Scaffidi
- Cancer Epigenetics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
211
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
212
|
Lessard S, Francioli L, Alfoldi J, Tardif JC, Ellinor PT, MacArthur DG, Lettre G, Orkin SH, Canver MC. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci U S A 2017; 114:E11257-E11266. [PMID: 29229813 PMCID: PMC5748207 DOI: 10.1073/pnas.1714640114] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The CRISPR-Cas9 nuclease system holds enormous potential for therapeutic genome editing of a wide spectrum of diseases. Large efforts have been made to further understanding of on- and off-target activity to assist the design of CRISPR-based therapies with optimized efficacy and safety. However, current efforts have largely focused on the reference genome or the genome of cell lines to evaluate guide RNA (gRNA) efficiency, safety, and toxicity. Here, we examine the effect of human genetic variation on both on- and off-target specificity. Specifically, we utilize 7,444 whole-genome sequences to examine the effect of variants on the targeting specificity of ∼3,000 gRNAs across 30 therapeutically implicated loci. We demonstrate that human genetic variation can alter the off-target landscape genome-wide including creating and destroying protospacer adjacent motifs (PAMs). Furthermore, single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) can result in altered on-target sites and novel potent off-target sites, which can predispose patients to treatment failure and adverse effects, respectively; however, these events are rare. Taken together, these data highlight the importance of considering individual genomes for therapeutic genome-editing applications for the design and evaluation of CRISPR-based therapies to minimize risk of treatment failure and/or adverse outcomes.
Collapse
Affiliation(s)
- Samuel Lessard
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Laurent Francioli
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Jessica Alfoldi
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Guillaume Lettre
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115;
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115;
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
213
|
Hotter D, Kirchhoff F. Interferons and beyond: Induction of antiretroviral restriction factors. J Leukoc Biol 2017; 103:465-477. [PMID: 29345347 DOI: 10.1002/jlb.3mr0717-307r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
Antiviral restriction factors are structurally and functionally diverse cellular proteins that play a key role in the first line of defense against viral pathogens. Although many cell types constitutively express restriction factors at low levels, their induction in response to viral exposure and replication is often required for potent control and repulse of the invading pathogens. It is well established that type I IFNs efficiently induce antiviral restriction factors. Accumulating evidence suggests that other types of IFN, as well as specific cytokines, such as IL-27, and other activators of the cell are also capable of enhancing the expression of restriction factors and hence to establish an antiviral cellular state. Agents that efficiently induce restriction factors, increase their activity, and/or render them resistant against viral antagonists without causing general inflammation and significant side effects hold some promise for novel therapeutic or preventive strategies. In the present review, we summarize some of the current knowledge on the induction of antiretroviral restriction factors and perspectives for therapeutic application.
Collapse
Affiliation(s)
- Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
214
|
Abstract
Exciting new technologies are often self-limiting in their rollout, as access to state-of-the-art instrumentation or the need for years of hands-on experience, for better or worse, ensures slow adoption by the community. CRISPR technology, however, presents the opposite dilemma, where the simplicity of the system enabled the parallel development of many applications, improvements and derivatives, and new users are now presented with an almost paralyzing abundance of choices. This Review intends to guide users through the process of applying CRISPR technology to their biological problems of interest, especially in the context of discovering gene function at scale.
Collapse
Affiliation(s)
- John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
215
|
Jeng MY, Hull PA, Fei M, Kwon HS, Tsou CL, Kasler H, Ng CP, Gordon DE, Johnson J, Krogan N, Verdin E, Ott M. Metabolic reprogramming of human CD8 + memory T cells through loss of SIRT1. J Exp Med 2017; 215:51-62. [PMID: 29191913 PMCID: PMC5748845 DOI: 10.1084/jem.20161066] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved SIRT1–FoxO1 axis plays a new role in human CD8+ T cell metabolism and function. Progression from the naive to the terminally differentiated memory state is accompanied by the loss of SIRT1 and FoxO1 expression, which derepresses glycolytic and cytotoxic capacities of CD8+CD28– T cells under resting conditions. The expansion of CD8+CD28– T cells, a population of terminally differentiated memory T cells, is one of the most consistent immunological changes in humans during aging. CD8+CD28– T cells are highly cytotoxic, and their frequency is linked to many age-related diseases. As they do not accumulate in mice, many of the molecular mechanisms regulating their fate and function remain unclear. In this paper, we find that human CD8+CD28– T cells, under resting conditions, have an enhanced capacity to use glycolysis, a function linked to decreased expression of the NAD+-dependent protein deacetylase SIRT1. Global gene expression profiling identified the transcription factor FoxO1 as a SIRT1 target involved in transcriptional reprogramming of CD8+CD28– T cells. FoxO1 is proteasomally degraded in SIRT1-deficient CD8+CD28– T cells, and inhibiting its activity in resting CD8+CD28+ T cells enhanced glycolytic capacity and granzyme B production as in CD8+CD28– T cells. These data identify the evolutionarily conserved SIRT1–FoxO1 axis as a regulator of resting CD8+ memory T cell metabolism and activity in humans.
Collapse
Affiliation(s)
- Mark Y Jeng
- Gladstone Institutes, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Philip A Hull
- Gladstone Institutes, San Francisco, CA.,Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Mingjian Fei
- Gladstone Institutes, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Hye-Sook Kwon
- Gladstone Institutes, San Francisco, CA.,Department of Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Herb Kasler
- Gladstone Institutes, San Francisco, CA.,The Buck Institute for Research on Aging, Novato, CA
| | - Che-Ping Ng
- Gladstone Institutes, San Francisco, CA.,The Buck Institute for Research on Aging, Novato, CA
| | - David E Gordon
- Gladstone Institutes, San Francisco, CA.,Quantitative Biology Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Jeffrey Johnson
- Gladstone Institutes, San Francisco, CA.,Quantitative Biology Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Nevan Krogan
- Gladstone Institutes, San Francisco, CA.,Quantitative Biology Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Eric Verdin
- Gladstone Institutes, San Francisco, CA.,The Buck Institute for Research on Aging, Novato, CA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA .,Department of Medicine, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
216
|
McLaren PJ, Pulit SL, Gurdasani D, Bartha I, Shea PR, Pomilla C, Gupta N, Gkrania-Klotsas E, Young EH, Bannert N, Del Amo J, Gill MJ, Gilmour J, Kellam P, Kelleher AD, Sönnerborg A, Wolinsky SM, Zangerle R, Post FA, Fisher M, Haas DW, Walker BD, Porter K, Goldstein DB, Sandhu MS, de Bakker PIW, Fellay J. Evaluating the Impact of Functional Genetic Variation on HIV-1 Control. J Infect Dis 2017; 216:1063-1069. [PMID: 28968755 PMCID: PMC5853944 DOI: 10.1093/infdis/jix470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
Background Previous genetic association studies of human immunodeficiency virus-1 (HIV-1) progression have focused on common human genetic variation ascertained through genome-wide genotyping. Methods We sought to systematically assess the full spectrum of functional variation in protein coding gene regions on HIV-1 progression through exome sequencing of 1327 individuals. Genetic variants were tested individually and in aggregate across genes and gene sets for an influence on HIV-1 viral load. Results Multiple single variants within the major histocompatibility complex (MHC) region were observed to be strongly associated with HIV-1 outcome, consistent with the known impact of classical HLA alleles. However, no single variant or gene located outside of the MHC region was significantly associated with HIV progression. Set-based association testing focusing on genes identified as being essential for HIV replication in genome-wide small interfering RNA (siRNA) and clustered regularly interspaced short palindromic repeats (CRISPR) studies did not reveal any novel associations. Conclusions These results suggest that exonic variants with large effect sizes are unlikely to have a major contribution to host control of HIV infection.
Collapse
Affiliation(s)
- Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Laboratory, Public Health Agency of Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Sara L Pulit
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
| | - Deepti Gurdasani
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
| | - Istvan Bartha
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University, New York
| | - Cristina Pomilla
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
| | | | - Elizabeth H Young
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
| | - Norbert Bannert
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Julia Del Amo
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - M John Gill
- Department of Medicine, University of Calgary, Canada
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, United Kingdom
| | - Paul Kellam
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Research Department of Infection, Division of Infection and Immunity, University College London, United Kingdom
| | - Anthony D Kelleher
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Anders Sönnerborg
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Steven M Wolinsky
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago
| | - Robert Zangerle
- Department of Dermatology and Venereology, Medical University Innsbruck, Austria
| | | | - Martin Fisher
- Royal Sussex County Hospital, Brighton, United Kingdom
| | - David W Haas
- Department of Medicine, Vanderbilt University School of Medicine, Nashville
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston
- Howard Hughes Medical Institute, Chevy Chase
| | | | | | - Manjinder S Sandhu
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
| | - Paul I W de Bakker
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
217
|
Hunter FW, Tsai P, Kakadia PM, Bohlander SK, Print CG, Wilson WR. Development of capability for genome-scale CRISPR-Cas9 knockout screens in New Zealand. J R Soc N Z 2017. [DOI: 10.1080/03036758.2017.1400984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Francis W. Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Purvi M. Kakadia
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K. Bohlander
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cristin G. Print
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - William R. Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
218
|
Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA. CRISPR/Cas9 library screening for drug target discovery. J Hum Genet 2017; 63:179-186. [DOI: 10.1038/s10038-017-0376-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022]
|
219
|
Saeij JP, Frickel EM. Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death. Curr Opin Microbiol 2017; 40:72-80. [PMID: 29141239 PMCID: PMC7004510 DOI: 10.1016/j.mib.2017.10.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022]
Abstract
The intracellular parasite Toxoplasma gondii resides inside a vacuole, which shields it from the host’s intracellular defense mechanisms. The cytokine interferon gamma (IFNγ) upregulates host cell effector pathways that are able to destroy the vacuole, restrict parasite growth and induce host cell death. Interferon-inducible GTPases such as the Guanylate Binding Proteins (GBPs), autophagy proteins and ubiquitin-driven mechanisms play important roles in Toxoplasma control in mice and partly also in humans. The host inflammasome is regulated by GBPs in response to bacterial infection in murine cells and may also respond to Toxoplasma infection. Elucidation of murine Toxoplasma defense mechanisms are guiding studies on human cells, while inevitably leading to the discovery of human-specific pathways that often function in a cell type-dependent manner.
Collapse
Affiliation(s)
- Jeroen P Saeij
- School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA.
| | - Eva-Maria Frickel
- The Francis Crick Institute, Host-Toxoplasma Interaction Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
220
|
Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era. Viruses 2017; 9:v9100281. [PMID: 28961190 PMCID: PMC5691633 DOI: 10.3390/v9100281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a causative agent of acquired immune deficiency syndrome (AIDS). Highly active antiretroviral therapy (HAART) can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR)-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.
Collapse
|
221
|
Kulkarni MM, Ratcliff AN, Bhat M, Alwarawrah Y, Hughes P, Arcos J, Loiselle D, Torrelles JB, Funderburg NT, Haystead TA, Kwiek JJ. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 2017; 14:45. [PMID: 28962653 PMCID: PMC5622536 DOI: 10.1186/s12977-017-0368-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background
Like all viruses, HIV-1 relies on host systems to replicate. The human purinome consists of approximately two thousand proteins that bind and use purines such as ATP, NADH, and NADPH. By virtue of their purine binding pockets, purinome proteins are highly druggable, and many existing drugs target purine-using enzymes. Leveraging a protein affinity media that uses the purine-binding pocket to capture the entire purinome, we sought to define purine-binding proteins regulated by HIV-1 infection. Results Using purinome capture media, we observed that HIV-1 infection increases intracellular levels of fatty acid synthase (FASN), a NADPH-using enzyme critical to the synthesis of de novo fatty acids. siRNA mediated knockdown of FASN reduced HIV-1 particle production by 80%, and treatment of tissue culture cells or primary PBMCs with Fasnall, a newly described selective FASN inhibitor, reduced HIV-1 virion production by 90% (EC50 = 213 nM). Despite the requirement of FASN for nascent virion production, FASN activity was not required for intracellular Gag protein production, indicating that FASN dependent de novo fatty acid biosynthesis contributes to a late step of HIV-1 replication. Conclusions Here we show that HIV-1 replication both increases FASN levels and requires host FASN activity. We also report that Fasnall, a novel FASN inhibitor that demonstrates anti-tumor activity in vivo, is a potent and efficacious antiviral, blocking HIV-1 replication in both tissue culture and primary cell models of HIV-1 replication. In adults, most fatty acids are obtained exogenously from the diet, thus making FASN a plausible candidate for pharmacological intervention. In conclusion, we hypothesize that FASN is a novel host dependency factor and that inhibition of FASN activity has the potential to be exploited as an antiretroviral strategy.
Collapse
Affiliation(s)
- Manjusha M Kulkarni
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Annette N Ratcliff
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA.,Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711-5399, USA
| | - Menakshi Bhat
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Yazan Alwarawrah
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - David Loiselle
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA.,Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA.
| | - Jesse J Kwiek
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
222
|
Shang W, Wang F, Fan G, Wang H. Key elements for designing and performing a CRISPR/Cas9-based genetic screen. J Genet Genomics 2017; 44:439-449. [PMID: 28967615 DOI: 10.1016/j.jgg.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/09/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022]
Abstract
Reverse genetic screens are invaluable for uncovering gene functions, but are traditionally hampered by some technical limitations. Over the past few years, since the advent of the revolutionary CRISPR/Cas9 technology, its power in genome editing has been harnessed to overcome the traditional limitations in reverse genetic screens, with successes in various biological contexts. Here, we outline these CRISPR/Cas9-based screens, provide guidance on the design of effective screens and discuss the potential future directions of development of this field.
Collapse
Affiliation(s)
- Wanjing Shang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
223
|
Yoshida T, Hamano A, Ueda A, Takeuchi H, Yamaoka S. Human SMOOTHENED inhibits human immunodeficiency virus type 1 infection. Biochem Biophys Res Commun 2017; 493:132-138. [PMID: 28917838 DOI: 10.1016/j.bbrc.2017.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Human SMOOTHENED (SMO) was identified by expression cloning as a new host factor that inhibits HIV-1 infection. Forced expression of SMO inhibited HIV-1 replication and infection with a single-round lentiviral vector, but not infection with a murine leukemia virus-based retroviral vector in human MT-4 T cells. Quantitative PCR analyses revealed that stable expression of SMO impaired formation of the integrated form of lentiviral DNA, but did not interrupt reverse transcription. This inhibition was evident in MT-4 and HUT102 human T cell lines expressing low levels of SMO mRNA, but not in SupT1 or Jurkat T cell lines expressing higher levels of SMO mRNA. Depletion of SMO mRNA in Jurkat cells facilitated HIV-1 vector infection, suggesting that endogenous SMO plays a role in limiting lentiviral infection. These results suggest that SMO inhibits HIV-1 replication after completion of reverse transcription but before integration.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Akiko Hamano
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Asuka Ueda
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
224
|
Nicod C, Banaei-Esfahani A, Collins BC. Elucidation of host-pathogen protein-protein interactions to uncover mechanisms of host cell rewiring. Curr Opin Microbiol 2017; 39:7-15. [PMID: 28806587 DOI: 10.1016/j.mib.2017.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023]
Abstract
Infectious diseases are the result of molecular cross-talks between hosts and their pathogens. These cross-talks are in part mediated by host-pathogen protein-protein interactions (HP-PPI). HP-PPI play crucial roles in infections, as they may tilt the balance either in favor of the pathogens' spread or their clearance. The identification of host proteins targeted by viral or bacterial pathogenic proteins necessary for the infection can provide insights into their underlying molecular mechanisms of pathogenicity, and potentially even single out pharmacological intervention targets. Here, we review the available methods to study HP-PPI, with a focus on recent mass spectrometry based methods to decipher bacterial-human infectious diseases and examine their relevance in uncovering host cell rewiring by pathogens.
Collapse
Affiliation(s)
- Charlotte Nicod
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, CH-8093 Zurich, Switzerland
| | - Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
225
|
Ong SH, Li Y, Koike-Yusa H, Yusa K. Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Sci Rep 2017; 7:7384. [PMID: 28785007 PMCID: PMC5547152 DOI: 10.1038/s41598-017-07827-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Genome-wide CRISPR-based knockout (CRISPR-KO) screening is an emerging technique which enables systematic genetic analysis of a cellular or molecular phenotype in question. Continuous improvements, such as modifications to the guide RNA (gRNA) scaffold and the development of gRNA on-target prediction algorithms, have since been made to increase their screening performance. We compared the performance of three available second-generation human genome-wide CRISPR-KO libraries that included at least one of the improvements, and examined the effect of gRNA scaffold, number of gRNAs per gene and number of replicates on screen performance. We identified duplicated screens using a library with 6 gRNAs per gene as providing the best trade-off. Despite the improvements, we found that each improved library still has library-specific false negatives and, for the first time, estimated the false negative rates of CRISPR-KO screens, which are between 10% and 20%. Our newly-defined optimal screening parameters would be helpful in designing screens and constructing bespoke gRNA libraries.
Collapse
Affiliation(s)
- Swee Hoe Ong
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Yilong Li
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
226
|
Naranbhai V, Carrington M. Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics 2017; 69:489-498. [PMID: 28695282 PMCID: PMC5537324 DOI: 10.1007/s00251-017-1000-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/12/2022]
Abstract
This review aims to provide a summary of current knowledge of host genetic effects on human immunodeficiency virus (HIV) disease. Mapping of simple single nucleotide polymorphisms (SNP) has been largely successful in HIV, but more complex genetic associations involving haplotypic or epigenetic variation, for example, remain elusive. Mechanistic insights explaining SNP associations are incomplete, but continue to be forthcoming. The number of robust immunogenetic correlates of HIV is modest and their discovery mostly predates the genome-wide era. Nevertheless, genome-wide evaluations have nicely validated the impact of HLA and CCR5 variants on HIV disease, and importantly, made clear the many false positive associations that were previously suggested by studies using the candidate gene approach. We describe how multiple HIV outcome measures such as acquisition, viral control, and immune decline have been studied in adults and in children, but that collectively these identify only the two replicable loci responsible for modifying HIV disease, CCR5, and HLA. Recent heritability estimates in this disease corroborate the modest impact of genetic determinants and their oligogenic nature. While the mechanism of protection afforded by genetic variants that diminish CCR5 expression is clear, new aspects of HLA class I-mediated protection continue to be uncovered. We describe how these genetic findings have enhanced insights into immunobiology, been clinically translated into CCR5 antagonists, allowed prioritization of antigens for vaccination efforts, and identified targets for genome-editing interventions. Finally, we describe how studies of genetically complex parts of the genome using new tools may begin revealing additional correlates.
Collapse
Affiliation(s)
- Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| |
Collapse
|
227
|
Abstract
A CRISPR screen conducted in a CD4+ T cell leukemia line has identified host factors required for HIV infection but dispensable for cellular survival. The results highlight sulfation on the HIV co-receptor CCR5 and cellular aggregation as potential targets for therapeutic intervention.
Collapse
|
228
|
Canver MC, Bauer DE, Orkin SH. Functional interrogation of non-coding DNA through CRISPR genome editing. Methods 2017; 121-122:118-129. [PMID: 28288828 PMCID: PMC5483188 DOI: 10.1016/j.ymeth.2017.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA.
Collapse
Affiliation(s)
| | - Daniel E Bauer
- Harvard Medical School, Boston, MA 02115, United States; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States.
| | - Stuart H Orkin
- Harvard Medical School, Boston, MA 02115, United States; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States; Howard Hughes Medical Institute, Boston, MA 02115, United States.
| |
Collapse
|
229
|
Puschnik AS, Majzoub K, Ooi YS, Carette JE. A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol 2017; 15:351-364. [PMID: 28420884 PMCID: PMC5800792 DOI: 10.1038/nrmicro.2017.29] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are obligate intracellular pathogens that depend on host cellular components for replication. Genetic screens are an unbiased and comprehensive method to uncover host cellular components that are critical for the infection with viruses. Loss-of-function screens result in the genome-wide disruption of gene expression, whereas gain-of-function screens rely on large-scale overexpression of host genes. Genetic knockout screens can be conducted using haploid insertional mutagenesis or the CRISPR–Cas system. Genetic screens using the CRISPR–Cas system have provided crucial insights in the host determinants of infections with important human pathogens such as dengue virus, West Nile virus, Zika virus and hepatitis C virus. CRISPR–Cas-based techniques additionally provide ways to generate both in vitro and in vivo models to study viral pathogenesis, to manipulate viral genomes, to eradicate viral disease vectors using gene drive systems and to advance the development of antiviral therapeutics.
In this Review, Puschnik and colleagues discuss the technical aspects of using CRISPR–Cas technology in genome-scale knockout screens to study virus–host interactions, and they compare these screens with alternative genetic screening technologies. Viruses depend on their hosts to complete their replication cycles; they exploit cellular receptors for entry and hijack cellular functions to replicate their genome, assemble progeny virions and spread. Recently, genome-scale CRISPR–Cas screens have been used to identify host factors that are required for virus replication, including the replication of clinically relevant viruses such as Zika virus, West Nile virus, dengue virus and hepatitis C virus. In this Review, we discuss the technical aspects of genome-scale knockout screens using CRISPR–Cas technology, and we compare these screens with alternative genetic screening technologies. The relative ease of use and reproducibility of CRISPR–Cas make it a powerful tool for probing virus–host interactions and for identifying new antiviral targets.
Collapse
Affiliation(s)
- Andreas S Puschnik
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
230
|
New Connections: Cell-to-Cell HIV-1 Transmission, Resistance to Broadly Neutralizing Antibodies, and an Envelope Sorting Motif. J Virol 2017; 91:JVI.00149-17. [PMID: 28250119 DOI: 10.1128/jvi.00149-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 infection from cell-to-cell may provide an efficient mode of viral spread in vivo and could therefore present a significant challenge for preventative or therapeutic strategies based on broadly neutralizing antibodies. Indeed, Li et al. (H. Li, C. Zony, P. Chen, and B. K. Chen, J. Virol. 91:e02425-16, 2017, https://doi.org/10.1128/JVI.02425-16) showed that the potency and magnitude of multiple HIV-1 broadly neutralizing antibody classes are decreased during cell-to-cell infection in a context-dependent manner. A functional motif in gp41 appears to contribute to this differential susceptibility by modulating exposure of neutralization epitopes.
Collapse
|
231
|
Affiliation(s)
- Paul Bieniasz
- From the Laboratory of Retrovirology, Rockefeller University, New York
| |
Collapse
|
232
|
Schott K, König R. Picking the Survivor! CRISPR Reveals HIV Dependency Factors. Trends Microbiol 2017; 25:243-245. [PMID: 28233621 DOI: 10.1016/j.tim.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 01/11/2023]
Abstract
A new study employs genome-wide loss-of-function CRISPR/Cas9 screening to identify three novel factors for HIV-1 entry. The factors represent promising targets for therapeutics as they are essential for HIV-1 infection, but dispensable for cell survival. The involved pathways were validated in primary CD4+ T cells, target cells for HIV-1.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; German Center for Infection Research (DZIF), 63225 Langen, Germany.
| |
Collapse
|
233
|
HIV: CRISPR screen identifies novel therapeutic targets. Nat Rev Drug Discov 2017; 16:88. [PMID: 28148946 DOI: 10.1038/nrd.2017.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|