201
|
Li Q, Wang Y, Hu X, Zhang Y, Li H, Zhang Q, Cai W, Wang Z, Zhu B, Xu L, Gao X, Chen Y, Gao H, Li J, Zhang L. Transcriptional states and chromatin accessibility during bovine myoblasts proliferation and myogenic differentiation. Cell Prolif 2022; 55:e13219. [PMID: 35362202 PMCID: PMC9136495 DOI: 10.1111/cpr.13219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives Although major advances have been made in bovine epigenome study, the epigenetic basis for fetal skeletal muscle development still remains poorly understood. The aim is to recapitulated the time course of fetal skeletal muscle development in vitro, and explore the dynamic changes of chromatin accessibility and gene expression during bovine myoblasts proliferation and differentiation. Methods PDGFR‐ cells were isolated from bovine fetal skeletal muscle, then cultured and induced myogenic differentiation in vitro in a time‐course study (P, D0, D2,and D4). The assay for transposase‐accessible chromatin sequencing (ATAC‐seq) and RNA sequencing (RNA‐seq) were performed. Results Among the enriched transcriptional factors with high variability, we determined the effects of MAFF, ZNF384, and KLF6 in myogenesis using RNA interference (RNAi). In addition, we identified both stage‐specific genes and chromatin accessibility regions to reveal the sequential order of gene expression, transcriptional regulatory, and signal pathways involved in bovine skeletal muscle development. Further investigation integrating chromatin accessibility and transcriptome data was conducted to explore cis‐regulatory regions in line with gene expression. Moreover, we combined bovine GWAS results of growth traits with regulatory regions defined by chromatin accessibility, providing a suggestive means for a more precise annotation of genetic variants of bovine growth traits. Conclusion Overall, these findings provide valuable information for understanding the stepwise regulatory mechanisms in skeletal muscle development and conducting beef cattle genetic improvement programs.
Collapse
Affiliation(s)
- Qian Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yahui Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yapeng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongwei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wentao Cai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zezhao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xue Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lupei Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
202
|
Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J. Notch-dependent DNA cis-regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. Development 2022; 149:dev200332. [PMID: 35394007 PMCID: PMC9058496 DOI: 10.1242/dev.200332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
A long-standing biological question is how DNA cis-regulatory elements shape transcriptional patterns during metazoan development. Reporter constructs, cell culture assays and computational modeling have made major contributions to answering this question, but analysis of elements in their natural context is an important complement. Here, we mutate Notch-dependent LAG-1 binding sites (LBSs) in the endogenous Caenorhabditis elegans sygl-1 gene, which encodes a key stem cell regulator, and analyze the consequences on sygl-1 expression (nascent transcripts, mRNA, protein) and stem cell maintenance. Mutation of one LBS in a three-element cluster approximately halved both expression and stem cell pool size, whereas mutation of two LBSs essentially abolished them. Heterozygous LBS mutant clusters provided intermediate values. Our results lead to two major conclusions. First, both LBS number and configuration impact cluster activity: LBSs act additively in trans and synergistically in cis. Second, the SYGL-1 gradient promotes self-renewal above its functional threshold and triggers differentiation below the threshold. Our approach of coupling CRISPR/Cas9 LBS mutations with effects on both molecular and biological readouts establishes a powerful model for in vivo analyses of DNA cis-regulatory elements.
Collapse
Affiliation(s)
- Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| | - Mingyu Xue
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Cazza W. Czerniak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - ChangHwan Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| |
Collapse
|
203
|
Martinez-Ara M, Comoglio F, van Arensbergen J, van Steensel B. Systematic analysis of intrinsic enhancer-promoter compatibility in the mouse genome. Mol Cell 2022; 82:2519-2531.e6. [PMID: 35594855 PMCID: PMC9278412 DOI: 10.1016/j.molcel.2022.04.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Martinez-Ara
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Federico Comoglio
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Joris van Arensbergen
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
204
|
Ankill J, Aure MR, Bjørklund S, Langberg S, Kristensen VN, Vitelli V, Tekpli X, Fleischer T. Epigenetic alterations at distal enhancers are linked to proliferation in human breast cancer. NAR Cancer 2022; 4:zcac008. [PMID: 35350772 PMCID: PMC8947789 DOI: 10.1093/narcan/zcac008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Aberrant DNA methylation is an early event in breast carcinogenesis and plays a critical role in regulating gene expression. Here, we perform genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis through the integration of DNA methylation and gene expression to identify disease-driving pathways under epigenetic control. By grouping the emQTLs using biclustering we identify associations representing important biological processes associated with breast cancer pathogenesis including regulation of proliferation and tumor-infiltrating fibroblasts. We report genome-wide loss of enhancer methylation at binding sites of proliferation-driving transcription factors including CEBP-β, FOSL1, and FOSL2 with concomitant high expression of proliferation-related genes in aggressive breast tumors as we confirm with scRNA-seq. The identified emQTL-CpGs and genes were found connected through chromatin loops, indicating that proliferation in breast tumors is under epigenetic regulation by DNA methylation. Interestingly, the associations between enhancer methylation and proliferation-related gene expression were also observed within known subtypes of breast cancer, suggesting a common role of epigenetic regulation of proliferation. Taken together, we show that proliferation in breast cancer is linked to loss of methylation at specific enhancers and transcription factor binding and gene activation through chromatin looping.
Collapse
Affiliation(s)
- Jørgen Ankill
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Miriam Ragle Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sunniva Bjørklund
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Valeria Vitelli
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
205
|
Govorkova P, Candice Lam CK, Truong K. Design of Synthetic Mammalian Promoters Using Highly Palindromic Subsequences. ACS Synth Biol 2022; 11:1096-1105. [PMID: 35225601 DOI: 10.1021/acssynbio.1c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To express transgenes in specific cell types and states, promoters for endogenous genes are commonly created by truncating the sequence upstream of the transcriptional start site until the promoter is no longer functional. In this paper, we developed a method to design shorter synthetic mammalian promoters for endogenous genes by concatenating only its highly palindromic subsequences with a minimal core promoter. After developing metrics for palindromic density, analysis across all the human and mouse promoters showed higher palindromic density than expected by random. As experimental demonstrations, we applied the method to the CMV promoter (reduced to 432 nucleotides) and the mouse synapsin-1 promoter (383 nucleotides) to express fluorescent protein as reporters. Remarkably, the highly palindromic subsequences of these synthetic promoters contained sites important for strong constitutive expression and neuron-specific expression. As a resource to the community, we created enhancer sequences for all the human and mouse promoters.
Collapse
Affiliation(s)
- Polina Govorkova
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario M5S 3G4, Canada
| | - Chee Ka Candice Lam
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Kevin Truong
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario M5S 3G4, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
206
|
Amilpur S, Bhukya R. A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction. J Bioinform Comput Biol 2022; 20:2250005. [PMID: 35264081 DOI: 10.1142/s0219720022500056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enhancers are short regulatory DNA fragments that are bound with proteins called activators. They are free-bound and distant elements, which play a vital role in controlling gene expression. It is challenging to identify enhancers and their strength due to their dynamic nature. Although some machine learning methods exist to accelerate identification process, their prediction accuracy and efficiency will need more improvement. In this regard, we propose a two-layer prediction model with enhanced feature extraction strategy which does feature combination from improved position-specific amino acid propensity (PSTKNC) method along with Enhanced Nucleic Acid Composition (ENAC) and Composition of k-spaced Nucleic Acid Pairs (CKSNAP). The feature sets from all three feature extraction approaches were concatenated and then sent through a simple artificial neural network (ANN) to accurately identify enhancers in the first layer and their strength in the second layer. Experiments are conducted on benchmark chromatin nine cell lines dataset. A 10-fold cross validation method is employed to evaluate model's performance. The results show that the proposed model gives an outstanding performance with 94.50%, 0.8903 of accuracy and Matthew's correlation coefficient (MCC) in predicting enhancers and fairly does well with independent test also when compared with all other existing methods.
Collapse
Affiliation(s)
- Santhosh Amilpur
- Computer Science and Engineering, National Institute of Technology Warangal, Warangal Telangana 506004, India
| | - Raju Bhukya
- Computer Science and Engineering, National Institute of Technology Warangal, Warangal Telangana 506004, India
| |
Collapse
|
207
|
Shen T, Ni T, Chen J, Chen H, Ma X, Cao G, Wu T, Xie H, Zhou B, Wei G, Saiyin H, Shen S, Yu P, Xiao Q, Liu H, Gao Y, Long X, Yin J, Guo Y, Wu J, Wei GH, Hou J, Jiang DK. An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression. Nat Commun 2022; 13:1232. [PMID: 35264579 PMCID: PMC8907293 DOI: 10.1038/s41467-022-28861-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Most cancer causal variants are found in gene regulatory elements, e.g., enhancers. However, enhancer variants predisposing to hepatocellular carcinoma (HCC) remain unreported. Here we conduct a genome-wide survey of HCC-susceptible enhancer variants through a three-stage association study in 11,958 individuals and identify rs73613962 (T > G) within the intronic region of PRMT7 at 16q22.1 as a susceptibility locus of HCC (OR = 1.41, P = 6.02 × 10-10). An enhancer dual-luciferase assay indicates that the rs73613962-harboring region has allele-specific enhancer activity. CRISPR-Cas9/dCas9 experiments further support the enhancer activity of this region to regulate PRMT7 expression. Mechanistically, transcription factor HNF4A binds to this enhancer region, with preference to the risk allele G, to promote PRMT7 expression. PRMT7 upregulation contributes to in vitro, in vivo, and clinical HCC-associated phenotypes, possibly by affecting the p53 signaling pathway. This concept of HCC pathogenesis may open a promising window for HCC prevention/treatment.
Collapse
Affiliation(s)
- Ting Shen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.,School of Life Sciences, Central South University, 510006, Changsha, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-sen University, 528406, Shenzhen, China
| | - Xiaopin Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Naval Medical University, 200433, Shanghai, China
| | - Tianzhi Wu
- Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Peng Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Qianyi Xiao
- School of Public Health, Fudan University, 200032, Shanghai, China
| | - Hui Liu
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Guangzhou Medical University, 510182, Guangzhou, China
| | - Yuzheng Gao
- Department of Forensic Medicine, Medical College of Soochow University, 215123, Suzhou, Jiangsu Province, China
| | - Xidai Long
- Department of Pathology, Youjiang Medical College for Nationalities, 533000, Baise, Guangxi Province, China
| | - Jianhua Yin
- Department of Epidemiology, Naval Medical University, 200433, Shanghai, China
| | - Yanfang Guo
- Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
208
|
Galouzis CC, Furlong EEM. Regulating specificity in enhancer-promoter communication. Curr Opin Cell Biol 2022; 75:102065. [PMID: 35240372 DOI: 10.1016/j.ceb.2022.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Enhancers are cis-regulatory elements that can activate transcription remotely to regulate a specific pattern of a gene's expression. Genes typically have many enhancers that are often intermingled in the loci of other genes. To regulate expression, enhancers must therefore activate their correct promoter while ignoring others that may be in closer linear proximity. In this review, we discuss mechanisms by which enhancers engage with promoters, including recent findings on the role of cohesin and the Mediator complex, and how this specificity in enhancer-promoter communication is encoded. Genetic dissection of model loci, in addition to more recent findings using genome-wide approaches, highlight the core promoter sequence, its accessibility, cofactor-promoter preference, in addition to the surrounding genomic context, as key components.
Collapse
Affiliation(s)
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| |
Collapse
|
209
|
He N, Wang W, Fang C, Tan Y, Li L, Hou C. Integration of Count Difference and Curve Similarity in Negative Regulatory Element Detection. Front Genet 2022; 13:818344. [PMID: 35251128 PMCID: PMC8896116 DOI: 10.3389/fgene.2022.818344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Negative regulatory elements (NREs) down-regulate gene expression by inhibiting the activities of promoters or enhancers. The repressing activity of NREs can be measured globally by massively parallel reporter assays (MPRAs). However, most existing algorithms are designed for the statistical detection of positively enriched signals in MPRA datasets. To identify reduced signals in MPRA experiments, we designed a NRE identification program, fast-NR, by integrating the count and graphic features of sequenced reads to detect NREs using datasets generated by experiments of self-transcribing active regulatory region sequencing (STARR-seq). Fast-NR identified hundreds of silencers in human K562 cells that can be validated by independent methods.
Collapse
Affiliation(s)
- Na He
- Harbin Institute of Technology, Harbin, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Chunhui Hou, ; Na He,
| | - Wenjing Wang
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chao Fang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao, China
| | - Yongjian Tan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Li Li
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Chunhui Hou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Chunhui Hou, ; Na He,
| |
Collapse
|
210
|
iEnhancer-Deep: A Computational Predictor for Enhancer Sites and Their Strength Using Deep Learning. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhancers are short motifs that contain high position variability and free scattering. Identifying these non-coding DNA fragments and their strength is vital because they play an important role in the control of gene regulation. Enhancer identification is more complicated than other genetic factors due to free scattering and their very high amount of locational variation. To classify this biological difficulty, several computational tools in bioinformatics have been created over the last few years as current learning models are still lacking. To overcome these limitations, we introduce iEnhancer-Deep, a deep learning-based framework that uses One-Hot Encoding and a convolutional neural network for model construction, primarily for the identification of enhancers and secondarily for the classification of their strength. Parallels between the iEnhancer-Deep and existing state-of-the-art methodologies were drawn to evaluate the performance of the proposed model. Furthermore, a cross-species test was carried out to assess the generalizability of the proposed model. In general, the results show that the proposed model produced comparable results with the state-of-the-art models.
Collapse
|
211
|
Gao Y, Feng C, Zhang Y, Song C, Chen J, Li Y, Wei L, Qian F, Ai B, Liu Y, Zhu J, Su X, Li C, Wang Q. TRmir: A Comprehensive Resource for Human Transcriptional Regulatory Information of MiRNAs. Front Genet 2022; 13:808950. [PMID: 35186035 PMCID: PMC8854293 DOI: 10.3389/fgene.2022.808950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which play important roles in regulating various biological functions. Many available miRNA databases have provided a large number of valuable resources for miRNA investigation. However, not all existing databases provide comprehensive information regarding the transcriptional regulatory regions of miRNAs, especially typical enhancer, super-enhancer (SE), and chromatin accessibility regions. An increasing number of studies have shown that the transcriptional regulatory regions of miRNAs, as well as related single-nucleotide polymorphisms (SNPs) and transcription factors (TFs) have a strong influence on human diseases and biological processes. Here, we developed a comprehensive database for the human transcriptional regulation of miRNAs (TRmir), which is focused on providing a wealth of available resources regarding the transcriptional regulatory regions of miRNAs and annotating their potential roles in the regulation of miRNAs. TRmir contained a total of 5,754,414 typical enhancers/SEs and 1,733,966 chromatin accessibility regions associated with 1,684 human miRNAs. These regions were identified from over 900 human H3K27ac ChIP-seq, ATAC-seq, and DNase-seq samples. Furthermore, TRmir provided detailed (epi)genetic information about the transcriptional regulatory regions of miRNAs, including TFs, common SNPs, risk SNPs, linkage disequilibrium (LD) SNPs, expression quantitative trait loci (eQTLs), 3D chromatin interactions, and methylation sites, especially supporting the display of TF binding sites in the regulatory regions of over 7,000 TF ChIP-seq samples. In addition, TRmir integrated miRNA expression and related disease information, supporting extensive pathway analysis. TRmir is a powerful platform that offers comprehensive information about the transcriptional regulation of miRNAs for users and provides detailed annotations of regulatory regions. TRmir is free for academic users and can be accessed at http://bio.liclab.net/trmir/index.html.
Collapse
Affiliation(s)
- Yu Gao
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Chenchen Feng
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Yuexin Zhang
- School of Medical Informatics, Harbin Medical University, Daqing, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Daqing, China
| | - Chao Song
- School of Medical Informatics, Harbin Medical University, Daqing, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Daqing, China
| | - Jiaxin Chen
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Yanyu Li
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Ling Wei
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Fengcui Qian
- School of Medical Informatics, Harbin Medical University, Daqing, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Daqing, China
| | - Bo Ai
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Yuejuan Liu
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Jiang Zhu
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Xiaojie Su
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
- *Correspondence: Xiaojie Su, ; Chunquan Li, ; Qiuyu Wang,
| | - Chunquan Li
- School of Medical Informatics, Harbin Medical University, Daqing, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Daqing, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
- School of Computer, University of South China, Hengyang, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
- *Correspondence: Xiaojie Su, ; Chunquan Li, ; Qiuyu Wang,
| | - Qiuyu Wang
- School of Medical Informatics, Harbin Medical University, Daqing, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Daqing, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
- School of Computer, University of South China, Hengyang, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, China
- *Correspondence: Xiaojie Su, ; Chunquan Li, ; Qiuyu Wang,
| |
Collapse
|
212
|
Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. THE PLANT CELL 2022; 34:718-741. [PMID: 34918159 PMCID: PMC8824567 DOI: 10.1093/plcell/koab281] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 05/19/2023]
Abstract
The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
213
|
Finding and Verifying Enhancers for Endothelial-Expressed Genes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:351-368. [PMID: 35099751 DOI: 10.1007/978-1-0716-2059-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Identification and analysis of enhancers for endothelial-expressed genes can provide crucial information regarding their upstream transcriptional regulators. However, enhancer identification can be challenging, particularly for people with limited access or experience of bioinformatics, and transgenic analysis of enhancer activity patterns can be prohibitively expensive. Here we describe how to use publicly available datasets displayed on the UCSC Genome Browser to identify putative endothelial enhancers for mammalian genes. Furthermore, we detail how to utilize mosaic Tol2-mediated transgenesis in zebrafish to verify whether a putative enhancer is capable of directing endothelial-specific patterns of gene expression.
Collapse
|
214
|
MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genet 2022; 18:e1010037. [PMID: 35113858 PMCID: PMC8846524 DOI: 10.1371/journal.pgen.1010037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects. Gene expression and regulation are associated with adaptive evolution in living organisms. The rapid evolution of insect resistance to Bt insecticidal Cry toxins is frequently associated with reduced expression of diverse midgut genes that code for Cry-toxin receptors. Nonetheless, our current knowledge about the regulation of gene expression of these pivotal receptor genes in insects is limited. Membrane-bound alkaline phosphatase (mALP) is a known receptor for Cry1Ac toxin in diverse insects and here, we report the transcriptional regulatory mechanism of the PxmALP gene related to Cry1Ac resistance in P. xylostella. We identified a MAPK signaling pathway that negatively regulates the PxGATAd transcriptional factor which is involved in the differential expression of PxmALP via interacting with the PxmALP promoter. Furthermore, a cis-acting element mutation repressing the regulatory activity of PxGATAd for PxmALP expression in the Cry1Ac resistant strain was identified. Our study provides an insight into the precise transcriptional regulatory mechanism that regulates PxmALP expression and is involved in the evolution of Bt Cry1Ac resistance in P. xylostella, which provides a paradigm for decoding the regulation landscape of midgut Cry-toxin receptor genes in insects.
Collapse
|
215
|
Maderazo D, Flegg JA, Algama M, Ramialison M, Keith J. Detection and identification of cis-regulatory elements using change-point and classification algorithms. BMC Genomics 2022; 23:78. [PMID: 35078412 PMCID: PMC8790847 DOI: 10.1186/s12864-021-08190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptional regulation is primarily mediated by the binding of factors to non-coding regions in DNA. Identification of these binding regions enhances understanding of tissue formation and potentially facilitates the development of gene therapies. However, successful identification of binding regions is made difficult by the lack of a universal biological code for their characterisation. RESULTS We extend an alignment-based method, changept, and identify clusters of biological significance, through ontology and de novo motif analysis. Further, we apply a Bayesian method to estimate and combine binary classifiers on the clusters we identify to produce a better performing composite. CONCLUSIONS The analysis we describe provides a computational method for identification of conserved binding sites in the human genome and facilitates an alternative interrogation of combinations of existing data sets with alignment data.
Collapse
Affiliation(s)
- Dominic Maderazo
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Manjula Algama
- School of Mathematics, Monash University, Melbourne, 3800, VIC, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Melbourne, 3800, VIC, Australia
| | - Jonathan Keith
- School of Mathematics, Monash University, Melbourne, 3800, VIC, Australia
| |
Collapse
|
216
|
Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol 2022; 23:389-406. [DOI: 10.1038/s41580-021-00447-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
|
217
|
Epigenome guided crop improvement: current progress and future opportunities. Emerg Top Life Sci 2022; 6:141-151. [PMID: 35072210 PMCID: PMC9023013 DOI: 10.1042/etls20210258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Epigenomics encompasses a broad field of study, including the investigation of chromatin states, chromatin modifications and their impact on gene regulation; as well as the phenomena of epigenetic inheritance. The epigenome is a multi-modal layer of information superimposed on DNA sequences, instructing their usage in gene expression. As such, it is an emerging focus of efforts to improve crop performance. Broadly, this might be divided into avenues that leverage chromatin information to better annotate and decode plant genomes, and into complementary strategies that aim to identify and select for heritable epialleles that control crop traits independent of underlying genotype. In this review, we focus on the first approach, which we term ‘epigenome guided’ improvement. This encompasses the use of chromatin profiles to enhance our understanding of the composition and structure of complex crop genomes. We discuss the current progress and future prospects towards integrating this epigenomic information into crop improvement strategies; in particular for CRISPR/Cas9 gene editing and precision genome engineering. We also highlight some specific opportunities and challenges for grain and horticultural crops.
Collapse
|
218
|
Brown LJ, Achinger-Kawecka J, Portman N, Clark S, Stirzaker C, Lim E. Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers (Basel) 2022; 14:474. [PMID: 35158742 PMCID: PMC8833457 DOI: 10.3390/cancers14030474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic therapies remain a promising, but still not widely used, approach in the management of patients with cancer. To date, the efficacy and use of epigenetic therapies has been demonstrated primarily in the management of haematological malignancies, with limited supportive data in solid malignancies. The most studied epigenetic therapies in breast cancer are those that target DNA methylation and histone modification; however, none have been approved for routine clinical use. The majority of pre-clinical and clinical studies have focused on triple negative breast cancer (TNBC) and hormone-receptor positive breast cancer. Even though the use of epigenetic therapies alone in the treatment of breast cancer has not shown significant clinical benefit, these therapies show most promise in use in combinations with other treatments. With improving technologies available to study the epigenetic landscape in cancer, novel epigenetic alterations are increasingly being identified as potential biomarkers of response to conventional and epigenetic therapies. In this review, we describe epigenetic targets and potential epigenetic biomarkers in breast cancer, with a focus on clinical trials of epigenetic therapies. We describe alterations to the epigenetic landscape in breast cancer and in treatment resistance, highlighting mechanisms and potential targets for epigenetic therapies. We provide an updated review on epigenetic therapies in the pre-clinical and clinical setting in breast cancer, with a focus on potential real-world applications. Finally, we report on the potential value of epigenetic biomarkers in diagnosis, prognosis and prediction of response to therapy, to guide and inform the clinical management of breast cancer patients.
Collapse
Affiliation(s)
- Lauren Julia Brown
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Susan Clark
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
219
|
Takeda T, Yokoyama Y, Takahashi H, Okuzaki D, Asai K, Itakura H, Miyoshi N, Kobayashi S, Uemura M, Fujita T, Ueno H, Mori M, Doki Y, Fujii H, Eguchi H, Yamamoto H. A stem cell marker KLF5 regulates CCAT1 via three-dimensional genome structure in colorectal cancer cells. Br J Cancer 2022; 126:109-119. [PMID: 34707247 PMCID: PMC8727571 DOI: 10.1038/s41416-021-01579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND KLF5 plays a crucial role in stem cells of colorectum in cooperation with Lgr5 gene. In this study, we aimed to explicate a regulatory mechanism of the KLF5 gene product from a view of three-dimensional genome structure in colorectal cancer (CRC). METHODS In vitro engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP)-seq method was used to identify the regions that bind to the KLF5 promoter. RESULTS We revealed that the KLF5 promoter region interacted with the KLF5 enhancer region as well as the transcription start site (TSS) region of the Colon Cancer Associated Transcript 1 (CCAT1) gene. Notably, the heterodeletion mutants of KLF5 enhancer impaired the cancer stem-like properties of CRC cells. The KLF5 protein participated in the core-regulatory circuitry together with co-factors (BRD4, MED1, and RAD21), which constructs the three-dimensional genome structures consisting of KLF5 promoter, enhancer and CCAT1 TSS region. In vitro analysis indicated that KLF5 regulated CCAT1 expression and we found that CCAT1 expression was highly correlated with KLF5 expression in CRC clinical samples. CONCLUSIONS Our data propose the mechanistic insight that the KLF5 protein constructs the core-regulatory circuitry with co-factors in the three-dimensional genome structure and coordinately regulates KLF5 and CCAT1 expression in CRC.
Collapse
Affiliation(s)
- Takashi Takeda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaho Asai
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Itakura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Masaki Mori
- School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
220
|
Bakoulis S, Krautz R, Alcaraz N, Salvatore M, Andersson R. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2111-2127. [PMID: 35166831 PMCID: PMC8887488 DOI: 10.1093/nar/gkac088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Nicolas Alcaraz
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marco Salvatore
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robin Andersson
- To whom correspondence should be addressed. Tel: +45 35330245;
| |
Collapse
|
221
|
Abstract
The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.
Collapse
|
222
|
Kinouchi K, Miyashita K, Itoh H. Chromatin Immunoprecipitation and Circadian Rhythms. Methods Mol Biol 2022; 2482:341-351. [PMID: 35610438 DOI: 10.1007/978-1-0716-2249-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organisms exhibit daily changes of physiology and behavior to exert homeostatic adaptations to day-night cycles. The cyclic fluctuation also takes place at transcriptional levels, giving rise to rhythmic gene expression. Central to this oscillatory transcription is the core clock machinery which constitutes a circuit of transcriptional-translational feedback and achieves circadian functions accordingly. Chromatin immunoprecipitation provides understanding of such mechanisms that clock and non-clock transcription factors along with co-regulators and chromatin modifications dictate circadian epigenome through cyclic alterations of chromatin structures and molecular functions in a concerted fashion. Besides, innovation of high-throughput sequencing technology has broadened our horizon and renewed perspectives in circadian research. This article summarizes the methodology of a chromatin immunoprecipitation experiment in light of circadian rhythm research.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Kazutoshi Miyashita
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
223
|
Huang P, Zhang B, Zhao J, Li MD. Integrating the Epigenome and Transcriptome of Hepatocellular Carcinoma to Identify Systematic Enhancer Aberrations and Establish an Aberrant Enhancer-Related Prognostic Signature. Front Cell Dev Biol 2022; 10:827657. [PMID: 35300417 PMCID: PMC8921559 DOI: 10.3389/fcell.2022.827657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Recently, emerging evidence has indicated that aberrant enhancers, especially super-enhancers, play pivotal roles in the transcriptional reprogramming of multiple cancers, including hepatocellular carcinoma (HCC). In this study, we performed integrative analyses of ChIP-seq, RNA-seq, and whole-genome bisulfite sequencing (WGBS) data to identify intergenic differentially expressed enhancers (DEEs) and genic differentially methylated enhancers (DMEs), along with their associated differentially expressed genes (DEE/DME-DEGs), both of which were also identified in independent cohorts and further confirmed by HiC data. Functional enrichment and prognostic model construction were conducted to explore the functions and clinical significance of the identified enhancer aberrations. We identified a total of 2,051 aberrant enhancer-associated DEGs (AE-DEGs), which were highly concurrent in multiple HCC datasets. The enrichment results indicated the significant overrepresentations of crucial biological processes and pathways implicated in cancer among these AE-DEGs. A six AE-DEG-based prognostic signature, whose ability to predict the overall survival of HCC was superior to that of both clinical phenotypes and previously published similar prognostic signatures, was established and validated in TCGA-LIHC and ICGC-LIRI cohorts, respectively. In summary, our integrative analysis depicted a landscape of aberrant enhancers and associated transcriptional dysregulation in HCC and established an aberrant enhancer-derived prognostic signature with excellent predictive accuracy, which might be beneficial for the future development of epigenetic therapy for HCC.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
- *Correspondence: Ming D. Li,
| |
Collapse
|
224
|
Sriram K, Luo Y, Yuan D, Malhi NK, Tapia A, Samara VA, Natarajan R, Bouman Chen Z. Vascular Regulation by Super Enhancer-Derived LINC00607. Front Cardiovasc Med 2022; 9:881916. [PMID: 35837599 PMCID: PMC9274098 DOI: 10.3389/fcvm.2022.881916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 01/28/2023] Open
Abstract
Vascular endothelial cells (ECs) play a pivotal role in whole body homeostasis. Recent advances have revealed enhancer-associated long non-coding RNAs (lncRNAs) as essential regulators in EC function. We investigated LINC00607, a super enhancer-derived lncRNA (SE-lncRNA) in human arteries with an emphasis on ECs. Based on public databases and our single cell RNA-sequencing (scRNA-seq) data from human arteries collected from healthy and diabetic donors, we found that LINC00607 is abundantly expressed in the arteries and its level is increased in diabetic humans. Using RNA-sequencing, we characterized the transcriptomes regulated by LINC00607 in ECs and vascular smooth muscle cells (VSMCs) and in basal and diabetic conditions in ECs. Furthermore, through transcriptomic and promoter analysis, we identified c-Myc as an upstream transcription factor of LINC00607. Finally, using scRNA-seq, we demonstrated that modified antisense oligonucleotide inhibitor of LINC00607 can reverse dysfunctional changes induced by high glucose and TNFα in ECs. Collectively, our study demonstrates a multi-pronged approach to characterize LINC00607 in vascular cells and its gene regulatory networks in ECs and VSMCs. Our findings provide new insights into the regulation and function of SE-derived lncRNAs in both vascular homeostasis and dysfunction in a cell-type and context-dependent manner, which could have a significant impact on our understanding of epigenetic regulation implicated in cardiovascular health and diseases like diabetes.
Collapse
Affiliation(s)
- Kiran Sriram
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Yingjun Luo
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, United States
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, United States
| | - Alonso Tapia
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Vishnu Amaram Samara
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Rama Natarajan
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
- *Correspondence: Zhen Bouman Chen
| |
Collapse
|
225
|
Golimbet V, Kostyuk G. Genotype — phenotype relationships in view of recent advances in the understanding of genetic causes of schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:20-25. [DOI: 10.17116/jnevro202212201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
226
|
Wu LY, Shang GD, Wang FX, Gao J, Wan MC, Xu ZG, Wang JW. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev Cell 2022; 57:526-542.e7. [DOI: 10.1016/j.devcel.2021.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
|
227
|
Hawe JS, Wilson R, Schmid KT, Zhou L, Lakshmanan LN, Lehne BC, Kühnel B, Scott WR, Wielscher M, Yew YW, Baumbach C, Lee DP, Marouli E, Bernard M, Pfeiffer L, Matías-García PR, Autio MI, Bourgeois S, Herder C, Karhunen V, Meitinger T, Prokisch H, Rathmann W, Roden M, Sebert S, Shin J, Strauch K, Zhang W, Tan WLW, Hauck SM, Merl-Pham J, Grallert H, Barbosa EGV, Illig T, Peters A, Paus T, Pausova Z, Deloukas P, Foo RSY, Jarvelin MR, Kooner JS, Loh M, Heinig M, Gieger C, Waldenberger M, Chambers JC. Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function. Nat Genet 2022; 54:18-29. [PMID: 34980917 PMCID: PMC7617265 DOI: 10.1038/s41588-021-00969-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
We determined the relationships between DNA sequence variation and DNA methylation using blood samples from 3,799 Europeans and 3,195 South Asians. We identify 11,165,559 SNP-CpG associations (methylation quantitative trait loci (meQTL), P < 10-14), including 467,915 meQTL that operate in trans. The meQTL are enriched for functionally relevant characteristics, including shared chromatin state, High-throuhgput chromosome conformation interaction, and association with gene expression, metabolic variation and clinical traits. We use molecular interaction and colocalization analyses to identify multiple nuclear regulatory pathways linking meQTL loci to phenotypic variation, including UBASH3B (body mass index), NFKBIE (rheumatoid arthritis), MGA (blood pressure) and COMMD7 (white cell counts). For rs6511961 , chromatin immunoprecipitation followed by sequencing (ChIP-seq) validates zinc finger protein (ZNF)333 as the likely trans acting effector protein. Finally, we used interaction analyses to identify population- and lineage-specific meQTL, including rs174548 in FADS1, with the strongest effect in CD8+ T cells, thus linking fatty acid metabolism with immune dysregulation and asthma. Our study advances understanding of the potential pathways linking genetic variation to human phenotype.
Collapse
Affiliation(s)
- Johann S Hawe
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching bei München, Germany
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Katharina T Schmid
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching bei München, Germany
| | - Li Zhou
- Lee Kong Chian School of Medicine, Singapore, Singapore
| | | | - Benjamin C Lehne
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Brigitte Kühnel
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - William R Scott
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Yik Weng Yew
- Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Clemens Baumbach
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | | | - Eirini Marouli
- Centre for Genomic Health, Queen Mary University of London, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manon Bernard
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Liliane Pfeiffer
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Matias I Autio
- Genome Institute of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Health Systems, National University of Singapore, Singapore, Singapore
| | - Stephane Bourgeois
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christian Herder
- German Center for Diabetes Research (DZD), partner site Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), partner site Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), partner site Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sylvain Sebert
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department for Genomics of Common Diseases, School of Public Health, Imperial College London, London, UK
| | - Jean Shin
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Konstantin Strauch
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Southall, UK
| | | | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Eudes G V Barbosa
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Hannover, Germany
| | - Tomas Paus
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Canada
| | - Zdenka Pausova
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Panos Deloukas
- Centre for Genomic Health, Queen Mary University of London, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Roger S Y Foo
- Genome Institute of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Health Systems, National University of Singapore, Singapore, Singapore
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Jaspal S Kooner
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Marie Loh
- Lee Kong Chian School of Medicine, Singapore, Singapore.
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
| | - Matthias Heinig
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany.
- Department of Informatics, Technical University of Munich, Garching bei München, Germany.
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Hannover, Germany.
| | - John C Chambers
- Lee Kong Chian School of Medicine, Singapore, Singapore.
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
| |
Collapse
|
228
|
Dahlqvist J, Fulco CP, Ray JP, Liechti T, de Boer CG, Lieb DJ, Eisenhaure TM, Engreitz JM, Roederer M, Hacohen N. Systematic identification of genomic elements that regulate FCGR2A expression and harbor variants linked with autoimmune disease. Hum Mol Genet 2021; 31:1946-1961. [PMID: 34970970 PMCID: PMC9239749 DOI: 10.1093/hmg/ddab372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND FCGR2A binds antibody-antigen complexes to regulate the abundance of circulating and deposited complexes along with downstream immune and autoimmune responses. Although the abundance of FCRG2A may be critical in immune-mediated diseases, little is known about whether its surface expression is regulated through cis genomic elements and non-coding variants. In the current study, we aimed to characterize the regulation of FCGR2A expression, the impact of genetic variation and its association with autoimmune disease. METHODS We applied CRISPR-based interference and editing to scrutinize 1.7 Mb of open chromatin surrounding the FCGR2A gene to identify regulatory elements. Relevant transcription factors (TFs) binding to these regions were defined through public databases. Genetic variants affecting regulation were identified using luciferase reporter assays and were verified in a cohort of 1996 genotyped healthy individuals using flow cytometry. RESULTS We identified a complex proximal region and five distal enhancers regulating FCGR2A. The proximal region split into subregions upstream and downstream of the transcription start site, was enriched in binding of inflammation-regulated TFs, and harbored a variant associated with FCGR2A expression in primary myeloid cells. One distal enhancer region was occupied by CCCTC-binding factor (CTCF) whose binding site was disrupted by a rare genetic variant, altering gene expression. CONCLUSIONS The FCGR2A gene is regulated by multiple proximal and distal genomic regions, with links to autoimmune disease. These findings may open up novel therapeutic avenues where fine-tuning of FCGR2A levels may constitute a part of treatment strategies for immune-mediated diseases.
Collapse
Affiliation(s)
- Johanna Dahlqvist
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Charles P Fulco
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA,Bristol Myers Squibb, Cambridge, MA 02142, USA
| | - John P Ray
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20814, USA
| | - Carl G de Boer
- Klarman Cell Observatory, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David J Lieb
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Thomas M Eisenhaure
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Jesse M Engreitz
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20814, USA
| | - Nir Hacohen
- To whom correspondence should be addressed at: The Broad Institute of MIT and Harvard University, 415 Main Street, Cambridge, MA 02142, USA. Tel: +1 6177147234, Fax: +1 6177148956;
| |
Collapse
|
229
|
Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells. BMC Genomics 2021; 22:901. [PMID: 34915843 PMCID: PMC8675486 DOI: 10.1186/s12864-021-08224-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Satellite cells are the myogenic precursor cells in adult skeletal muscle. The objective of this study was to identify enhancers and transcription factors that regulate gene expression during the differentiation of bovine satellite cells into myotubes. RESULTS Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) was performed to identify genomic regions where lysine 27 of H3 histone is acetylated (H3K27ac), i.e., active enhancers, from bovine satellite cells before and during differentiation into myotubes. A total of 19,027 and 47,669 H3K27ac-marked enhancers were consistently identified from two biological replicates of before- and during-differentiation bovine satellite cells, respectively. Of these enhancers, 5882 were specific to before-differentiation, 35,723 to during-differentiation, and 13,199 common to before- and during-differentiation bovine satellite cells. Whereas most of the before- or during-differentiation-specific H3K27ac-marked enhancers were located distally to the transcription start site, the enhancers common to before- and during-differentiation were located both distally and proximally to the transcription start site. The three sets of H3K27ac-marked enhancers were associated with functionally different genes and enriched with different transcription factor binding sites. Specifically, many of the H3K27ac-marked enhancers specific to during-differentiation bovine satellite cells were associated with genes involved in muscle structure and development, and were enriched with binding sites for the MyoD, AP-1, KLF, TEAD, and MEF2 families of transcription factors. A positive role was validated for Fos and FosB, two AP-1 family transcription factors, in the differentiation of bovine satellite cells into myotubes by siRNA-mediated knockdown. CONCLUSIONS Tens of thousands of H3K27ac-marked active enhancers have been identified from bovine satellite cells before or during differentiation. These enhancers contain binding sites not only for transcription factors whose role in satellite cell differentiation is well known but also for transcription factors whose role in satellite cell differentiation is unknown. These enhancers and transcription factors are valuable resources for understanding the complex mechanism that mediates gene expression during satellite cell differentiation. Because satellite cell differentiation is a key step in skeletal muscle growth, the enhancers, the transcription factors, and their target genes identified in this study are also valuable resources for identifying and interpreting skeletal muscle trait-associated DNA variants in cattle.
Collapse
|
230
|
Romanov SE, Kalashnikova DA, Laktionov PP. Methods of massive parallel reporter assays for investigation of enhancers. Vavilovskii Zhurnal Genet Selektsii 2021; 25:344-355. [PMID: 34901731 PMCID: PMC8627875 DOI: 10.18699/vj21.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/19/2022] Open
Abstract
The correct deployment of genetic programs for development and differentiation relies on finely coordinated regulation of specific gene sets. Genomic regulatory elements play an exceptional role in this process. There are few types of gene regulatory elements, including promoters, enhancers, insulators and silencers. Alterations of gene regulatory elements may cause various pathologies, including cancer, congenital disorders and autoimmune diseases. The development of high-throughput genomic assays has made it possible to significantly accelerate the accumulation of information about the characteristic epigenetic properties of regulatory elements. In combination with high-throughput studies focused on the genome-wide distribution of epigenetic marks, regulatory proteins and the spatial structure of chromatin, this significantly expands the understanding of the principles of epigenetic regulation of genes and allows potential regulatory elements to be searched for in silico. However, common experimental approaches used to study the local characteristics of chromatin have a number of technical limitations that may reduce the reliability of computational identification of genomic regulatory sequences. Taking into account the variability of the functions of epigenetic determinants and complex multicomponent regulation of genomic elements activity, their functional verification is often required. A plethora of methods have been developed to study the functional role of regulatory elements on the genome scale. Common experimental approaches for in silico identification of regulatory elements and their inherent technical limitations will be described. The present review is focused on original high-throughput methods of enhancer activity reporter analysis that are currently used to validate predicted regulatory elements and to perform de novo searches. The methods described allow assessing the functional role of the nucleotide sequence of a regulatory element, to determine its exact boundaries and to assess the influence of the local state of chromatin on the activity of enhancers and gene expression. These approaches have contributed substantially to the understanding of the fundamental principles of gene regulation.
Collapse
Affiliation(s)
- S E Romanov
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| | - D A Kalashnikova
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| | - P P Laktionov
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| |
Collapse
|
231
|
Constructing gene regulatory networks using epigenetic data. NPJ Syst Biol Appl 2021; 7:45. [PMID: 34887443 PMCID: PMC8660777 DOI: 10.1038/s41540-021-00208-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The biological processes that drive cellular function can be represented by a complex network of interactions between regulators (transcription factors) and their targets (genes). A cell's epigenetic state plays an important role in mediating these interactions, primarily by influencing chromatin accessibility. However, how to effectively use epigenetic data when constructing a gene regulatory network remains an open question. Almost all existing network reconstruction approaches focus on estimating transcription factor to gene connections using transcriptomic data. In contrast, computational approaches for analyzing epigenetic data generally focus on improving transcription factor binding site predictions rather than deducing regulatory network relationships. We bridged this gap by developing SPIDER, a network reconstruction approach that incorporates epigenetic data into a message-passing framework to estimate gene regulatory networks. We validated SPIDER's predictions using ChIP-seq data from ENCODE and found that SPIDER networks are both highly accurate and include cell-line-specific regulatory interactions. Notably, SPIDER can recover ChIP-seq verified transcription factor binding events in the regulatory regions of genes that do not have a corresponding sequence motif. The networks estimated by SPIDER have the potential to identify novel hypotheses that will allow us to better characterize cell-type and phenotype specific regulatory mechanisms.
Collapse
|
232
|
Pavlova A, Harrisson KA, Turakulov R, Lee YP, Ingram BA, Gilligan D, Sunnucks P, Gan HM. Labile sex chromosomes in the Australian freshwater fish family Percichthyidae. Mol Ecol Resour 2021; 22:1639-1655. [PMID: 34863023 DOI: 10.1111/1755-0998.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022]
Abstract
Sex-specific ecology has management implications, but rapid sex-chromosome turnover in fishes hinders sex-marker development for monomorphic species. We used annotated genomes and reduced-representation sequencing data for two Australian percichthyids, Macquarie perch Macquaria australasica and golden perch M. ambigua, and whole genome resequencing for 50 Macquarie perch of each sex, to identify sex-linked loci and develop an affordable sexing assay. In silico pool-seq tests of 1,492,004 Macquarie perch SNPs revealed that a 275-kb scaffold was enriched for gametologous loci. Within this scaffold, 22 loci were sex-linked in a predominantly XY system, with females being homozygous for the X-linked allele at all 22, and males having the Y-linked allele at >7. Seven XY-gametologous loci (all males, but no females, are heterozygous or homozygous for the male-specific allele) were within a 146-bp region. A PCR-RFLP sexing assay targeting one Y-linked SNP, tested in 66 known-sex Macquarie perch and two of each sex of three confamilial species, plus amplicon sequencing of 400 bp encompassing the 146-bp region, revealed that the few sex-linked positions differ between species and between Macquarie perch populations. This indicates sex-chromosome lability in Percichthyidae, supported by nonhomologous scaffolds containing sex-linked loci for Macquarie- and golden perches. The present resources facilitate genomic research in Percichthyidae, including formulation of hypotheses about candidate genes of interest such as transcription factor SOX1b that occurs in the 275-kb scaffold ~38 kb downstream of the 146-bp region containing seven XY-gametologous loci. Sex-linked markers will be useful for determining genetic sex in some populations and studying sex chromosome turnover.
Collapse
Affiliation(s)
- Alexandra Pavlova
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Katherine A Harrisson
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Vic., Australia.,Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Vic., Australia
| | - Rustam Turakulov
- Division of Ecology and Evolution, RSB, Australian National University, Acton, ACT, Australia
| | - Yin Peng Lee
- School of Life and Environmental Sciences, Deakin University, Geelong, Vic., Australia.,Deakin Genomics Centre, Deakin University, Geelong, Vic., Australia
| | | | - Dean Gilligan
- Freshwater Ecosystems Research, New South Wales Department of Primary Industries - Fisheries, Batemans Bay, NSW, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Han Ming Gan
- School of Life and Environmental Sciences, Deakin University, Geelong, Vic., Australia.,Deakin Genomics Centre, Deakin University, Geelong, Vic., Australia.,GeneSEQ Sdn Bhd, Rawang, Malaysia
| |
Collapse
|
233
|
Glaser LV, Steiger M, Fuchs A, van Bömmel A, Einfeldt E, Chung HR, Vingron M, Meijsing SH. Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq. Nucleic Acids Res 2021; 49:12178-12195. [PMID: 34850108 PMCID: PMC8643627 DOI: 10.1093/nar/gkab1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Embryonic stem cells (ESCs) can differentiate into any given cell type and therefore represent a versatile model to study the link between gene regulation and differentiation. To quantitatively assess the dynamics of enhancer activity during the early stages of murine ESC differentiation, we analyzed accessible genomic regions using STARR-seq, a massively parallel reporter assay. This resulted in a genome-wide quantitative map of active mESC enhancers, in pluripotency and during the early stages of differentiation. We find that only a minority of accessible regions is active and that such regions are enriched near promoters, characterized by specific chromatin marks, enriched for distinct sequence motifs, and modeling shows that active regions can be predicted from sequence alone. Regions that change their activity upon retinoic acid-induced differentiation are more prevalent at distal intergenic regions when compared to constitutively active enhancers. Further, analysis of differentially active enhancers verified the contribution of individual TF motifs toward activity and inducibility as well as their role in regulating endogenous genes. Notably, the activity of retinoic acid receptor alpha (RARα) occupied regions can either increase or decrease upon the addition of its ligand, retinoic acid, with the direction of the change correlating with spacing and orientation of the RARα consensus motif and the co-occurrence of additional sequence motifs. Together, our genome-wide enhancer activity map elucidates features associated with enhancer activity levels, identifies regulatory regions disregarded by computational prediction tools, and provides a resource for future studies into regulatory elements in mESCs.
Collapse
Affiliation(s)
- Laura V Glaser
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Mara Steiger
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alisa Fuchs
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Alena van Bömmel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Edda Einfeldt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ho-Ryun Chung
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35037 Marburg, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| |
Collapse
|
234
|
Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, Qiu Y, Li YE, Gaulton KJ, Wang A, Preissl S, Ren B. A single-cell atlas of chromatin accessibility in the human genome. Cell 2021; 184:5985-6001.e19. [PMID: 34774128 PMCID: PMC8664161 DOI: 10.1016/j.cell.2021.10.024] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue types from multiple donors. We integrated these datasets with previous single-cell chromatin accessibility data from 15 fetal tissue types to reveal the status of open chromatin for ∼1.2 million candidate cis-regulatory elements (cCREs) in 222 distinct cell types comprised of >1.3 million nuclei. We used these chromatin accessibility maps to delineate cell-type-specificity of fetal and adult human cCREs and to systematically interpret the noncoding variants associated with complex human traits and diseases. This rich resource provides a foundation for the analysis of gene regulatory programs in human cell types across tissues, life stages, and organ systems.
Collapse
Affiliation(s)
- Kai Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - James D Hocker
- Ludwig Institute for Cancer Research, La Jolla, CA, USA; Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Xiaomeng Hou
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Olivier B Poirion
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yang E Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA; Center for Epigenomics, University of California San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
235
|
Kim D, An H, Fan C, Park Y. Identifying oligodendrocyte enhancers governing Plp1 expression. Hum Mol Genet 2021; 30:2225-2239. [PMID: 34230963 PMCID: PMC8600034 DOI: 10.1093/hmg/ddab184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes (OLs) produce myelin in the central nervous system (CNS), which accelerates the propagation of action potentials and supports axonal integrity. As a major component of CNS myelin, proteolipid protein 1 (Plp1) is indispensable for the axon-supportive function of myelin. Notably, this function requires the continuous high-level expression of Plp1 in OLs. Equally important is the controlled expression of Plp1, as illustrated by Pelizaeus-Merzbacher disease for which the most common cause is PLP1 overexpression. Despite a decade-long search, promoter-distal OL enhancers that govern Plp1 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Plp1, uncovering two OL enhancers for it (termed Plp1-E1 and Plp1-E2). Remarkably, clustered regularly interspaced short palindromic repeats (CRISPR) interference epigenome editing showed that Plp1-E1 and Plp1-E2 do not regulate two genes in their vicinity, highlighting their exquisite specificity to Plp1. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) data show that Plp1-E1 and Plp1-E2 are OL-specific enhancers that are conserved among human, mouse and rat. Hi-C data reveal that the physical interactions between Plp1-E1/2 and PLP1 are among the strongest in OLs and specific to OLs. We also show that Myrf, a master regulator of OL development, acts on Plp1-E1 and Plp1-E2 to promote Plp1 expression.
Collapse
Affiliation(s)
- Dongkyeong Kim
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Hongjoo An
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Chuandong Fan
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Yungki Park
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
236
|
Fang W, Liao C, Shi R, Simon JM, Ptacek TS, Zurlo G, Ye Y, Han L, Fan C, Bao L, Ortiz CL, Lin HR, Manocha U, Luo W, Peng Y, Kim WY, Yang LW, Zhang Q. ZHX2 promotes HIF1α oncogenic signaling in triple-negative breast cancer. eLife 2021; 10:e70412. [PMID: 34779768 PMCID: PMC8673836 DOI: 10.7554/elife.70412] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease, which warrants the critical need to identify new therapeutic targets. We show that Zinc Fingers and Homeoboxes 2 (ZHX2) is amplified or overexpressed in TNBC cell lines and patients. Functionally, depletion of ZHX2 inhibited TNBC cell growth and invasion in vitro, orthotopic tumor growth, and spontaneous lung metastasis in vivo. Mechanistically, ZHX2 bound with hypoxia-inducible factor (HIF) family members and positively regulated HIF1α activity in TNBC. Integrated ChIP-seq and gene expression profiling demonstrated that ZHX2 co-occupied with HIF1α on transcriptionally active promoters marked by H3K4me3 and H3K27ac, thereby promoting gene expression. Among the identified ZHX2 and HIF1α coregulated genes, overexpression of AP2B1, COX20, KDM3A, or PTGES3L could partially rescue TNBC cell growth defect by ZHX2 depletion, suggested that these downstream targets contribute to the oncogenic role of ZHX2 in an accumulative fashion. Furthermore, multiple residues (R491, R581, and R674) on ZHX2 are important in regulating its phenotype, which correspond with their roles on controlling ZHX2 transcriptional activity in TNBC cells. These studies establish that ZHX2 activates oncogenic HIF1α signaling, therefore serving as a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Wentong Fang
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Lineberger Comprehensive Cancer Center, University of North Carolina School of MedicineChapel hillUnited States
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Rachel Shi
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of MedicineChapel hillUnited States
- Department of Genetics, Neuroscience Center; University of North Carolina School of MedicineChapel HillUnited States
| | - Travis S Ptacek
- Lineberger Comprehensive Cancer Center, University of North Carolina School of MedicineChapel hillUnited States
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
| | - Giada Zurlo
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Youqiong Ye
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonUnited States
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of MedicineChapel hillUnited States
| | - Lei Bao
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Christopher Llynard Ortiz
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchuTaiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of ChemistryAcademia SinicaTaiwan
- Department of Chemistry, National Tsing-Hua UniversityHsinchuTaiwan
| | - Hong-Rui Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchuTaiwan
| | - Ujjawal Manocha
- Lineberger Comprehensive Cancer Center, University of North Carolina School of MedicineChapel hillUnited States
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical CenterDallasUnited States
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina School of MedicineChapel hillUnited States
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchuTaiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of ChemistryAcademia SinicaTaiwan
- Physics Division, National Center for Theoretical SciencesHsinchuTaiwan
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
237
|
Li QL, Lin X, Yu YL, Chen L, Hu QX, Chen M, Cao N, Zhao C, Wang CY, Huang CW, Li LY, Ye M, Wu M. Genome-wide profiling in colorectal cancer identifies PHF19 and TBC1D16 as oncogenic super enhancers. Nat Commun 2021; 12:6407. [PMID: 34737287 PMCID: PMC8568941 DOI: 10.1038/s41467-021-26600-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is one of the most common cancers in the world. Although genomic mutations and single nucleotide polymorphisms have been extensively studied, the epigenomic status in colorectal cancer patient tissues remains elusive. Here, together with genomic and transcriptomic analysis, we use ChIP-Seq to profile active enhancers at the genome wide level in colorectal cancer paired patient tissues (tumor and adjacent tissues from the same patients). In total, we sequence 73 pairs of colorectal cancer tissues and generate 147 H3K27ac ChIP-Seq, 144 RNA-Seq, 147 whole genome sequencing and 86 H3K4me3 ChIP-Seq samples. Our analysis identifies 5590 gain and 1100 lost variant enhancer loci in colorectal cancer, and 334 gain and 121 lost variant super enhancer loci. Multiple key transcription factors in colorectal cancer are predicted with motif analysis and core regulatory circuitry analysis. Further experiments verify the function of the super enhancers governing PHF19 and TBC1D16 in regulating colorectal cancer tumorigenesis, and KLF3 is identified as an oncogenic transcription factor in colorectal cancer. Taken together, our work provides an important epigenomic resource and functional factors for epigenetic studies in colorectal cancer.
Collapse
Affiliation(s)
- Qing-Lan Li
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiang Lin
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ya-Li Yu
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lin Chen
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qi-Xin Hu
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Meng Chen
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Nan Cao
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cheng-Wei Huang
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Mei Ye
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
238
|
Diedrich JD, Dong Q, Ferguson DC, Bergeron BP, Autry RJ, Qian M, Yang W, Smith C, Papizan JB, Connelly JP, Hagiwara K, Crews KR, Pruett-Miller SM, Pui CH, Yang JJ, Relling MV, Evans WE, Savic D. Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia identifies subtype-specific chromatin landscapes and gene regulatory networks. Leukemia 2021; 35:3078-3091. [PMID: 33714976 PMCID: PMC8435544 DOI: 10.1038/s41375-021-01209-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/03/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematopoietic malignancy comprised of molecular subtypes largely characterized by aneuploidy or recurring chromosomal rearrangements. Despite extensive information on the ALL transcriptome and methylome, there is limited understanding of the ALL chromatin landscape. We therefore mapped accessible chromatin in 24 primary ALL cell biospecimens comprising three common molecular subtypes (DUX4/ERG, ETV6-RUNX1 and hyperdiploid) from patients treated at St. Jude Children's Research Hospital. Our findings highlight extensive chromatin reprogramming in ALL, including the identification ALL subtype-specific chromatin landscapes that are additionally modulated by genetic variation. Chromatin accessibility differences between ALL and normal B-cells implicate the activation of B-cell repressed chromatin domains and detail the disruption of normal B-cell development in ALL. Among ALL subtypes, we uncovered roles for basic helix-loop-helix, homeodomain and activator protein 1 transcription factors in promoting subtype-specific chromatin accessibility and distinct gene regulatory networks. In addition to chromatin subtype-specificity, we further identified over 3500 DNA sequence variants that alter the ALL chromatin landscape and contribute to inter-individual variability in chromatin accessibility. Collectively, our data suggest that subtype-specific chromatin landscapes and gene regulatory networks impact ALL biology and contribute to transcriptomic differences among ALL subtypes.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Dong
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brennan P Bergeron
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Maoxiang Qian
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James B Papizan
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
239
|
Zhang G, Yu T, Zhang Q, Zhang H, Xiao M, Cui S, Zhao Y, Lu X. Malignant transformation of human bronchial epithelial cells induced by benzo [a] pyrene suggests a negative feedback of TP53 to PPP1R13L via binding a possible enhancer element. Chem Biol Interact 2021; 349:109683. [PMID: 34610339 DOI: 10.1016/j.cbi.2021.109683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that PPP1R13L as an inhibitor of apoptosis protease TP53 can lead to abnormal cell proliferation and carcinogenesis, however, the function of PPP1R13L was complicated and the interaction between TP53 and PPP1R13L needs to be further explored. In the present study, a malignant transformation model of human bronchial epithelial cells induced by benzo (a) pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) was established to observe the regulatory patterns between TP53 and PPP1R13L during carcinogenesis. In vitro experiments including CRISPR-Cas9 editing, RNA silence, Co-Immunoprecipitation and Chromatin Immunoprecipitation were applied to discuss their interactive effects. Additionally, TCGA data profile and our clinical samples of lung cancer were also used to analyze their relationship at the transcriptome level. Interestingly, we found that the mRNA and protein level of TP53 and PPP1R13L fluctuated as a wave in BPDE-induced malignant transformation under wild-type TP53 genetic background. Our results have also demonstrated that PPP1R13L acts as an inhibitor of TP53, while TP53 can regulate PPP1R13L via binding a possible enhancer of the first intron of PPP1R13L gene. Likewise, TCGA data and clinical samples have identified that in the case of TP53 mutation, TP53 expression was negatively correlated with PPP1R13L, while in the case of TP53 wild-type, TP53 expression was not correlated with PPP1R13L. It suggested that there existed a negative feedback of wild-type TP53 to PPP1R13L, which reminded a unique implication during chemical carcinogenesis.
Collapse
Affiliation(s)
- Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tao Yu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Qianye Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Hongchao Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Su Cui
- Dept. of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yue Zhao
- Dept. of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
240
|
Nair VD, Vasoya M, Nair V, Smith GR, Pincas H, Ge Y, Douglas CM, Esser KA, Sealfon SC. Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Genomics 2021; 113:3827-3841. [PMID: 34547403 DOI: 10.1016/j.ygeno.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Chromatin accessibility is a key factor influencing gene expression. We optimized the Omni-ATAC-seq protocol and used it together with RNA-seq to investigate cis-regulatory elements in rat white adipose and skeletal muscle, two tissues with contrasting metabolic functions. While promoter accessibility correlated with RNA expression, integration of the two datasets identified tissue-specific differentially accessible regions (DARs) that predominantly localized in intergenic and intron regions. DARs were mapped to differentially expressed (DE) genes enriched in distinct biological processes in each tissue. Randomly selected DE genes were validated by qPCR. Top enriched motifs in DARs predicted binding sites for transcription factors (TFs) showing tissue-specific up-regulation. The correlation between differential chromatin accessibility at a given TF binding motif and differential expression of target genes further supported the functional relevance of that motif. Our study identified cis-regulatory regions that likely play a major role in the regulation of tissue-specific gene expression in adipose and muscle.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishnu Nair
- Department of Computer Sciences, Columbia University, New York, NY 10027, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
241
|
Srinivasan C, Phan BN, Lawler AJ, Ramamurthy E, Kleyman M, Brown AR, Kaplow IM, Wirthlin ME, Pfenning AR. Addiction-Associated Genetic Variants Implicate Brain Cell Type- and Region-Specific Cis-Regulatory Elements in Addiction Neurobiology. J Neurosci 2021; 41:9008-9030. [PMID: 34462306 PMCID: PMC8549541 DOI: 10.1523/jneurosci.2534-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/18/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
Recent large genome-wide association studies have identified multiple confident risk loci linked to addiction-associated behavioral traits. Most genetic variants linked to addiction-associated traits lie in noncoding regions of the genome, likely disrupting cis-regulatory element (CRE) function. CREs tend to be highly cell type-specific and may contribute to the functional development of the neural circuits underlying addiction. Yet, a systematic approach for predicting the impact of risk variants on the CREs of specific cell populations is lacking. To dissect the cell types and brain regions underlying addiction-associated traits, we applied stratified linkage disequilibrium score regression to compare genome-wide association studies to genomic regions collected from human and mouse assays for open chromatin, which is associated with CRE activity. We found enrichment of addiction-associated variants in putative CREs marked by open chromatin in neuronal (NeuN+) nuclei collected from multiple prefrontal cortical areas and striatal regions known to play major roles in reward and addiction. To further dissect the cell type-specific basis of addiction-associated traits, we also identified enrichments in human orthologs of open chromatin regions of female and male mouse neuronal subtypes: cortical excitatory, D1, D2, and PV. Last, we developed machine learning models to predict mouse cell type-specific open chromatin, enabling us to further categorize human NeuN+ open chromatin regions into cortical excitatory or striatal D1 and D2 neurons and predict the functional impact of addiction-associated genetic variants. Our results suggest that different neuronal subtypes within the reward system play distinct roles in the variety of traits that contribute to addiction.SIGNIFICANCE STATEMENT We combine statistical genetic and machine learning techniques to find that the predisposition to for nicotine, alcohol, and cannabis use behaviors can be partially explained by genetic variants in conserved regulatory elements within specific brain regions and neuronal subtypes of the reward system. Our computational framework can flexibly integrate open chromatin data across species to screen for putative causal variants in a cell type- and tissue-specific manner for numerous complex traits.
Collapse
Affiliation(s)
- Chaitanya Srinivasan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - BaDoi N Phan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Alyssa J Lawler
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Easwaran Ramamurthy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Michael Kleyman
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Ashley R Brown
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Irene M Kaplow
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Morgan E Wirthlin
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Andreas R Pfenning
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
242
|
Dai Z, Li R, Hou Y, Li Q, Zhao K, Li T, Li MJ, Wu X. Inducible CRISPRa screen identifies putative enhancers. J Genet Genomics 2021; 48:917-927. [PMID: 34531148 DOI: 10.1016/j.jgg.2021.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022]
Abstract
Enhancers are critical cis-regulatory elements that regulate spatiotemporal gene expression and control cell fates. However, the identification of enhancers in native cellular contexts still remains a challenge. Here, we develop an inducible CRISPR activation (CRISPRa) system by transgenic expression of doxycycline (Dox)-inducible dCas9-VPR in mouse embryonic stem cells (iVPR ESC). With this line, a simple introduction of specific guide RNAs targeting promoters or enhancers allows us to realize the effect of CRISPRa in an inducible, reversible, and Dox concentration-dependent manner. Taking advantage of this system, we induce tiled CRISPRa across genomic regions (105 kilobases) surrounding T (Brachyury), one of the key mesodermal development regulator genes. Moreover, we identify several CRISPRa-responsive elements with chromatin features of putative enhancers, including a region the homologous sequence in which humans harbors a body height risk variant. Genetic deletion of this region in ESC does affect subsequent T gene activation and osteogenic differentiation. Therefore, our inducible CRISPRa ESC line provides a convenient platform for high-throughput screens of putative enhancers.
Collapse
Affiliation(s)
- Zhongye Dai
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuying Hou
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- Department of Pharmacology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin 300450, China.
| |
Collapse
|
243
|
Liang Y, Zhang S, Qiao H, Cheng Y. iEnhancer-MFGBDT: Identifying enhancers and their strength by fusing multiple features and gradient boosting decision tree. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8797-8814. [PMID: 34814323 DOI: 10.3934/mbe.2021434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhancer is a non-coding DNA fragment that can be bound with proteins to activate transcription of a gene, hence play an important role in regulating gene expression. Enhancer identification is very challenging and more complicated than other genetic factors due to their position variation and free scattering. In addition, it has been proved that genetic variation in enhancers is related to human diseases. Therefore, identification of enhancers and their strength has important biological meaning. In this paper, a novel model named iEnhancer-MFGBDT is developed to identify enhancer and their strength by fusing multiple features and gradient boosting decision tree (GBDT). Multiple features include k-mer and reverse complement k-mer nucleotide composition based on DNA sequence, and second-order moving average, normalized Moreau-Broto auto-cross correlation and Moran auto-cross correlation based on dinucleotide physical structural property matrix. Then we use GBDT to select features and perform classification successively. The accuracies reach 78.67% and 66.04% for identifying enhancers and their strength on the benchmark dataset, respectively. Compared with other models, the results show that our model is useful and effective intelligent tool to identify enhancers and their strength, of which the datasets and source codes are available at https://github.com/shengli0201/iEnhancer-MFGBDT1.
Collapse
Affiliation(s)
- Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| | - Huijuan Qiao
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| | - Yinan Cheng
- Department of Statistics, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
244
|
Wang H, Huang B, Wang J. Predict long-range enhancer regulation based on protein-protein interactions between transcription factors. Nucleic Acids Res 2021; 49:10347-10368. [PMID: 34570239 PMCID: PMC8501976 DOI: 10.1093/nar/gkab841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Long-range regulation by distal enhancers plays critical roles in cell-type specific transcriptional programs. Computational predictions of genome-wide enhancer-promoter interactions are still challenging due to limited accuracy and the lack of knowledge on the molecular mechanisms. Based on recent biological investigations, the protein-protein interactions (PPIs) between transcription factors (TFs) have been found to participate in the regulation of chromatin loops. Therefore, we developed a novel predictive model for cell-type specific enhancer-promoter interactions by leveraging the information of TF PPI signatures. Evaluated by a series of rigorous performance comparisons, the new model achieves superior performance over other methods. The model also identifies specific TF PPIs that may mediate long-range regulatory interactions, revealing new mechanistic understandings of enhancer regulation. The prioritized TF PPIs are associated with genes in distinct biological pathways, and the predicted enhancer-promoter interactions are strongly enriched with cis-eQTLs. Most interestingly, the model discovers enhancer-mediated trans-regulatory links between TFs and genes, which are significantly enriched with trans-eQTLs. The new predictive model, along with the genome-wide analyses, provides a platform to systematically delineate the complex interplay among TFs, enhancers and genes in long-range regulation. The novel predictions also lead to mechanistic interpretations of eQTLs to decode the genetic associations with gene expression.
Collapse
Affiliation(s)
- Hao Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, 428 S. Shaw Ln., East Lansing, MI 48824, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, 428 S. Shaw Ln., East Lansing, MI 48824, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, 428 S. Shaw Ln., East Lansing, MI 48824, USA
| |
Collapse
|
245
|
Atlas G, Sreenivasan R, Sinclair A. Targeting the Non-Coding Genome for the Diagnosis of Disorders of Sex Development. Sex Dev 2021; 15:392-410. [PMID: 34634785 DOI: 10.1159/000519238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
Disorders of sex development (DSD) are a complex group of conditions with highly variable clinical phenotypes, most often caused by failure of gonadal development. DSD are estimated to occur in around 1.7% of all live births. Whilst the understanding of genes involved in gonad development has increased exponentially, approximately 50% of patients with a DSD remain without a genetic diagnosis, possibly implicating non-coding genomic regions instead. Here, we review how variants in the non-coding genome of DSD patients can be identified using techniques such as array comparative genomic hybridization (CGH) to detect copy number variants (CNVs), and more recently, whole genome sequencing (WGS). Once a CNV in a patient's non-coding genome is identified, putative regulatory elements such as enhancers need to be determined within these vast genomic regions. We will review the available online tools and databases that can be used to refine regions with potential enhancer activity based on chromosomal accessibility, histone modifications, transcription factor binding site analysis, chromatin conformation, and disease association. We will also review the current in vitro and in vivo techniques available to demonstrate the functionality of the identified enhancers. The review concludes with a clinical update on the enhancers linked to DSD.
Collapse
Affiliation(s)
- Gabby Atlas
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia, .,Department of Endocrinology and Diabetes, Royal Children's Hospital, Melbourne, Victoria, Australia, .,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia,
| | - Rajini Sreenivasan
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
246
|
Patel ZM, Hughes TR. Global properties of regulatory sequences are predicted by transcription factor recognition mechanisms. Genome Biol 2021; 22:285. [PMID: 34620190 PMCID: PMC8496038 DOI: 10.1186/s13059-021-02503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background Mammalian genomes contain millions of putative regulatory sequences, which are delineated by binding of multiple transcription factors. The degree to which spacing and orientation constraints among transcription factor binding sites contribute to the recognition and identity of regulatory sequence is an unresolved but important question that impacts our understanding of genome function and evolution. Global mechanisms that underlie phenomena including the size of regulatory sequences, their uniqueness, and their evolutionary turnover remain poorly described. Results Here, we ask whether models incorporating different degrees of spacing and orientation constraints among transcription factor binding sites are broadly consistent with several global properties of regulatory sequence. These properties include length, sequence diversity, turnover rate, and dominance of specific TFs in regulatory site identity and cell type specification. Models with and without spacing and orientation constraints are generally consistent with all observed properties of regulatory sequence, and with regulatory sequences being fundamentally small (~ 1 nucleosome). Uniqueness of regulatory regions and their rapid evolutionary turnover are expected under all models examined. An intriguing issue we identify is that the complexity of eukaryotic regulatory sites must scale with the number of active transcription factors, in order to accomplish observed specificity. Conclusions Models of transcription factor binding with or without spacing and orientation constraints predict that regulatory sequences should be fundamentally short, unique, and turn over rapidly. We posit that the existence of master regulators may be, in part, a consequence of evolutionary pressure to limit the complexity and increase evolvability of regulatory sites. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02503-y.
Collapse
Affiliation(s)
- Zain M Patel
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
247
|
Li YE, Preissl S, Hou X, Zhang Z, Zhang K, Qiu Y, Poirion OB, Li B, Chiou J, Liu H, Pinto-Duarte A, Kubo N, Yang X, Fang R, Wang X, Han JY, Lucero J, Yan Y, Miller M, Kuan S, Gorkin D, Gaulton KJ, Shen Y, Nunn M, Mukamel EA, Behrens MM, Ecker JR, Ren B. An atlas of gene regulatory elements in adult mouse cerebrum. Nature 2021; 598:129-136. [PMID: 34616068 PMCID: PMC8494637 DOI: 10.1038/s41586-021-03604-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.
Collapse
Affiliation(s)
- Yang Eric Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Sebastian Preissl
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Xiaomeng Hou
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ziyang Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Kai Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Olivier B Poirion
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Bin Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Antonio Pinto-Duarte
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Naoki Kubo
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Rongxin Fang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Xinxin Wang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jee Yun Han
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yiming Yan
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Michael Miller
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Samantha Kuan
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - David Gorkin
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael Nunn
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA.
- Institute of Genomic Medicine, Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
248
|
Eukaryotic Genomes Show Strong Evolutionary Conservation of k-mer Composition and Correlation Contributions between Introns and Intergenic Regions. Genes (Basel) 2021; 12:genes12101571. [PMID: 34680967 PMCID: PMC8536142 DOI: 10.3390/genes12101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
Several strongly conserved DNA sequence patterns in and between introns and intergenic regions (IIRs) consisting of short tandem repeats (STRs) with repeat lengths <3 bp have already been described in the kingdom of Animalia. In this work, we expanded the search and analysis of conserved DNA sequence patterns to a wider range of eukaryotic genomes. Our aims were to confirm the conservation of these patterns, to support the hypothesis on their functional constraints and/or the identification of unknown patterns. We pairwise compared genomic DNA sequences of genes, exons, CDS, introns and intergenic regions of 34 Embryophyta (land plants), 30 Protista and 29 Fungi using established k-mer-based (alignment-free) comparison methods. Additionally, the results were compared with values derived for Animalia in former studies. We confirmed strong correlations between the sequence structures of IIRs spanning over the entire domain of Eukaryotes. We found that the high correlations within introns, intergenic regions and between the two are a result of conserved abundancies of STRs with repeat units ≤2 bp (e.g., (AT)n). For some sequence patterns and their inverse complementary sequences, we found a violation of equal distribution on complementary DNA strands in a subset of genomes. Looking at mismatches within the identified STR patterns, we found specific preferences for certain nucleotides stable over all four phylogenetic kingdoms. We conclude that all of these conserved patterns between IIRs indicate a shared function of these sequence structures related to STRs.
Collapse
|
249
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
250
|
Waymack R, Gad M, Wunderlich Z. Molecular competition can shape enhancer activity in the Drosophila embryo. iScience 2021; 24:103034. [PMID: 34568782 PMCID: PMC8449247 DOI: 10.1016/j.isci.2021.103034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/12/2023] Open
Abstract
Transgenic reporters allow the measurement of regulatory DNA activity in vivo and consequently have long been useful tools for studying enhancers. Despite their utility, few studies have investigated the effects these reporters may have on the expression of other genes. Understanding these effects is required to accurately interpret reporter data and characterize gene regulatory mechanisms. By measuring the expression of Kruppel (Kr) enhancer reporters in live Drosophila embryos, we find reporters inhibit one another's expression and that of a nearby endogenous gene. Using synthetic transcription factor (TF) binding site arrays, we present evidence that competition for TFs is partially responsible for the observed transcriptional inhibition. We develop a simple thermodynamic model that predicts competition of the measured magnitude specifically when TF binding is restricted to distinct nuclear subregions. Our findings underline an unexpected role of the non-homogenous nature of the nucleus in regulating gene expression.
Collapse
Affiliation(s)
- Rachel Waymack
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Mario Gad
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Department of Biology, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Biological Design Center, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|