201
|
Larsch J, Flavell SW, Liu Q, Gordus A, Albrecht DR, Bargmann CI. A Circuit for Gradient Climbing in C. elegans Chemotaxis. Cell Rep 2015; 12:1748-60. [PMID: 26365196 PMCID: PMC5045890 DOI: 10.1016/j.celrep.2015.08.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022] Open
Abstract
Animals have a remarkable ability to track dynamic sensory information. For example, the nematode Caenorhabditis elegans can locate a diacetyl odor source across a 100,000-fold concentration range. Here, we relate neuronal properties, circuit implementation, and behavioral strategies underlying this robust navigation. Diacetyl responses in AWA olfactory neurons are concentration and history dependent; AWA integrates over time at low odor concentrations, but as concentrations rise, it desensitizes rapidly through a process requiring cilia transport. After desensitization, AWA retains sensitivity to small odor increases. The downstream AIA interneuron amplifies weak odor inputs and desensitizes further, resulting in a stereotyped response to odor increases over three orders of magnitude. The AWA-AIA circuit drives asymmetric behavioral responses to odor increases that facilitate gradient climbing. The adaptation-based circuit motif embodied by AWA and AIA shares computational properties with bacterial chemotaxis and the vertebrate retina, each providing a solution for maintaining sensitivity across a dynamic range.
Collapse
Affiliation(s)
- Johannes Larsch
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Steven W Flavell
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Qiang Liu
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Gordus
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Dirk R Albrecht
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
202
|
Rudge SA, Wakelam MJO. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 2015; 57:176-92. [PMID: 26302980 DOI: 10.1194/jlr.r059154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy.
Collapse
Affiliation(s)
- Simon A Rudge
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Michael J O Wakelam
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
203
|
Nielsen BS, Malinda RR, Schmid FM, Pedersen SF, Christensen ST, Pedersen LB. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J Cell Sci 2015; 128:3543-9. [PMID: 26290382 DOI: 10.1242/jcs.173559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023] Open
Abstract
Primary cilia are microtubule-based sensory organelles projecting from most quiescent mammalian cells, which disassemble in cells cultured in serum-deprived conditions upon re-addition of serum or growth factors. Platelet-derived growth factors (PDGF) are implicated in deciliation, but the specific receptor isoforms and mechanisms involved are unclear. We report that PDGFRβ promotes deciliation in cultured cells and provide evidence implicating PLCγ and intracellular Ca(2+) release in this process. Activation of wild-type PDGFRα alone did not elicit deciliation. However, expression of constitutively active PDGFRα D842V mutant receptor, which potently activates PLCγ (also known as PLCG1), caused significant deciliation, and this phenotype was rescued by inhibiting PDGFRα D842V kinase activity or AURKA. We propose that PDGFRβ and PDGFRα D842V promote deciliation through PLCγ-mediated Ca(2+) release from intracellular stores, causing activation of calmodulin and AURKA-triggered deciliation.
Collapse
Affiliation(s)
- Brian S Nielsen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Raj R Malinda
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Fabian M Schmid
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Stine F Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Søren T Christensen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Lotte B Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| |
Collapse
|
204
|
Bachmann-Gagescu R, Dempsey JC, Phelps IG, O'Roak BJ, Knutzen DM, Rue TC, Ishak GE, Isabella CR, Gorden N, Adkins J, Boyle EA, de Lacy N, O'Day D, Alswaid A, Ramadevi A R, Lingappa L, Lourenço C, Martorell L, Garcia-Cazorla À, Ozyürek H, Haliloğlu G, Tuysuz B, Topçu M, Chance P, Parisi MA, Glass IA, Shendure J, Doherty D. Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity. J Med Genet 2015; 52:514-22. [PMID: 26092869 PMCID: PMC5082428 DOI: 10.1136/jmedgenet-2015-103087] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/01/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterised by hypotonia, ataxia, cognitive impairment, abnormal eye movements, respiratory control disturbances and a distinctive mid-hindbrain malformation. JS demonstrates substantial phenotypic variability and genetic heterogeneity. This study provides a comprehensive view of the current genetic basis, phenotypic range and gene-phenotype associations in JS. METHODS We sequenced 27 JS-associated genes in 440 affected individuals (375 families) from a cohort of 532 individuals (440 families) with JS, using molecular inversion probe-based targeted capture and next-generation sequencing. Variant pathogenicity was defined using the Combined Annotation Dependent Depletion algorithm with an optimised score cut-off. RESULTS We identified presumed causal variants in 62% of pedigrees, including the first B9D2 mutations associated with JS. 253 different mutations in 23 genes highlight the extreme genetic heterogeneity of JS. Phenotypic analysis revealed that only 34% of individuals have a 'pure JS' phenotype. Retinal disease is present in 30% of individuals, renal disease in 25%, coloboma in 17%, polydactyly in 15%, liver fibrosis in 14% and encephalocele in 8%. Loss of CEP290 function is associated with retinal dystrophy, while loss of TMEM67 function is associated with liver fibrosis and coloboma, but we observe no clear-cut distinction between JS subtypes. CONCLUSIONS This work illustrates how combining advanced sequencing techniques with phenotypic data addresses extreme genetic heterogeneity to provide diagnostic and carrier testing, guide medical monitoring for progressive complications, facilitate interpretation of genome-wide sequencing results in individuals with a variety of phenotypes and enable gene-specific treatments in the future.
Collapse
Affiliation(s)
- R Bachmann-Gagescu
- Institute for Molecular Life Sciences and Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - J C Dempsey
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - I G Phelps
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - B J O'Roak
- Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - D M Knutzen
- Department of Oncology, Franciscan Health System, Tacoma, Washington, USA
| | - T C Rue
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - G E Ishak
- Department of Radiology, University of Washington, Seattle Children's Hospital, Seattle, Washington, USA
| | - C R Isabella
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - N Gorden
- Department of Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J Adkins
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - E A Boyle
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - N de Lacy
- Department of Psychiatry, University of Washington, Seattle, Washington, USA
| | - D O'Day
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - A Alswaid
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | - L Lingappa
- Department of Child Neurology, Rainbow Children Hospital, Hyderabad, India
| | - C Lourenço
- Department of Neurosciences and Behavior Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - L Martorell
- Department of Genetica Molecular, Hospital Sant Joan de Deu, Barcelona, Spain
| | - À Garcia-Cazorla
- Department of Neurology, Neurometabolic Unit, Hospital Sant Joan de Déu and CIBERER, ISCIII, Barcelona, Spain
| | - H Ozyürek
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - G Haliloğlu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - B Tuysuz
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - M Topçu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - P Chance
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - M A Parisi
- National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - I A Glass
- Department of Pediatrics, University of Washington, Seattle, Washington, USA Seattle Children's Research Institute, Seattle, Washington, USA
| | - J Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - D Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
205
|
|
206
|
Chávez M, Ena S, Van Sande J, de Kerchove d'Exaerde A, Schurmans S, Schiffmann SN. Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output. Dev Cell 2015; 34:338-50. [PMID: 26190144 DOI: 10.1016/j.devcel.2015.06.016] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/31/2015] [Accepted: 06/18/2015] [Indexed: 01/23/2023]
Abstract
Ciliary transport is required for ciliogenesis, signal transduction, and trafficking of receptors to the primary cilium. Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) have been associated with ciliary dysfunction; however, its role in regulating ciliary phosphoinositides is unknown. Here we report that in neural stem cells, phosphatidylinositol 4-phosphate (PI4P) is found in high levels in cilia whereas phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is not detectable. Upon INPP5E inactivation, PI(4,5)P2 accumulates at the ciliary tip whereas PI4P is depleted. This is accompanied by recruitment of the PI(4,5)P2-interacting protein TULP3 to the ciliary membrane, along with Gpr161. This results in an increased production of cAMP and a repression of the Shh transcription gene Gli1. Our results reveal the link between ciliary regulation of phosphoinositides by INPP5E and Shh regulation via ciliary trafficking of TULP3/Gpr161 and also provide mechanistic insight into ciliary alterations found in Joubert and MORM syndromes resulting from INPP5E mutations.
Collapse
Affiliation(s)
- Marcelo Chávez
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.
| | - Sabrina Ena
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | | | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA Research Centre, and WELBIO, Université de Liège, Liège 4000, Belgium
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.
| |
Collapse
|
207
|
Inoue K, Ishibe S. Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am J Physiol Renal Physiol 2015; 309:F398-405. [PMID: 26084928 DOI: 10.1152/ajprenal.00136.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Severe defects in the glomerular filtration barrier result in nephrotic syndrome, which is characterized by massive proteinuria. The podocyte, a specialized epithelial cell with interdigitating foot processes separated by a slit diaphragm, plays a vital role in regulating the passage of proteins from the capillary lumen to Bowman's space. Recent findings suggest a critical role for endocytosis in podocyte biology as highlighted by genetic mouse models of disease and human genetic mutations that result in the loss of the integrity of the glomerular filtration barrier. In vitro podocyte studies have also unraveled a plethora of constituents that are differentially internalized to maintain homeostasis. These observations provide a framework and impetus for understanding the precise regulation of podocyte endocytic machinery in both health and disease.
Collapse
Affiliation(s)
- Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
208
|
Deletion of Inpp5a causes ataxia and cerebellar degeneration in mice. Neurogenetics 2015; 16:277-85. [PMID: 26051944 DOI: 10.1007/s10048-015-0450-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022]
Abstract
The progressive and permanent loss of cerebellar Purkinje cells (PC) is a hallmark of many inherited ataxias. Mutations in several genes involved in the regulation of Ca(2+) release from intracellular stores by the second messenger IP3 have been associated with PC dysfunction or death. While much is known about the defects in production and response to IP3, less is known about the defects in breakdown of the IP3 second messenger. A mutation in Inpp4a of the pathway is associated with a severe, early-onset PC degeneration in the mouse model weeble. The step preceding the removal of the 4-phosphate is the removal of the 5-phosphate by Inpp5a. Gene expression analysis was performed on an Inpp5a (Gt(OST50073)Lex) mouse generated by gene trap insertion using quantitative real-time PCR (qRT-PCR), immunohistochemistry, and Western blot. Phenotypic analyses were performed using rotarod, β-galactosidase staining, and phosphatase activity assay. Statistical significance was calculated. The deletion of Inpp5a causes an early-onset yet slowly progressive PC degeneration and ataxia. Homozygous mutants (90%) exhibit perinatal lethality; surviving homozygotes show locomotor instability at P16. A consistent pattern of PC loss in the cerebellum is initially detectable by weaning and widespread by P60. Phosphatase activity toward phosphoinositol substrates is reduced in the mutant relative to littermates. The ataxic phenotype and characteristics neurodegeneration of the Inpp5a (Gt(OST50073)Lex) mouse indicate a crucial role for Inpp5a in PC survival. The identification of the molecular basis of the selective PC survival will be important in defining a neuroprotective gene applicable to establishing a disease mechanism.
Collapse
|
209
|
Kroes HY, Monroe GR, van der Zwaag B, Duran KJ, de Kovel CG, van Roosmalen MJ, Harakalova M, Nijman IJ, Kloosterman WP, Giles RH, Knoers NVAM, van Haaften G. Joubert syndrome: genotyping a Northern European patient cohort. Eur J Hum Genet 2015; 24:214-20. [PMID: 25920555 DOI: 10.1038/ejhg.2015.84] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022] Open
Abstract
Joubert syndrome (JBS) is a rare neurodevelopmental disorder belonging to the group of ciliary diseases. JBS is genetically heterogeneous, with >20 causative genes identified to date. A molecular diagnosis of JBS is essential for prediction of disease progression and genetic counseling. We developed a targeted next-generation sequencing (NGS) approach for parallel sequencing of 22 known JBS genes plus 599 additional ciliary genes. This method was used to genotype a cohort of 51 well-phenotyped Northern European JBS cases (in some of the cases, Sanger sequencing of individual JBS genes had been performed previously). Altogether, 21 of the 51 cases (41%) harbored biallelic pathogenic mutations in known JBS genes, including 14 mutations not previously described. Mutations in C5orf42 (12%), TMEM67 (10%), and AHI1 (8%) were the most prevalent. C5orf42 mutations result in a purely neurological Joubert phenotype, in one case associated with postaxial polydactyly. Our study represents a population-based cohort of JBS patients not enriched for consanguinity, providing insight into the relative importance of the different JBS genes in a Northern European population. Mutations in C5orf42 are relatively frequent (possibly due to a Dutch founder mutation) and mutations in CEP290 are underrepresented compared with international cohorts. Furthermore, we report a case with heterozygous mutations in CC2D2A and B9D1, a gene associated with the more severe Meckel-Gruber syndrome that was recently published as a potential new JBS gene, and discuss the significance of this finding.
Collapse
Affiliation(s)
- Hester Y Kroes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Glen R Monroe
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen J Duran
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolien G de Kovel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark J van Roosmalen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ies J Nijman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wigard P Kloosterman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nine V A M Knoers
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
210
|
Xu Y, Guan L, Xiao X, Zhang J, Li S, Jiang H, Jia X, Yang J, Guo X, Yin Y, Wang J, Zhang Q. Mutation analysis in 129 genes associated with other forms of retinal dystrophy in 157 families with retinitis pigmentosa based on exome sequencing. Mol Vis 2015; 21:477-86. [PMID: 25999675 PMCID: PMC4415588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/26/2015] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Mutations in 60 known genes were previously identified by exome sequencing in 79 of 157 families with retinitis pigmentosa (RP). This study analyzed variants in 129 genes associated with other forms of hereditary retinal dystrophy in the same cohort. METHODS Apart from the 73 genes previously analyzed, a further 129 genes responsible for other forms of hereditary retinal dystrophy were selected based on RetNet. Variants in the 129 genes determined by whole exome sequencing were selected and filtered by bioinformatics analysis. Candidate variants were confirmed by Sanger sequencing and validated by analysis of available family members and controls. RESULTS A total of 90 candidate variants were present in the 129 genes. Sanger sequencing confirmed 83 of the 90 variants. Analysis of family members and controls excluded 76 of these 83 variants. The remaining seven variants were considered to be potential pathogenic mutations; these were c.899A>G, c.1814C>G, and c.2107C>T in BBS2; c.1073C>T and c.1669C>T in INPP5E; and c.3582C>G and c.5704-5C>G in CACNA1F. Six of these seven mutations were novel. The mutations were detected in five unrelated patients without a family history, including three patients with homozygous or compound heterozygous mutations in BBS2 and INPP5E, and two patients with hemizygous mutations in CACNA1F. None of the patients had mutations in the genes associated with autosome dominant retinal dystrophy. CONCLUSIONS Only a small portion of patients with RP, about 3% (5/157), had causative mutations in the 129 genes associated with other forms of hereditary retinal dystrophy.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China
| | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
211
|
Breslow DK, Nachury MV. Analysis of soluble protein entry into primary cilia using semipermeabilized cells. Methods Cell Biol 2015; 127:203-21. [PMID: 25837393 DOI: 10.1016/bs.mcb.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The primary cilium is a protrusion from the cell surface that serves as a specialized compartment for signal transduction. Many signaling factors are known to be dynamically concentrated within cilia and to require cilia for their function. Yet protein entry into primary cilia remains poorly understood. To enable a mechanistic analysis of soluble protein entry into cilia, we developed a method for semipermeabilization of mammalian cells in which the plasma membrane is permeabilized while the ciliary membrane remains intact. Using semipermeabilized cells as the basis for an in vitro diffusion-to-capture assay, we uncovered a size-dependent diffusion barrier that restricts soluble protein exchange between the cytosol and the cilium. The manipulability of this in vitro system enabled an extensive characterization of the ciliary diffusion barrier and led us to show that the barrier is mechanistically distinct from those at the axon initial segment and the nuclear pore complex. Because semipermeabilized cells enable a range of experimental perturbations that would not be easily feasible in intact cells, we believe this methodology will provide a unique resource for investigating primary cilium function in development and disease.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
212
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
213
|
Magnani D, Morlé L, Hasenpusch-Theil K, Paschaki M, Jacoby M, Schurmans S, Durand B, Theil T. The ciliogenic transcription factor Rfx3 is required for the formation of the thalamocortical tract by regulating the patterning of prethalamus and ventral telencephalon. Hum Mol Genet 2015; 24:2578-93. [PMID: 25631876 DOI: 10.1093/hmg/ddv021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum. However, the possibility of defects in other forebrain axon tracts, which could contribute to the cognitive disorders of these patients, has not been explored. Here, we investigate the formation of the corticothalamic/thalamocortical tracts in mice mutant for Rfx3, which regulates the expression of many genes involved in ciliogenesis and cilia function. Using DiI axon tracing and immunohistochemistry experiments, we show that some Rfx3(-/-) corticothalamic axons abnormally migrate toward the pial surface of the ventral telencephalon (VT). Some thalamocortical axons (TCAs) also fail to leave the diencephalon or abnormally project toward the amygdala. Moreover, the Rfx3(-/-) VT displays heterotopias containing attractive guidance cues and expressing the guidance molecules Slit1 and Netrin1. Finally, the abnormal projection of TCAs toward the amygdala is also present in mice carrying a mutation in the Inpp5e gene, which is mutated in Joubert Syndrome and which controls cilia signaling and stability. The presence of identical thalamocortical malformations in two independent ciliary mutants indicates a novel role for primary cilia in the formation of the corticothalamic/thalamocortical tracts by establishing the correct cellular environment necessary for its development.
Collapse
Affiliation(s)
- Dario Magnani
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon F69622, France
| | - Kerstin Hasenpusch-Theil
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Marie Paschaki
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon F69622, France
| | - Monique Jacoby
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, Luxembourg, Luxembourg and
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Signal Transduction, GIGA B34, Université de Liège, Liège B-4000, Belgium
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon F69622, France
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK,
| |
Collapse
|
214
|
Garcia-Cazorla À, Mochel F, Lamari F, Saudubray JM. The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J Inherit Metab Dis 2015; 38:19-40. [PMID: 25413954 DOI: 10.1007/s10545-014-9776-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
Over one hundred diseases related to inherited defects of complex lipids synthesis and remodeling are now reported. Most of them were described within the last 5 years. New descriptions and phenotypes are expanding rapidly. While the associated clinical phenotype is currently difficult to outline, with only a few patients identified, it appears that all organs and systems may be affected. The main clinical presentations can be divided into (1) Diseases affecting the central and peripheral nervous system. Complex lipid synthesis disorders produce prominent motor manifestations due to upper and/or lower motoneuron degeneration. Motor signs are often complex, associated with other neurological and extra-neurological signs. Three neurological phenotypes, spastic paraparesis, neurodegeneration with brain iron accumulation and peripheral neuropathies, deserve special attention. Many apparently well clinically defined syndromes are not distinct entities, but rather clusters on a continuous spectrum, like for the PNPLA6-associated diseases, extending from Boucher-Neuhauser syndrome via Gordon Holmes syndrome to spastic ataxia and pure hereditary spastic paraplegia; (2) Muscular/cardiac presentations; (3) Skin symptoms mostly represented by syndromic (neurocutaneous) and non syndromic ichthyosis; (4) Retinal dystrophies with syndromic and non syndromic retinitis pigmentosa, Leber congenital amaurosis, cone rod dystrophy, Stargardt disease; (5) Congenital bone dysplasia and segmental overgrowth disorders with congenital lipomatosis; (6) Liver presentations characterized mainly by transient neonatal cholestatic jaundice and non alcoholic liver steatosis with hypertriglyceridemia; and (7) Renal and immune presentations. Lipidomics and molecular functional studies could help to elucidate the mechanism(s) of dominant versus recessive inheritance observed for the same gene in a growing number of these disorders.
Collapse
Affiliation(s)
- Àngels Garcia-Cazorla
- Department of Neurology, Neurometabolic Unit, Hospital Sant Joan de Déu and CIBERER, ISCIII, Barcelona, Spain,
| | | | | | | |
Collapse
|
215
|
Abstract
A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
216
|
Mendelian disorders of PI metabolizing enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:867-81. [PMID: 25510381 DOI: 10.1016/j.bbalip.2014.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022]
Abstract
More than twenty different genetic diseases have been described that are caused by mutations in phosphoinositide metabolizing enzymes, mostly in phosphoinositide phosphatases. Although generally ubiquitously expressed, mutations in these enzymes, which are mainly loss-of-function, result in tissue-restricted clinical manifestations through mechanisms that are not completely understood. Here we analyze selected disorders of phosphoinositide metabolism grouped according to the principle tissue affected: the nervous system, muscle, kidney, the osteoskeletal system, the eye, and the immune system. We will highlight what has been learnt so far from the study of these disorders about not only the cellular and molecular pathways that are involved or are governed by phosphoinositides, but also the many gaps that remain to be filled to gain a full understanding of the pathophysiological mechanisms underlying the clinical manifestations of this steadily growing class of diseases, most of which still remain orphan in terms of treatment. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
217
|
Fan CW, Chen B, Franco I, Lu J, Shi H, Wei S, Wang C, Wu X, Tang W, Roth MG, Williams NS, Hirsch E, Chen C, Lum L. The Hedgehog pathway effector smoothened exhibits signaling competency in the absence of ciliary accumulation. ACTA ACUST UNITED AC 2014; 21:1680-9. [PMID: 25484239 DOI: 10.1016/j.chembiol.2014.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 01/03/2023]
Abstract
Misactivation of the seven-transmembrane protein Smoothened (Smo) is frequently associated with basal cell carcinoma and medulloblastoma. Cellular exposure to secreted Hedgehog (Hh) protein or oncogenic mutations in Hh pathway components induces Smo accumulation in the primary cilium, an antenna-like organelle with mostly unknown cellular functions. Despite the data supporting an indispensable role of the primary cilium in Smo activation, the mechanistic underpinnings of this dependency remain unclear. Using a cell-membrane-impermeable Smo antagonist (IHR-1), we demonstrate that Smo supplied with a synthetic agonist or activated with oncogenic mutations can signal without ciliary accumulation. Similarly, cells with compromised ciliary Smo trafficking due to loss of the phosphatidylinositol-4-phosphate 3-kinase (PI3K)-C2α retain transcriptional response to an exogenously supplied Smo agonist. These observations suggest that assembly of a Smo-signaling complex in the primary cilium is not a prerequisite for Hh pathway activation driven by Smo agonists or oncogenic Smo molecules.
Collapse
Affiliation(s)
- Chih-Wei Fan
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Baozhi Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Irene Franco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Jianming Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Heping Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shuguang Wei
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Changguang Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Tang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael G Roth
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
218
|
Plotnikova OV, Seo S, Cottle DL, Conduit S, Hakim S, Dyson JM, Mitchell CA, Smyth IM. INPP5E interacts with AURKA, linking phosphoinositide signaling to primary cilium stability. J Cell Sci 2014; 128:364-72. [PMID: 25395580 DOI: 10.1242/jcs.161323] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) cause the ciliopathies known as Joubert and MORM syndromes; however, the role of INPP5E in ciliary biology is not well understood. Here, we describe an interaction between INPP5E and AURKA, a centrosomal kinase that regulates mitosis and ciliary disassembly, and we show that this interaction is important for the stability of primary cilia. Furthermore, AURKA phosphorylates INPP5E and thereby increases its 5-phosphatase activity, which in turn promotes transcriptional downregulation of AURKA, partly through an AKT-dependent mechanism. These findings establish the first direct link between AURKA and phosphoinositide signaling and suggest that the function of INPP5E in cilia is at least partly mediated by its interactions with AURKA.
Collapse
Affiliation(s)
- Olga V Plotnikova
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242
| | - Denny L Cottle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sarah Conduit
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sandra Hakim
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ian M Smyth
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
219
|
Ben-Salem S, Al-Shamsi AM, Gleeson JG, Ali BR, Al-Gazali L. Mutation spectrum of Joubert syndrome and related disorders among Arabs. Hum Genome Var 2014; 1:14020. [PMID: 27081510 PMCID: PMC4785524 DOI: 10.1038/hgv.2014.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 02/08/2023] Open
Abstract
Joubert syndrome (JS) is a rare autosomal recessive (AR), neurological condition characterized by dysgenesis of the cerebellar vermis with the radiological hallmark of molar tooth sign, oculomotor apraxia, recurrent hyperventilation and intellectual disability. Most cases display a broad spectrum of additional features, including polydactyly, retinal dystrophy and renal abnormalities, which define different subtypes of JS-related disorders (JSRDs). To date, 23 genes have been shown to cause JSRDs, and although most of the identified genes encode proteins involved in cilia function or assembly, the molecular mechanisms associated with ciliary signaling remain enigmatic. Arab populations are ethnically diverse with high levels of consanguinity (20–60%) and a high prevalence of AR disorders. In addition, isolated communities with very-high levels of inbreeding and founder mutations are common. In this article, we review the 70 families reported thus far with JS and JSRDs that have been studied at the molecular level from all the Arabic countries and compile the mutations found. We show that JS and the related JSRDs are genetically heterogeneous in Arabs, with 53 mutations in 15 genes. Thirteen of these mutations are potentially founder mutations for the region.
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | - Aisha M Al-Shamsi
- Department of Paediatrics, Tawam Hospital , Al-Ain, Al-Ain, United Arab Emirates
| | - Joseph G Gleeson
- Neurogenetics Laboratory, Department of Neuroscience and Pediatrics, Howard Hughes Medical Institute, University of California , San Diego, CA, USA
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| |
Collapse
|
220
|
Hsu F, Mao Y. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:698-710. [PMID: 25264170 DOI: 10.1016/j.bbalip.2014.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
Abstract
Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
221
|
Abstract
The specific interaction of phosphoinositides with proteins is critical for a plethora of cellular processes, including cytoskeleton remodelling, mitogenic signalling, ion channel regulation and membrane traffic. The spatiotemporal restriction of different phosphoinositide species helps to define compartments within the cell, and this is particularly important for membrane trafficking within both the secretory and endocytic pathways. Phosphoinositide homoeostasis is tightly regulated by a large number of inositol kinases and phosphatases, which respectively phosphorylate and dephosphorylate distinct phosphoinositide species. Many of these enzymes have been implicated in regulating membrane trafficking and, accordingly, their dysregulation has been linked to a number of human diseases. In the present review, we focus on the inositol phosphatases, concentrating on their roles in membrane trafficking and the human diseases with which they have been associated.
Collapse
|
222
|
Madhivanan K, Aguilar RC. Ciliopathies: the trafficking connection. Traffic 2014; 15:1031-56. [PMID: 25040720 DOI: 10.1111/tra.12195] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle-dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multiorgan diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies appears to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e. affecting cilia assembly) will lead to more severe symptoms, whereas those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.
Collapse
|
223
|
miR-508 sustains phosphoinositide signalling and promotes aggressive phenotype of oesophageal squamous cell carcinoma. Nat Commun 2014; 5:4620. [PMID: 25099196 DOI: 10.1038/ncomms5620] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
The strength and duration of phosphoinositide signalling from phosphatidylinositol-3-kinase (PI3K) activation to Akt is tightly balanced by phosphoinositide kinases and phosphatases. However, how phosphatase-mediated negative regulatory effects are concomitantly disrupted in cancers, which commonly exhibit constitutively activated PI3K/Akt signalling, remains undefined. Here we report that miR-508 directly suppresses multiple phosphatases, including inositol polyphosphate-5-phosphatase J (INPP5J), phosphatase and tensin homologue (PTEN) and inositol polyphosphate 4-phosphatase type I (INPP4A), resulting in constitutive activation of PI3K/Akt signalling. Furthermore, we find that overexpressing miR-508 promotes, while silencing miR-508 impairs, the aggressive phenotype of oesophageal squamous cell carcinoma (ESCC) both in vitro and in vivo. Importantly, the level of miR-508 correlates with poor survival and activated PI3K/Akt signalling in a large cohort of ESCC specimens. These findings uncover a mechanism for constitutive PI3K/Akt activation in ESCC, and support a functionally and clinically relevant epigenetic mechanism in cancer progression.
Collapse
|
224
|
Thomas S, Wright KJ, Le Corre S, Micalizzi A, Romani M, Abhyankar A, Saada J, Perrault I, Amiel J, Litzler J, Filhol E, Elkhartoufi N, Kwong M, Casanova JL, Boddaert N, Baehr W, Lyonnet S, Munnich A, Burglen L, Chassaing N, Encha-Ravazi F, Vekemans M, Gleeson JG, Valente EM, Jackson PK, Drummond IA, Saunier S, Attié-Bitach T. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum Mutat 2014; 35:137-46. [PMID: 24166846 DOI: 10.1002/humu.22470] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 10/10/2013] [Indexed: 11/09/2022]
Abstract
Joubert syndrome (JS) is characterized by a distinctive cerebellar structural defect, namely the << molar tooth sign >>. JS is genetically heterogeneous, involving 20 genes identified to date, which are all required for cilia biogenesis and/or function. In a consanguineous family with JS associated with optic nerve coloboma, kidney hypoplasia, and polydactyly, combined exome sequencing and mapping identified a homozygous splice-site mutation in PDE6D, encoding a prenyl-binding protein. We found that pde6d depletion in zebrafish leads to renal and retinal developmental anomalies and wild-type but not mutant PDE6D is able to rescue this phenotype. Proteomic analysis identified INPP5E, whose mutations also lead to JS or mental retardation, obesity, congenital retinal dystrophy, and micropenis syndromes, as novel prenyl-dependent cargo of PDE6D. Mutant PDE6D shows reduced binding to INPP5E, which fails to localize to primary cilia in patient fibroblasts and tissues. Furthermore, mutant PDE6D is unable to bind to GTP-bound ARL3, which acts as a cargo-release factor for PDE6D-bound INPP5E. Altogether, these results indicate that PDE6D is required for INPP5E ciliary targeting and suggest a broader role for PDE6D in targeting other prenylated proteins to the cilia. This study identifies PDE6D as a novel JS disease gene and provides the first evidence of prenyl-binding-dependent trafficking in ciliopathies.
Collapse
|
225
|
Franco I, Gulluni F, Campa CC, Costa C, Margaria JP, Ciraolo E, Martini M, Monteyne D, De Luca E, Germena G, Posor Y, Maffucci T, Marengo S, Haucke V, Falasca M, Perez-Morga D, Boletta A, Merlo GR, Hirsch E. PI3K class II α controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev Cell 2014; 28:647-58. [PMID: 24697898 PMCID: PMC4042153 DOI: 10.1016/j.devcel.2014.01.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/15/2013] [Accepted: 01/23/2014] [Indexed: 12/15/2022]
Abstract
Multiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium. These changes in turn cause defects in primary cilium elongation, Smo ciliary translocation, and Sonic Hedgehog (Shh) signaling and ultimately impair embryonic development. Selective reconstitution of PtdIns3P levels in cells lacking PI3K-C2α rescues Rab11 activation, primary cilium length, and Shh pathway induction. Thus, PI3K-C2α regulates the formation of a PtdIns3P pool at the PRE required for Rab11 and Shh pathway activation.
Collapse
Affiliation(s)
- Irene Franco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Federico Gulluni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Carlo C Campa
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Carlotta Costa
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Elisa Ciraolo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Miriam Martini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Gosselies, 6041 Charleroi, Belgium
| | - Elisa De Luca
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Giulia Germena
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - York Posor
- Leibniz Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Tania Maffucci
- Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Stefano Marengo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marco Falasca
- Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Gosselies, 6041 Charleroi, Belgium; Center for Microscopy and Molecular Imaging-CMMI, Université Libre de Bruxelles, 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgio R Merlo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
226
|
Blacque OE, Sanders AAWM. Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 2014; 10:126-37. [PMID: 24732235 DOI: 10.4161/org.28830] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary cilium has emerged as a hotbed of sensory and developmental signaling, serving as a privileged domain to concentrate the functions of a wide number of channels, receptors and downstream signal transducers. This realization has provided important insight into the pathophysiological mechanisms underlying the ciliopathies, an ever expanding spectrum of multi-symptomatic disorders affecting the development and maintenance of multiple tissues and organs. One emerging research focus is the subcompartmentalised nature of the organelle, consisting of discrete structural and functional subdomains such as the periciliary membrane/basal body compartment, the transition zone, the Inv compartment and the distal segment/ciliary tip region. Numerous ciliopathy, transport-related and signaling molecules localize at these compartments, indicating specific roles at these subciliary sites. Here, by focusing predominantly on research from the genetically tractable nematode C. elegans, we review ciliary subcompartments in terms of their structure, function, composition, biogenesis and relationship to human disease.
Collapse
Affiliation(s)
- Oliver E Blacque
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Anna A W M Sanders
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| |
Collapse
|
227
|
Trésaugues L, Silvander C, Flodin S, Welin M, Nyman T, Gräslund S, Hammarström M, Berglund H, Nordlund P. Structural basis for phosphoinositide substrate recognition, catalysis, and membrane interactions in human inositol polyphosphate 5-phosphatases. Structure 2014; 22:744-55. [PMID: 24704254 DOI: 10.1016/j.str.2014.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/15/2022]
Abstract
SHIP2, OCRL, and INPP5B belong to inositol polyphosphate 5-phophatase subfamilies involved in insulin regulation and Lowes syndrome. The structural basis for membrane recognition, substrate specificity, and regulation of inositol polyphosphate 5-phophatases is still poorly understood. We determined the crystal structures of human SHIP2, OCRL, and INPP5B, the latter in complex with phosphoinositide substrate analogs, which revealed a membrane interaction patch likely to assist in sequestering substrates from the lipid bilayer. Residues recognizing the 1-phosphate of the substrates are highly conserved among human family members, suggesting similar substrate binding modes. However, 3- and 4-phosphate recognition varies and determines individual substrate specificity profiles. The high conservation of the environment of the scissile 5-phosphate suggests a common reaction geometry for all members of the human 5-phosphatase family.
Collapse
Affiliation(s)
- Lionel Trésaugues
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla Silvander
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Susanne Flodin
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Welin
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Tomas Nyman
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Hammarström
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Helena Berglund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Pär Nordlund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden; Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Centre for Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
228
|
Roosing S, Collin RWJ, den Hollander AI, Cremers FPM, Siemiatkowska AM. Prenylation defects in inherited retinal diseases. J Med Genet 2014; 51:143-51. [DOI: 10.1136/jmedgenet-2013-102138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
229
|
Wheway G, Parry DA, Johnson CA. The role of primary cilia in the development and disease of the retina. Organogenesis 2014; 10:69-85. [PMID: 24162842 PMCID: PMC4049897 DOI: 10.4161/org.26710] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023] Open
Abstract
The normal development and function of photoreceptors is essential for eye health and visual acuity in vertebrates. Mutations in genes encoding proteins involved in photoreceptor development and function are associated with a suite of inherited retinal dystrophies, often as part of complex multi-organ syndromic conditions. In this review, we focus on the role of the photoreceptor outer segment, a highly modified and specialized primary cilium, in retinal health and disease. We discuss the many defects in the structure and function of the photoreceptor primary cilium that can cause a class of inherited conditions known as ciliopathies, often characterized by retinal dystrophy and degeneration, and highlight the recent insights into disease mechanisms.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - David A Parry
- Section of Genetics; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| |
Collapse
|
230
|
Votsi C, Christodoulou K. Molecular diagnosis of autosomal recessive cerebellar ataxia in the whole exome/genome sequencing era. World J Neurol 2013; 3:115-128. [DOI: 10.5316/wjn.v3.i4.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progressive ataxia is usually the prominent symptom and is often associated with other neurological or additional features. ARCA classification still remains controversial even though different approaches have been proposed over the years. Furthermore, ARCA molecular diagnosis has been a challenge due to phenotypic overlap and increased genetic heterogeneity observed within this group of disorders. Friedreich’s ataxia and ataxia telangiectasia have been reported as the most frequent and well-studied forms of ARCA. Significant progress in understanding the genetic etiologies of the ARCA has been achieved during the last 15 years. The methodological revolution that has been observed in genetics over the last few years has contributed significantly to the molecular diagnosis of rare diseases including the ARCAs. Development of high throughput technologies has resulted in the identification of new ARCA genes and novel mutations in known ARCA genes. Therefore, an improvement in the molecular diagnosis of ARCA is expected. Moreover, based on the fact that many patients still remain undiagnosed, additional forms of ataxia are expected to be identified. We hereby review the current knowledge on the ARCAs, focused on the genetic findings of the most common forms that were molecularly characterized before the whole exome/genome era, as well as the most recently described forms that have been elucidated with the use of these novel technologies. The significant contribution of whole-exome sequencing or whole-genome sequencing in the molecular diagnosis of ARCAs is discussed.
Collapse
|
231
|
Abstract
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT-associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
232
|
De Matteis MA, Vicinanza M, Venditti R, Wilson C. Cellular Assays for Drug Discovery in Genetic Disorders of Intracellular Trafficking. Annu Rev Genomics Hum Genet 2013; 14:159-90. [DOI: 10.1146/annurev-genom-091212-153415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy;
| |
Collapse
|
233
|
IGF-1 activates a cilium-localized noncanonical Gβγ signaling pathway that regulates cell-cycle progression. Dev Cell 2013; 26:358-68. [PMID: 23954591 DOI: 10.1016/j.devcel.2013.07.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 05/28/2013] [Accepted: 07/17/2013] [Indexed: 02/03/2023]
Abstract
Primary cilia undergo cell-cycle-dependent assembly and disassembly. Emerging data suggest that ciliary resorption is a checkpoint for S phase reentry and that the activation of phospho(T94)Tctex-1 couples these two events. However, the environmental cues and molecular mechanisms that trigger these processes remain unknown. Here, we show that insulin-like growth-1 (IGF-1) accelerates G1-S progression by causing cilia to resorb. The mitogenic signals of IGF-1 are predominantly transduced through IGF-1 receptor (IGF-1R) on the cilia of fibroblasts and epithelial cells. At the base of the cilium, phosphorylated IGF-1R activates an AGS3-regulated Gβγ signaling pathway that subsequently recruits phospho(T94)Tctex-1 to the transition zone. Perturbing any component of this pathway in cortical progenitors induces premature neuronal differentiation at the expense of proliferation. These data suggest that during corticogenesis, a cilium-transduced, noncanonical IGF-1R-Gβγ-phospho(T94)Tctex-1 signaling pathway promotes the proliferation of neural progenitors through modulation of ciliary resorption and G1 length.
Collapse
|
234
|
Jo H, Kim J. Itinerary of vesicles to primary cilia. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.830646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
235
|
Abstract
Joubert syndrome is a congenital cerebellar ataxia with autosomal recessive or X-linked inheritance, the diagnostic hallmark of which is a unique cerebellar and brainstem malformation recognisable on brain imaging-the so-called molar tooth sign. Neurological signs are present from the neonatal period and include hypotonia progressing to ataxia, global developmental delay, ocular motor apraxia, and breathing dysregulation. These signs are variably associated with multiorgan involvement, mainly of the retina, kidneys, skeleton, and liver. 21 causative genes have been identified so far, all of which encode for proteins of the primary cilium or its apparatus. The primary cilium is a subcellular organelle that has key roles in development and in many cellular functions, making Joubert syndrome part of the expanding family of ciliopathies. Notable clinical and genetic overlap exists between distinct ciliopathies, which can co-occur even within families. Such variability is probably explained by an oligogenic model of inheritance, in which the interplay of mutations, rare variants, and polymorphisms at distinct loci modulate the expressivity of the ciliary phenotype.
Collapse
|
236
|
Wang X, Wang H, Sun V, Tuan HF, Keser V, Wang K, Ren H, Lopez I, Zaneveld JE, Siddiqui S, Bowles S, Khan A, Salvo J, Jacobson SG, Iannaccone A, Wang F, Birch D, Heckenlively JR, Fishman GA, Traboulsi EI, Li Y, Wheaton D, Koenekoop RK, Chen R. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet 2013; 50:674-88. [PMID: 23847139 DOI: 10.1136/jmedgenet-2013-101558] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are inherited retinal diseases that cause early onset severe visual impairment. An accurate molecular diagnosis can refine the clinical diagnosis and allow gene specific treatments. METHODS We developed a capture panel that enriches the exonic DNA of 163 known retinal disease genes. Using this panel, we performed targeted next generation sequencing (NGS) for a large cohort of 179 unrelated and prescreened patients with the clinical diagnosis of LCA or juvenile RP. Systematic NGS data analysis, Sanger sequencing validation, and segregation analysis were utilised to identify the pathogenic mutations. Patients were revisited to examine the potential phenotypic ambiguity at the time of initial diagnosis. RESULTS Pathogenic mutations for 72 patients (40%) were identified, including 45 novel mutations. Of these 72 patients, 58 carried mutations in known LCA or juvenile RP genes and exhibited corresponding phenotypes, while 14 carried mutations in retinal disease genes that were not consistent with their initial clinical diagnosis. We revisited patients in the latter case and found that homozygous mutations in PRPH2 can cause LCA/juvenile RP. Guided by the molecular diagnosis, we reclassified the clinical diagnosis in two patients. CONCLUSIONS We have identified a novel gene and a large number of novel mutations that are associated with LCA/juvenile RP. Our results highlight the importance of molecular diagnosis as an integral part of clinical diagnosis.
Collapse
Affiliation(s)
- Xia Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
238
|
Luo N, Kumar A, Conwell M, Weinreb RN, Anderson R, Sun Y. Compensatory Role of Inositol 5-Phosphatase INPP5B to OCRL in Primary Cilia Formation in Oculocerebrorenal Syndrome of Lowe. PLoS One 2013; 8:e66727. [PMID: 23805271 PMCID: PMC3689662 DOI: 10.1371/journal.pone.0066727] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/10/2013] [Indexed: 12/11/2022] Open
Abstract
Inositol phosphatases are important regulators of cell signaling, polarity, and vesicular trafficking. Mutations in OCRL, an inositol polyphosphate 5-phosphatase, result in Oculocerebrorenal syndrome of Lowe, an X-linked recessive disorder that presents with congenital cataracts, glaucoma, renal dysfunction and mental retardation. INPP5B is a paralog of OCRL and shares similar structural domains. The roles of OCRL and INPP5B in the development of cataracts and glaucoma are not understood. Using ocular tissues, this study finds low levels of INPP5B present in human trabecular meshwork but high levels in murine trabecular meshwork. In contrast, OCRL is localized in the trabecular meshwork and Schlemm's canal endothelial cells in both human and murine eyes. In cultured human retinal pigmented epithelial cells, INPP5B was observed in the primary cilia. A functional role for INPP5B is revealed by defects in cilia formation in cells with silenced expression of INPP5B. This is further supported by the defective cilia formation in zebrafish Kupffer's vesicles and in cilia-dependent melanosome transport assays in inpp5b morphants. Taken together, this study indicates that OCRL and INPP5B are differentially expressed in the human and murine eyes, and play compensatory roles in cilia development.
Collapse
Affiliation(s)
- Na Luo
- Glick Eye Institute, Department of Ophthalmology, Department of Biochemistry and Cell Biology, Department of Dermatology, Indiana University Indianapolis, Indiana, United States of America
| | - Akhilesh Kumar
- Glick Eye Institute, Department of Ophthalmology, Department of Biochemistry and Cell Biology, Department of Dermatology, Indiana University Indianapolis, Indiana, United States of America
| | - Michael Conwell
- Glick Eye Institute, Department of Ophthalmology, Department of Biochemistry and Cell Biology, Department of Dermatology, Indiana University Indianapolis, Indiana, United States of America
| | - Robert N. Weinreb
- Department of Ophthalmology, University of California San Diego, San Diego, California, United States of America
| | - Ryan Anderson
- Department of Pediatrics, Indiana University Indianapolis, Indiana,United States of America
| | - Yang Sun
- Glick Eye Institute, Department of Ophthalmology, Department of Biochemistry and Cell Biology, Department of Dermatology, Indiana University Indianapolis, Indiana, United States of America
| |
Collapse
|
239
|
Nalepa G, Barnholtz-Sloan J, Enzor R, Dey D, He Y, Gehlhausen JR, Lehmann AS, Park SJ, Yang Y, Yang X, Chen S, Guan X, Chen Y, Renbarger J, Yang FC, Parada LF, Clapp W. The tumor suppressor CDKN3 controls mitosis. ACTA ACUST UNITED AC 2013; 201:997-1012. [PMID: 23775190 PMCID: PMC3691455 DOI: 10.1083/jcb.201205125] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2(pThr-161) at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Xie J, Erneux C, Pirson I. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity? Bioessays 2013; 35:733-43. [PMID: 23650141 DOI: 10.1002/bies.201200168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The number of cellular events identified as being directly or indirectly modulated by phosphoinositides dramatically increased in the recent years. Part of the complexity results from the fact that the seven phosphoinositides play second messenger functions in many different areas of growth factors and insulin signaling, cytoskeletal organization, membrane dynamics, trafficking, or nuclear signaling. PtdIns(3,4)P2 is commonly reported as a product of the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and SHIP2) that dephosphorylate PtdIns(3,4,5)P3 at the 5-position. Here we discuss recent interest in PtdIns(3,4)P2 signaling highlighting its involvement in key cellular mechanisms such as cell adhesion, migration, and cytoskeletal regulation. We question and discuss the involvement of SHIP2 either as a PI 5-phosphatase or as a scaffold protein in insulin signaling, cytoskeletal dynamics, and endocytosis of growth factor receptors.
Collapse
Affiliation(s)
- Jingwei Xie
- Department of Pathophysiology, China Medical University, Heping District, Shenyang Liaoning Province, China
| | | | | |
Collapse
|
241
|
Basten SG, Giles RH. Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2013; 2:6. [PMID: 23628112 PMCID: PMC3662159 DOI: 10.1186/2046-2530-2-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/25/2013] [Indexed: 01/09/2023] Open
Abstract
Dysfunctional cilia underlie a broad range of cellular and tissue phenotypes and can eventually result in the development of ciliopathies: pathologically diverse diseases that range from clinically mild to highly complex and severe multi-organ failure syndromes incompatible with neonatal life. Given that virtually all cells of the human body have the capacity to generate cilia, it is likely that clinical manifestations attributed to ciliary dysfunction will increase in the years to come. Disputed but nevertheless enigmatic is the notion that at least a subset of tumor phenotypes fit within the ciliopathy disease spectrum and that cilia loss may be required for tumor progression. Contending for the centrosome renders ciliation and cell division mutually exclusive; a regulated tipping of balance promotes either process. The mechanisms involved, however, are complex. If the hypothesis that tumorigenesis results from dysfunctional cilia is true, then why do the classic ciliopathies only show limited hyperplasia at best? Although disassembly of the cilium is a prerequisite for cell proliferation, it does not intrinsically drive tumorigenesis per se. Alternatively, we will explore the emerging evidence suggesting that some tumors depend on ciliary signaling. After reviewing the structure, genesis and signaling of cilia, the various ciliopathy syndromes and their genetics, we discuss the current debate of tumorigenesis as a ciliopathy spectrum defect, and describe recent advances in this fascinating field.
Collapse
Affiliation(s)
- Sander G Basten
- Department of Medical Oncology, UMC Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, F03.223, 3584 CX, The Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, F03.223, 3584 CX, The Netherlands
| |
Collapse
|
242
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
243
|
Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet 2013; 132:865-84. [PMID: 23559409 DOI: 10.1007/s00439-013-1297-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/22/2013] [Indexed: 02/07/2023]
Abstract
Nephronophthisis-related ciliopathies (NPHP-RC) are autosomal-recessive cystic kidney diseases. More than 13 genes are implicated in its pathogenesis to date, accounting for only 40 % of all cases. High-throughput mutation screenings of large patient cohorts represent a powerful tool for diagnostics and identification of novel NPHP genes. We here performed a new high-throughput mutation analysis method to study 13 established NPHP genes (NPHP1-NPHP13) in a worldwide cohort of 1,056 patients diagnosed with NPHP-RC. We first applied multiplexed PCR-based amplification using Fluidigm Access-Array™ technology followed by barcoding and next-generation resequencing on an Illumina platform. As a result, we established the molecular diagnosis in 127/1,056 independent individuals (12.0 %) and identified a single heterozygous truncating mutation in an additional 31 individuals (2.9 %). Altogether, we detected 159 different mutations in 11 out of 13 different NPHP genes, 99 of which were novel. Phenotypically most remarkable were two patients with truncating mutations in INVS/NPHP2 who did not present as infants and did not exhibit extrarenal manifestations. In addition, we present the first case of Caroli disease due to mutations in WDR19/NPHP13 and the second case ever with a recessive mutation in GLIS2/NPHP7. This study represents the most comprehensive mutation analysis in NPHP-RC patients, identifying the largest number of novel mutations in a single study worldwide.
Collapse
|
244
|
Tuz K, Hsiao YC, Juárez O, Shi B, Harmon EY, Phelps IG, Lennartz MR, Glass IA, Doherty D, Ferland RJ. The Joubert syndrome-associated missense mutation (V443D) in the Abelson-helper integration site 1 (AHI1) protein alters its localization and protein-protein interactions. J Biol Chem 2013; 288:13676-94. [PMID: 23532844 DOI: 10.1074/jbc.m112.420786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Missense mutations in AHI1 result in the neurodevelopmental ciliopathy called Joubert syndrome. RESULTS Mutations in AHI1 decrease cilia formation, alter its localization and stability, and change its binding to HAP1 and NPHP1. CONCLUSION Mutations in AHI1 affect ciliogenesis, AHI1 protein localization, and AHI1-protein interactions. SIGNIFICANCE This study begins to describe how missense mutations in AHI1 can cause Joubert syndrome. Mutations in AHI1 cause Joubert syndrome (JBTS), a neurodevelopmental ciliopathy, characterized by midbrain-hindbrain malformations and motor/cognitive deficits. Here, we show that primary cilia (PC) formation is decreased in fibroblasts from individuals with JBTS and AHI1 mutations. Most missense mutations in AHI1, causing JBTS, occur in known protein domains, however, a common V443D mutation in AHI1 is found in a region with no known protein motifs. We show that cells transfected with AHI1-V443D, or a new JBTS-causing mutation, AHI1-R351L, have aberrant localization of AHI1 at the basal bodies of PC and at cell-cell junctions, likely through decreased binding of mutant AHI1 to NPHP1 (another JBTS-causing protein). The AHI1-V443D mutation causes decreased AHI1 stability because there is a 50% reduction in AHI1-V443D protein levels compared with wild type AHI1. Huntingtin-associated protein-1 (Hap1) is a regulatory protein that binds Ahi1, and Hap1 knock-out mice have been reported to have JBTS-like phenotypes, suggesting a role for Hap1 in ciliogenesis. Fibroblasts and neurons with Hap1 deficiency form PC with normal growth factor-induced ciliary signaling, indicating that the Hap1 JBTS phenotype is likely not through effects at PC. These results also suggest that the binding of Ahi1 and Hap1 may not be critical for ciliary function. However, we show that HAP1 has decreased binding to AHI1-V443D indicating that this altered binding could be responsible for the JBTS-like phenotype through an unknown pathway. Thus, these JBTS-associated missense mutations alter their subcellular distribution and protein interactions, compromising functions of AHI1 in cell polarity and cilium-mediated signaling, thereby contributing to JBTS.
Collapse
Affiliation(s)
- Karina Tuz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Liu WL, Li F, He ZX, Jiang HY, Ai R, Huang J, Li B. A novel case of natural killer cell deficiency associated with Joubert syndrome. Int J Neurosci 2013; 123:587-90. [PMID: 23509923 DOI: 10.3109/00207454.2013.783031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Joubert syndrome (JS) is a rare, complex autosomal recessive inherited disorder mostly characterized by partial or complete agenesis of the cerebellar vermis. There is a wide clinical and genetic heterogeneity in the syndrome. The main clinical features of JS are hypotonia, ataxia, developmental delay, oculomotor apraxia, breathing abnormalities and peculiar neuroimaging findings. A lot of additional features have been reported. Here, we first reported a case of the syndrome with natural killer (NK) cell deficiency. NK cell deficiency in JS might be not an incidental phenomenon. NK cell deficiency might be associated with JS when there are additional features such as recurrent infections and tumors. NK cell deficiency may be part of the clinical spectrum of JS. Reduced cellular immunity in association with NK cell deficiency may be a feature in a subset of JS patients, especially if there is a history of recurrent infections, tumors and autoimmune disorders.
Collapse
Affiliation(s)
- Wei-Liang Liu
- Department of Pediatrics, Affiliated Hospital of Guiyang Medical College, Guiyang, China.
| | | | | | | | | | | | | |
Collapse
|
246
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
247
|
Travaglini L, Brancati F, Silhavy J, Iannicelli M, Nickerson E, Elkhartoufi N, Scott E, Spencer E, Gabriel S, Thomas S, Ben-Zeev B, Bertini E, Boltshauser E, Chaouch M, Cilio MR, de Jong MM, Kayserili H, Ogur G, Poretti A, Signorini S, Uziel G, Zaki MS, Johnson C, Attié-Bitach T, Gleeson JG, Valente EM. Phenotypic spectrum and prevalence of INPP5E mutations in Joubert syndrome and related disorders. Eur J Hum Genet 2013; 21:1074-8. [PMID: 23386033 DOI: 10.1038/ejhg.2012.305] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/03/2012] [Accepted: 12/05/2012] [Indexed: 11/09/2022] Open
Abstract
Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain-hindbrain malformation known as the 'molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.
Collapse
Affiliation(s)
- Lorena Travaglini
- 1] IRCCS Casa Sollievo della Sofferenza, Mendel Laboratory San Giovanni Rotondo, San Giovanni Rotondo, Italy [2] Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Valente EM, Dallapiccola B, Bertini E. Joubert syndrome and related disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1879-1888. [PMID: 23622411 DOI: 10.1016/b978-0-444-59565-2.00058-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Joubert syndrome (JS) is a rare autosomal recessive condition characterized by a peculiar midbrain-hindbrain malformation, known as the molar tooth sign (MTS). The neurological presentation of JS includes hypotonia that evolves into ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys, and liver, defining a group of conditions termed Joubert syndrome and related disorders (JSRDs), that share the MTS. To date, 16 causative genes have been identified, all encoding for proteins expressed in the primary cilium or its apparatus. Indeed, JSRD present clinical and genetic overlap with a growing field of disorders due to mutations in ciliary proteins, that are collectively known as "ciliopathies." These include isolated nephronophthisis, Senior-Løken syndrome, Bardet-Biedl syndrome and, in particular, Meckel syndrome, which is allelic at JSRD at seven distinct loci. Significant genotype-phenotype correlates are emerging between specific clinical presentations and mutations in JSRD genes, with relevant implications in terms of molecular diagnosis, clinical follow-up, and management of mutated patients. Moreover, the identification of mutations allows early prenatal diagnosis in couples at risk, while fetal neuroimaging may remain uninformative until the late second trimester of pregnancy.
Collapse
Affiliation(s)
- Enza Maria Valente
- IRCCS CSS-Mendel Institute, Rome and Department of Medicine and Surgery, University of Salerno, Salerno, Italy.
| | | | | |
Collapse
|
249
|
|
250
|
Broekhuis JR, Leong WY, Jansen G. Regulation of cilium length and intraflagellar transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:101-38. [PMID: 23445809 DOI: 10.1016/b978-0-12-407697-6.00003-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary cilia are highly conserved sensory organelles that extend from the surface of almost all vertebrate cells. The importance of cilia is evident from their involvement in many diseases, called ciliopathies. Primary cilia contain a microtubular axoneme that is used as a railway for transport of both structural components and signaling proteins. This transport machinery is called intraflagellar transport (IFT). Cilia are dynamic organelles whose presence on the cell surface, morphology, length and function are highly regulated. It is clear that the IFT machinery plays an important role in this regulation. However, it is not clear how, for example environmental cues or cell fate decisions are relayed to modulate IFT and cilium morphology or function. This chapter presents an overview of molecules that have been shown to regulate cilium length and IFT. Several examples where signaling modulates IFT and cilium function are used to discuss the importance of these systems for the cell and for understanding of the etiology of ciliopathies.
Collapse
|