201
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
202
|
Sarno E, Pezzutto D, Rossi M, Liebana E, Rizzi V. A Review of Significant European Foodborne Outbreaks in the Last Decade. J Food Prot 2021; 84:2059-2070. [PMID: 34197583 DOI: 10.4315/jfp-21-096] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/30/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Foodborne diseases remain a global public health challenge worldwide. The European surveillance system of multistate foodborne outbreaks integrates elements from public and animal health and the food chain for early detection, assessment, and control. This review includes descriptions of the significant outbreaks that occurred in Europe in the last decade. Their significance and relevance to public health is derived from the changes, improvements, and novelties that pushed toward building a safer food system in the European Union, certainly driven by the One Health approach. In 2011, a point source monoclonal outbreak of infections caused by Escherichia coli serotype O104:H4 in sprouted seeds resulted in hundreds of cases of hemolytic uremic syndrome and several fatalities. In 2015, a prolonged outbreak of Listeria monocytogenes infections caused by contamination of frozen corn in Europe resulted in 47 cases and nine deaths. In 2016, a persistent polyclonal outbreak of Salmonella Enteritidis was linked to the consumption of eggs and was associated with hundreds of cases. The outbreak evaluations highlight the importance of rapid sharing of data (e.g., sequencing and tracing data) and the need for harmonizing bioinformatics outputs and computational approaches to facilitate detection and investigation of foodborne illnesses. These outbreaks led to development of a legal framework for a European collaboration platform for sharing whole genome sequence data and enabled the enforcement of existing hygiene and food safety provisions and the development of new hygiene guidelines and best practices. This review also briefly touches on the new trends in information technologies that are being explored for food traceability and safety. These technologies could enhance the traceability of food throughout the supply chain and redirect the conventional tracing system toward a digitized supply chain. HIGHLIGHTS
Collapse
Affiliation(s)
- Eleonora Sarno
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Denise Pezzutto
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Mirko Rossi
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Ernesto Liebana
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Valentina Rizzi
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
203
|
Palacios-Gorba C, Moura A, Gomis J, Leclercq A, Gómez-Martín Á, Bracq-Dieye H, Mocé ML, Tessaud-Rita N, Jiménez-Trigos E, Vales G, García-Muñoz Á, Thouvenot P, García-Roselló E, Lecuit M, Quereda JJ. Ruminant-associated Listeria monocytogenes isolates belong preferentially to dairy-associated hypervirulent clones: a longitudinal study in 19 farms. Environ Microbiol 2021. [PMID: 34863016 DOI: 10.1101/2021.07.29.454412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Studies have shown that ruminants constitute reservoirs of Listeria monocytogenes, but little is known about the epidemiology and genetic diversity of this pathogen within farms. Here we conducted a large-scale longitudinal study to monitor Listeria spp. in 19 dairy farms during three consecutive seasons (N = 3251 samples). L. innocua was the most prevalent species, followed by L. monocytogenes. Listeria monocytogenes was detected in 52.6% of farms and more frequently in cattle (4.1%) and sheep (4.5%) than in goat farms (0.2%). Lineage I accounted for 69% of L. monocytogenes isolates. Among animal samples, the most prevalent sublineages (SL) and clonal complexes (CC) were SL1/CC1, SL219/CC4, SL26/CC26 and SL87/CC87, whereas SL666/CC666 was most prevalent in environmental samples. Sixty-one different L. monocytogenes cgMLST types were found, 28% common to different animals and/or surfaces within the same farm and 21% previously reported elsewhere in the context of food and human surveillance. Listeria monocytogenes prevalence was not affected by farm hygiene but by season: higher prevalence was observed during winter in cattle, and during winter and spring in sheep farms. Cows in their second lactation had a higher probability of L. monocytogenes faecal shedding. This study highlights dairy farms as a reservoir for hypervirulent L. monocytogenes.
Collapse
Affiliation(s)
- Carla Palacios-Gorba
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alexandra Moura
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Jesús Gomis
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alexandre Leclercq
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Ángel Gómez-Martín
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Hélène Bracq-Dieye
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - María L Mocé
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Nathalie Tessaud-Rita
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Estrella Jiménez-Trigos
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Guillaume Vales
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Ángel García-Muñoz
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pierre Thouvenot
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Empar García-Roselló
- Departamento Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Marc Lecuit
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France
| | - Juan J Quereda
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
204
|
Hafner L, Pichon M, Burucoa C, Nusser SHA, Moura A, Garcia-Garcera M, Lecuit M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat Commun 2021; 12:6826. [PMID: 34819495 PMCID: PMC8613254 DOI: 10.1038/s41467-021-27069-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023] Open
Abstract
Listeria genus comprises two pathogenic species, L. monocytogenes (Lm) and L. ivanovii, and non-pathogenic species. All can thrive as saprophytes, whereas only pathogenic species cause systemic infections. Identifying Listeria species' respective biotopes is critical to understand the ecological contribution of Listeria virulence. In order to investigate the prevalence and abundance of Listeria species in various sources, we retrieved and analyzed 16S rRNA datasets from MG-RAST metagenomic database. 26% of datasets contain Listeria sensu stricto sequences, and Lm is the most prevalent species, most abundant in soil and host-associated environments, including 5% of human stools. Lm is also detected in 10% of human stool samples from an independent cohort of 900 healthy asymptomatic donors. A specific microbiota signature is associated with Lm faecal carriage, both in humans and experimentally inoculated mice, in which it precedes Lm faecal carriage. These results indicate that Lm faecal carriage is common and depends on the gut microbiota, and suggest that Lm faecal carriage is a crucial yet overlooked consequence of its virulence.
Collapse
Affiliation(s)
- Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Maxime Pichon
- University Hospital of Poitiers, Infectious Agents Department, Bacteriology and Infection Control Laboratory, 86021, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, EA 4331, 86022, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, Inserm U1070, 86022, Poitiers, France
| | - Christophe Burucoa
- University Hospital of Poitiers, Infectious Agents Department, Bacteriology and Infection Control Laboratory, 86021, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, EA 4331, 86022, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, Inserm U1070, 86022, Poitiers, France
| | - Sophie H A Nusser
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015, Paris, France
| | - Marc Garcia-Garcera
- University of Lausanne, Department of Fundamental Microbiology, 1015, Lausanne, Switzerland
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France.
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015, Paris, France.
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006, Paris, France.
| |
Collapse
|
205
|
Chiaverini A, Guidi F, Torresi M, Acciari VA, Centorotola G, Cornacchia A, Centorame P, Marfoglia C, Blasi G, Di Domenico M, Migliorati G, Roussel S, Pomilio F, Sevellec Y. Phylogenetic Analysis and Genome-Wide Association Study Applied to an Italian Listeria monocytogenes Outbreak. Front Microbiol 2021; 12:750065. [PMID: 34803971 PMCID: PMC8600327 DOI: 10.3389/fmicb.2021.750065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
From May 2015 to March 2016, a severe outbreak due to Listeria monocytogenes ST7 strain occurred in Central Italy and caused 24 confirmed clinical cases. The epidemic strain was deeply investigated using whole-genome sequencing (WGS) analysis. In the interested area, the foodborne outbreak investigation identified a meat food-producing plant contaminated by the outbreak strain, carried by pork-ready-to-eat products. In the same region, in March 2018, the epidemic strain reemerged causing one listeriosis case in a 10-month-old child. The aim of this study was to investigate the phylogeny of the epidemic and reemergent strains over time and to compare them with a closer ST7 clone, detected during the outbreak and with different pulsed-field gel electrophoresis (PFGE) profiles, in order to identify genomic features linked to the persistence and the reemergence of the outbreak. An approach combining phylogenetic analysis and genome-wide association study (GWAS) revealed that the epidemic and reemergent clones were genetically closer to the ST7 clone with different PFGE profiles and strictly associated with the pork production chain. The repeated detection of both clones was probably correlated with (i) the presence of truly persistent clones and the repeated introduction of new ones and (ii) the contribution of prophage genes in promoting the persistence of the epidemic clones. Despite that no significant genomic differences were detected between the outbreak and the reemergent strain, the two related clones detected during the outbreak can be differentiated by transcriptional factor and phage genes associated with the phage LP-114.
Collapse
Affiliation(s)
- Alexandra Chiaverini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Vicdalia Aniela Acciari
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Gabriella Centorotola
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Alessandra Cornacchia
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Patrizia Centorame
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Cristina Marfoglia
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marco Di Domenico
- National Reference Centre for Whole Genome Sequencing of Microbial Pathogens Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giacomo Migliorati
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Sophie Roussel
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| | - Francesco Pomilio
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Yann Sevellec
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| |
Collapse
|
206
|
Liu YY, Chen CC. A machine learning-based typing scheme refinement for Listeria monocytogenes core genome multilocus sequence typing with high discriminatory power for common source outbreak tracking. PLoS One 2021; 16:e0260293. [PMID: 34797875 PMCID: PMC8604304 DOI: 10.1371/journal.pone.0260293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background As whole-genome sequencing for pathogen genomes becomes increasingly popular, the typing methods of gene-by-gene comparison, such as core genome multilocus sequence typing (cgMLST) and whole-genome multilocus sequence typing (wgMLST), are being routinely implemented in molecular epidemiology. However, some intrinsic problems remain. For example, genomic sequences with varying read depths, read lengths, and assemblers influence the genome assemblies, introducing error or missing alleles into the generated allelic profiles. These errors and missing alleles might create “specious discrepancy” among closely related isolates, thus making accurate epidemiological interpretation challenging. In addition, the rapid growth of the cgMLST allelic profile database can cause problems related to storage and maintenance as well as long query search times. Methods We attempted to resolve these issues by decreasing the scheme size to reduce the occurrence of error and missing alleles, alleviate the storage burden, and improve the query search time. The challenge in this approach is maintaining the typing resolution when using fewer loci. We achieved this by using a popular artificial intelligence technique, XGBoost, coupled with Shapley additive explanations for feature selection. Finally, 370 loci from the original 1701 cgMLST loci of Listeria monocytogenes were selected. Results Although the size of the final scheme (LmScheme_370) was approximately 80% lower than that of the original cgMLST scheme, its discriminatory power, tested for 35 outbreaks, was concordant with that of the original cgMLST scheme. Although we used L. monocytogenes as a demonstration in this study, the approach can be applied to other schemes and pathogens. Our findings might help elucidate gene-by-gene–based epidemiology.
Collapse
Affiliation(s)
- Yen-Yi Liu
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
207
|
Kubicová Z, Roussel S, Félix B, Cabanová L. Genomic Diversity of Listeria monocytogenes Isolates From Slovakia (2010 to 2020). Front Microbiol 2021; 12:729050. [PMID: 34795648 PMCID: PMC8593459 DOI: 10.3389/fmicb.2021.729050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past 11 years, the Slovak National Reference Laboratory has collected a panel of 988 Listeria monocytogenes isolates in Slovakia, which were isolated from various food sectors (61%), food-processing environments (13.7%), animals with listeriosis symptoms (21.2%), and human cases (4.1%). We serotyped these isolates by agglutination method, which revealed the highest prevalence (61.1%) of serotype 1/2a and the lowest (4.7%) of serotype 1/2c, although these represented the majority of isolates from the meat sector. The distribution of CCs analyzed on 176 isolates demonstrated that CC11-ST451 (15.3%) was the most prevalent CC, particularly in food (14.8%) and animal isolates (17.5%). CC11-ST451, followed by CC7, CC14, and CC37, were the most prevalent CCs in the milk sector, and CC9 and CC8 in the meat sector. CC11-ST451 is probably widely distributed in Slovakia, mainly in the milk and dairy product sectors, posing a possible threat to public health. Potential persistence indication of CC9 was observed in one meat facility between 2014 and 2018, highlighting its general meat-related distribution and potential for persistence worldwide.
Collapse
Affiliation(s)
- Zuzana Kubicová
- State Veterinary and Food Institute (SVFI), Dolny Kubin, Slovakia
| | - Sophie Roussel
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Benjamin Félix
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Lenka Cabanová
- State Veterinary and Food Institute (SVFI), Dolny Kubin, Slovakia
| |
Collapse
|
208
|
Guglielmini J, Hennart M, Badell E, Toubiana J, Criscuolo A, Brisse S. Genomic Epidemiology and Strain Taxonomy of Corynebacterium diphtheriae. J Clin Microbiol 2021; 59:e0158121. [PMID: 34524891 PMCID: PMC8601238 DOI: 10.1128/jcm.01581-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Corynebacterium diphtheriae is highly transmissible and can cause large diphtheria outbreaks where vaccination coverage is insufficient. Sporadic cases or small clusters are observed in high-vaccination settings. The phylogeography and short timescale evolution of C. diphtheriae are not well understood, in part due to a lack of harmonized analytical approaches of genomic surveillance and strain tracking. We combined 1,305 genes with highly reproducible allele calls into a core genome multilocus sequence typing (cgMLST) scheme. We analyzed cgMLST gene diversity among 602 isolates from sporadic clinical cases, small clusters, or large outbreaks. We defined sublineages based on the phylogenetic structure within C. diphtheriae and strains based on the highest number of cgMLST mismatches within documented outbreaks. We performed time-scaled phylogenetic analyses of major sublineages. The cgMLST scheme showed high allele call rate in C. diphtheriae and the closely related species C. belfantii and C. rouxii. We demonstrate its utility to delineate epidemiological case clusters and outbreaks using a 25 mismatches threshold and reveal a number of cryptic transmission chains, most of which are geographically restricted to one or a few adjacent countries. Subcultures of the vaccine strain PW8 differed by up to 20 cgMLST mismatches. Phylogenetic analyses revealed a short-timescale evolutionary gain or loss of the diphtheria toxin and biovar-associated genes. We devised a genomic taxonomy of strains and deeper sublineages (defined using a 500-cgMLST-mismatch threshold), currently comprising 151 sublineages, only a few of which are geographically widespread based on current sampling. The cgMLST genotyping tool and nomenclature was made publicly accessible (https://bigsdb.pasteur.fr/diphtheria). Standardized genome-scale strain genotyping will help tracing transmission and geographic spread of C. diphtheriae. The unified genomic taxonomy of C. diphtheriae strains provides a common language for studies of ecology, evolution, and virulence heterogeneity among C. diphtheriae sublineages.
Collapse
Affiliation(s)
- Julien Guglielmini
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Melanie Hennart
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
- Université de Paris, Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| |
Collapse
|
209
|
Zheng H, Qin J, Chen H, Hu H, Zhang X, Yang C, Wu Y, Li Y, Li S, Kuang H, Zhou H, Shen D, Song K, Song Y, Zhao T, Yang R, Tan Y, Cui Y. Genetic diversity and transmission patterns of Burkholderia pseudomallei on Hainan island, China, revealed by a population genomics analysis. Microb Genom 2021; 7. [PMID: 34762026 PMCID: PMC8743561 DOI: 10.1099/mgen.0.000659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative soil-dwelling bacillus that causes melioidosis, a frequently fatal infectious disease, in tropical and subtropical regions. Previous studies have identified the overall genetic and evolutionary characteristics of B. pseudomallei on a global scale, including its origin and transmission routes. However, beyond its known hyperendemicity foci in northern Australia and Southeast Asia, the distribution and genetic characteristics of B. pseudomallei in most tropical regions remain poorly understood, including in southern China. Here, we sequenced the genomes of 122 B. pseudomallei strains collected from Hainan, an island in southern China, in 2002–2018, to investigate the population structure, relationships with global strains, local epidemiology, and virulence and antimicrobial-resistance factors. A phylogenetic analysis and hierarchical clustering divided the Hainan strains into nine phylogenic groups (PGs), 80 % of which were concentrated within five major groups (group 1: corresponding to minor sequence types [STs], 12.3 %; group 3: ST46 and ST50, 31.1 %; group 9: ST58, 13.1 %; group 11: ST55, 8.2 %; group 15: mainly ST658, 15.6%). A phylogenetic analysis that included global strains suggested that B. pseudomallei in Hainan originated from Southeast Asian countries, transmitted in multiple historical importation events. We also identified several mutual transmission events between Hainan and Southeast Asian countries in recent years, including three importation events from Thailand and Singapore to Hainan and three exportation events from Hainan to Singapore, Malaysia, and Taiwan island. A statistical analysis of the temporal distribution showed that the Hainan strains of groups 3, 9, and 15 have dominated the disease epidemic locally in the last 5 years. The spatial distribution of the Hainan strains demonstrated that some PGs are distributed in different cities on Hainan island, and by combining phylogenic and geographic distribution information, we detected 21 between-city transmission events, indicating its frequent local transmission. The detection of virulence factor genes showed that 56 % of the Hainan strains in group 1 encode a B. pseudomallei-specific adherence factor, boaB, confirming the specific pathogenic characteristics of the Hainan strains in group 1. An analysis of the antimicrobial-resistance potential of B. pseudomallei showed that various kinds of alterations were identified in clinically relevant antibiotic resistance factors, such as AmrR, PenA and PBP3, etc. Our results clarify the population structure, local epidemiology, and pathogenic characteristics of B. pseudomallei in Hainan, providing further insight into its regional and global transmission networks and improving our knowledge of its global phylogeography.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| | - Hai Chen
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Hongyan Hu
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yuanli Li
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Sha Li
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Huihui Kuang
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Hanwang Zhou
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Dingxia Shen
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| |
Collapse
|
210
|
Hutchins C, Sayavedra L, Diaz M, Gupta P, Tissingh E, Elumogo C, Nolan J, Charles I, Elumogo N, Narbad A. Genomic analysis of a rare recurrent Listeria monocytogenes prosthetic joint infection indicates a protected niche within biofilm on prosthetic materials. Sci Rep 2021; 11:21864. [PMID: 34750463 PMCID: PMC8575960 DOI: 10.1038/s41598-021-01376-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a rare cause of prosthetic joint infections (PJI). In this study, we describe a case of recurrent L. monocytogenes infections, 39 months apart, following debridement and retention of a prosthetic hip. Despite numerous studies reporting persistent L. monocytogenes in human infections, the genomic and phenotypic changes that clinically relevant strains undergo in the host are poorly understood. Improved knowledge of how PJI occurs is needed to improve the management of prosthetic infections. We used a combination of long- and short-read sequencing to identify any potential genomic differences between two L. monocytogenes isolates that occurred over 39-month incubation in the host. The isolates, QI0054 and QI0055, showed three single nucleotide polymorphisms and three insertions or deletions, suggesting that the recurrent infection was caused by the same strain. To identify potential differences in the capacity for persistence of these isolates, their biofilm-forming ability and potential to colonize prosthesis-relevant materials was investigated both in microtitre plates and on prosthetic material titanium, stainless steel 316 and ultra-high molecular weight polyethylene. Whilst the L. monocytogenes isolate from the most recent infection (QI0055) was able to form higher biofilm in microtitre plates, this did not lead to an increase in biomass on prosthetic joint materials compared to the initial isolate (QI0054). Both clinical isolates were able to form significantly more biofilm on the two metal prosthetic materials than on the ultra-high molecular weight polyethylene, in contrast to reference strain Scott A. Transcriptomics revealed 41 genes overexpressed in biofilm state and 643 in planktonic state. Moreover, genes with mutations were actively expressed in both isolates. We conclude the isolates are derived from the same strain and hypothesize that L. monocytogenes formed biofilm on the prosthetic joint materials, with minimal exposure to stresses, which permitted their survival and growth.
Collapse
Affiliation(s)
- Chloe Hutchins
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Lizbeth Sayavedra
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Maria Diaz
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Puja Gupta
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Elizabeth Tissingh
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Chiamaka Elumogo
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - John Nolan
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Ian Charles
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ngozi Elumogo
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Arjan Narbad
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
211
|
Bernaquez I, Gaudreau C, Pilon PA, Bekal S. Evaluation of whole-genome sequencing-based subtyping methods for the surveillance of Shigella spp. and the confounding effect of mobile genetic elements in long-term outbreaks. Microb Genom 2021; 7. [PMID: 34730485 PMCID: PMC8743557 DOI: 10.1099/mgen.0.000672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most
Shigella
spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91
Shigella flexneri
and 232
Shigella sonnei
isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related
Shigella
spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related
S. sonnei
outbreaks via wgMLST. The
S. sonnei
correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.
Collapse
Affiliation(s)
- Isabelle Bernaquez
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Christiane Gaudreau
- Microbiologie médicale et infectiologie, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC, H2X 3E4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Pierre A. Pilon
- Direction régionale de santé publique, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l’île-de-Montréal, Montreal, QC, H2L 4M1, Canada
- Département de médecine sociale et préventive, Université de Montréal, Montreal, QC, H3N 1X9, Canada
| | - Sadjia Bekal
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- *Correspondence: Sadjia Bekal,
| |
Collapse
|
212
|
Tarazi Y, El-Sukhon S, Al-Rahbi A, Ismail ZB. Molecular characterization and in vivo pathogenicity study of Listeria monocytogenes isolated from fresh and frozen local and imported fish in Jordan. Open Vet J 2021; 11:517-524. [PMID: 34722217 PMCID: PMC8541712 DOI: 10.5455/ovj.2021.v11.i3.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Listeria monocytogenes (L. monocytogenes) is a serious zoonotic and food transmitted human pathogen causing meningitis and abortions. Several outbreaks of listeriosis have been associated with the consumption of ready-to-eat food products; dairy, meat, fish, and contaminated fruits and vegetables worldwide. Aim: This study was designed to detect and characterize L. monocytogenes isolated from local and imported fish in Jordan. Methods: A total of 170 fish (70 local and 100 imported), of which 140 fresh and 30 frozen samples were used in this study. Listeria monocytogenes was cultured and initially identified using conventional microbiological methods. For confirmation and serotyping of the L. monocytogenes isolates, PCR techniques were used. Using oral and intraperitoneal administration, mice were used to determine the pathogenicity and LD50 of the isolated L. monocytogenes. Results: A total of 72 Listeria spp. isolates were cultured from fish. Of those, 24 were positively identified as L. monocytogenes. Other strains of Listeria spp. were L. ivanovii (21), L. innocua (11), and L. grayi (16). Serotyping of the L. monocytogenes indicated that 14 isolates belonged to the 1/2b, 3b serotypes whereas 10 isolates belonged to the 4a and 4c serotypes. All isolates were virulent to mice with an LD50 dose ranging from 3 × 1010 CFU/ml to 3 × 107.5 CFU/ml. All the virulent isolates belonged to the serotype 1/2b. Histopathologically, dead mice showed multiple necrotic lesions in the liver and spleen. Conclusion: Results of this study showed the presence of potentially pathogenic L. monocytogenes in fresh and frozen, local, and imported fish in Jordan. Strict monitoring and quality control regulatory measures must be adopted to prevent future outbreaks of food poisoning associated with fish consumption.
Collapse
Affiliation(s)
- Yaser Tarazi
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saeb El-Sukhon
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Adil Al-Rahbi
- Ministry of Agriculture, Fisheries and Water Resources, Mascat, Oman
| | - Zuhair Bani Ismail
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
213
|
Thomassen GMB, Krych L, Knøchel S, Mehli L. ON-rep-seq as a rapid and cost-effective alternative to whole-genome sequencing for species-level identification and strain-level discrimination of Listeria monocytogenes contamination in a salmon processing plant. Microbiologyopen 2021; 10:e1246. [PMID: 34964295 PMCID: PMC8591450 DOI: 10.1002/mbo3.1246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Identification, source tracking, and surveillance of food pathogens are crucial factors for the food-producing industry. Over the last decade, the techniques used for this have moved from conventional enrichment methods, through species-specific detection by PCR to sequencing-based methods, whole-genome sequencing (WGS) being the ultimate method. However, using WGS requires the right infrastructure, high computational power, and bioinformatics expertise. Therefore, there is a need for faster, more cost-effective, and more user-friendly methods. A newly developed method, ON-rep-seq, combines the classical rep-PCR method with nanopore sequencing, resulting in a highly discriminating set of sequences that can be used for species identification and also strain discrimination. This study is essentially a real industry case from a salmon processing plant. Twenty Listeria monocytogenes isolates were analyzed both by ON-rep-seq and WGS to identify and differentiate putative L. monocytogenes from a routine sampling of processing equipment and products, and finally, compare the strain-level discriminatory power of ON-rep-seq to different analyzing levels delivered from the WGS data. The analyses revealed that among the isolates tested there were three different strains. The isolates of the most frequently detected strain (n = 15) were all detected in the problematic area in the processing plant. The strain level discrimination done by ON-rep-seq was in full accordance with the interpretation of WGS data. Our findings also demonstrate that ON-rep-seq may serve as a primary screening method alternative to WGS for identification and strain-level differentiation for surveillance of potential pathogens in a food-producing environment.
Collapse
Affiliation(s)
| | - Lukasz Krych
- Department of Food ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Susanne Knøchel
- Department of Food ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Lisbeth Mehli
- Department of Biotechnology and Food ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
214
|
Dutra-Silva L, Matteoli FP, Arisi ACM. Distribution of Genes Related to Probiotic Effects Across Lacticaseibacillus rhamnosus Revealed by Population Structure. Probiotics Antimicrob Proteins 2021; 15:548-557. [PMID: 34699013 DOI: 10.1007/s12602-021-09868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
The Gram-positive Lacticaseibacillus rhamnosus has been broadly reported as capable of exerting beneficial health effects. Bacterial genomic diversity may promote niche specialization, thus creating subpatterns within populations. As L. rhamnosus advantageous effects have been widely reported at strain level and few is known regarding the distribution of beneficial genes among L. rhamnosus strains, we investigated all publicly available genomes of Lactobacillus and Lacticaseibacillus genera to study the pangenome and general population structure of L. rhamnosus. Core genome multilocus sequence typing detected eight L. rhamnosus phylogroups (PG1 to PG8). L. rhamnosus harbors an open pangenome; PG1, PG3, PG4, and PG5 exhibited highly conserved gene distribution patterns. Genes significantly associated to the PG1, which comprises L. rhamnosus GG, are mainly phage-related. The adhesion operon spaCBA-srtC1 was found in 44 (24.7%) genomes; however, considering only the PG1, the prevalence was of 65%. In PG2 the spaCBA-srtC1 prevalence was of 43%. Nevertheless, both human and milk-derived strains harbored this operon. Further, two main types of bacteriocin clusters were found (Bact1 and Bact2). Bact1 predictions indicate the presence of garQ, encoding the class II bacteriocin garvieacin Q, that is mainly present in the closely related PG8A and a PG2 subcluster. PG2 harbors two distinct subclusters, harboring either spaCBA-srtC1 or Bact1. Our findings provide novel insights on the distribution of biotechnological relevant genes across L. rhamnosus population, uncovering intra-species patterns that may bring forth the development of more efficient probiotic products.
Collapse
Affiliation(s)
- Lorena Dutra-Silva
- Food Science and Technology Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe P Matteoli
- Department of Soil Science, Luiz de Queiroz College of Agriculture, Piracicaba, SP, Brazil.
| | | |
Collapse
|
215
|
Shedleur-Bourguignon F, Thériault WP, Longpré J, Thibodeau A, Fravalo P. Use of an Ecosystem-Based Approach to Shed Light on the Heterogeneity of the Contamination Pattern of Listeria monocytogenes on Conveyor Belt Surfaces in a Swine Slaughterhouse in the Province of Quebec, Canada. Pathogens 2021; 10:pathogens10111368. [PMID: 34832524 PMCID: PMC8625388 DOI: 10.3390/pathogens10111368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the accompanying microbiota in the presence of Listeria monocytogenes on meat processing surfaces is not yet understood, especially in industrial production conditions. In this study, 300 conveyor belt samples from the cutting room of a swine slaughterhouse were collected during production. The samples were subjected to the detection of L. monocytogenes. Recovered strains were characterized by serogrouping-PCR, InlA Sanger sequencing and for their ability to form biofilm. A selection of isolates was compared with core genome multi-locus sequence typing analysis (cgMLST). The sequencing of the V4 region of the 16S RNA gene of the microorganisms harvested from each sample was carried out in parallel using the Illumina MiSeq platform. Diversity analyses were performed and MaAsLin analysis was used to assess the link between L. monocytogenes detection and the surrounding bacteria. The 72 isolates collected showed a low genetic diversity and important persistence characteristics. L. monocytogenes isolates were not stochastically distributed on the surfaces: the isolates were detected on three out of six production lines, each associated with a specific meat cut: the half carcasses, the bostons and the picnics. MaAsLin biomarker analysis identified the taxa Veillonella (p ≤ 0.0397) as a bacterial determinant of the presence of L. monocytogenes on processing surfaces. The results of this study revealed a heterogenous contamination pattern of the processing surfaces by L. monocytogenes and targeted a bacterial indicator of the presence of the pathogen. These results could lead to a better risk assessment of the contamination of meat products.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
216
|
Genome Typing and Epidemiology of Human Listeriosis in New Zealand, 1999 to 2018. J Clin Microbiol 2021; 59:e0084921. [PMID: 34406797 DOI: 10.1128/jcm.00849-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study describes the epidemiology of listeriosis in New Zealand between 1999 and 2018 as well as the retrospective whole-genome sequencing (WGS) of 453 Listeria monocytogenes isolates corresponding to 95% of the human cases within this period. The average notified rate of listeriosis was 0.5 cases per 100,000 population, and non-pregnancy-associated cases were more prevalent than pregnancy-associated cases (averages of 19 and 5 cases per annum, respectively). WGS data was assessed using multilocus sequencing typing (MLST), including core-genome and whole-genome MLST (cgMLST and wgMLST, respectively) and single-nucleotide polymorphism (SNP) analysis. Thirty-nine sequence types (STs) were identified, with the most common being ST1 (21.9%), ST4 (13.2%), ST2 (11.3%), ST120 (6.1%), and ST155 (6.4%). A total of 291 different cgMLST types were identified, with the majority (n = 243) of types observed as a single isolate, consistent with the observation that listeriosis is predominately sporadic. Among the 49 cgMLST types containing two or more isolates, 18 cgMLST types were found with 2 to 4 isolates each (50 isolates in total, including three outbreak-associated isolates) that shared low genetic diversity (0 to 2 whole-genome alleles), some of which were dispersed in time or geographical regions. SNP analysis also produced results comparable to those from wgMLST. The low genetic diversity within these clusters suggests a potential common source, but incomplete epidemiological data impaired retrospective epidemiological investigations. Prospective use of WGS analysis together with thorough exposure information from cases could potentially identify future outbreaks more rapidly, including those that may have been undetected for some time over different geographical regions.
Collapse
|
217
|
Bland RN, Johnson JD, Waite-Cusic JG, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Application of Whole Genome Sequencing to Understand Diversity and Presence of Genes Associated with Sanitizer Tolerance in Listeria monocytogenes from Produce Handling Sources. Foods 2021; 10:2454. [PMID: 34681501 PMCID: PMC8536156 DOI: 10.3390/foods10102454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Recent listeriosis outbreaks linked to fresh produce suggest the need to better understand and mitigate L. monocytogenes contamination in packing and processing environments. Using whole genome sequencing (WGS) and phenotype screening assays for sanitizer tolerance, we characterized 48 L. monocytogenes isolates previously recovered from environmental samples in five produce handling facilities. Within the studied population there were 10 sequence types (STs) and 16 cgMLST types (CTs). Pairwise single nucleotide polymorphisms (SNPs) ranged from 0 to 3047 SNPs within a CT, revealing closely and distantly related isolates indicative of both sporadic and continuous contamination events within the facility. Within Facility 1, we identified a closely related cluster (0-2 SNPs) of isolates belonging to clonal complex 37 (CC37; CT9492), with isolates recovered during sampling events 1-year apart and in various locations inside and outside the facility. The accessory genome of these CC37 isolates varied from 94 to 210 genes. Notable genetic elements and mutations amongst the isolates included the bcrABC cassette (2/48), associated with QAC tolerance; mutations in the actA gene on the Listeria pathogenicity island (LIPI) 1 (20/48); presence of LIPI-3 (21/48) and LIPI-4 (23/48). This work highlights the potential use of WGS in tracing the pathogen within a facility and understanding properties of L. monocytogenes in produce settings.
Collapse
Affiliation(s)
- Rebecca N. Bland
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| | - Jared D. Johnson
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Joy G. Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Elizabeth R. Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| |
Collapse
|
218
|
Brown P, Chen Y, Siletzky R, Parsons C, Jaykus LA, Eifert J, Ryser E, Logue CM, Stam C, Brown E, Kathariou S. Harnessing Whole Genome Sequence Data for Facility-Specific Signatures for Listeria monocytogenes: A Case Study With Turkey Processing Plants in the United States. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.742353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive foodborne pathogen responsible for the severe disease listeriosis and notorious for its ability to persist in food processing plants, leading to contamination of processed, ready-to-eat foods. L. monocytogenes persistence in various food processing environments (FPEs) has been extensively investigated by various subtyping tools, with increasing use of whole genome sequencing (WGS). However, major knowledge gaps remain. There is a need for facility-specific molecular signatures not only for adequate attribution of L. monocytogenes to a specific FPE but also for improved understanding of the ecology and evolution of L. monocytogenes in the food processing ecosystem. Furthermore, multiple strains can be recovered from a single FPE sample, but their diversity can be underestimated with common molecular subtyping tools. In this study we investigated a panel of 54 L. monocytogenes strains from four turkey processing plants in the United States. A combination of WGS and phenotypic assays was employed to assess strain persistence as well as identify facility-specific molecular signatures. Comparative analysis of allelic variation across the whole genome revealed that allelic profiles have the potential to be specific to individual processing plants. Certain allelic profiles remained associated with individual plants even when closely-related strains from other sources were included in the analysis. Furthermore, for certain sequence types (STs) based on the seven-locus multilocus sequence typing scheme, presence and location of premature stop codons in inlA, inlB length, prophage sequences, and the sequence content of a genomic hotspot could serve as plant-specific signatures. Interestingly, the analysis of different isolates from the same environmental sample revealed major differences not only in serotype and ST, but even in the sequence content of strains of the same ST. This study highlights the potential for WGS data to be deployed for identification of facility-specific signatures, thus facilitating the tracking of strain movement through the food chain. Furthermore, deployment of WGS for intra-sample strain analysis allows for a more complete environmental surveillance of L. monocytogenes in food processing facilities, reducing the risk of failing to detect strains that may be clinically relevant and potentially novel.
Collapse
|
219
|
Abstract
A case of listeriosis occurred in a hospitalised patient in England in July 2017. Analysis by whole genome sequencing of the Listeria monocytogenes from the patient's blood culture was identified as clonal complex (CC) 121. This culture was indistinguishable to isolates from sandwiches, salads and the maufacturing environment of Company X which supplied these products widely to the National Health Service. Whilst an inpatient, the case was served sandwiches produced by this company on 12 occasions. No other cases infected by this type were detected in the UK between 2016 and 2020. Between 2016 and 2020, more than 3000 samples of food, food ingredients and environmental swabs from this company were tested. Listeria monocytogenes contamination rates declined after July 2017 from 31% to 0.3% for salads and 3% to 0% for sandwiches. A monophyletic group of 127 L. monocytogenes CC121 isolates was recovered during 2016-2019 and was used to estimate the time of the most recent common ancestor as 2014 (95% CI of between 2012 and 2016). These results represent persistent contamination of equipment, food contact surfaces and foods at a food manufacturer by a single L. monocytogenes strain. Colonisation and persistent contamination of food and production environments are risks for public health.
Collapse
|
220
|
Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X. Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai. Front Microbiol 2021; 12:729114. [PMID: 34512606 PMCID: PMC8427505 DOI: 10.3389/fmicb.2021.729114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen that causes listeriosis and is mostly linked to consumption of ready-to-eat (RTE) foods. Lack of hygiene in food processing environments may be a primary reason for contamination by L. monocytogenes isolates. In this study, L. monocytogenes strains isolated from two RTE meat processing plants in the Shanghai municipality, China, were characterized during 2019–2020 using pulsed-field gel electrophoresis and whole-genome sequencing. Results showed that 29 samples (12.2%) out of 239 were positive for L. monocytogenes, with 21 (18.9%) and 8 (6.25%) isolates from plants A and B, respectively. The packaging room at plant A had the most contamination (14, 48.3%; p < 0.05), with a peak occurrence of 76.5% in processing environments. Nineteen L. monocytogenes isolates belonging to the pulsotype (PT) 7 group were indistinguishable (≥ 95.7%). Furthermore, core-genome multiple loci sequencing typing identified up to nine allelic differences, and the closet pairwise differences among these ST5 isolates included 0–16 small nucleotide polymorphisms. Therefore, L. monocytogenes likely persisted at plant A during 2019–2020 with ongoing clone transmission. In contrast, no L. monocytogenes isolates were identified from processing environments at plant B. Most L. monocytogenes isolates were sampled from raw materials (62.5%). Several isolates (ST378, ST8, and ST120) were detected only once in 2020 and were considered as transient isolates. However, three ST121 isolates with the same PT (PT2) were detected in 2020 and should be noted for their stronger survival ability in harsh environments. These results suggest that continuous monitoring, stringent surveillance, and source tracking are crucial to guaranteeing food safety in RTE food plants.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jing Wang
- The Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Zhaoyu Chang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Liu
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Ying Yu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xiaoguang Wang
- The Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Qingli Dong
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Yulong Ye
- The Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
221
|
Sabol A, Joung YJ, VanTubbergen C, Ale J, Ribot EM, Trees E. Assessment of Genetic Stability During Serial In Vitro Passage and In Vivo Carriage. Foodborne Pathog Dis 2021; 18:894-901. [PMID: 34520233 DOI: 10.1089/fpd.2021.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, our objective was to evaluate the genetic stability of foodborne bacterial pathogens during serial passage in vitro and persistent in vivo carriage. Six strains of Listeria, Campylobacter, Escherichia, Salmonella, and Vibrio were serially passaged 20 times. Three colonies were picked for whole-genome sequencing (WGS) from passes P0, P5, P10, P15, and P20. In addition, isolates of Salmonella and Escherichia from three patients with persistent infections were sequenced. Genetic stability was evaluated in terms of variations detected in high-quality single-nucleotide polymorphism (hqSNP), core genome multilocus sequence typing (cgMLST), seven-gene MLST, and determinants encoding serotype, antimicrobial resistance (AMR), and virulence. During serial passage, increasing diversity was observed in Listeria, Salmonella, and Vibrio as measured by hqSNPs (from median of 0 SNPs to median of 3-5 SNPs, depending on the organism) and to a lesser extent with cgMLST (from median of 0 alleles to median of 0-5 alleles), while Escherichia and Campylobacter genomes showed minimal variation. The serotype, AMR, and virulence markers remained stable in all organisms. Isolates from persistent infections lasting up to 10 weeks remained genetically stable. However, isolates from a persistent Salmonella enterica ser. Montevideo infection spanning 9 years showed early heterogeneity leading to the emergence of one predominant genotype that continued to evolve over the years, including gains and losses of AMR markers. While the hqSNP and cgMLST variation observed during the serial passage was minimal, culture passages should be limited to as few times as possible before WGS. Our WGS data show that in vivo carriage lasting for a few weeks did not appear to alter the genotype. Longer persistent infections spanning for years, particularly in the presence of selective pressure, may cause changes in the genotype making it challenging to differentiate persistent infections from reinfections.
Collapse
Affiliation(s)
- Ashley Sabol
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yoo Jin Joung
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jerdie Ale
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Efrain M Ribot
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eija Trees
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
222
|
Castro H, Douillard FP, Korkeala H, Lindström M. Mobile Elements Harboring Heavy Metal and Bacitracin Resistance Genes Are Common among Listeria monocytogenes Strains Persisting on Dairy Farms. mSphere 2021; 6:e0038321. [PMID: 34232074 PMCID: PMC8386393 DOI: 10.1128/msphere.00383-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen and a resilient environmental saprophyte. Dairy farms are a reservoir of L. monocytogenes, and strains can persist on farms for years. Here, we sequenced the genomes of 250 L. monocytogenes isolates to investigate the persistence and mobile genetic elements (MGEs) of Listeria strains inhabiting dairy farms. We performed a single-nucleotide polymorphism (SNP)-based phylogenomic analysis to identify 14 monophyletic clades of L. monocytogenes persistent on the farms for ≥6 months. We found that prophages and other mobile genetic elements were, on average, more numerous among isolates in persistent than nonpersistent clades, and we demonstrated that resistance genes against bacitracin, arsenic, and cadmium were significantly more prevalent among isolates in persistent than nonpersistent clades. We identified a diversity of mobile elements among the 250 farm isolates, including three novel plasmids, three novel transposons, and a novel prophage harboring cadmium resistance genes. Several of the mobile elements we identified in Listeria were identical to the mobile elements of enterococci, which is indicative of recent transfer between these genera. Through a genome-wide association study, we discovered that three putative defense systems against invading prophages and plasmids were negatively associated with persistence on farms. Our findings suggest that mobile elements support the persistence of L. monocytogenes on dairy farms and that L. monocytogenes inhabiting the agroecosystem is a potential reservoir of mobile elements that may spread to the food industry. IMPORTANCE Animal-derived raw materials are an important source of L. monocytogenes in the food industry. Knowledge of the factors contributing to the pathogen's transmission and persistence on farms is essential for designing effective strategies against the spread of the pathogen from farm to fork. An increasing body of evidence suggests that mobile genetic elements support the adaptation and persistence of L. monocytogenes in the food industry, as these elements contribute to the dissemination of genes encoding favorable phenotypes, such as resilience against biocides. Understanding of the role of farms as a potential reservoir of these elements is needed for managing the transmission of mobile elements across the food chain. Because L. monocytogenes coinhabits the farm ecosystem with a diversity of other bacterial species, it is important to assess the degree to which genetic elements are exchanged between Listeria and other species, as such exchanges may contribute to the rise of novel resistance phenotypes.
Collapse
Affiliation(s)
- Hanna Castro
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - François P. Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
223
|
Prevalence, Genetic Diversity and Factors Associated with Distribution of Listeria monocytogenes and Other Listeria spp. in Cattle Farms in Latvia. Pathogens 2021; 10:pathogens10070851. [PMID: 34358001 PMCID: PMC8308843 DOI: 10.3390/pathogens10070851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
Listeria spp. is a diverse genus of Gram-positive bacteria commonly present in the environment while L. monocytogenes and L. ivanovii are well known human and ruminant pathogens. The aim of the present study was to reveal the prevalence and genetic diversity of L. monocytogenes and other Listeria spp. and to identify the factors related to the abundance of pathogen at cattle farms. A total of 521 animal and environmental samples from 27 meat and dairy cattle farms were investigated and the genetic diversity of L. monocytogenes isolates was studied with WGS. The prevalence of Listeria was 58.9%, while of L. monocytogenes it was −11%. The highest prevalence of L. monocytogenes was found in the environment—soil samples near to manure storage (93%), mixed feed from the feeding trough and hay (29%), water samples from farms drinking trough (28%) and cattle feces (28%). Clonal complexes (CC) of CC37 (30%), CC11 (20%) and CC18 (17%) (all IIa serogroup) were predominant L. monocytogenes clones. CC18, CC37 and CC8 were isolated from case farms and CC37, CC11 and CC18 from farms without listeriosis history. Only one hypervirulent CC4 (1%) was isolated from the case farm. Sequence types (STs) were not associated with the isolation source, except for ST7, which was significantly associated with soil (p < 0.05). The contamination of soil, feeding tables and troughs with L. monocytogenes was associated with an increased prevalence of L. monocytogenes at farms. Our study indicates the importance of hygienic practice in the prevention of the dissemination of L. monocytogenes in the cattle farm environment.
Collapse
|
224
|
Mafuna T, Matle I, Magwedere K, Pierneef RE, Reva ON. Whole Genome-Based Characterization of Listeria monocytogenes Isolates Recovered From the Food Chain in South Africa. Front Microbiol 2021; 12:669287. [PMID: 34276601 PMCID: PMC8283694 DOI: 10.3389/fmicb.2021.669287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen which has the ability to adapt and survive in food and food processing facilities where it can persist for years. In this study, a total of 143 L. monocytogenes isolates in South Africa (SA) were characterized for their strain’s genetic relatedness, virulence profiles, stress tolerance and resistance genes associated with L. monocytogenes. The Core Genome Multilocus Sequence Typing (cgMLST) analysis revealed that the most frequent serogroups were IVb and IIa; Sequence Types (ST) were ST204, ST2, and ST1; and Clonal Complexes (CC) were CC204, CC1, and CC2. Examination of genes involved in adaptation and survival of L. monocytogenes in SA showed that ST1, ST2, ST121, ST204, and ST321 are well adapted in food processing environments due to the significant over-representation of Benzalkonium chloride (BC) resistance genes (bcrABC cassette, ermC, mdrL and Ide), stress tolerance genes (SSI-1 and SSI-2), Prophage (φ) profiles (LP_101, vB LmoS 188, vB_LmoS_293, and B054 phage), plasmids profiles (N1-011A, J1776, and pLM5578) and biofilm formation associated genes. Furthermore, the L. monocytogenes strains that showed hyper-virulent potential were ST1, ST2 and ST204, and hypo-virulent were ST121 and ST321 because of the presence and absence of major virulence factors such as LIPI-1, LIPI-3, LIPI-4 and the internalin gene family members including inlABCEFJ. The information provided in this study revealed that hyper-virulent strains ST1, ST2, and ST204 could present a major public health risk due to their association with meat products and food processing environments in SA.
Collapse
Affiliation(s)
- Thendo Mafuna
- Agricultural Research Council, Biotechnology Platform, Private Bag X05, Onderstepoort, South Africa.,Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council: Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Forestry and Fisheries, Private Bag X138, Pretoria, South Africa
| | - Rian E Pierneef
- Agricultural Research Council, Biotechnology Platform, Private Bag X05, Onderstepoort, South Africa
| | - Oleg N Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
225
|
Orsi RH, Jagadeesan B, Baert L, Wiedmann M. Identification of Closely Related Listeria monocytogenes Isolates with No Apparent Evidence for a Common Source or Location: A Retrospective Whole Genome Sequencing Analysis. J Food Prot 2021; 84:1104-1113. [PMID: 33561192 DOI: 10.4315/jfp-20-417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
ABSTRACT Public health and regulatory agencies worldwide sequence all Listeria monocytogenes isolates obtained as part of routine surveillance and outbreak investigations. Many of these entities submit the sequences to the National Center for Biotechnology Information Pathogen Detection (NCBI PD) database, which groups the L. monocytogenes isolates into single nucleotide polymorphism (SNP) clusters based on a pairwise SNP difference threshold of 50 SNPs. Our goal was to assess whether isolates with metadata that suggest different sources or locations could show evidence for close genetic relatedness indicating a recent common ancestor and a possible unknown common source. We compared the whole genome sequencing (WGS) data of 249 L. monocytogenes isolates sequenced here, which have detailed metadata, with WGS data of nonclinical isolates on NCBI PD. The 249 L. monocytogenes isolates originated from natural environments (n = 91) as well as from smoked fish (n = 62), dairy (n = 56), and deli meat (n = 40) operations in the United States. Using a combination of subtyping by core genome multilocus sequence typing and high-quality SNP, we observed five SNP clusters in which study isolates and SNP cluster isolates seemed to be closely related and either (i) shared the same geolocation but showed different source types (one SNP cluster); (ii) shared the same source type but showed different geolocations (two SNP clusters); or (iii) shared neither source type nor geolocation (two SNP clusters). For one of the two clusters under (iii), there was, however, no strong bootstrap support for a common ancestor shared between the study isolates and SNP cluster isolates, indicating the value of in-depth evolutionary analyses when WGS data are used for traceback and epidemiological investigations. Overall, our results demonstrate that some L. monocytogenes subtypes may be associated with specific locations or commodities; these associations can help in investigations involving multi-ingredient foods such as sandwiches. However, at least some L. monocytogenes subtypes can be widespread geographically and can be associated with different sources, which may present a challenge to traceback investigations involving these subtypes. HIGHLIGHTS
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - Balamurugan Jagadeesan
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research Center, Case Postale 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Leen Baert
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research Center, Case Postale 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
226
|
Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the "Roseobacter Clade" Into a Novel Family, Roseobacteraceae fam. nov. Front Microbiol 2021; 12:683109. [PMID: 34248901 PMCID: PMC8267831 DOI: 10.3389/fmicb.2021.683109] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The family Rhodobacteraceae consists of alphaproteobacteria that are metabolically, phenotypically, and ecologically diverse. It includes the roseobacter clade, an informal designation, representing one of the most abundant groups of marine bacteria. The rapid pace of discovery of novel roseobacters in the last three decades meant that the best practice for taxonomic classification, a polyphasic approach utilizing phenotypic, genotypic, and phylogenetic characteristics, was not always followed. Early efforts for classification relied heavily on 16S rRNA gene sequence similarity and resulted in numerous taxonomic inconsistencies, with several poly- and paraphyletic genera within this family. Next-generation sequencing technologies have allowed whole-genome sequences to be obtained for most type strains, making a revision of their taxonomy possible. In this study, we performed whole-genome phylogenetic and genotypic analyses combined with a meta-analysis of phenotypic data to review taxonomic classifications of 331 type strains (under 119 genera) within the Rhodobacteraceae family. Representatives of the roseobacter clade not only have different environmental adaptions from other Rhodobacteraceae isolates but were also found to be distinct based on genomic, phylogenetic, and in silico-predicted phenotypic data. As such, we propose to move this group of bacteria into a new family, Roseobacteraceae fam. nov. In total, reclassifications resulted to 327 species and 128 genera, suggesting that misidentification is more problematic at the genus than species level. By resolving taxonomic inconsistencies of type strains within this family, we have established a set of coherent criteria based on whole-genome-based analyses that will help guide future taxonomic efforts and prevent the propagation of errors.
Collapse
Affiliation(s)
- Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University Singapore, Singapore, Singapore
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
227
|
Halbedel S, Wilking H, Holzer A, Kleta S, Fischer MA, Lüth S, Pietzka A, Huhulescu S, Lachmann R, Krings A, Ruppitsch W, Leclercq A, Kamphausen R, Meincke M, Wagner-Wiening C, Contzen M, Kraemer IB, Al Dahouk S, Allerberger F, Stark K, Flieger A. Large Nationwide Outbreak of Invasive Listeriosis Associated with Blood Sausage, Germany, 2018-2019. Emerg Infect Dis 2021; 26:1456-1464. [PMID: 32568037 PMCID: PMC7323541 DOI: 10.3201/eid2607.200225] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invasive listeriosis is a severe foodborne infection in humans and is difficult to control. Listeriosis incidence is increasing worldwide, but some countries have implemented molecular surveillance programs to improve recognition and management of listeriosis outbreaks. In Germany, routine whole-genome sequencing, core genome multilocus sequence typing, and single nucleotide polymorphism calling are used for subtyping of Listeria monocytogenes isolates from listeriosis cases and suspected foods. During 2018–2019, an unusually large cluster of L. monocytogenes isolates was identified, including 134 highly clonal, benzalkonium-resistant sequence type 6 isolates collected from 112 notified listeriosis cases. The outbreak was one of the largest reported in Europe during the past 25 years. Epidemiologic investigations identified blood sausage contaminated with L. monocytogenes highly related to clinical isolates; withdrawal of the product from the market ended the outbreak. We describe how epidemiologic investigations and complementary molecular typing of food isolates helped identify the outbreak vehicle.
Collapse
|
228
|
A Whole-Genome-Based Gene-by-Gene Typing System for Standardized High-Resolution Strain Typing of Bacillus anthracis. J Clin Microbiol 2021; 59:e0288920. [PMID: 33827898 PMCID: PMC8218748 DOI: 10.1128/jcm.02889-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing (WGS) has been established for bacterial subtyping and is regularly used to study pathogen transmission, to investigate outbreaks, and to perform routine surveillance. Core-genome multilocus sequence typing (cgMLST) is a bacterial subtyping method that uses WGS data to provide a high-resolution strain characterization. This study aimed at developing a novel cgMLST scheme for Bacillus anthracis, a notorious pathogen that causes anthrax in livestock and humans worldwide. The scheme comprises 3,803 genes that were conserved in 57 B. anthracis genomes spanning the whole phylogeny. The scheme has been evaluated and applied to 584 genomes from 50 countries. On average, 99.5% of the cgMLST targets were detected. The cgMLST results confirmed the classical canonical single-nucleotide-polymorphism (SNP) grouping of B. anthracis into major clades and subclades. Genetic distances calculated based on cgMLST were comparable to distances from whole-genome-based SNP analysis with similar phylogenetic topology and comparable discriminatory power. Additionally, the application of the cgMLST scheme to anthrax outbreaks from Germany and Italy led to a definition of a cutoff threshold of five allele differences to trace epidemiologically linked strains for cluster typing and transmission analysis. Finally, the association of two clusters of B. anthracis with human cases of injectional anthrax in four European countries was confirmed using cgMLST. In summary, this study presents a novel cgMLST scheme that provides high-resolution strain genotyping for B. anthracis. This scheme can be used in parallel with SNP typing methods to facilitate rapid and harmonized interlaboratory comparisons, essential for global surveillance and outbreak analysis. The scheme is publicly available for application by users, including those with little bioinformatics knowledge.
Collapse
|
229
|
da Silva DAL, de Melo Tavares R, Camargo AC, Yamatogi RS, De Martinis ECP, Nero LA. Biofilm growth by Listeria monocytogenes on stainless steel and expression of biofilm-related genes under stressing conditions. World J Microbiol Biotechnol 2021; 37:119. [PMID: 34131813 DOI: 10.1007/s11274-021-03092-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/01/2022]
Abstract
This research was carried out to investigate the differences in adhesion and growth during biofilm formation of L. monocytogenes from different sources and clonal complexes. Biofilm by L. monocytogenes (isolates CLIST 441 and 7: both lineage I, serotype 1/2b, CC3; isolates 19 and 508: both lineage II, serotype 1/2c, CC9) was grown on stainless steel coupons under different stressing conditions (NaCl, curing salts and quaternary ammonium compounds-QAC), to determine the expression of different genes involved in biofilm formation and stress response. CLIST 441, which carries a premature stop codon (PMSC) in agrC, formed high-density biofilms in the presence of QAC (7.5% w/v) or curing salts (10% w/v). Reverse Transcriptase-qPCR results revealed that L. monocytogenes isolates presented differences in transcriptional profile of genes related to biofilm formation and adaptation to environmental conditions. Our results demonstrated how L. monocytogenes can survive, multiply and form biofilm under adverse conditions related to food processing environments. Differences in transcriptional expression were observed, highlighting the role of regulatory gene networks for particular serotypes under different stress responses.
Collapse
Affiliation(s)
- Danilo Augusto Lopes da Silva
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil
| | - Rafaela de Melo Tavares
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil
| | - Anderson Carlos Camargo
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil.,Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil
| | - Ricardo Seiti Yamatogi
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil
| | - Elaine Cristina Pereira De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Cafés/n, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
230
|
Wysocka M, Monteiro T, de Pina C, Gonçalves D, de Pina S, Ludgero-Correia A, Moreno J, Zamudio R, Almebairik N, Gray LJ, Pareek M, Jenkins DR, De Sousa MA, De Lencastre H, Beleza S, Araujo II, Conceição T, Oggioni MR. Whole-genome analysis uncovers loss of blaZ associated with carriage isolates belonging to methicillin-resistant Staphylococcus aureus (MRSA) clone ST5-VI in Cape Verde. J Glob Antimicrob Resist 2021; 26:77-83. [PMID: 34052522 PMCID: PMC8440226 DOI: 10.1016/j.jgar.2021.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/01/2022] Open
Abstract
One of the first whole genome analyses of Staphylococcus aureus carriage isolates in an African country. Genome data allowed to place S. aureus isolates from Cape Verde in a phylogenetic context. Loss of blaZ-carrying plasmids and transposons is not rare, which is also evident in other international MRSA isolates. Steady increase in antimicrobial drug resistance in Cape Verde. Data provide genomic information for the design of intervention measures to decrease antimicrobial resistance.
Objectives Surveillance studies for Staphylococcus aureus carriage are a primary tool to survey the prevalence of methicillin-resistant S. aureus (MRSA) in the general population, patients and healthcare workers. We have previously reported S. aureus carriage in various African countries, including Cape Verde. Methods Whole-genome sequences of 106 S. aureus isolates from Cape Verde were determined. Results Staphylococcus aureus carriage isolates in Cape Verde show high genetic variability, with the detection of 27 sequence types (STs) and three primary genetic clusters associated with ST152, ST15 and ST5. One transmission event with less than eight core-genome single nucleotide polymorphisms (cgSNP) differences was detected among the ST5-VI MRSA lineage. Genetic analysis confirmed the phenotypic resistance and allowed the identification of six independent events of plasmid or transposon loss associated with the deletion of blaZ in nine isolates. In the four ST5 MRSA isolates, loss of the blaZ plasmid coincided with the acquisition of SCCmec type VI and an unusual penicillin phenotype with a minimum inhibitory concentration (MIC) at the breakpoint, indicating an adaptation trend in this endemic lineage. Similar events of blaZ plasmid loss, with concomitant acquisition SCCmec elements, were detected among ST5 isolates from different geographical origins. Conclusion Overall, the genome data allowed to place isolates in a phylogenetic context and to identify different blaZ gene deletions associated with plasmid or transposon loss. Genomic analysis unveiled adaptation and evolution trends, namely among emerging MRSA lineages in the country, which deserve additional consideration in the design of future infection control protocols.
Collapse
Affiliation(s)
- Magdalena Wysocka
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK; Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, Gdańsk, Poland
| | | | | | | | | | | | - Joao Moreno
- Universidade de Cabo Verde, Praia, Santiago, Cape Verde
| | - Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nada Almebairik
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Laura J Gray
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Manish Pareek
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - David R Jenkins
- Department of Clinical Microbiology, Leicester University Hospitals, NHS Trust, Leicester, UK
| | - Marta Aires De Sousa
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal; Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisbon, Portugal
| | - Herminia De Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal; Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Teresa Conceição
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK; Dipartimento di Farmacia e Biotecnologie, Universita' di Bologna, Bologna, Italy.
| |
Collapse
|
231
|
Retchless AC, Chen A, Chang HY, Blain AE, McNamara LA, Mustapha MM, Harrison LH, Wang X. Using Neisseria meningitidis genomic diversity to inform outbreak strain identification. PLoS Pathog 2021; 17:e1009586. [PMID: 34003852 PMCID: PMC8177650 DOI: 10.1371/journal.ppat.1009586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/04/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Meningococcal disease is a life-threatening illness caused by the human-restricted bacterium Neisseria meningitidis. Outbreaks in the USA involve at least two cases in an organization or community caused by the same serogroup within three months. Genome comparisons, including phylogenetic analysis and quantification of genome distances can provide confirmatory evidence of pathogen transmission during an outbreak. Interpreting genome distances depends on understanding their distribution both among isolates from outbreaks and among those not from outbreaks. Here, we identify outbreak strains based on phylogenetic relationships among 141 N. meningitidis isolates collected from 28 outbreaks in the USA during 2010-2017 and 1516 non-outbreak isolates collected through contemporaneous meningococcal surveillance. We show that genome distance thresholds based on the maximum SNPs and allele distances among isolates in the phylogenetically defined outbreak strains are sufficient to separate most pairs of non-outbreak isolates into separate strains. Non-outbreak isolate pairs that could not be distinguished from each other based on genetic distances were concentrated in the clonal complexes CC11, CC103, and CC32. Within each of these clonal complexes, phylodynamic analysis identified a group of isolates with extremely low diversity, collected over several years and multiple states. Clusters of isolates with low genetic diversity could indicate increased pathogen transmission, potentially resulting in local outbreaks or nationwide clonal expansions.
Collapse
Affiliation(s)
- Adam C. Retchless
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alex Chen
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - How-Yi Chang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amy E. Blain
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lucy A. McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mustapha M. Mustapha
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lee H. Harrison
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xin Wang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
232
|
Russini V, Spaziante M, Zottola T, Fermani AG, Di Giampietro G, Blanco G, Fabietti P, Marrone R, Parisella R, Parrocchia S, Bossù T, Bilei S, De Marchis ML. A Nosocomial Outbreak of Invasive Listeriosis in An Italian Hospital: Epidemiological and Genomic Features. Pathogens 2021; 10:pathogens10050591. [PMID: 34066208 PMCID: PMC8150339 DOI: 10.3390/pathogens10050591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a widespread opportunistic pathogen that causes the listeriosis foodborne disease. This bacterium has become a common contaminant of handled food, and a relevant public health issue. Here we describe a nosocomial outbreak of listeriosis caused by an ST451 strain of L. monocytogenes involving three cancer and one immunocompromised patients hospitalized in different units from the same hospital during September and October 2020. The epidemiological investigation was conducted using traditional microbiological methodology combined with a whole genome sequencing approach. The source of contamination was identified in the kitchen hospital, where a meat slicer used to prepare patients’ meals was tested positive to the same sequence type (ST) of L. monocytogenes. This is the first report of an outbreak of listeriosis caused by ST451 in Italy.
Collapse
Affiliation(s)
- Valeria Russini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”—Sezione di Roma, 00178 Rome, Italy; (V.R.); (G.D.G.); (T.B.); (S.B.)
| | - Martina Spaziante
- Regional Service Surveillance and Control for Infectious Diseases (SERESMI), National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy;
| | - Tiziana Zottola
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”—Sezione di Latina, 04100 Latina, Italy;
| | | | - Gina Di Giampietro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”—Sezione di Roma, 00178 Rome, Italy; (V.R.); (G.D.G.); (T.B.); (S.B.)
| | - Giovanni Blanco
- Ospedale Santa Maria Goretti, 04100 Latina, Italy; (G.B.); (P.F.); (R.M.); (R.P.); (S.P.)
| | - Paolo Fabietti
- Ospedale Santa Maria Goretti, 04100 Latina, Italy; (G.B.); (P.F.); (R.M.); (R.P.); (S.P.)
| | - Riccardo Marrone
- Ospedale Santa Maria Goretti, 04100 Latina, Italy; (G.B.); (P.F.); (R.M.); (R.P.); (S.P.)
| | - Roberta Parisella
- Ospedale Santa Maria Goretti, 04100 Latina, Italy; (G.B.); (P.F.); (R.M.); (R.P.); (S.P.)
| | - Sergio Parrocchia
- Ospedale Santa Maria Goretti, 04100 Latina, Italy; (G.B.); (P.F.); (R.M.); (R.P.); (S.P.)
| | - Teresa Bossù
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”—Sezione di Roma, 00178 Rome, Italy; (V.R.); (G.D.G.); (T.B.); (S.B.)
| | - Stefano Bilei
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”—Sezione di Roma, 00178 Rome, Italy; (V.R.); (G.D.G.); (T.B.); (S.B.)
| | - Maria Laura De Marchis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”—Sezione di Roma, 00178 Rome, Italy; (V.R.); (G.D.G.); (T.B.); (S.B.)
- Correspondence:
| |
Collapse
|
233
|
Farber JM, Zwietering M, Wiedmann M, Schaffner D, Hedberg CW, Harrison MA, Hartnett E, Chapman B, Donnelly CW, Goodburn KE, Gummalla S. Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
234
|
Carlin CR, Liao J, Weller D, Guo X, Orsi R, Wiedmann M. Listeria cossartiae sp. nov., Listeria farberi sp. nov., Listeria immobilis sp. nov., Listeria portnoyi sp. nov. and Listeria rustica sp. nov., isolated from agricultural water and natural environments. Int J Syst Evol Microbiol 2021; 71:004795. [PMID: 33999788 PMCID: PMC8289207 DOI: 10.1099/ijsem.0.004795] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
A total of 27 Listeria isolates that could not be classified to the species level were obtained from soil samples from different locations in the contiguous United States and an agricultural water sample from New York. Whole-genome sequence-based average nucleotide identity blast (ANIb) showed that the 27 isolates form five distinct clusters; for each cluster, all draft genomes showed ANI values of <95 % similarity to each other and any currently described Listeria species, indicating that each cluster represents a novel species. Of the five novel species, three cluster with the Listeria sensu stricto clade and two cluster with sensu lato. One of the novel sensu stricto species, designated L. cossartiae sp. nov., contains two subclusters with an average ANI similarity of 94.9%, which were designated as subspecies. The proposed three novel sensu stricto species (including two subspecies) are Listeria farberi sp. nov. (type strain FSL L7-0091T=CCUG 74668T=LMG 31917T; maximum ANI 91.9 % to L. innocua), Listeria immobilis sp. nov. (type strain FSL L7-1519T=CCUG 74666T=LMG 31920T; maximum ANI 87.4 % to L. ivanovii subsp. londoniensis) and Listeria cossartiae sp. nov. [subsp. cossartiae (type strain FSL L7-1447T=CCUG 74667T=LMG 31919T; maximum ANI 93.4 % to L. marthii) and subsp. cayugensis (type strain FSL L7-0993T=CCUG 74670T=LMG 31918T; maximum ANI 94.7 % to L. marthii). The two proposed novel sensu lato species are Listeria portnoyi sp. nov. (type strain FSL L7-1582T=CCUG 74671T=LMG 31921T; maximum ANI value of 88.9 % to L. cornellensis and 89.2 % to L. newyorkensis) and Listeria rustica sp. nov. (type strain FSL W9-0585T=CCUG 74665T=LMG 31922T; maximum ANI value of 88.7 % to L. cornellensis and 88.9 % to L. newyorkensis). L. immobilis is the first sensu stricto species isolated to date that is non-motile. All five of the novel species are non-haemolytic and negative for phosphatidylinositol-specific phospholipase C activity; the draft genomes lack the virulence genes found in Listeria pathogenicity island 1 (LIPI-1), and the internalin genes inlA and inlB, indicating that they are non-pathogenic.
Collapse
Affiliation(s)
| | - Jingqiu Liao
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
- Present address: Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Dan Weller
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
- Present address: Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse NY 13210, USA
| | - Xiaodong Guo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
235
|
Raschle S, Stephan R, Stevens MJA, Cernela N, Zurfluh K, Muchaamba F, Nüesch-Inderbinen M. Environmental dissemination of pathogenic Listeria monocytogenes in flowing surface waters in Switzerland. Sci Rep 2021; 11:9066. [PMID: 33907261 PMCID: PMC8079687 DOI: 10.1038/s41598-021-88514-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
Listeria monocytogenes is an opportunistic pathogen that is widely distributed in the environment. The aquatic environment may represent a potential source for the transmission of L. monocytogenes to animals and the food chain. The present study assessed the occurrence of L. monocytogenes in 191 surface water samples from rivers, streams and inland canals throughout Switzerland. Twenty-five (13%) of the surface water samples contained L. monocytogenes. Whole genome sequence (WGS) data were used to characterize the 25 isolates. The isolates belonged to major lineages I and II, with the majority assigned to either serotype 1/2a (48%), or 4b (44%). The predominant CCs identified were the hypervirulent serotype 4b clones CC1 and CC4, and the serotype CC412; all three have been implicated in listeriosis outbreaks and sporadic cases of human and animal infection worldwide. Two (8%) of the isolates belonged to CC6 which is an emerging hypervirulent clone. All isolates contained intact genes associated with invasion and infection, including inlA/B and prfA. The four CC4 isolates all harbored Listeria pathogenicity island 4 (LIPI-4), which confers hypervirulence. The occurrence of L. monocytogenes in river ecosystems may contribute to the dissemination and introduction of clinically highly relevant strains to the food chain.
Collapse
Affiliation(s)
- Susanne Raschle
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
236
|
Charlier C, Kermorvant-Duchemin E, Perrodeau E, Moura A, Maury MM, Bracq-Dieye H, Thouvenot P, Valès G, Leclercq A, Ravaud P, Lecuit M. Neonatal listeriosis presentation and outcome: a prospective study of 189 cases. Clin Infect Dis 2021; 74:8-16. [PMID: 33876229 DOI: 10.1093/cid/ciab337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Listeriosis is caused by the foodborne pathogen Listeria monocytogenes. It can present as a maternal-neonatal infection. We implemented the nationwide prospective cohort MONALISA and analyzed the features of neonatal listeriosis. METHODS We studied all neonates born alive from mothers with microbiologically-proven maternal-neonatal listeriosis enrolled from November 2009 to December 2017. We analyzed presentation, neonatal outcome at discharge and predictors of severe presentation and outcome. The study is registered at clinicaltrials.gov (NCT01520597). RESULTS We studied 189 infants. 133/189 (70%) had abnormal clinical status at birth, including acute respiratory distress in 106/189 (56%). 132/189 (70%) infants developed early-onset listeriosis and 12/189 (6%) late onset listeriosis who all presented with acute meningitis. 17/189 (9%) had major adverse outcomes: 3% death (5/189), 6% (12/189) severe brain injury, 2% (3/189) severe bronchopulmonary dysplasia, 15/17 in infants born < 34 weeks of gestation (p < 0.0001 versus infants born ≥ 34 weeks of gestation). Maternal antimicrobial treatment ≥ 1 day before delivery was associated with a significant decrease of infants' severity (resulting in significantly less inotropic drugs, fluid resuscitation, or mechanical ventilation requirement), OR 0.23 [95% confidence interval CI 0.09-0.51], p < 0.0001). CONCLUSION Antenatal maternal antimicrobial treatment is associated with reduced neonatal listeriosis severity, justifying the prescription of preemptive maternal antimicrobial therapy when maternal-fetal listeriosis is suspected. Neonatal outcome is better than reported earlier, and its major determinant is gestational age at birth.
Collapse
Affiliation(s)
- Caroline Charlier
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France.,Inserm U1117, Paris, France.,Université de Paris, Paris, France.,Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, Institut Imagine, AP-HP, Paris, France
| | - Elsa Kermorvant-Duchemin
- Université de Paris, Paris, France.,Necker-Enfants Malades University Hospital, Department of Neonatology, AP-HP, Paris, France
| | - Elodie Perrodeau
- Centre of Research in Epidemiology and Statistics Sorbonne Paris Cité, METHODS Team, UMR 1153, Inserm, Université de Paris, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France.,Inserm U1117, Paris, France
| | - Mylène M Maury
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France.,Inserm U1117, Paris, France
| | - Hélène Bracq-Dieye
- Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Pierre Thouvenot
- Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Guillaume Valès
- Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Alexandre Leclercq
- Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Philippe Ravaud
- Université de Paris, Paris, France.,Centre of Research in Epidemiology and Statistics Sorbonne Paris Cité, METHODS Team, UMR 1153, Inserm, Université de Paris, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, French National Reference Center and WHO Collaborating Center Listeria, Paris, France.,Inserm U1117, Paris, France.,Université de Paris, Paris, France.,Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, Institut Imagine, AP-HP, Paris, France
| | | |
Collapse
|
237
|
Genomic Surveillance and Improved Molecular Typing of Bordetella pertussis Using wgMLST. J Clin Microbiol 2021; 59:JCM.02726-20. [PMID: 33627319 DOI: 10.1128/jcm.02726-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
Multilocus sequence typing (MLST) provides allele-based characterization of bacterial pathogens in a standardized framework. However, classical MLST schemes for Bordetella pertussis, the causative agent of whooping cough, seldom reveal diversity among the small number of gene targets and thereby fail to delineate population structure. To improve the discriminatory power of allele-based molecular typing of B. pertussis, we have developed a whole-genome MLST (wgMLST) scheme from 225 reference-quality genome assemblies. Iterative refinement and allele curation resulted in a scheme of 3,506 coding sequences and covering 81.4% of the B. pertussis genome. This wgMLST scheme was further evaluated with data from a convenience sample of 2,389 B. pertussis isolates sequenced on Illumina instruments, including isolates from known outbreaks and epidemics previously characterized by existing molecular assays, as well as replicates collected from individual patients. wgMLST demonstrated concordance with whole-genome single nucleotide polymorphism (SNP) profiles, accurately resolved outbreak and sporadic cases in a retrospective comparison, and clustered replicate isolates collected from individual patients during diagnostic confirmation. Additionally, a reanalysis of isolates from two statewide epidemics using wgMLST reconstructed the population structures of circulating strains with increased resolution, revealing new clusters of related cases. Comparison with an existing core genome (cgMLST) scheme highlights the stable gene content of this bacterium and forms the initial foundation for necessary standardization. These results demonstrate the utility of wgMLST for improving B. pertussis characterization and genomic surveillance during the current pertussis disease resurgence.
Collapse
|
238
|
Lecuit M. Listeria monocytogenes, a model in infection biology. Cell Microbiol 2021; 22:e13186. [PMID: 32185900 DOI: 10.1111/cmi.13186] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes causes listeriosis, a systemic infection which manifests as bacteremia, often complicated by meningoencephalitis in immunocompromised individuals and the elderly, and fetal-placental infection in pregnant women. It has emerged over the past decades as a major foodborne pathogen, responsible for numerous outbreaks in Western countries, and more recently in Africa. L. monocytogenes' pathogenic properties have been studied in detail, thanks to concomitant advances in biological sciences, in particular molecular biology, cell biology and immunology. L. monocytogenes has also been instrumental to basic advances in life sciences. L. monocytogenes therefore stands both a tool to understand biology and a model in infection biology. This review briefly summarises the clinical and some of the pathophysiological features of listeriosis. In the context of this special issue, it highlights some of the major discoveries made by Pascale Cossart in the fields of molecular and cellular microbiology since the mid-eighties regarding the identification and characterisation of multiple bacterial and host factors critical to L. monocytogenes pathogenicity. It also briefly summarises some of the key findings from our laboratory on this topic over the past years.
Collapse
Affiliation(s)
- Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France.,National Reference Centre and WHO Collaborating Centre Listeria, Institut Pasteur, Paris, France.,Université de Paris, Paris, France.,Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| |
Collapse
|
239
|
Lachtara B, Osek J, Wieczorek K. Molecular Typing of Listeria monocytogenes IVb Serogroup Isolated from Food and Food Production Environments in Poland. Pathogens 2021; 10:pathogens10040482. [PMID: 33921133 PMCID: PMC8071568 DOI: 10.3390/pathogens10040482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that may be present in food and in food processing environments. In the present study, 91 L. monocytogenes isolates of serogroup IVb from raw meat, ready-to-eat food and food production environments in Poland were characterized by whole genome sequencing (WGS). The strains were also compared, using core genome multi-locus sequence typing (cgMLST) analysis, with 186 genomes of L. monocytogenes recovered worldwide from food, environments, and from humans with listeriosis. The L. monocytogenes examined belonged to three MLST clonal complexes: CC1 (10; 11.0% isolates), CC2 (70; 76.9%), and CC6 (11; 12.1%). CC1 comprised of two STs (ST1 and ST515) which could be divided into five cgMLST, CC2 covered two STs (ST2 and ST145) with a total of 20 cgMLST types, whereas CC6 consisted of only one ST (ST6) classified as one cgMLST. WGS sequences of the tested strains revealed that they had several pathogenic markers making them potentially hazardous for public health. Molecular comparison of L. monocytogenes strains tested in the present study with those isolated from food and human listeriosis showed a relationship between the isolates from Poland, but not from other countries.
Collapse
|
240
|
Duru IC, Bucur FI, Andreevskaya M, Ylinen A, Crauwels P, Grigore-Gurgu L, Nikparvar B, Rode TM, Laine P, Paulin L, Løvdal T, Riedel CU, Bar N, Borda D, Nicolau AI, Auvinen P. The complete genome sequence of Listeria monocytogenes strain S2542 and expression of selected genes under high-pressure processing. BMC Res Notes 2021; 14:137. [PMID: 33858503 PMCID: PMC8048338 DOI: 10.1186/s13104-021-05555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The study aims to generate the whole genome sequence of L. monocytogenes strain S2542 and to compare it to the genomes of strains RO15 and ScottA. In addition, we aimed to compare gene expression profiles of L. monocytogenes strains S2542, ScottA and RO15 after high-pressure processing (HPP) using ddPCR. RESULTS The whole genome sequence of L. monocytogenes S2542 indicates that this strain belongs to serotype 4b, in contrast to the previously reported serotype 1/2a. Strain S2542 appears to be more susceptible to the treatment at 400 MPa compared to RO15 and ScottA strains. In contrast to RO15 and ScottA strains, viable cell counts of strain S2542 were below the limit of detection after HPP (400 MPa/8 min) when stored at 8 °C for 24 and 48 h. The transcriptional response of all three strains to HPP was not significantly different.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Margarita Andreevskaya
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Blueprint Genetics, Espoo, Finland
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone Mari Rode
- Department of Process Technology, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, 4068, Stavanger, Norway
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, 4068, Stavanger, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
241
|
Zhou Z, Charlesworth J, Achtman M. HierCC: A multi-level clustering scheme for population assignments based on core genome MLST. Bioinformatics 2021; 37:3645-3646. [PMID: 33823553 PMCID: PMC8545296 DOI: 10.1093/bioinformatics/btab234] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Motivation Routine infectious disease surveillance is increasingly based on large-scale whole-genome sequencing databases. Real-time surveillance would benefit from immediate assignments of each genome assembly to hierarchical population structures. Here we present pHierCC, a pipeline that defines a scalable clustering scheme, HierCC, based on core genome multi-locus typing that allows incremental, static, multi-level cluster assignments of genomes. We also present HCCeval, which identifies optimal thresholds for assigning genomes to cohesive HierCC clusters. HierCC was implemented in EnteroBase in 2018 and has since genotyped >530 000 genomes from Salmonella, Escherichia/Shigella, Streptococcus, Clostridioides, Vibrio and Yersinia. Availability and implementation https://enterobase.warwick.ac.uk/ and Source code and instructions: https://github.com/zheminzhou/pHierCC Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhemin Zhou
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Jane Charlesworth
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
242
|
Retrospective Use of Whole-Genome Sequencing Expands the Multicountry Outbreak Cluster of Listeria monocytogenes ST1247. Int J Genomics 2021; 2021:6636138. [PMID: 33869622 PMCID: PMC8035026 DOI: 10.1155/2021/6636138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes sequence type 1247 clonal complex 8 caused a prolonged multicountry outbreak in five EU countries: Denmark, Estonia, Finland, France, and Sweden. A total of 22 disease cases were identified with onset of symptoms between July 2014 and February 2019. Five patients died due to, or with, the disease. The retrospective analysis of L. monocytogenes isolate VLTRLM2013 revealed the presence of an outbreak-related strain (cgMLST type L2-SL8-ST1247-CT4158) in ready-to-eat fish product more than a year prior to the first outbreak-related cases. Reference outbreak strain and VLTRLM2013 strain were compared using core genome and whole-genome multilocus sequence typing analyses. Genomic level differences of the persistent L. monocytogenes strains associated with a prolonged multicountry foodborne listeriosis outbreak are described. It was concluded that the persistent nature of the multicountry outbreak-related L. monocytogenes strain VLTRLM2013 together with stress island, virulence, and antibiotic resistance genes could potentially be the determining factors for the extensive and prolonged outbreak affecting five European Union countries. Our results support the systematic application of whole-genome sequencing in food and public health surveillance and further encourages its wide adoption.
Collapse
|
243
|
Mohan V, Cruz CD, van Vliet AHM, Pitman AR, Visnovsky SB, Rivas L, Gilpin B, Fletcher GC. Genomic diversity of Listeria monocytogenes isolates from seafood, horticulture and factory environments in New Zealand. Int J Food Microbiol 2021; 347:109166. [PMID: 33838478 DOI: 10.1016/j.ijfoodmicro.2021.109166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes is a foodborne human pathogen that causes systemic infection, fetal-placental infection in pregnant women causing abortion and stillbirth and meningoencephalitis in elderly and immunocompromised individuals. This study aimed to analyse L. monocytogenes from different sources from New Zealand (NZ) and to compare them with international strains. We used pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and whole-genome single nucleotide polymorphisms (SNP) to study the population structure of the NZ L. monocytogenes isolates and their relationship with the international strains. The NZ isolates formed unique clusters in PFGE, MLST and whole-genome SNP comparisons compared to the international isolates for which data were available. PFGE identified 31 AscI and 29 ApaI PFGE patterns with indistinguishable pulsotypes being present in seafood, horticultural products and environmental samples. Apart from the Asc0002:Apa0002 pulsotype which was distributed across different sources, other pulsotypes were site or factory associated. Whole-genome analysis of 200 randomly selected L. monocytogenes isolates revealed that lineage II dominated the NZ L. monocytogenes populations. MLST comparison of international and NZ isolates with lineage II accounted for 89% (177 of 200) of the total L. monocytogenes population, while the international representation was 45.3% (1674 of 3473). Rarefaction analysis showed that sequence type richness was greater in NZ isolates compared to international trend, however, it should be noted that NZ isolates predominantly came from seafood, horticulture and their respective processing environments or factories, unlike international isolates where there was a good mixture of clinical, food and environmental isolates.
Collapse
Affiliation(s)
- Vathsala Mohan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | - Cristina D Cruz
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, Surrey, United Kingdom
| | - Andrew R Pitman
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, New Zealand.
| | - Sandra B Visnovsky
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, New Zealand
| | - Lucia Rivas
- Institute of Environmental Science and Research Limited, Christchurch, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Limited, Christchurch, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
244
|
Schmitz-Esser S, Anast JM, Cortes BW. A Large-Scale Sequencing-Based Survey of Plasmids in Listeria monocytogenes Reveals Global Dissemination of Plasmids. Front Microbiol 2021; 12:653155. [PMID: 33776982 PMCID: PMC7994336 DOI: 10.3389/fmicb.2021.653155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes is known for its capacity to cope with multiple stress conditions occurring in food and food production environments (FPEs). Plasmids can provide benefits to their host strains, and it is known that various Listeria strains contain plasmids. However, the current understanding of plasmid frequency and function in L. monocytogenes strains remains rather limited. To determine the presence of plasmids among L. monocytogenes strains and their potential contribution to stress survival, a comprehensive dataset was established based on 1,921 published genomes from strains representing 14 L. monocytogenes sequence types (STs). Our results show that an average of 54% of all L. monocytogenes strains in the dataset contained a putative plasmid. The presence of plasmids was highly variable between different STs. While some STs, such as ST1, ST2, and ST4, contained few plasmid-bearing strains (<15% of the strains per ST), other STs, such as ST121, ST5, ST8, ST3, and ST204, possessed a higher proportion of plasmid-bearing strains with plasmids found in >71% of the strains within each ST. Overall, the sizes of plasmids analyzed in this study ranged from 4 to 170 kbp with a median plasmid size of 61 kbp. We also identified two novel groups of putative Listeria plasmids based on the amino acid sequences of the plasmid replication protein, RepA. We show that highly conserved plasmids are shared among Listeria strains which have been isolated from around the world over the last few decades. To investigate the potential roles of plasmids, nine genes related to stress-response were selected for an assessment of their abundance and conservation among L. monocytogenes plasmids. The results demonstrated that these plasmid genes exhibited high sequence conservation but that their presence in plasmids was highly variable. Additionally, we identified a novel transposon, Tn7075, predicted to be involved in mercury-resistance. Here, we provide the largest plasmid survey of L. monocytogenes to date with a comprehensive examination of the distribution of plasmids among L. monocytogenes strains. Our results significantly increase our knowledge about the distribution, composition, and conservation of L. monocytogenes plasmids and suggest that plasmids are likely important for the survival of L. monocytogenes in food and FPEs.
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Justin M Anast
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Bienvenido W Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
245
|
Wang Y, Ji Q, Li S, Liu M. Prevalence and Genetic Diversity of Listeria monocytogenes Isolated From Retail Pork in Wuhan, China. Front Microbiol 2021; 12:620482. [PMID: 33767677 PMCID: PMC7986423 DOI: 10.3389/fmicb.2021.620482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous bacteria and causative agent of zoonotic listeriosis with high mortality. The consumption of contaminated animal-derived foods has been linked with both epidemic and sporadic listeriosis. In this work, a total of 64 L. monocytogenes isolates from 259 pork samples sold in 11 supermarket chains were identified and characterized by comparative whole-genome analysis. All isolates were delineated into eight clonal complexes (CCs), namely CC2, CC8, CC9, CC11, CC155, CC121, CC204, and CC619, spanning two lineages (I and II) and carrying 3–5 antibiotic-resistant genes (fosX, lnu, mprF, tetM, and dhfR). It is noted that Listeria pathogenicity island (LIPI)-1, LIPI-3, and LIPI-4 were distributed in all ST619 isolates from two supermarket chains that were closely related with clinical isolates (<40 SNP). Some of the isolates from different supermarket chains with 0 SNP difference indicated a common pork supply source. Notably, 57.81% of the strains carried types IB, IIA, or IIIB CRISPR-Cas system, CC121 isolates carried both types IB and IIA CRISPR-Cas systems, Cas proteins of CC155 isolates located between two CRISPR loci, each CC has unique organization of Cas proteins as well as CRISPR loci. CRISPR-Cas system-based subtyping improved discrimination of pork-derived L. monocytogenes isolates. Comparisons at the genome level contributed to understand the genetic diversities and variations among the isolates and provided insights into the genetic makeup and relatedness of these pathogens.
Collapse
Affiliation(s)
- Yiqian Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Ji
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
246
|
Cooper AL, Carrillo CD, DeschÊnes M, Blais BW. Genomic Markers for Quaternary Ammonium Compound Resistance as a Persistence Indicator for Listeria monocytogenes Contamination in Food Manufacturing Environments. J Food Prot 2021; 84:389-398. [PMID: 33038236 DOI: 10.4315/jfp-20-328] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT Persistent contamination of food manufacturing environments by Listeria monocytogenes is an important public health risk, because such contamination events defy standard sanitization protocols, for example, the application of quaternary ammonium compounds such as benzalkonium chloride (BC), providing a source for prolonged dissemination of the bacteria in food products. We performed whole genome sequencing analyses of 1,279 well-characterized L. monocytogenes isolates from various foods and food manufacturing environments and identified the bcrABC gene cassette associated with BC resistance in 531 (41.5%) isolates. The bcrABC cassette was significantly associated with L. monocytogenes isolates belonging to clonal complex (CC) 321, CC155, CC204, and CC199, which are among the 10 most prevalent genotypes recovered from foods and food production environments. All but 1 of the 177 CC321 isolates harbored the bcrABC cassette. In addition, 384 (38.6%) of the 994 isolates recovered from foods representing 67 different CCs and 119 (59.2%) of isolates from food manufacturing environmental samples representing 26 different CCs were found to harbor the intact bcrABC cassette. A representative set of 69 isolates with and without bcrABC was assayed for the ability to grow in the presence of BC, and 34 of 35 isolates harboring the bcrABC cassette exhibited MICs of ≥10 μg/mL BC. Determination of bcrABC in isolates could be achieved using both PCR and whole genome sequencing techniques, providing food testing laboratories with options for the characterization of isolates. The ability to determine markers of quaternary ammonium compound resistance such as bcrABC and epidemiologic lineage may provide risk managers with a tool to assess the potential for persistent contamination of the food manufacturing environment and the need for more targeted surveillance to ensure the efficacy of mitigation actions. HIGHLIGHTS
Collapse
Affiliation(s)
- Ashley L Cooper
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0Y9
| | - Catherine D Carrillo
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0Y9
| | - MylÈne DeschÊnes
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0Y9
| | - Burton W Blais
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
247
|
Listeria spp. Isolated from Tonsils of Wild Deer and Boars: Genomic Characterization. Appl Environ Microbiol 2021; 87:AEM.02651-20. [PMID: 33397708 DOI: 10.1128/aem.02651-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Listeria monocytogenes is a major human and animal foodborne pathogen. However, data from environmental reservoirs remain scarce. Here, we used whole-genome sequencing to characterize Listeria species isolates recovered over 1 year from wild animals in their natural habitats in Spain. Three different Listeria spp. (L. monocytogenes [n = 19], Listeria ivanovii subsp. londoniensis [n = 4], and Listeria innocua [n = 3]) were detected in 23 animal tonsils (9 deer, 14 wild boars) and 2 feeding troughs. No Listeria species was detected in feces. L. monocytogenes was detected in tonsils of 44.4% (8 out of 18) of deer and 40.7% (11 out of 27) of wild boars. L. monocytogenes isolates belonged to 3 different core genome multilocus sequence typing (cgMLST) types (CTs) of 3 distinct sublineages (SL1, SL387, and SL155) from lineages I and II. While cgMLST type L1-SL1-ST1-CT5279 (IVb; clonal complex 1 [CC1]) occurred only in one animal, types L1-SL387-ST388-CT5239 (IVb; CC388) and L2-SL155-ST155-CT1170 (IIa; CC155) were retrieved from multiple animals. In addition, L1-SL387-ST388-CT5239 (IVb; CC388) isolates were collected 1 year apart, revealing their long-term occurrence within the animal population and/or environmental reservoir. The presence of identical L. monocytogenes strains in deer and wild boars suggests contamination from a common food or environmental source, although interhost transmission cannot be excluded. Pathogenicity islands LIPI-1, LIPI-3, and LIPI-4 were present in 100%, 5%, and 79% of the L. monocytogenes isolates, respectively, and all L. monocytogenes lineage II isolates (n = 3) carried SSI-1 stress islands. This study highlights the need for monitoring L. monocytogenes environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.IMPORTANCE Listeria monocytogenes is a foodborne bacterial pathogen responsible for listeriosis. Whole-genome sequencing has been extensively used in public health and food industries to characterize circulating Listeria isolates, but genomic data on isolates occurring in natural environments and wild animals are still scarce. Here, we show that wild animals carry pathogenic Listeria and that the same genotypes can be found at different time points in different host species. This work highlights the need of Listeria species monitoring of environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.
Collapse
|
248
|
Louha S, Meinersmann RJ, Glenn TC. Whole genome genetic variation and linkage disequilibrium in a diverse collection of Listeria monocytogenes isolates. PLoS One 2021; 16:e0242297. [PMID: 33630832 PMCID: PMC7906370 DOI: 10.1371/journal.pone.0242297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/11/2021] [Indexed: 12/04/2022] Open
Abstract
We performed whole-genome multi-locus sequence typing for 2554 genes in a large and heterogenous panel of 180 Listeria monocytogenes strains having diverse geographical and temporal origins. The subtyping data was used for characterizing genetic variation and evaluating patterns of linkage disequilibrium in the pan-genome of L. monocytogenes. Our analysis revealed the presence of strong linkage disequilibrium in L. monocytogenes, with ~99% of genes showing significant non-random associations with a large majority of other genes in the genome. Twenty-seven loci having lower levels of association with other genes were considered to be potential “hot spots” for horizontal gene transfer (i.e., recombination via conjugation, transduction, and/or transformation). The patterns of linkage disequilibrium in L. monocytogenes suggest limited exchange of foreign genetic material in the genome and can be used as a tool for identifying new recombinant strains. This can help understand processes contributing to the diversification and evolution of this pathogenic bacteria, thereby facilitating development of effective control measures.
Collapse
Affiliation(s)
- Swarnali Louha
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
- * E-mail:
| | - Richard J. Meinersmann
- USDA Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, United States of America
| | - Travis C. Glenn
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
249
|
Lu B, Yang J, Gao C, Li D, Cui Y, Huang L, Chen X, Wang D, Wang A, Liu Y, Li Y, Zhang Z, Jiao M, Xu H, Song Y, Fu B, Xu L, Yang Q, Ning Y, Wang L, Bao C, Luo G, Wu H, Yang T, Li C, Tang M, Wang J, Guo W, Zeng J, Zhong W. Listeriosis Cases and Genetic Diversity of Their L. monocytogenes Isolates in China, 2008-2019. Front Cell Infect Microbiol 2021; 11:608352. [PMID: 33680989 PMCID: PMC7933659 DOI: 10.3389/fcimb.2021.608352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Listeriosis, caused by Listeria monocytogenes, is a severe food-borne infection. The nationwide surveillance in China concerning listeriosis is urgently needed. In the present study, 144 L. monocytogenes isolates were collected from the samples of blood, cerebrospinal fluid (CSF), and fetal membrane/placenta in China for 12 years from 2008 to 2019. We summarized these listeriosis patients’ demographical and clinical features and outcomes. The susceptibility profile for 12 antibiotics was also determined by the broth microdilution method. Multilocus sequence typing (MLST) and serogroups of these listeria isolates were analyzed to designate epidemiological types. We enrolled 144 cases from 29 healthcare centers, including 96 maternal-neonatal infections, 33 cases of bacteremia, 13 cases of neurolisteriosis, and two cutaneous listeriosis. There were 31 (59.6%) fetal loss in 52 pregnant women and four (9.8%) neonatal death in 41 newborns. Among the 48 nonmaternal-neonatal cases, 12.5% (6/48) died, 41.7% (20/48) were female, and 64.6% (31/48) occurred in those with significant comorbidities. By MLST, the strains were distinguished into 23 individual sequence types (STs). The most prevalent ST was ST87 (49 isolates, 34.0%), followed by ST1 (18, 12.5%), ST8 (10, 6.9%), ST619 (9, 6.3%), ST7 (7, 4.9%) and ST3 (7, 4.9%). Furthermore, all L. monocytogenes isolates were uniformly susceptible to penicillin, ampicillin, and meropenem. In summary, our study highlights a high genotypic diversity of L. monocytogenes strains causing clinical listeriosis in China. Furthermore, a high prevalence of ST87 and ST1 in the listeriosis should be noted.
Collapse
Affiliation(s)
- Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.,Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Laboratory of Clinical Microbiology and Infectious Diseases, National Clinical Research Center of Respiratory Diseases, Beijing, China
| | - Junwen Yang
- Department of Laboratory Medicine, Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chunyan Gao
- Department of Laboratory Medicine, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Dong Li
- Department of Laboratory Medicine, Civil Aviation General Hospital, Beijing, China
| | - Yanchao Cui
- Department of Laboratory Medicine, Civil Aviation General Hospital, Beijing, China
| | - Lei Huang
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, China
| | - Xingchun Chen
- Department of Laboratory Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Aiping Wang
- Department of Laboratory Medicine, Beijing Anzhen Hospital, Beijing, China
| | - Yulei Liu
- Department of Laboratory Medicine, Beijing Anzhen Hospital, Beijing, China
| | - Yi Li
- Department of Laboratory Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhijun Zhang
- Department of Laboratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Mingyuan Jiao
- Department of Laboratory Medicine, Beijing Tongzhou District Maternal and Child Healthcare Hospital, Beijing, China
| | - Heping Xu
- Department of Laboratory Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yu Song
- Department of Laboratory Medicine, Daqing Oilfield General Hospital, Daqing, China
| | - Baoqing Fu
- Department of Laboratory Medicine, Daqing Oilfield General Hospital, Daqing, China
| | - Lili Xu
- Department of Laboratory Medicine, Fifth People's Hospital of Chengdu, Chengdu, China
| | - Qing Yang
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongzhong Ning
- Department of Laboratory Medicine, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Lijun Wang
- Department of Laboratory Medicine, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, China
| | - Chunmei Bao
- Clinical Laboratory Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guolan Luo
- Department of Laboratory Medicine, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hua Wu
- Department of Laboratory Medicine, Hainan General Hospital, Haikou, China
| | - Tongshu Yang
- Department of Laboratory Medicine, The Affiliated Tumor Hospital of Harrbin Medical University, Harbin, China
| | - Chen Li
- Department of Laboratory Medicine, Liuyang City Traditional Chinese Medicine Hospital, Liuyang, China
| | - Manjuan Tang
- Department of Laboratory Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Junrui Wang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenchen Guo
- Department of Laboratory Medicine, Weifang People's Hospital, Weifang, China
| | - Ji Zeng
- Department of Laboratory Medicine, Wuhan Pu Ai Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Wen Zhong
- Department of Laboratory Medicine, Ningde Hospital, Fujian Medical University, Ningde, China
| |
Collapse
|
250
|
Whole Genome Sequence Analysis of Phage-Resistant Listeria monocytogenes Serotype 1/2a Strains from Turkey Processing Plants. Pathogens 2021; 10:pathogens10020199. [PMID: 33668492 PMCID: PMC7922946 DOI: 10.3390/pathogens10020199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterial pathogen and the causative agent of listeriosis, a severe foodborne infection. L. monocytogenes is notorious for its ability to persist in food processing environments (FPEs) via a variety of adaptive traits. Even though traits such as cold tolerance, biofilm formation and sanitizer resistance have been extensively investigated for their roles in persistence of L. monocytogenes in FPEs, much less is known about resistance to bacteriophages. Previous studies explored phage resistance mechanisms in laboratory-created mutants but it is imperative to investigate phage resistance that is naturally exhibited in FPE-derived strains. Here, we integrated the analysis of whole genome sequence data from a panel of serotype 1/2a strains of sequence types 321 and 391 from turkey processing plants, with the determination of cell surface substituents required for phage adsorption and phage infection assays with the four wide-host-range phages A511, P100, 20422-1 and 805405-1. Using a specific set of recombinant phage protein probes, we discovered that phage-resistant strains lacked one or both of the serogroup 1/2-specific wall teichoic acid carbohydrate decorations, N-acetylglucosamine and rhamnose. Furthermore, these phage-resistant strains harbored substitutions in lmo1080, lmo1081, and lmo2550, which mediate carbohydrate decoration of the wall teichoic acids.
Collapse
|