201
|
Tropini C, Moss EL, Merrill BD, Ng KM, Higginbottom SK, Casavant EP, Gonzalez CG, Fremin B, Bouley DM, Elias JE, Bhatt AS, Huang KC, Sonnenburg JL. Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota. Cell 2018; 173:1742-1754.e17. [PMID: 29906449 PMCID: PMC6061967 DOI: 10.1016/j.cell.2018.05.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/26/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
Osmotic diarrhea is a prevalent condition in humans caused by food intolerance, malabsorption, and widespread laxative use. Here, we assess the resilience of the gut ecosystem to osmotic perturbation at multiple length and timescales using mice as model hosts. Osmotic stress caused reproducible extinction of highly abundant taxa and expansion of less prevalent members in human and mouse microbiotas. Quantitative imaging revealed decimation of the mucus barrier during osmotic perturbation, followed by recovery. The immune system exhibited temporary changes in cytokine levels and a lasting IgG response against commensal bacteria. Increased osmolality prevented growth of commensal strains in vitro, revealing one mechanism contributing to extinction. Environmental availability of microbiota members mitigated extinction events, demonstrating how species reintroduction can affect community resilience. Our findings (1) demonstrate that even mild osmotic diarrhea can cause lasting changes to the microbiota and host and (2) lay the foundation for interventions that increase system-wide resilience.
Collapse
Affiliation(s)
- Carolina Tropini
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eli Lin Moss
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan Douglas Merrill
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katharine Michelle Ng
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Kyle Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ellen Pun Casavant
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Brayon Fremin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Donna Michelle Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua Eric Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ami Siddharth Bhatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Justin Laine Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
202
|
Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RIM, Cryan JF, Burnet PWJ. The Microbiome in Psychology and Cognitive Neuroscience. Trends Cogn Sci 2018; 22:611-636. [PMID: 29907531 DOI: 10.1016/j.tics.2018.04.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Psychology and microbiology make unlikely friends, but the past decade has witnessed striking bidirectional associations between intrinsic gut microbes and the brain, relationships with largely untested psychological implications. Although microbe-brain relationships are receiving a great deal of attention in biomedicine and neuroscience, psychologists have yet to join this journey. Here, we illustrate microbial associations with emotion, cognition, and social behavior. However, despite considerable enthusiasm and potential, technical and conceptual limitations including low statistical power and lack of mechanistic descriptions prevent a nuanced understanding of microbiome-brain-behavior relationships. Our goal is to describe microbial effects in domains of cognitive significance and the associated challenges to stimulate interdisciplinary research on the contribution of this hidden kingdom to psychological processes.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK; Trinity College, University of Cambridge, Cambridge, UK.
| | - Siobhán Harty
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | - Soili M Lehto
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Institute of Clinical Medicine / Psychiatry, University of Eastern Finland, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Andrew H Moeller
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - John F Cryan
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | | |
Collapse
|
203
|
Bouhajja H, Bougacha-Elleuch N, Lucas N, Legrand R, Marrakchi R, Kaveri SV, Jamoussi K, Ayadi H, Abid M, Mnif-Feki M, Fetissov SO. Affinity kinetics of leptin-reactive immunoglobulins are associated with plasma leptin and markers of obesity and diabetes. Nutr Diabetes 2018; 8:32. [PMID: 29795184 PMCID: PMC5966443 DOI: 10.1038/s41387-018-0044-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/22/2022] Open
Abstract
Obese subjects display elevated plasma levels of leptin reflecting the phenomenon of leptin resistance. Here, we aimed to determine whether leptin-reactive immunoglobulins (Ig) are present in obese and type 2 diabetes (T2D) patients and whether their plasma levels and affinity kinetics may correlate with obesity and diabetes markers. We show that leptin levels are increased in obese patients with and without T2D. Although mean plasma levels of leptin-reactive IgG were similar between study groups, IgG in obese non-diabetic patients had increased dissociation rate and lower affinity (increased dissociation equilibrium constant value; KD). In controls and diabetic patients, the association rates of leptin IgG correlated negatively with obesity and diabetes markers, respectively. In contrast, KD values correlated positively with plasma leptin levels and obesity traits in our cohort, and with diabetes markers in both the total cohort and in the obese T2D group. Taken together, our data reveal that leptin-reactive IgG are present in healthy subjects, obese, and diabetic patients but display altered affinity kinetics in obesity. Increased IgG binding to leptin in healthy subjects associated with lower body mass index (BMI) suggests an enhancing role of IgG in leptin signaling. Accordingly, a decreased affinity of IgG for leptin, found in obese patients, can be relevant to leptin resistance.
Collapse
Affiliation(s)
- Houda Bouhajja
- Unit of Obesity and Metabolic Syndrome, Department of Endocrinology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Noura Bougacha-Elleuch
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | | | | | - Rim Marrakchi
- Biochemistry Laboratory, Hedi Chaker Hospital, Sfax, Tunisia
| | - Srini V Kaveri
- Inserm UMRS 1138, Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France
| | - Kamel Jamoussi
- Biochemistry Laboratory, Hedi Chaker Hospital, Sfax, Tunisia
| | - Hammadi Ayadi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Mohamed Abid
- Unit of Obesity and Metabolic Syndrome, Department of Endocrinology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Mouna Mnif-Feki
- Unit of Obesity and Metabolic Syndrome, Department of Endocrinology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Sergueï O Fetissov
- Nutrition, Gut and Brain Laboratory, Inserm UMR1073, Rouen, France. .,Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Inserm UMR1239, Mont-Saint-Aignan, France. .,University of Rouen Normandy, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
| |
Collapse
|
204
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
205
|
Brown EG, Tanner CM, Goldman SM. The Microbiome in Neurodegenerative Disease. CURRENT GERIATRICS REPORTS 2018. [DOI: 10.1007/s13670-018-0240-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
206
|
Hankir MK, Seyfried F, Miras AD, Cowley MA. Brain Feeding Circuits after Roux-en-Y Gastric Bypass. Trends Endocrinol Metab 2018; 29:218-237. [PMID: 29475578 DOI: 10.1016/j.tem.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
Metabolic surgical procedures, such as Roux-en-Y gastric bypass (RYGB), uniquely reprogram feeding behavior and body weight in obese subjects. Clinical neuroimaging and animal studies are only now beginning to shed light on some of the underlying central mechanisms. We present here the roles of key brain neurotransmitter/neuromodulator systems in food choice, value, and intake at various stages after RYGB. In doing so, we elaborate on how known signals emanating from the reorganized gut, including peptide hormones and microbiota products, impinge on newly mapped homeostatic and hedonic brain feeding circuits. Continued progress in the rapidly evolving field of metabolic surgery will inform the design of more effective weight-loss compounds.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany; German Research Foundation Collaborative Research Center in Obesity Mechanisms, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Florian Seyfried
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Alexander D Miras
- Department of Investigative Science, Imperial College London Academic Healthcare Centre, London W12 0NN, UK
| | - Michael A Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
207
|
Curtis JT, Assefa S, Francis A, Köhler GA. Fecal microbiota in the female prairie vole (Microtus ochrogaster). PLoS One 2018; 13:e0190648. [PMID: 29579049 PMCID: PMC5868765 DOI: 10.1371/journal.pone.0190648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
We examined the fecal microbiota of female prairie voles. This species is socially and, likely, sexually monogamous, and thus serves as a valuable model in which to examine the interaction between the microbiota-gut-brain axis and social behavior. At present, little is known about the gastrointestinal microbiota of prairie voles; therefore, we performed a first characterization of the fecal microbiota using 16S rRNA gene amplicon sequencing. Semiconductor sequencing technology on an Ion Torrent PGM platform was used to assess the composition of fecal microbiotas from twelve female prairie voles. Following quality filtering, 1,017,756 sequencing reads were classified from phylum to genus level. At the phylum level, Firmicutes, Bacteroidetes, and Saccharibacteria were the predominant taxa, while the Bacteriodales, Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae contributed the most dominant microbial groups and genera. Microbial community membership was most similar between vole sibling pairs, but consideration of taxon abundances weakened these associations. The interdependence of host factors such as genetics and behavior with the gastrointestinal microbiota is likely to be particularly pronounced in prairie voles. Our pilot characterization of the prairie vole intestinal microbiota revealed a microbial community composition remarkably consistent with the monogastric alimentary system of these rodents and their diet rich in complex plant carbohydrates. The highly social nature of these animals poses specific challenges to microbiome analyses that nonetheless are valuable for advancing research on the microbiota-gut-brain-behavior axis. Our study provides an important basis for future microbiome research in this emerging model organism for studying social behavior.
Collapse
Affiliation(s)
- J. Thomas Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - Senait Assefa
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - Amie Francis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - Gerwald A. Köhler
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
208
|
Haas V, Stengel A, Mähler A, Gerlach G, Lehmann C, Boschmann M, de Zwaan M, Herpertz S. Metabolic Barriers to Weight Gain in Patients With Anorexia Nervosa: A Young Adult Case Report. Front Psychiatry 2018; 9:199. [PMID: 29867616 PMCID: PMC5968865 DOI: 10.3389/fpsyt.2018.00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022] Open
Abstract
Background: Over-proportionally high energy requirements in some patients with anorexia nervosa (AN) have been reported, but their exact origin remains unclear. Objective: To objectively measure metabolic alterations in an AN patient with high energy requirements as judged by clinical observation. Materials and Methods: We present the case of a young woman with AN (index patient, IP; 19 years, admission BMI 13.9 kg/m2). After 3 months of treatment at BMI 17.4 kg/m2, we assessed her resting energy expenditure (REE), respiratory exchange ratio (RER), diet-induced thermogenesis (DIT), seated non-exercise physical activity (NEPA in Volt by infrared sensors), and exercise activity thermogenesis (EAT) in a metabolic chamber; body composition (bioimpedance analysis), energy intake (15d-food protocol), physical activity (accelerometry) and endocrine parameters. The IP was compared for REE, RER, DIT and seated NEPA to six AN patients (AN-C) and four healthy women (HC-1), and for EAT to another six healthy women (HC-2). Results: Our IP showed high REE (110% of predicted REE according to Harris & Benedict) and high seated NEPA (47% increase over AN-C, 40% over HC-1), whereas DIT (IP: 78 vs. HC-1: 145 ± 51 kJ/180 min) and EAT (IP: 157 vs. HC-2: 235 ± 30 kJ/30 min) were low, when compared with HC. The other AN patients showed a lower REE (AN: 87 ± 2% vs. HC: 97 ± 2% predicted) at increased DIT (AN: 187 ± 91 vs. HC: 145 ± 51 kJ/180 min) when compared with HC. RER of the IP was low (IP: 0.72 vs. 0.77 in AN-C; 0.77 in HC-1 and 0.80 in HC-2). Conclusions: Complex and variable disturbances of energy metabolism might exist in a subgroup of patients with AN during refeeding, which could lead to unexpectedly high energy requirements. Future studies need to confirm the existence, and investigate the characteristics and prevalence of this subgroup. Clinical trial Registry number: NCT02087280, https://www.clinicaltrials.gov/.
Collapse
Affiliation(s)
- Verena Haas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Mähler
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Gerlach
- Department of Psychosomatic Medicine and Psychotherapy, LWL-Universitätsklinikum, Ruhr-Universität Bochum, Bochum, Germany
| | - Celine Lehmann
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Stephan Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL-Universitätsklinikum, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
209
|
Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol 2017; 200:203-217. [PMID: 29188341 DOI: 10.1007/s00203-017-1459-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Manoj Kumar Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
210
|
|
211
|
Li J, Riaz Rajoka MS, Shao D, Jiang C, Jin M, Huang Q, Yang H, Shi J. Strategies to increase the efficacy of using gut microbiota for the modulation of obesity. Obes Rev 2017; 18:1260-1271. [PMID: 28742949 DOI: 10.1111/obr.12590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/03/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
Abstract
Obesity is one of the most serious global public health challenges of the 21st century. The adjustment of gut microbiota is often recommended as an efficient strategy to treat obesity. This modulation of gut microbiota can be performed by many methods, including dietary intervention, antibiotic application, the use of prebiotics and probiotics, bariatric surgery and faecal microbiota transplantation. In most cases, positive effects have been observed in response to treatment, but invalid and even contrary effects have also been observed in some cases due to factors that are unrelated to intervention methods, such as genetic factors, patient age or gender, environmental microbiota, climate, geography and lifestyle. These factors can cause variation of gut microbial populations and thus should also be taken into consideration when selecting modulation strategies.
Collapse
Affiliation(s)
- J Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - M S Riaz Rajoka
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - D Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - C Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - M Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - Q Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - H Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - J Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| |
Collapse
|
212
|
Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N. The Role of the Gut Microbiota in Bile Acid Metabolism. Ann Hepatol 2017; 16 Suppl 1:S21-S26. [PMID: 31196631 DOI: 10.5604/01.3001.0010.5672] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 02/04/2023]
Abstract
The gut microbiota has been considered a cornerstone of maintaining the health status of its human host because it not only facilitates harvesting of nutrients and energy from ingested food, but also produces numerous metabolites that can regulate host metabolism. One such class of metabolites, the bile acids, are synthesized from cholesterol in the liver and further metabolized by the gut microbiota into secondary bile acids. These bioconversions modulate the signaling properties of bile acids through the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate diverse metabolic pathways in the host. In addition, bile acids can regulate gut microbial composition both directly and indirectly by activation of innate immune response genes in the small intestine. Therefore, host metabolism can be affected by both microbial modifications of bile acids, which leads to altered signaling via bile acid receptors, and by alterations in the composition of the microbiota. In this review, we mainly describe the interactions between bile acids and intestinal microbiota and their roles in regulating host metabolism, but we also examine the impact of bile acid composition in the gut on the intestinal microbiome and on host physiology.
Collapse
Affiliation(s)
| | - Vania Cruz-Ramón
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | | |
Collapse
|
213
|
Nguyen TTB, Jin YY, Chung HJ, Hong ST. Pharmabiotics as an Emerging Medication for Metabolic Syndrome and Its Related Diseases. Molecules 2017; 22:E1795. [PMID: 29064399 PMCID: PMC6151620 DOI: 10.3390/molecules22101795] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic risk factors associated with central obesity, hyperglycemia, insulin resistance, dyslipidemia and high blood pressure. In recent decades, because of the remarkable increase in both prevalence and severity, MetS and its related diseases such as cardiovascular diseases (CVDs), obesity, hypertension and diabetes have become the main global burden and challenge in strategic management involving prevention and treatment. However, currently, the preventions and treatments based on pharmaceutical interventions do not provide a solution for MetS and its related diseases. Recently, gut microbiota showed clear evidence of preventing and/or treating MetS, shedding light on treating MetS and its related diseases through a completely different approach. In this review, we will interpret the effects of current pharmaceutical drugs used in preventing and treating MetS and its related diseases to understand remaining issues of those interventions. We will explore the possibility of developing gut microbiota as pharmabiotics in a completely new medication option for treating MetS and its related diseases.
Collapse
Affiliation(s)
- Thi Thanh Binh Nguyen
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea.
| | - Yan Yan Jin
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea.
| | - Hea-Jong Chung
- Department of Microbiology, Seonam University Medical School, Namwon, Chonbuk 55321, Korea.
| | - Seong-Tschool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea.
| |
Collapse
|
214
|
Lerner A, Neidhöfer S, Matthias T. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists. Microorganisms 2017; 5:E66. [PMID: 29023380 PMCID: PMC5748575 DOI: 10.3390/microorganisms5040066] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Objectives: To comprehensively review the scientific knowledge on the gut-brain axis. Methods: Various publications on the gut-brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: "gut-brain axis", "gut-microbiota-brain axis", "nutrition microbiome/microbiota", "enteric nervous system", "enteric glial cells/network", "gut-brain pathways", "microbiome immune system", "microbiome neuroendocrine system" and "intestinal/gut/enteric neuropeptides". Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium-enteric nervous, endocrine and immune systems and the brain. The basis of the gut-brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons), the neuroendocrine-hypothalamic-pituitary-adrenal (HPA) axis (represented by the gut hormones), immune routes (represented by multiple cytokines), microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and therapeutic strategies to combat these disorders. Nutritional approaches, microbiome manipulations, enteric and brain barrier reinforcement and sensing and trafficking modulation might improve physical and mental health outcomes.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 3200003, Israel.
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Sandra Neidhöfer
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Torsten Matthias
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| |
Collapse
|
215
|
Nadal A, Quesada I, Tudurí E, Nogueiras R, Alonso-Magdalena P. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol 2017; 13:536-546. [PMID: 28524168 DOI: 10.1038/nrendo.2017.51] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.
Collapse
Affiliation(s)
- Angel Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| | - Ivan Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| | - Eva Tudurí
- Instituto de Investigaciones Sanitarias (IDIS), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Avda. Barcelona s/n, 15706 Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Instituto de Investigaciones Sanitarias (IDIS), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Avda. Barcelona s/n, 15706 Santiago de Compostela, Spain
- Department of Physiology, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela, Calle San Francisco s/n, 15706 Santiago de Compostela, Spain
| | - Paloma Alonso-Magdalena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| |
Collapse
|
216
|
Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2017; 2:747-756. [PMID: 28844808 DOI: 10.1016/s2468-1253(17)30147-4] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/16/2022]
Abstract
Changes in microbial diversity and composition are increasingly associated with several disease states including obesity and behavioural disorders. Obesity-associated microbiota alter host energy harvesting, insulin resistance, inflammation, and fat deposition. Additionally, intestinal microbiota can regulate metabolism, adiposity, homoeostasis, and energy balance as well as central appetite and food reward signalling, which together have crucial roles in obesity. Moreover, some strains of bacteria and their metabolites might target the brain directly via vagal stimulation or indirectly through immune-neuroendocrine mechanisms. Therefore, the gut microbiota is becoming a target for new anti-obesity therapies. Further investigations are needed to elucidate the intricate gut-microbiota-host relationship and the potential of gut-microbiota-targeted strategies, such as dietary interventions and faecal microbiota transplantation, as promising metabolic therapies that help patients to maintain a healthy weight throughout life.
Collapse
Affiliation(s)
| | - Harriët Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
217
|
Zhang Z, Li D, Refaey MM, Xu W. High Spatial and Temporal Variations of Microbial Community along the Southern Catfish Gastrointestinal Tract: Insights into Dynamic Food Digestion. Front Microbiol 2017; 8:1531. [PMID: 28848535 PMCID: PMC5552716 DOI: 10.3389/fmicb.2017.01531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
The fish intestinal microbiota is affected by dietary shifts or diet-related seasonal fluctuations making it highly variable and dynamic. It assists with the digestion and absorption of food that is a common, yet dynamic process. However, fundamental dynamics of microbial ecology associated with food digestion in intestine and stomach are poorly understood in fish. We selected the southern catfish, Silurus meridionalis, as the targeted species, owing to its foraging behavior with a large meal that can assure clear periodic rhythms in food digestion, to study spatial variations of the microbial community along the gastrointestinal (GI) tract. We further evaluated temporal microbial dynamics by collecting GI tract samples at time intervals 03, 12, and 24h after feeding. High-throughput sequencing results showed higher microbial diversity in the stomach than in the intestine and distinguishable community structures between stomach and intestine. Firmicutes were dominated by both Clostridium and unclassified Clostridiaceae, which was the most abundant taxon in the stomach, whereas Fusobacteria were dominated by Cetobacterium, which prevailed in the intestine. Firmicutes was significantly increased and Fusobacteria was decreased after feeding. Furthermore, inter-stomach microbial variability was greater than inter-intestine microbial variability. These results demonstrate that GI microbial assemblies are specific per anatomical site and are highly dynamic during food digestion, indicating that digestive status and/or sampling time are factors potentially influencing the microbial compositions. Furthermore, the finding of high spatial and temporal variations of the microbial community along the GI tract suggests limitations of single sampling regime to study food-derived microbial ecology.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural UniversityWuhan, China.,Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan, China
| | - Dapeng Li
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural UniversityWuhan, China.,Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan, China
| | - Mohamed M Refaey
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural UniversityWuhan, China.,Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan, China.,Department of Animal Production, Faculty of Agriculture, Mansoura UniversityAl-Mansoura, Egypt
| | - Weitong Xu
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural UniversityWuhan, China.,Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan, China
| |
Collapse
|
218
|
Wong ACN, Wang QP, Morimoto J, Senior AM, Lihoreau M, Neely GG, Simpson SJ, Ponton F. Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Curr Biol 2017; 27:2397-2404.e4. [PMID: 28756953 DOI: 10.1016/j.cub.2017.07.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
Abstract
The gut microbiota affects a wide spectrum of host physiological traits, including development [1-5], germline [6], immunity [7-9], nutrition [4, 10, 11], and longevity [12, 13]. Association with microbes also influences fitness-related behaviors such as mating [14] and social interactions [15, 16]. Although the gut microbiota is evidently important for host wellbeing, how hosts become associated with particular assemblages of microbes from the environment remains unclear. Here, we present evidence that the gut microbiota can modify microbial and nutritional preferences of Drosophila melanogaster. By experimentally manipulating the gut microbiota of flies subjected to behavioral and chemosensory assays, we found that fly-microbe attractions are shaped by the identity of the host microbiota. Conventional flies exhibit preference for their associated Lactobacillus, a behavior also present in axenic flies as adults and marginally as larvae. By contrast, fly preference for Acetobacter is primed by early-life exposure and can override the innate preference. These microbial preferences are largely olfactory guided and have profound impact on host foraging, as flies continuously trade off between acquiring beneficial microbes and balancing nutrients from food. Our study shows a role of animal microbiota in shaping host fitness-related behavior through their chemosensory responses, opening a research theme on the interrelationships between the microbiota, host sensory perception, and behavior.
Collapse
Affiliation(s)
- Adam Chun-Nin Wong
- Charles Perkins Centre and School of Life and Environmental Sciences, Johns Hopkins Drive, Camperdown, NSW 2006, Australia.
| | - Qiao-Ping Wang
- Charles Perkins Centre and School of Life and Environmental Sciences, Johns Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Juliano Morimoto
- Charles Perkins Centre and School of Life and Environmental Sciences, Johns Hopkins Drive, Camperdown, NSW 2006, Australia; Programa de Pós-Graduação em Ecologia e Conservação, Federal University of Paraná, Caixa Postal 19031, CEP 81531-990 Curitiba, Brazil
| | - Alistair M Senior
- Charles Perkins Centre and School of Life and Environmental Sciences, Johns Hopkins Drive, Camperdown, NSW 2006, Australia; The University of Sydney, School of Mathematics and Statistics, Eastern Ave, Camperdown, NSW 2006, Australia
| | - Mathieu Lihoreau
- Charles Perkins Centre and School of Life and Environmental Sciences, Johns Hopkins Drive, Camperdown, NSW 2006, Australia; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, Johns Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, Johns Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Fleur Ponton
- Charles Perkins Centre and School of Life and Environmental Sciences, Johns Hopkins Drive, Camperdown, NSW 2006, Australia; Department of Biological Sciences, 205A Culloden Road, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
219
|
Fetissov SO. [Involvement of gut bacteria in appetite control]. Biol Aujourdhui 2017; 211:29-37. [PMID: 28682225 DOI: 10.1051/jbio/2017007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 11/15/2022]
Abstract
Animals perceive alternating feelings of hunger and satiety, which constitute their daily rhythms of appetite and drive their feeding behavior. In humans, these rhythms include the onset of satiety about 20 min after meal ingestion and a duration of satiety of about 5 h followed by hunger, triggering food seeking and intake. Molecular mechanisms underlying such appetite cycles involve secretion of intestinal satiety hormones and corresponding activation of the brain anorexigenic and feeding reward pathways. Recent studies showed that gut bacteria can interfere with the host molecular mechanisms regulating appetite at both the intestinal and central sites. In particular, the stable growth dynamics of gut bacteria, determined by host-independent factors such as the time necessary for bacterial DNA replication and quorum sensing, coincide with the host appetite cycles. Integrating the bacterial biology into the host regulation of energy metabolism therefore appears as a new promising strategy to understand the control of appetite in normal and pathological conditions.
Collapse
|
220
|
Seidel DV, Azcárate-Peril MA, Chapkin RS, Turner ND. Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Semin Cancer Biol 2017; 46:191-204. [PMID: 28676459 DOI: 10.1016/j.semcancer.2017.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022]
Abstract
Colon cancer is a multifactorial disease associated with a variety of lifestyle factors. Alterations in the gut microbiota and the intestinal metabolome are noted during colon carcinogenesis, implicating them as critical contributors or results of the disease process. Diet is a known determinant of health, and as a modifier of the gut microbiota and its metabolism, a critical element in maintenance of intestinal health. This review summarizes recent evidence demonstrating the role and responses of the intestinal microbiota during colon tumorigenesis and the ability of dietary bioactive compounds and probiotics to impact colon health from the intestinal lumen to the epithelium and systemically. We first describe changes to the intestinal microbiome, metabolome, and epithelium associated with colon carcinogenesis. This is followed by a discussion of recent evidence indicating how specific classes of dietary bioactives, prebiotics, or probiotics affect colon carcinogenesis. Lastly, we briefly address the prospects of using multiple 'omics' techniques to integrate the effects of diet, host, and microbiota on colon tumorigenesis with the goal of more fully appreciating the interconnectedness of these systems and thus, how these approaches can be used to advance personalized nutrition strategies and nutrition research.
Collapse
Affiliation(s)
- Derek V Seidel
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| | - M Andrea Azcárate-Peril
- Department of Medicine GI Division, University of North Carolina, Chapel Hill, NC 27599-7555, USA.
| | - Robert S Chapkin
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| | - Nancy D Turner
- Nutrition and Food Science Department, and Faculty of Genetics, Texas A&M University, College Station, TX 77843-2253, USA.
| |
Collapse
|
221
|
Abstract
AbstractA better understanding of the factors that influence eating behaviour is of importance as our food choices are associated with the risk of developing chronic diseases such as obesity, CVD, type 2 diabetes or some forms of cancer. In addition, accumulating evidence suggests that the industrial food production system is a major contributor to greenhouse gas emission and may be unsustainable. Therefore, our food choices may also contribute to climate change. By identifying the factors that influence eating behaviour new interventions may be developed, at the individual or population level, to modify eating behaviour and contribute to society’s health and environmental goals. Research indicates that eating behaviour is dictated by a complex interaction between physiology, environment, psychology, culture, socio-economics and genetics that is not fully understood. While a growing body of research has identified how several single factors influence eating behaviour, a better understanding of how these factors interact is required to facilitate the developing new models of eating behaviour. Due to the diversity of influences on eating behaviour this would probably necessitate a greater focus on multi-disciplinary research. In the present review, the influence of several salient physiological and environmental factors (largely related to food characteristics) on meal initiation, satiation (meal size) and satiety (inter-meal interval) are briefly discussed. Due to the large literature this review is not exhaustive but illustrates the complexity of eating behaviour. The present review will also highlight several limitations that apply to eating behaviour research.
Collapse
|
222
|
Yang GT, Zhao HY, Kong Y, Sun NN, Dong AQ. Study of the effects of nesfatin-1 on gastric function in obese rats. World J Gastroenterol 2017; 23:2940-2947. [PMID: 28522911 PMCID: PMC5413788 DOI: 10.3748/wjg.v23.i16.2940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of nesfatin-1 on gastric function in obese rats.
METHODS The obese rat model was induced by a high-fat diet. The gastric emptying rate and gastric acid secretory capacity of the rats were determined after treatment with different drug concentrations of nesfatin-1 and administration routes. Based on this, the expression of H+/K+-ATPase was measured using RT-PCR and western blot to preliminarily explore the mechanism of gastric acid secretion changes.
RESULTS Body weight, body length, and Lee’s index of the rats significantly increased in the high-fat diet-induced obese rat model. Two hours after lateral intracerebroventricular injection of nesfatin-1, the gastric emptying rate and gastric acid secretory capacity of rats decreased. Four hours after injection, both were restored to normal levels. In addition, the expression of H+/K+-ATPase decreased and moved in line with changes in gastric acid secretory capacity. This in vivo experiment revealed that intracerebroventricular injection of nesfatin-1, rather than intravenous injection, could suppress gastric function in obese rats. Moreover, its effect on the gastric emptying and gastric acid secretory capacity of rats is dose-dependent within a certain period of time.
CONCLUSION Through this research, we provide a theoretical basis for further studies on nesfatin-1, a potential anti-obesity drug.
Collapse
|
223
|
Hume MP, Nicolucci AC, Reimer RA. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am J Clin Nutr 2017; 105:790-799. [PMID: 28228425 DOI: 10.3945/ajcn.116.140947] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/26/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Prebiotics have been shown to improve satiety in adults with overweight and obesity; however, studies in children are limited.Objective: We examined the effects of prebiotic supplementation on appetite control and energy intake in children with overweight and obesity.Design: This study was a randomized, double-blind, placebo-controlled trial. Forty-two boys and girls, ages 7-12 y, with a body mass index (BMI) of ≥85th percentile were randomly assigned to 8 g oligofructose-enriched inulin/d or placebo (maltodextrin) for 16 wk. Objective measures of appetite included energy intake at an ad libitum breakfast buffet, 3-d food records, and fasting satiety hormone concentrations. Subjective appetite ratings were obtained from visual analog scales before and after the breakfast. Children's Eating Behavior Questionnaires were also completed by caregivers.Results: Compared with placebo, prebiotic intake resulted in significantly higher feelings of fullness (P = 0.04) and lower prospective food consumption (P = 0.03) at the breakfast buffet at 16 wk compared with baseline. Compared with placebo, prebiotic supplementation significantly reduced energy intake at the week 16 breakfast buffet in 11- and 12-y-olds (P = 0.04) but not in 7- to 10-y-olds. Fasting adiponectin (P = 0.04) and ghrelin (P = 0.03) increased at 16 wk with the prebiotic compared with placebo. In intent-to-treat analysis, there was a trend for prebiotic supplementation to reduce BMI z score to a greater extent than placebo (-3.4%; P = 0.09) and a significant -3.8% reduction in per-protocol analysis (P = 0.043).Conclusions: Independent of other lifestyle changes, prebiotic supplementation in children with overweight and obesity improved subjective appetite ratings. This translated into reduced energy intake in a breakfast buffet in older but not in younger children. This simple dietary change has the potential to help with appetite regulation in children with obesity. This trial was registered at clinicaltrials.gov as NCT02125955.
Collapse
Affiliation(s)
| | | | - Raylene A Reimer
- Faculty of Kinesiology and .,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
224
|
Fetissov SO. [Hunger and satiety factors in the regulation of pleasure associated with feeding behavior]. Biol Aujourdhui 2017; 210:259-268. [PMID: 28327283 DOI: 10.1051/jbio/2016025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 11/14/2022]
Abstract
Feeding is an instinctive behavior accompanied by rewarding feeling of pleasure during obtaining and ingesting food, corresponding to the preparatory and consummatory phases of motivated behavior, respectively. Perception of this emotional state together with alternating feelings of hunger and satiety drives the feeding behavior. Because alterations of feeding behavior including either overeating or anorexia may lead to obesity and cachexia, respectively, understanding the neurochemical mechanisms of regulation of feeding pleasure may help to develop new therapies of these diseases. The dopamine (DA) system of the mesolimbic projections plays a key role in behavioral reward in general and is also involved in regulating feeding-associated pleasure in the forebrain including the nucleus accumbens (NAc) and the lateral hypothalamic area (LHA). It suggests that this DA system can be selectively activated by factors specific to different types of motivated behavior including hunger- and satiety- related hormones. Indeed, central administrations of either orexigenic ghrelin or anorexigenic α-melanocyte-stimulating hormone (α-MSH) increase DA release in the NAc. However, DA has also been shown to inhibit food intake when injected into the LHA, historically known as a « hunger center », indicating DA functional involvement in regulation of both appetite and feeding pleasure. Although both NAc and LHA contain neurons expressing melanocortin receptors, only the LHA receives the α-MSH containing nerve terminals from the α-MSH producing neurons of the hypothalamic arcuate nucleus, the main relay of the peripheral hunger and satiety signals to the brain. A recent study showed that α-MSH in the LHA enhances satiety and inhibits feeding pleasure while potently stimulating DA release in this area during both preparatory and consummatory phases of feeding. It suggests that altered signaling by α-MSH to the DA system in the LHA may be involved in the pathophysiology of obesity and anorexia and the possible underlying mechanisms are discussed.
Collapse
|
225
|
Lima-Ojeda JM, Rupprecht R, Baghai TC. "I Am I and My Bacterial Circumstances": Linking Gut Microbiome, Neurodevelopment, and Depression. Front Psychiatry 2017; 8:153. [PMID: 28878696 PMCID: PMC5572414 DOI: 10.3389/fpsyt.2017.00153] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract-or gut microbiota-are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental-diet, exposition to antibiotics, and infections-and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome-gut-brain (MGB) axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches.
Collapse
Affiliation(s)
- Juan M Lima-Ojeda
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas C Baghai
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
226
|
Fetissov SO, Lucas N, Legrand R. Ghrelin-Reactive Immunoglobulins in Conditions of Altered Appetite and Energy Balance. Front Endocrinol (Lausanne) 2017; 8:10. [PMID: 28191004 PMCID: PMC5269453 DOI: 10.3389/fendo.2017.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
Part of circulating ghrelin is bound to immunoglobulins (Ig) protecting it from degradation and preserving its functional activity. This review summarizes the data on ghrelin- and desacyl-ghrelin-reactive IgG in conditions of altered appetite and energy balance. Plasma levels and affinity kinetics of such IgG were compared in patients with obesity and anorexia nervosa (AN) and in animal models of obesity including ob/ob mice, high-fat diet-induced obese mice, and obese Zucker rats as well as in mice after chronic food restriction and activity-based anorexia and in rats with methotrexate-induced anorexia. We show that plasmatic IgG in both obese humans and animals are characterized by increased affinity for ghrelin. In contrast, patients with AN and anorectic rodents all show lower affinity of ghrelin- and desacyl-ghrelin-reactive IgG, respectively, the changes which were not observed in non-anorectic, chronically starved mice. We also show that affinity of ghrelin-reactive IgG correlate with plasma levels of ghrelin. These data point to common mechanisms underlying modifications of affinity kinetics properties of ghrelin-reactive IgG during chronic alterations of energy balance in humans and rodents and support a functional role of such autoantibodies in ghrelin-mediated regulation of appetite.
Collapse
Affiliation(s)
- Sergueï O. Fetissov
- INSERM UMR1073, Nutrition, Gut and Brain Laboratory, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Rouen, France
- *Correspondence: Sergueï O. Fetissov,
| | - Nicolas Lucas
- INSERM UMR1073, Nutrition, Gut and Brain Laboratory, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Rouen, France
| | - Romain Legrand
- INSERM UMR1073, Nutrition, Gut and Brain Laboratory, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Rouen, France
| |
Collapse
|
227
|
Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms. Front Endocrinol (Lausanne) 2017; 8:42. [PMID: 28337174 PMCID: PMC5340782 DOI: 10.3389/fendo.2017.00042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 12/29/2022] Open
Abstract
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases.
Collapse
Affiliation(s)
- Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Mauvoisin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- *Correspondence: Frédéric Gachon,
| |
Collapse
|
228
|
Increased affinity of ghrelin-reactive immunoglobulins in obese Zucker rats. Nutrition 2016; 39-40:98-99. [PMID: 28087223 DOI: 10.1016/j.nut.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
|