201
|
Ng KW, Attig J, Young GR, Ottina E, Papamichos SI, Kotsianidis I, Kassiotis G. Soluble PD-L1 generated by endogenous retroelement exaptation is a receptor antagonist. eLife 2019; 8:e50256. [PMID: 31729316 PMCID: PMC6877088 DOI: 10.7554/elife.50256] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
Immune regulation is a finely balanced process of positive and negative signals. PD-L1 and its receptor PD-1 are critical regulators of autoimmune, antiviral and antitumoural T cell responses. Although the function of its predominant membrane-bound form is well established, the source and biological activity of soluble PD-L1 (sPD-L1) remain incompletely understood. Here, we show that sPD-L1 in human healthy tissues and tumours is produced by exaptation of an intronic LINE-2A (L2A) endogenous retroelement in the CD274 gene, encoding PD-L1, which causes omission of the transmembrane domain and the regulatory sequence in the canonical 3' untranslated region. The alternatively spliced CD274-L2A transcript forms the major source of sPD-L1 and is highly conserved in hominids, but lost in mice and a few related species. Importantly, CD274-L2A-encoded sPD-L1 lacks measurable T cell inhibitory activity. Instead, it functions as a receptor antagonist, blocking the inhibitory activity of PD-L1 bound on cellular or exosomal membranes.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick InstituteLondonUnited Kingdom
| | - Jan Attig
- Retroviral Immunology, The Francis Crick InstituteLondonUnited Kingdom
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick InstituteLondonUnited Kingdom
| | - Eleonora Ottina
- Retroviral Immunology, The Francis Crick InstituteLondonUnited Kingdom
| | - Spyros I Papamichos
- Department of HaematologyDemocritus University of Thrace Medical SchoolAlexandroupolisGreece
| | - Ioannis Kotsianidis
- Department of HaematologyDemocritus University of Thrace Medical SchoolAlexandroupolisGreece
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick InstituteLondonUnited Kingdom
- Department of MedicineFaculty of Medicine, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
202
|
Suppression of BCL6 function by HDAC inhibitor mediated acetylation and chromatin modification enhances BET inhibitor effects in B-cell lymphoma cells. Sci Rep 2019; 9:16495. [PMID: 31712669 PMCID: PMC6848194 DOI: 10.1038/s41598-019-52714-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple genetic aberrations in the regulation of BCL6, including in acetyltransferase genes, occur in clinically aggressive B-cell lymphomas and lead to higher expression levels and activity of this transcriptional repressor. BCL6 is, therefore, an attractive target for therapy in aggressive lymphomas. In this study romidepsin, a potent histone deacetylase inhibitor (HDACi), induced apoptosis and cell cycle arrest in Burkitt and diffuse large B-cell lymphoma cell lines, which are model cells for studying the mechanism of action of BCL6. Romidepsin caused BCL6 acetylation at early timepoints inhibiting its function, while at later timepoints BCL6 expression was reduced and target gene expression increased due to chromatin modification. MYC contributes to poor prognosis in aggressive lymphoma. MYC function is reduced by inhibition of chromatin readers of the bromodomain and extra-terminal repeat (BET) family, which includes BRD4. The novel combination of romidepsin and JQ1, a BRD4 inhibitor was investigated and showed synergy. Collectively we suggest that the combination of HDACi and BRD4i should be pursued in further pre-clinical testing.
Collapse
|
203
|
Robaina MC, Mazzoccoli L, Klumb CE. Germinal Centre B Cell Functions and Lymphomagenesis: Circuits Involving MYC and MicroRNAs. Cells 2019; 8:E1365. [PMID: 31683676 PMCID: PMC6912346 DOI: 10.3390/cells8111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The transcription factor MYC regulates several biological cellular processes, and its target gene network comprises approximately 15% of all human genes, including microRNAs (miRNAs), that also contribute to MYC regulatory activity. Although miRNAs are emerging as key regulators of immune functions, the specific roles of miRNAs in the regulation/dysregulation of germinal centre B-cells and B-cell lymphomas are still being uncovered. The regulatory network that integrates MYC, target genes and miRNAs is a field of intense study, highlighting potential pathways to be explored in the context of future clinical approaches. METHODS The scientific literature that is indexed in PUBMED was consulted for publications involving MYC and miRNAs with validated bioinformatics analyses or experimental protocols. Additionally, seminal studies on germinal centre B-cell functions and lymphomagenesis were reported. CONCLUSIONS This review summarizes the interactions between MYC and miRNAs through regulatory loops and circuits involving target genes in germinal centre B-cell lymphomas with MYC alterations. Moreover, we provide an overview of the understanding of the regulatory networks between MYC and miRNAs, highlighting the potential implication of this approach for the comprehension of germinal centre B-cell lymphoma pathogenesis. Therefore, circuits involving MYC, target genes and miRNAs provide novel insight into lymphomagenesis that could be useful for new improved therapeutic strategies.
Collapse
Affiliation(s)
- Marcela Cristina Robaina
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Luciano Mazzoccoli
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Claudete Esteves Klumb
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| |
Collapse
|
204
|
Yu L, Yu TT, Young KH. Cross-talk between Myc and p53 in B-cell lymphomas. Chronic Dis Transl Med 2019; 5:139-154. [PMID: 31891126 PMCID: PMC6926120 DOI: 10.1016/j.cdtm.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 02/07/2023] Open
Abstract
Myc and p53 proteins are closely associated with many physiological cellular functions, including immune response and lymphocyte survival, and are expressed in the lymphoid organs, which are sites for the development and activation of B-cell malignancies. Genetic alterations and other mechanisms resulting in constitutive activation, rearrangement, or mutation of MYC and TP53 contribute to the development of lymphomas, progression and therapy resistance by gene dysregulation, activation of downstream anti-apoptotic pathways, and unfavorable microenvironment interactions. The cross-talk between the Myc and p53 proteins contributes to the inferior prognosis in many types of B-cell lymphomas. In this review, we present the physiological roles of Myc and p53 proteins, and recent advances in understanding the pathological roles of Myc, p53, and their cross-talk in lymphoid neoplasms. In addition, we highlight clinical trials of novel agents that directly or indirectly inhibit Myc and/or p53 protein functions and their signaling pathways. Although, to date, these trials have failed to overcome drug resistance, the new results have highlighted the clinical efficiency of targeting diverse mechanisms of action with the goal of optimizing novel therapeutic opportunities to eradicate lymphoma cells.
Collapse
Affiliation(s)
- Li Yu
- Department of Hematology, The Second Affiliated Hospital to Nanchang University, Nanchang, Jiangxi 330006, China
- Hematopathology Division and Pathology Department, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tian-Tian Yu
- Department of Hematology, The Second Affiliated Hospital to Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ken H. Young
- Hematopathology Division and Pathology Department, Duke University School of Medicine, Durham, NC 27710, USA
- Duke University Medical Center and Cancer Institute, Durham, NC 27710, USA
- Corresponding author. Hematopathology Division and Pathology Department, Duke University School of Medicine, Duke University Medical Center and Cancer Institute, Durham, NC 27710, USA. Fax: +1-919-681-8868.
| |
Collapse
|
205
|
Nahon-Esteve S, Martel A, Maschi C, Caujolle JP, Baillif S, Lassalle S, Hofman P. The Molecular Pathology of Eye Tumors: A 2019 Update Main Interests for Routine Clinical Practice. Curr Mol Med 2019; 19:632-664. [DOI: 10.2174/1566524019666190726161044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Over the last few years, we have seen constant development of molecular
pathology for the care of patients with cancer. The information obtained from molecular
data has transformed our thinking about the biological diversity of cancers, particularly in
the field of ophthalmic oncology. It has reoriented the way in which therapeutic decisions
and decisions concerning patient surveillance are made, both in the area of pediatric
cancers, including rhabdomyosarcoma and retinoblastoma, and adult cancers, such as
uveal melanoma and lymphomas. A better definition of the molecular classification of
these cancers and of the different biological pathways involved is essential to the
understanding of both the pathologist and the onco-ophthalmologist. Molecular tests
based on targeted or expanded analysis of gene panels are now available. These tests
can be performed with tumor tissue or biofluids (especially blood) to predict the
prognosis of tumors and, above all, the benefit of targeted therapies, immunotherapy or
even chemotherapy. Looking for the BAP1 mutation in uveal melanoma is essential
because of the associated metastatic risk. When treating retinoblastoma, it is mandatory
to assess the heritable status of RB1. Conjunctival melanoma requires investigation into
the BRAF mutation in the case of a locally advanced tumor. The understanding of
genomic alterations, the results of molecular tests and/or other biological tests predictive
of a therapeutic response, but also of the limits of these tests with respect to the
available biological resources, represents a major challenge for optimal patient
management in ophthalmic oncology. In this review, we present the current state of
knowledge concerning the different molecular alterations and therapeutic targets of
interest in ophthalmic oncology.
Collapse
Affiliation(s)
| | - Arnaud Martel
- Department of Ophthalmology, University Cote d'Azur, Nice, France
| | - Célia Maschi
- Department of Ophthalmology, University Cote d'Azur, Nice, France
| | | | | | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, University Cote d'Azur, Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University Cote d'Azur, Nice, France
| |
Collapse
|
206
|
Caeser R, Di Re M, Krupka JA, Gao J, Lara-Chica M, Dias JML, Cooke SL, Fenner R, Usheva Z, Runge HFP, Beer PA, Eldaly H, Pak HK, Park CS, Vassiliou GS, Huntly BJP, Mupo A, Bashford-Rogers RJM, Hodson DJ. Genetic modification of primary human B cells to model high-grade lymphoma. Nat Commun 2019; 10:4543. [PMID: 31586074 PMCID: PMC6778131 DOI: 10.1038/s41467-019-12494-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/11/2019] [Indexed: 12/03/2022] Open
Abstract
Sequencing studies of diffuse large B cell lymphoma (DLBCL) have identified hundreds of recurrently altered genes. However, it remains largely unknown whether and how these mutations may contribute to lymphomagenesis, either individually or in combination. Existing strategies to address this problem predominantly utilize cell lines, which are limited by their initial characteristics and subsequent adaptions to prolonged in vitro culture. Here, we describe a co-culture system that enables the ex vivo expansion and viral transduction of primary human germinal center B cells. Incorporation of CRISPR/Cas9 technology enables high-throughput functional interrogation of genes recurrently mutated in DLBCL. Using a backbone of BCL2 with either BCL6 or MYC, we identify co-operating genetic alterations that promote growth or even full transformation into synthetically engineered DLBCL models. The resulting tumors can be expanded and sequentially transplanted in vivo, providing a scalable platform to test putative cancer genes and to create mutation-directed, bespoke lymphoma models.
Collapse
Affiliation(s)
- Rebecca Caeser
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Miriam Di Re
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Joanna A Krupka
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Jie Gao
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Maribel Lara-Chica
- Cancer Molecular Diagnostics Laboratory (CMDL), Department of Haematology, University of Cambridge, Cambridge, UK
| | - João M L Dias
- Cancer Molecular Diagnostics Laboratory (CMDL), Department of Haematology, University of Cambridge, Cambridge, UK
| | - Susanna L Cooke
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
| | - Rachel Fenner
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Zelvera Usheva
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Hendrik F P Runge
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Philip A Beer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CA, CB10 1SA, UK
| | - Hesham Eldaly
- Department of Pathology, Cambridge University Hospitals, Cambridge, UK
- Department of Clinical Pathology, Cairo University, Giza, Egypt
| | - Hyo-Kyung Pak
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Korea
| | - Chan-Sik Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Korea
| | - George S Vassiliou
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CA, CB10 1SA, UK
| | - Brian J P Huntly
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Annalisa Mupo
- Cancer Molecular Diagnostics Laboratory (CMDL), Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
207
|
Abstract
B-cell follicle represents a functionally dynamic microstructure within second lymphoid tissues, predominantly consisting of B cells, follicular T cells and DCs. Through intimate interactions with cognate B cells, follicular helper T cells (Tfh) initiate and facilitate germinal center (GC) reactions by providing signals required for producing high-affinity antibodies, as well as for the generation of long-lived antibody-secreting plasma cells and memory B cells. Concomitantly, germinal center reaction needs to be fine controlled to avoid autoimmunity or B-cell malignancies. Among immune cells residing in follicles, follicular regulatory T cells (Tfr), converted from naïve Treg cells, are specifically assigned to repress excessive GC responses by suppressing Tfh and GC B cells within GC structure. Hence, through Yin and Yang (positive and negative) regulation of GC reaction, Tfh cells play concert with Tfr cells in maintaining immune homeostasis. Besides CD4+ T cells, a small portion of CXCR5 expressing CD8+ T cells, regarded as follicular cytotoxic T cells (Tfc), could migrate into B cell follicles during chronic viral infection and several types of cancers, and this population exhibit lower level of exhaustion than its CXCR5- counterparts. Besides, Tfc cells demonstrate a stem-cell like phenotype during chronic infection which could further differentiate into terminally differentiated CXCR5-CD8+ T cells. Collectively, in this review, we will discuss the recent advances in our understanding of the ontology and differentiation of B-cell follicle resident Tfh, Tfr and Tfc cells.
Collapse
|
208
|
Scuoppo C, Zha S. LMO2 as a Biomarker for Hypersensitivity to Genotoxic Therapy. Cancer Cell 2019; 36:211-212. [PMID: 31526755 DOI: 10.1016/j.ccell.2019.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this issue of Cancer Cell, Parvin and colleagues identify the expression of LMO2 as a biomarker for DNA repair defects in lymphomas. Using isogenic cell lines and xenografts, the authors show that expression of LMO2 predicts sensitivity to PARP inhibition, especially in combination with genotoxic therapy.
Collapse
Affiliation(s)
- Claudio Scuoppo
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
209
|
Du L, Yu X, Hou L, Zhang D, Zhang Y, Qiao X, Hou J, Chen J, Zheng Q. Identification of mechanisms conferring an enhanced immune response in mice induced by CVC1302-adjuvanted killed serotype O foot-and-mouth virus vaccine. Vaccine 2019; 37:6362-6370. [PMID: 31526618 DOI: 10.1016/j.vaccine.2019.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
The adjuvant CVC1302 was previously shown to efficiently enhance the immunogenicity of killed foot-and-mouth disease virus (FMDV) in mice and piglets. However, the underlining mechanism of action of CVC1302 remains unclear, especially at local injection sites and draining lymph nodes. Since the FMDV vaccine is administrated intramuscularly in field settings, we studied local immune responses to FMDV following intramuscular injection in mice, and found that CVC1302-adjuvanted killed FMDV (KV-CVC1302) induced secretion of several chemokines in murine muscle tissues, including MCP-1, MIP-1α, and MIP-1β. The number of monocytes recruited to the site of injection was significantly higher in mice immunized with KV-CVC1302 compared with mice immunized with killed FMDV alone (KV). iTAQ-based quantitative proteomic assays were additionally employed to explore the molecular mechanisms of CVC1302 action in the draining lymph nodes. A total of 35 proteins were identified as being differentially expressed among the control group, KV-immunized group and KV-CVC1302-immunized group at 10 days post immunization (dpi). Proteins exhibiting differential expression were mainly involved in signal transduction, apoptosis, endocytosis and innate immune responses. Pathway analysis demonstrated that AMPK, phospholipase D, cAMP, Rap1, and MAPK signaling pathways were potentially induced by the immunopotentiator CVC1302. Understanding the local mechanism of CVC1302 action at injection sites and draining lymph nodes will provide new insights into the development of FMDV vaccines.
Collapse
Affiliation(s)
- Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Liting Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong 250022, China
| | - Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China.
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, Jiangsu 210014, China.
| |
Collapse
|
210
|
Hashwah H, Bertram K, Stirm K, Stelling A, Wu CT, Kasser S, Manz MG, Theocharides AP, Tzankov A, Müller A. The IL-6 signaling complex is a critical driver, negative prognostic factor, and therapeutic target in diffuse large B-cell lymphoma. EMBO Mol Med 2019; 11:e10576. [PMID: 31515941 PMCID: PMC6783642 DOI: 10.15252/emmm.201910576] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/09/2022] Open
Abstract
Interleukin-6 (IL-6) is a growth factor for normal B cells and plasma cell-derived malignancies. Here, we show that the IL-6 signaling pathway is also active in a subset of diffuse large B-cell lymphoma (DLBCL) patients with particularly poor prognosis. Primary DLBCL cells and DLBCL cell lines expressing IL-6R engraft and form orthotopic lymphomas in humanized mice that ectopically produce human IL-6, and in mice reconstituted with a human immune system. We show that a subset of DLBCL cases have evolved mechanisms that ensure constitutive activation of the IL-6 signaling pathway, i.e., the expression of both chains of the IL-6R, the expression of the cytokine itself, and the mutational inactivation of a negative regulator of IL-6 signaling, SOCS1. IL-6 signaling promotes MYC-driven lymphomagenesis in a genetically engineered model, and treatment with the IL-6R-specific antibody tocilizumab reduces growth of primary DLBCL cells and of DLBCL cell lines in various therapeutic settings. The combined results uncover the IL-6 signaling pathway as a driver and negative prognosticator in aggressive DLBCL that can be targeted with a safe and well-tolerated biologic.
Collapse
Affiliation(s)
- Hind Hashwah
- Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland
| | - Katrin Bertram
- Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland
| | - Kristin Stirm
- Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland
| | - Anna Stelling
- Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland
| | - Cheuk-Ting Wu
- Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland
| | - Sabrina Kasser
- Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zürich, Switzerland.,Comprehensive Cancer Center Zurich, Zürich, Switzerland
| | - Alexandre P Theocharides
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zürich, Switzerland.,Comprehensive Cancer Center Zurich, Zürich, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland.,Comprehensive Cancer Center Zurich, Zürich, Switzerland
| |
Collapse
|
211
|
Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol 2019; 9:713. [PMID: 31448229 PMCID: PMC6691157 DOI: 10.3389/fonc.2019.00713] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV), a gamma-1 herpesvirus, is carried as a life-long asymptomatic infection by the great majority of individuals in all human populations. Yet this seemingly innocent virus is aetiologically linked to two pre-malignant lymphoproliferative diseases (LPDs) and up to nine distinct human tumors; collectively these have a huge global impact, being responsible for some 200,000 new cases of cancer arising worldwide each year. EBV replicates in oral epithelium but persists as a latent infection within the B cell system and several of its diseases are indeed of B cell origin; these include B-LPD of the immunocompromised, Hodgkin Lymphoma (HL), Burkitt Lymphoma (BL), Diffuse Large B cell Lymphoma (DLBCL) and two rarer tumors associated with profound immune impairment, plasmablastic lymphoma (PBL) and primary effusion lymphoma (PEL). Surprisingly, the virus is also linked to tumors arising in other cellular niches which, rather than being essential reservoirs of virus persistence in vivo, appear to represent rare cul-de-sacs of latent infection. These non-B cell tumors include LPDs and malignant lymphomas of T or NK cells, nasopharyngeal carcinoma (NPC) and gastric carcinoma of epithelial origin, and leiomyosarcoma, a rare smooth muscle cell tumor of the immunocompromised. Here we describe the main characteristics of these tumors, their distinct epidemiologies, histological features and degrees of EBV association, then consider how their different patterns of EBV latency may reflect the alternative latency programmes through which the virus first colonizes and then persists in immunocompetent host. For each tumor, we discuss current understanding of EBV's role in the oncogenic process, the identity (where known) of host genetic and environmental factors predisposing tumor development, and the recent evidence from cancer genomics identifying somatic changes that either complement or in some cases replace the contribution of the virus. Thereafter we look for possible connections between the pathogenesis of these apparently different malignancies and point to new research areas where insights may be gained.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Institute for Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute for Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
212
|
Di Pietro A, Good-Jacobson KL. Disrupting the Code: Epigenetic Dysregulation of Lymphocyte Function during Infectious Disease and Lymphoma Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:1109-1118. [PMID: 30082273 DOI: 10.4049/jimmunol.1800137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
Lymphocyte differentiation and identity are controlled by signals in the microenvironment that ultimately mediate gene expression in the nucleus. Although much focus has centered on the strategic and often unique roles transcription factors play within lymphocyte subsets, it is increasingly clear that another level of molecular regulation is crucial for regulating gene expression programs. In particular, epigenetic regulation is critical for appropriately regulated temporal and cell-type-specific gene expression during immune responses. As such, mutations in epigenetic modifiers are linked with lymphomagenesis. Furthermore, certain infections can remodel the epigenome in host cells, either through the microenvironment or by directly co-opting host epigenetic mechanisms, leading to inappropriate gene expression and/or ineffective cellular behavior. This review will focus on how histone modifications and DNA methylation, and the enzymes that regulate the epigenome, underpin lymphocyte differentiation and function in health and disease.
Collapse
Affiliation(s)
- Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
213
|
Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, Moore L, Royo R, Ziccheddu B, Puente XS, Avet-Loiseau H, Campbell PJ, Nik-Zainal S, Campo E, Munshi N, Bolli N. A practical guide for mutational signature analysis in hematological malignancies. Nat Commun 2019; 10:2969. [PMID: 31278357 PMCID: PMC6611883 DOI: 10.1038/s41467-019-11037-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Analysis of mutational signatures is becoming routine in cancer genomics, with implications for pathogenesis, classification, prognosis, and even treatment decisions. However, the field lacks a consensus on analysis and result interpretation. Using whole-genome sequencing of multiple myeloma (MM), chronic lymphocytic leukemia (CLL) and acute myeloid leukemia, we compare the performance of public signature analysis tools. We describe caveats and pitfalls of de novo signature extraction and fitting approaches, reporting on common inaccuracies: erroneous signature assignment, identification of localized hyper-mutational processes, overcalling of signatures. We provide reproducible solutions to solve these issues and use orthogonal approaches to validate our results. We show how a comprehensive mutational signature analysis may provide relevant biological insights, reporting evidence of c-AID activity among unmutated CLL cases or the absence of BRCA1/BRCA2-mediated homologous recombination deficiency in a MM cohort. Finally, we propose a general analysis framework to ensure production of accurate and reproducible mutational signature data.
Collapse
Affiliation(s)
- Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy.
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Andrea Degasperi
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Ferran Nadeu
- Patologia Molecular de Neoplàsies Limfoides, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Daniel Leongamornlert
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Helen Davies
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Luiza Moore
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, 08036, Barcelona, Spain
| | - Bachisio Ziccheddu
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Xose S Puente
- Unitat Hematopatologia, Hospital Clínic of Barcelona, Universitat de Barcelona, 08036, Barcelona, Spain
- Departamento de Bioquimica y Biologia Molecular, Instituto Universitario de Oncologia (IUOPA), Universidad de Oviedo, Oviedo, 33003, Spain
| | | | - Peter J Campbell
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Serena Nik-Zainal
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Elias Campo
- Patologia Molecular de Neoplàsies Limfoides, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, 08036, Barcelona, Spain
| | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
- Veterans Administration Boston Healthcare System, West Roxbury, 02130, MA, USA
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy.
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy.
| |
Collapse
|
214
|
The Unsolved Puzzle of c-Rel in B Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11070941. [PMID: 31277480 PMCID: PMC6678315 DOI: 10.3390/cancers11070941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/04/2023] Open
Abstract
Aberrant constitutive activation of Rel/NF-κB transcription factors is a hallmark of numerous cancers. Of the five Rel family members, c-Rel has the strongest direct links to tumorigenesis. c-Rel is the only member that can malignantly transform lymphoid cells in vitro. Furthermore, c-Rel is implicated in human B cell lymphoma through the frequent occurrence of REL gene locus gains and amplifications. In normal physiology, high c-Rel expression predominates in the hematopoietic lineage and a diverse range of stimuli can trigger enhanced expression and activation of c-Rel. Both expression and activation of c-Rel are tightly regulated on multiple levels, indicating the necessity to keep its functions under control. In this review we meta-analyze and integrate studies reporting gene locus aberrations to provide an overview on the frequency of REL gains in human B cell lymphoma subtypes, namely follicular lymphoma, diffuse large B cell lymphoma, primary mediastinal B cell lymphoma, and classical Hodgkin lymphoma. We also summarize current knowledge on c-Rel expression and protein localization in these human B cell lymphomas and discuss the co-amplification of BCL11A with REL. In addition, we highlight and illustrate key pathways of c-Rel activation and regulation with a specific focus on B cell biology.
Collapse
|
215
|
Li M, Chiang YL, Lyssiotis CA, Teater MR, Hong JY, Shen H, Wang L, Hu J, Jing H, Chen Z, Jain N, Duy C, Mistry SJ, Cerchietti L, Cross JR, Cantley LC, Green MR, Lin H, Melnick AM. Non-oncogene Addiction to SIRT3 Plays a Critical Role in Lymphomagenesis. Cancer Cell 2019; 35:916-931.e9. [PMID: 31185214 PMCID: PMC7534582 DOI: 10.1016/j.ccell.2019.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Diffuse large B cell lymphomas (DLBCLs) are genetically heterogeneous and highly proliferative neoplasms derived from germinal center (GC) B cells. Here, we show that DLBCLs are dependent on mitochondrial lysine deacetylase SIRT3 for proliferation, survival, self-renewal, and tumor growth in vivo regardless of disease subtype and genetics. SIRT3 knockout attenuated B cell lymphomagenesis in VavP-Bcl2 mice without affecting normal GC formation. Mechanistically, SIRT3 depletion impaired glutamine flux to the TCA cycle via glutamate dehydrogenase and reduction in acetyl-CoA pools, which in turn induce autophagy and cell death. We developed a mitochondrial-targeted class I sirtuin inhibitor, YC8-02, which phenocopied the effects of SIRT3 depletion and killed DLBCL cells. SIRT3 is thus a metabolic non-oncogene addiction and therapeutic target for DLBCLs.
Collapse
MESH Headings
- Acetyl Coenzyme A/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Autophagic Cell Death/drug effects
- Cell Proliferation/drug effects
- Citric Acid Cycle/drug effects
- Energy Metabolism/drug effects
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Glutamine/metabolism
- HEK293 Cells
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- MCF-7 Cells
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Molecular Targeted Therapy
- Signal Transduction
- Sirtuin 3/antagonists & inhibitors
- Sirtuin 3/deficiency
- Sirtuin 3/genetics
- Sirtuin 3/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Meng Li
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ying-Ling Chiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew R Teater
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hao Shen
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ling Wang
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jing Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Neeraj Jain
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Cihangir Duy
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sucharita J Mistry
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Leandro Cerchietti
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Justin R Cross
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael R Green
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Ari M Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
216
|
Quentmeier H, Pommerenke C, Dirks WG, Eberth S, Koeppel M, MacLeod RAF, Nagel S, Steube K, Uphoff CC, Drexler HG. The LL-100 panel: 100 cell lines for blood cancer studies. Sci Rep 2019; 9:8218. [PMID: 31160637 PMCID: PMC6547646 DOI: 10.1038/s41598-019-44491-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
For many years, immortalized cell lines have been used as model systems for cancer research. Cell line panels were established for basic research and drug development, but did not cover the full spectrum of leukemia and lymphoma. Therefore, we now developed a novel panel (LL-100), 100 cell lines covering 22 entities of human leukemia and lymphoma including T-cell, B-cell and myeloid malignancies. Importantly, all cell lines are unequivocally authenticated and assigned to the correct tissue. Cell line samples were proven to be free of mycoplasma and non-inherent virus contamination. Whole exome sequencing and RNA-sequencing of the 100 cell lines were conducted with a uniform methodology to complement existing data on these publicly available cell lines. We show that such comprehensive sequencing data can be used to find lymphoma-subtype-characteristic copy number aberrations, mRNA isoforms, transcription factor activities and expression patterns of NKL homeobox genes. These exemplary studies confirm that the novel LL-100 panel will be useful for understanding the function of oncogenes and tumor suppressor genes and to develop targeted therapies.
Collapse
Affiliation(s)
- Hilmar Quentmeier
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany.
| | - Claudia Pommerenke
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Wilhelm G Dirks
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Sonja Eberth
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Max Koeppel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Roderick A F MacLeod
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Stefan Nagel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Klaus Steube
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Hans G Drexler
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| |
Collapse
|
217
|
Crombie JL, Armand P. Diffuse Large B-Cell Lymphoma and High-Grade B-Cell Lymphoma: Genetic Classification and Its Implications for Prognosis and Treatment. Hematol Oncol Clin North Am 2019; 33:575-585. [PMID: 31229155 DOI: 10.1016/j.hoc.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin lymphoma, is characterized by both clinical and molecular heterogeneity. Despite efforts to tailor therapy for individual patients, treatment remains uniform and a subset of patients have poor outcomes. The past decade has witnessed a dramatic expansion of our understanding of the genomic underpinnings of this disease, especially with the application of next-generation sequencing. In this review, the authors highlight the current genomic landscape of DLBCL and how this information provides a potential molecular framework for precision medicine-based strategies in this disease.
Collapse
Affiliation(s)
- Jennifer L Crombie
- Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Philippe Armand
- Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
218
|
Roos-Weil D, Decaudin C, Armand M, Della-Valle V, Diop MK, Ghamlouch H, Ropars V, Hérate C, Lara D, Durot E, Haddad R, Mylonas E, Damm F, Pflumio F, Stoilova B, Metzner M, Elemento O, Dessen P, Camara-Clayette V, Cosset FL, Verhoeyen E, Leblond V, Ribrag V, Cornillet-Lefebvre P, Rameau P, Azar N, Charlotte F, Morel P, Charbonnier JB, Vyas P, Mercher T, Aoufouchi S, Droin N, Guillouf C, Nguyen-Khac F, Bernard OA. A Recurrent Activating Missense Mutation in Waldenström Macroglobulinemia Affects the DNA Binding of the ETS Transcription Factor SPI1 and Enhances Proliferation. Cancer Discov 2019; 9:796-811. [PMID: 31018969 DOI: 10.1158/2159-8290.cd-18-0873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022]
Abstract
The ETS-domain transcription factors divide into subfamilies based on protein similarities, DNA-binding sequences, and interaction with cofactors. They are regulated by extracellular clues and contribute to cellular processes, including proliferation and transformation. ETS genes are targeted through genomic rearrangements in oncogenesis. The PU.1/SPI1 gene is inactivated by point mutations in human myeloid malignancies. We identified a recurrent somatic mutation (Q226E) in PU.1/SPI1 in Waldenström macroglobulinemia, a B-cell lymphoproliferative disorder. It affects the DNA-binding affinity of the protein and allows the mutant protein to more frequently bind and activate promoter regions with respect to wild-type protein. Mutant SPI1 binding at promoters activates gene sets typically promoted by other ETS factors, resulting in enhanced proliferation and decreased terminal B-cell differentiation in model cell lines and primary samples. In summary, we describe oncogenic subversion of transcription factor function through subtle alteration of DNA binding leading to cellular proliferation and differentiation arrest. SIGNIFICANCE: The demonstration that a somatic point mutation tips the balance of genome-binding pattern provides a mechanistic paradigm for how missense mutations in transcription factor genes may be oncogenic in human tumors.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Damien Roos-Weil
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Camille Decaudin
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Marine Armand
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Véronique Della-Valle
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - M'boyba K Diop
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Hussein Ghamlouch
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cécile Hérate
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Diane Lara
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Eric Durot
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Rima Haddad
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL, Université Paris Diderot Sorbonne Paris Cité, Fontenay-aux-Roses, France
| | - Elena Mylonas
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Francoise Pflumio
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL, Université Paris Diderot Sorbonne Paris Cité, Fontenay-aux-Roses, France
| | - Bilyana Stoilova
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Philippe Dessen
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - François-Loïc Cosset
- CIRI-InternationalCenter for Infectiology Research, Team EVIR, Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1; CNRS, UMR5308, Lyon, France
| | - Els Verhoeyen
- CIRI-InternationalCenter for Infectiology Research, Team EVIR, Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1; CNRS, UMR5308, Lyon, France.,Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | - Vincent Ribrag
- INSERM U1170, Gustave Roussy, Villejuif, France.,DITEP Gustave Roussy, Villejuif, Paris, France
| | - Pascale Cornillet-Lefebvre
- Laboratoire d'hématologie, Pôle de biologie, CHU de Reims-Hôpital Robert Debré, Avenuedu Général Koenig, Reims, France
| | - Philippe Rameau
- AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Nabih Azar
- Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | | | - Pierre Morel
- Centre Hospitalier Dr. Schaffner,Lens; Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Amiens Picardie, Amiens cedex, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Said Aoufouchi
- Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,CNRS UMR8200, Gustave Roussy, Villejuif, France
| | - Nathalie Droin
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Christel Guillouf
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Florence Nguyen-Khac
- Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France. .,Sorbonne Université, INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Olivier A Bernard
- INSERM U1170, Gustave Roussy, Villejuif, France. .,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
219
|
Del Pino-Molina L, Rodríguez-Ubreva J, Torres Canizales J, Coronel-Díaz M, Kulis M, Martín-Subero JI, van der Burg M, Ballestar E, López-Granados E. Impaired CpG Demethylation in Common Variable Immunodeficiency Associates With B Cell Phenotype and Proliferation Rate. Front Immunol 2019; 10:878. [PMID: 31105700 PMCID: PMC6492528 DOI: 10.3389/fimmu.2019.00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/05/2019] [Indexed: 01/01/2023] Open
Abstract
Common Variable Immunodeficiency (CVID) is characterized by impaired antibody production and poor terminal differentiation of the B cell compartment, yet its pathogenesis is still poorly understood. We first reported the occurrence of epigenetic alterations in CVID by high-throughput methylation analysis in CVID-discordant monozygotic twins. Data from a recent whole DNA methylome analysis throughout different stages of normal B cell differentiation allowed us to design a new experimental approach. We selected CpG sites for analysis based on two criteria: one, CpGs with potential association with the transcriptional status of relevant genes for B cell activation and differentiation; and two, CpGs that undergo significant demethylation from naïve to memory B cells in healthy individuals. DNA methylation was analyzed by bisulfite pyrosequencing of specific CpG sites in sorted naïve and memory B cell subsets from CVID patients and healthy donors. We observed impaired demethylation in two thirds of the selected CpGs in CVID memory B cells, in genes that govern B cell-specific processes or participate in B cell signaling. The degree of demethylation impairment associated with the extent of the memory B cell reduction. The impaired demethylation in such functionally relevant genes as AICDA in switched memory B cells correlated with a lower proliferative rate. Our new results reinforce the hypothesis of altered demethylation during B cell differentiation as a contributing pathogenic mechanism to the impairment of B cell function and maturation in CVID. In particular, deregulated epigenetic control of AICDA could play a role in the defective establishment of a post-germinal center B cell compartment in CVID.
Collapse
Affiliation(s)
- Lucía Del Pino-Molina
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Juan Torres Canizales
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - María Coronel-Díaz
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - Marta Kulis
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - José I Martín-Subero
- Departamento de Fundamentos Clínicos, Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eduardo López-Granados
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| |
Collapse
|
220
|
Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell 2019; 177:524-540. [PMID: 31002794 PMCID: PMC6538279 DOI: 10.1016/j.cell.2019.03.016] [Citation(s) in RCA: 528] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Christopher D C Allen
- Cardiovascular Research Institute, Department of Anatomy, and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
221
|
Johnson DP, Spitz-Becker GS, Chakraborti K, Bhaskara S. Assessment of epigenetic mechanisms and DNA double-strand break repair using laser micro-irradiation technique developed for hematological cells. EBioMedicine 2019; 43:138-149. [PMID: 31000418 PMCID: PMC6562062 DOI: 10.1016/j.ebiom.2019.03.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022] Open
Abstract
Background Certain tumors rely heavily on their DNA repair capability to survive the DNA damage induced by chemotherapeutic agents. Therefore, it is important to monitor the dynamics of DNA repair in patient samples during the course of their treatment, in order to determine whether a particular drug regimen perturbs the DNA repair networks in cancer cells and provides therapeutic benefits. Quantitative measurement of proteins and/or their posttranslational modification(s) at DNA double strand breaks (DSBs) induced by laser microirradiation provides an applicable diagnostic approach to examine DNA repair and its dynamics. However, its use is restricted to adherent cell lines and not employed in suspension tumor cells that include the many hematological malignancies. Methods Here, we report the development of an assay to laser micro-irradiate and quantitatively measure DNA repair transactions at DSB sites in normal mononuclear cells and a variety of suspension leukemia and lymphoma cells including primary patient samples. Findings We show that global changes in the H3K27me3-ac switch modulated by inhibitors of Class I HDACs, EZH2 methyltransferase and (or) H3K27me3 demethylases do not reflect the dynamic changes in H3K27me3 that occur at double-strand break sites during DNA repair. Interpretation Results from our mechanistic studies and proof-of-principle data with patient samples together show the effectiveness of using the modified micro-laser-based assay to examine DNA repair directly in suspension cancer cells, and has important clinical implications by serving as a valuable tool to assess drug efficacies in hematological cancer cells that grow in suspension.
Collapse
Affiliation(s)
- Danielle P Johnson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gabriella S Spitz-Becker
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Korak Chakraborti
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Srividya Bhaskara
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
222
|
Aljoundi AK, Agoni C, Olotu FA, Soliman MES. Turning to Computer-aided Drug Design in the Treatment of Diffuse Large B-cell Lymphoma: Has it been Helpful? Anticancer Agents Med Chem 2019; 19:1325-1339. [PMID: 30950356 DOI: 10.2174/1871520619666190405111526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Amidst the numerous effective therapeutic options available for the treatment of Diffuse Large B-cell Lymphoma (DLBCL), about 30-40% of patients treated with first-line chemoimmunotherapy still experience a relapse or refractory DLBCL. This has necessitated a continuous search for new therapeutic agents to augment the existing therapeutic arsenal. METHODS The dawn of Computer-Aided Drug Design (CADD) in the drug discovery process has accounted for persistency in the application of computational approaches either alone or in combinatorial strategies with experimental methods towards the identification of potential hit compounds with high therapeutic efficacy in abrogating DLBCL. RESULTS This review showcases the interventions of structure-based and ligand-based computational approaches which have led to the identification of numerous small molecule inhibitors against implicated targets in DLBCL therapy, even though many of these potential inhibitors are piled-up awaiting further experimental validation and exploration. CONCLUSION We conclude that a successful and a conscious amalgamation of CADD and experimental approaches could pave the way for the discovery of the next generation potential leads in DLBCL therapy with improved activities and minimal toxicities.
Collapse
Affiliation(s)
- Aimen K Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
223
|
Casola S, Perucho L, Tripodo C, Sindaco P, Ponzoni M, Facchetti F. The B‐cell receptor in control of tumor B‐cell fitness: Biology and clinical relevance. Immunol Rev 2019; 288:198-213. [DOI: 10.1111/imr.12738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Stefano Casola
- The FIRC Institute of Molecular Oncology (IFOM) Milan Italy
| | - Laura Perucho
- The FIRC Institute of Molecular Oncology (IFOM) Milan Italy
| | - Claudio Tripodo
- Tumor Immunology UnitDepartment of Health SciencesUniversity of Palermo Palermo Italy
- Tumor and Microenvironment Histopathology UnitThe FIRC Institute of Molecular Oncology (IFOM) Milan Italy
| | - Paola Sindaco
- Department of Emergency and Organ Transplantation (D.E.T.O.)Hematology SectionUniversity of Bari Bari Italy
| | - Maurilio Ponzoni
- Pathology and Lymphoid Malignancies UnitsAteneo Vita‐Salute San Raffaele Scientific Institute Milan Italy
| | - Fabio Facchetti
- Department of Molecular and Translational MedicineSection of PathologyUniversity of Brescia Brescia Italy
| |
Collapse
|
224
|
Growth-inhibition of cell lines derived from B cell lymphomas through antagonism of serotonin receptor signaling. Sci Rep 2019; 9:4276. [PMID: 30862884 PMCID: PMC6414675 DOI: 10.1038/s41598-019-40825-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
A majority of lymphomas are derived from B cells and novel treatments are required to treat refractory disease. Neurotransmitters such as serotonin and dopamine influence activation of B cells and the effects of a selective serotonin 1A receptor (5HT1A) antagonist on growth of a number of B cell-derived lymphoma cell lines were investigated. We confirmed the expression of 5HT1A in human lymphoma tissue and in several well-defined experimental cell lines. We discovered that the pharmacological inhibition of 5HT1A led to the reduced proliferation of B cell-derived lymphoma cell lines together with DNA damage, ROS-independent caspase activation and apoptosis in a large fraction of cells. Residual live cells were found ‘locked’ in a non-proliferative state in which a selective transcriptional and translational shutdown of genes important for cell proliferation and metabolism occurred (e.g., AKT, GSK-3β, cMYC and p53). Strikingly, inhibition of 5HT1A regulated mitochondrial activity through a rapid reduction of mitochondrial membrane potential and reducing dehydrogenase activity. Collectively, our data suggest 5HT1A antagonism as a novel adjuvant to established cancer treatment regimens to further inhibit lymphoma growth.
Collapse
|
225
|
Abstract
PURPOSE OF REVIEW In addition to the recent progresses in the description of the genetic landscape of B-cell non-Hodgkin's lymphomas, tumor microenvironment has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, drug resistance, and late progression/transformation. The purpose of this review is to outline the most recent findings regarding malignant B-cell niche composition and organization supporting direct and indirect tumor-promoting functions of lymphoma microenvironment. RECENT FINDINGS Lymphoma supportive niche integrates a dynamic and orchestrated network of immune and stromal cell subsets producing, with a high level of spatial and kinetic heterogeneity, extracellular and membrane factors regulating tumor migration, survival, proliferation, immune escape, as well as tumor microarchitecture, and mechanical constraints. Some recent insights have improved our understanding of these various components of lymphoma microenvironment, taking into account the mechanisms underlying the coevolution of malignant and nonmalignant cells within the tumor niche. SUMMARY Deciphering tumor niche characteristics, functions, and origin could offer new therapeutic opportunities through the targeting of pivotal cellular and molecular components of the supportive microenvironment, favoring immune cell reactivation and infiltration, and/or limiting tumor retention within this protective niche.
Collapse
|
226
|
Lee DH, Kim GW, Kwon SH. The HDAC6-selective inhibitor is effective against non-Hodgkin lymphoma and synergizes with ibrutinib in follicular lymphoma. Mol Carcinog 2019; 58:944-956. [PMID: 30693983 DOI: 10.1002/mc.22983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/27/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Follicular lymphoma (FL) is the most common indolent B-cell non-Hodgkin lymphoma (NHL) with genetic alterations of BCL-2, KMT2B, and KMT6. FL is refractory to conventional chemotherapy and is still incurable in most patients. Thus, new drugs and/or novel combination treatment strategies are needed to further improve FL patient outcome. We investigated the efficacy of the histone deacetylase 6 (HDAC6) inhibitor A452 combined with a Bruton's tyrosine kinase (BTK) inhibitor ibrutinib on NHL and the underlying mechanisms compared with the current clinically tested HDAC6 inhibitor ACY-1215. We first showed that FL is the most sensitive to HDAC6 inhibitor. We showed that combining A452 with ibrutinib led to the synergistic inhibition of cell growth and decreased viability of FL cells, as well as increased levels of apoptosis. Similar synergistic interactions occur in chronic lymphocytic leukemia (CLL) and germinal center diffuse large B-cell lymphoma cells (DLBCL). Enhanced cell death is associated with AKT and ERK1/2 inactivation and increased DNA damage (induction of γH2A.X and reduction of pChk1/2). In addition, A452 downregulates c-Myc, an effect significantly enhanced by ibruninib. Although ACY-1215 is less potent than A452, it displays synergism with ibrutinib. Overall, our results suggest that A452 is more effective as an anticancer agent than ACY-1215 in FL. These findings suggest that a combination of HDAC6-selective inhibitor and ibrutinib is a potent therapeutic strategy for NHL including FL.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
227
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
228
|
Zhang S, Pei Y, Lang F, Sun K, Singh RK, Lamplugh ZL, Saha A, Robertson ES. EBNA3C facilitates RASSF1A downregulation through ubiquitin-mediated degradation and promoter hypermethylation to drive B-cell proliferation. PLoS Pathog 2019; 15:e1007514. [PMID: 30615685 PMCID: PMC6336319 DOI: 10.1371/journal.ppat.1007514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/17/2019] [Accepted: 12/08/2018] [Indexed: 12/15/2022] Open
Abstract
EBV latent antigen 3C (EBNA3C) is essential for EBV-induced primary B-cell transformation. Infection by EBV induces hypermethylation of a number of tumor suppressor genes, which contributes to the development of human cancers. The Ras association domain family isoform 1A (RASSF1A) is a cellular tumor suppressor, which regulates a broad range of cellular functions, including apoptosis, cell-cycle arrest, mitotic arrest, and migration. However, the expression of RASSF1A is lost in many human cancers by epigenetic silencing. In the present study, we showed that EBNA3C promoted B-cell transformation by specifically suppressing the expression of RASSF1A. EBNA3C directly interacted with RASSF1A and induced RASSF1A degradation via the ubiquitin-proteasome-dependent pathway. SCFSkp2, an E3-ubiquitin ligase, was recruited by EBNA3C to enhance RASSF1A degradation. Moreover, EBNA3C decreased the transcriptional activity of RASSF1A promoter by enhancing its methylation through EBNA3C-mediated modulation of DNMTs expression. EBNA3C also inhibited RASSF1A-mediated cell apoptosis, disrupted RASSF1A-mediated microtubule and chromosomal stability, and promoted cell proliferation by upregulating Cyclin D1 and Cyclin E expression. Our data provides new details, which sheds light on additional mechanisms by which EBNA3C can induce B-cell transformation. This will also facilitate the development of novel therapeutic approaches through targeting of the RASSF1A pathway.
Collapse
Affiliation(s)
- Shengwei Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kunfeng Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajnish Kumar Singh
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zachary L. Lamplugh
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
229
|
Tessoulin B, Papin A, Gomez-Bougie P, Bellanger C, Amiot M, Pellat-Deceunynck C, Chiron D. BCL2-Family Dysregulation in B-Cell Malignancies: From Gene Expression Regulation to a Targeted Therapy Biomarker. Front Oncol 2019; 8:645. [PMID: 30666297 PMCID: PMC6330761 DOI: 10.3389/fonc.2018.00645] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
BCL2-family proteins have a central role in the mitochondrial apoptosis machinery and their expression is known to be deregulated in many cancer types. Effort in the development of small molecules that selectively target anti-apoptotic members of this family i.e., Bcl-2, Bcl-xL, Mcl-1 recently opened novel therapeutic opportunities. Among these apoptosis-inducing agents, BH3-mimetics (i.e., venetoclax) led to promising preclinical and clinical activity in B cell malignancies. However, several mechanisms of intrinsic or acquired resistance have been described ex vivo therefore predictive markers of response as well as mechanism-based combinations have to be designed. In the present study, we analyzed the expression of the BCL2-family genes across 10 mature B cell malignancies through computational normalization of 21 publicly available Affimetrix datasets gathering 1,219 patient samples. To better understand the deregulation of anti- and pro-apoptotic members of the BCL2-family in hematological disorders, we first compared gene expression profiles of malignant B cells to their relative normal control (naïve B cell to plasma cells, n = 37). We further assessed BCL2-family expression according to tissue localization i.e., peripheral blood, bone marrow, and lymph node, molecular subgroups or disease status i.e., indolent to aggressive. Across all cancer types, we showed that anti-apoptotic genes are upregulated while pro-apoptotic genes are downregulated when compared to normal counterpart cells. Of interest, our analysis highlighted that, independently of the nature of malignant B cells, the pro-apoptotic BH3-only BCL2L11 and PMAIP1 are deeply repressed in tumor niches, suggesting a central role of the microenvironment in their regulation. In addition, we showed selective modulations across molecular subgroups and showed that the BCL2-family expression profile was related to tumor aggressiveness. Finally, by integrating recent data on venetoclax-monotherapy clinical activity with the expression of BCL2-family members involved in the venetoclax response, we determined that the ratio (BCL2+BCL2L11+BAX)/BCL2L1 was the strongest predictor of venetoclax response for mature B cell malignancies in vivo.
Collapse
Affiliation(s)
- Benoît Tessoulin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,Department of Hematology, Centre Hospitalier Universitaire Nantes, France
| | - Antonin Papin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - Patricia Gomez-Bougie
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - Celine Bellanger
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - Catherine Pellat-Deceunynck
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - David Chiron
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| |
Collapse
|
230
|
Abstract
Somatic mutations in cancer cells may influence tumor growth, survival, or immune interactions in their microenvironment. The tumor necrosis factor receptor family member HVEM (TNFRSF14) is frequently mutated in cancers and has been attributed a tumor suppressive role in some cancer contexts. HVEM functions both as a ligand for the lymphocyte checkpoint proteins BTLA and CD160, and as a receptor that activates NF-κB signaling pathways in response to BTLA and CD160 and the TNF ligands LIGHT and LTα. BTLA functions to inhibit lymphocyte activation, but has also been ascribed a role in stimulating cell survival. CD160 functions to co-stimulate lymphocyte function, but has also been shown to activate inhibitory signaling in CD4+ T cells. Thus, the role of HVEM within diverse cancers and in regulating the immune responses to these tumors is likely context specific. Additionally, development of therapeutics that target proteins within this network of interacting proteins will require a deeper understanding of how these proteins function in a cancer-specific manner. However, the prominent role of the HVEM network in anti-cancer immune responses indicates a promising area for drug development.
Collapse
|
231
|
Peng C, Hu Q, Yang F, Zhang H, Li F, Huang C. BCL6-Mediated Silencing of PD-1 Ligands in Germinal Center B Cells Maintains Follicular T Cell Population. THE JOURNAL OF IMMUNOLOGY 2018; 202:704-713. [PMID: 30567732 DOI: 10.4049/jimmunol.1800876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
The programmed cell death protein 1 (PD-1) ligands PD-L1 and PD-L2 on germinal center (GC) B cells deliver coinhibitory signals to follicular T cells. The PD-L1/L2-PD-1 axis modulates the quality and quantity of follicular T cells and has been shown to influence the GC responses. However, the transcriptional control of PD-1 ligands on GC B cells remains largely unknown. In this study, we report that the transcription factor BCL6 is a key negative regulator of the PD-1 ligands PD-L1 and PD-L2 in GC B cells. Acute deletion of Bcl6 in mature GC B cells resulted in marked upregulation of mRNA and protein abundance of PD-1 ligands. Moreover, the expression levels of BCL6 and PD-1 ligands were inversely correlated during GC B cell development and in human GC-derived lymphoma specimens. Mechanically, BCL6 directly bound to the promoter region of PD-L1 and intron 2 of PD-L2 to suppress their transcription. In addition, BCL6 indirectly inhibited the transcription of PD-1 ligands by repressing the expression of STAT1/STAT3 and IRF1. Moreover, BCL6 exerted these effects via its BTB domain. Finally, PD-1 blockade promoted cell survival to sustain the follicular T cell pool in the presence of Bcl6-deficinet GC B cells. In summary, B cell-specific expression of BCL6 dampens the PD-L1/L2-PD-1 signaling to maintain the size of follicular T cells during GC development.
Collapse
Affiliation(s)
- Cheng Peng
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qianwen Hu
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fang Yang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Heng Zhang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fubin Li
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Chuanxin Huang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
232
|
Li X, Gadzinsky A, Gong L, Tong H, Calderon V, Li Y, Kitamura D, Klein U, Langdon WY, Hou F, Zou YR, Gu H. Cbl Ubiquitin Ligases Control B Cell Exit from the Germinal-Center Reaction. Immunity 2018; 48:530-541.e6. [PMID: 29562201 DOI: 10.1016/j.immuni.2018.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/21/2017] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Selective expansion of high-affinity antigen-specific B cells in germinal centers (GCs) is a key event in antibody affinity maturation. GC B cells with improved affinity can either continue affinity-driven selection or exit the GC to differentiate into plasma cells (PCs) or memory B cells. Here we found that deleting E3 ubiquitin ligases Cbl and Cbl-b (Cbls) in GC B cells resulted in the early exit of high-affinity antigen-specific B cells from the GC reaction and thus impaired clonal expansion. Cbls were highly expressed in GC light zone (LZ) B cells, where they promoted the ubiquitination and degradation of Irf4, a transcription factor facilitating PC fate choice. Strong CD40 and BCR stimulation triggered the Cbl degradation, resulting in increased Irf4 expression and exit from GC affinity selection. Thus, a regulatory cascade that is centered on the Cbl ubiquitin ligases ensures affinity-driven clonal expansion by connecting BCR affinity signals with differentiation programs.
Collapse
Affiliation(s)
- Xin Li
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Liying Gong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Haijun Tong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Yue Li
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Sciences, Noda, Chiba 162-8601, Japan
| | - Ulf Klein
- Leeds Institute of Cancer and Pathology, School of Medicine, University of Leeds, Leeds LS97TF, UK
| | - Wallace Y Langdon
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Fajian Hou
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Rui Zou
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Hua Gu
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
233
|
Arruga F, Vaisitti T, Deaglio S. The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Front Oncol 2018; 8:550. [PMID: 30534535 PMCID: PMC6275466 DOI: 10.3389/fonc.2018.00550] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The systematic application of next-generation sequencing to large cohorts of oncologic samples has opened a Pandora's box full of known and novel genetic lesions implicated in different steps of cancer development and progression. Narrowing down to B cell malignancies, many previously unrecognized genes emerged as recurrently mutated. The challenge now is to determine how the mutation in a given gene affects the biology of the disease, paving the way to functional genomics studies. Mutations in NOTCH family members are shared by several disorders of the B series, even if with variable frequencies and mutational patterns. In silico predictions, revealed that mutations occurring in NOTCH receptors, despite being qualitatively different, may have similar effects on protein processing, ultimately leading to enhanced pathway activation. The discovery of mutations occurring also in downstream players, either potentiating positive signals or compromising negative regulators, indicates that multiple mechanisms in neoplastic B cells concur to activate NOTCH pathway. These findings are supported by results obtained in chronic lymphocytic leukemia and splenic marginal zone B cell lymphoma where deregulation of NOTCH signaling has been functionally characterized. The emerging picture confirms that NOTCH signaling is finely tuned in cell- and microenvironment-dependent ways. In B cell malignancies, it contributes to the regulation of proliferation, survival and migration. However, deeper biological studies are needed to pinpoint the contribution of NOTCH in the hierarchy of events driving B cells transformation, keeping in mind its role in normal B cells development. Because of its relevance in leukemia and lymphoma biology, the NOTCH pathway might represent an appealing therapeutic target: the next few years will tell whether this potential will be fulfilled.
Collapse
Affiliation(s)
- Francesca Arruga
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tiziana Vaisitti
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
234
|
Cross-talk between signal transduction and metabolism in B cells. Immunol Lett 2018; 201:1-13. [PMID: 30439477 DOI: 10.1016/j.imlet.2018.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Mounting evidence demonstrates that specific metabolic adaptations are needed to support B cell development and differentiation and to enable B cells to thrive in different environments. Mitogen induced activation of intracellular signaling pathways triggers nutrient uptake and metabolic remodeling to meet the cells' current needs. Reciprocally, changes in the metabolic composition of the environment, or in intracellular metabolite levels, can modulate signal transduction and thus shape cell fate and function. In summary, signal transduction and metabolic pathways operate within an integrated network to cooperatively define cellular outcomes.
Collapse
|
235
|
Royer-Perron L, Hoang-Xuan K. Management of primary central nervous system lymphoma. Presse Med 2018; 47:e213-e244. [PMID: 30416008 DOI: 10.1016/j.lpm.2018.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022] Open
Abstract
A rare tumor, primary central nervous system lymphoma can affect immunocompetent and immunocompromised patients. While sensitive to radiotherapy or chemotherapy crossing the blood-brain barrier, it often recurs. Modern treatment consists of high-dose methotrexate-based induction chemotherapy, often followed by consolidation with either radiotherapy or further chemotherapy. Neurotoxicity is however a concern with radiotherapy, especially for patients older than 60 years. The benefit of the addition of rituximab to chemotherapy is unclear. Targeted therapies and immunotherapy have been effective in some patients and are tested on a larger scale. Survival has improved in the last decade, but remains poor in older patients.
Collapse
Affiliation(s)
- Louis Royer-Perron
- Hôpital Pierre-Boucher, Longueuil, Canada; AP-HP, Sorbonne universités, UPMC université Paris 06, hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, service de neurologie, 2, Mazarin, 75013, Paris, France; LOC network, 75561 Paris cedex 13, France.
| | - Khê Hoang-Xuan
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France; AP-HP, Sorbonne universités, UPMC université Paris 06, hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, service de neurologie, 2, Mazarin, 75013, Paris, France; LOC network, 75561 Paris cedex 13, France
| |
Collapse
|
236
|
Stepanov AV, Markov OV, Chernikov IV, Gladkikh DV, Zhang H, Jones T, Sen’kova AV, Chernolovskaya EL, Zenkova MA, Kalinin RS, Rubtsova MP, Meleshko AN, Genkin DD, Belogurov AA, Xie J, Gabibov AG, Lerner RA. Autocrine-based selection of ligands for personalized CAR-T therapy of lymphoma. SCIENCE ADVANCES 2018; 4:eaau4580. [PMID: 30443597 PMCID: PMC6235538 DOI: 10.1126/sciadv.aau4580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/12/2018] [Indexed: 05/24/2023]
Abstract
We report the development of a novel platform to enhance the efficacy and safety of follicular lymphoma (FL) treatment. Since lymphoma is a clonal malignancy of a diversity system, every tumor has a different antibody on its cell surface. Combinatorial autocrine-based selection is used to rapidly identify specific ligands for these B cell receptors on the surface of FL tumor cells. The selected ligands are used in a chimeric antigen receptor T cell (CAR-T) format for redirection of human cytotoxic T lymphocytes. Essentially, the format is the inverse of the usual CAR-T protocol. Instead of being a guide molecule, the antibody itself is the target. Thus, these studies raise the possibility of personalized treatment of lymphomas using a private antibody binding ligand that can be obtained in a few weeks.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Female
- Humans
- Ligands
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/therapy
- Mice, Inbred NOD
- Mice, SCID
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Alexey V. Stepanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Daniil V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Hongkai Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Teresa Jones
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| | - Alexandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Roman S. Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Maria P. Rubtsova
- Chemistry Department, M.V. Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russian Federation
| | - Alexander N. Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| |
Collapse
|
237
|
Aberrant Activation of NF-κB Signalling in Aggressive Lymphoid Malignancies. Cells 2018; 7:cells7110189. [PMID: 30380749 PMCID: PMC6262606 DOI: 10.3390/cells7110189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Lymphoid malignancies frequently harbor genetic mutations leading to aberrant activation of nuclear factor-κB (NF-κB) signaling; in normal cells, this pathway has important roles in the control of cell growth, survival, stress responses, and inflammation. Malignancies with mutations in NF-κB pathway components can derive from all cell stages of mature B-cell development; however, aberrant NF-κB activity is particularly prevalent in aggressive subtypes of non-Hodgkin lymphoma and myeloma. NF-κB activation is mediated by two separate pathways, the canonical and alternative pathway, and five downstream transcription factor subunits. Recent findings implicate a predominant role for distinct NF-κB pathways and subunits in certain lymphoma subtypes and myeloma; findings which are complemented by the realization that individual NF-κB subunits can have unique, non-redundant biological roles in the putative tumor precursor cells, including activated B cells, germinal center B cells and plasma cells. The knowledge gained from these studies may be exploited for the development of therapeutic strategies to inhibit aberrant NF-κB activity at the level of the transcription-factor subunits and their target genes, as global inhibition of the pathway is toxic. Here, we provide an overview on the role of aberrant NF-κB activation in aggressive lymphoid malignancies and discuss the potential importance of individual NF-κB subunits in the pathogenesis of tumor subtypes.
Collapse
|
238
|
Riedell PA, Smith SM. Double hit and double expressors in lymphoma: Definition and treatment. Cancer 2018; 124:4622-4632. [PMID: 30252929 DOI: 10.1002/cncr.31646] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Emerging biologic subsets and new prognostic markers are significantly and adversely affecting curability after standard chemoimmunotherapy for aggressive B-cell lymphomas. The identification of concurrent MYC and B-cell CLL/lymphoma 2 (BCL2) deregulation, whether at a genomic or protein level, has opened a new era of investigation within the most common subtype of aggressive B-cell lymphomas. Double-hit lymphoma (DHL), defined as a dual rearrangement of MYC and BCL2 and/or B-cell CLL/lymphoma 6 (BCL6) genes, is an uncommon subset accounting for 5% to 7% of all diffuse large B-cell lymphomas (DLBCLs), and long-term survivors are rare. Double-expressor lymphoma (DEL), defined as overexpression of MYC and BCL2 proteins not related to underlying chromosomal rearrangements, is not a distinct entity in the current World Health Organization classification but accounts for 20% to 30% of DLBCL cases and also has poor outcomes. There are many practical considerations related to identifying, determining the prognosis of, and managing DHL and DEL.
Collapse
Affiliation(s)
- Peter A Riedell
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Sonali M Smith
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
239
|
B-cell receptor-mediated NFATc1 activation induces IL-10/STAT3/PD-L1 signaling in diffuse large B-cell lymphoma. Blood 2018; 132:1805-1817. [PMID: 30209121 DOI: 10.1182/blood-2018-03-841015] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023] Open
Abstract
Knowledge of programmed death ligand 1 (PD-L1) expression and its regulation in B-cell lymphoma cells is limited. Investigating mechanisms that control PD-L1 expression in B-cell lymphoma cells might identify biomarkers that predict the efficacy of immunotherapy with anti-programmed death-1/PD-L1 antibodies. In addition, identification of mechanisms that regulate PD-L1 may identify molecules that can be targeted to improve the clinical efficacy of immune checkpoint inhibitors. In this study, we used proteomic approaches and patient-derived B-cell lymphoma cell lines to investigate mechanisms that regulate PD-L1 expression. We found that PD-L1 expression, particularly in nongerminal center B cell-derived diffuse large B-cell lymphoma (DLBCL), is controlled and regulated by several interactive signaling pathways, including the B-cell receptor (BCR) and JAK2/STAT3 signaling pathways. We found that that BCR-mediated NFATc1 activation upregulates IL-10 chemokine expression in PD-L1+ B-cell lymphoma cells. Released IL-10 activates the JAK2/STAT3 pathway, leading to STAT3-induced PD-L1 expression. IL-10 antagonist antibody abrogates IL-10/STAT3 signaling and PD-L1 protein expression. We also found that BCR pathway inhibition by BTK inhibitors (ibrutinib, acalabrutinib, and BGB-3111) blocks NFATc1 and STAT3 activation, thereby inhibiting IL-10 and PD-L1 expression. Finally, we validated the PD-L1 signaling network in 2 primary DLBCL cohorts consisting of 428 and 350 cases and showed significant correlations among IL-10, STAT3, and PD-L1. Thus, our findings reveal a complex signaling network regulating PD-L1 expression in B-cell lymphoma cells and suggest that PD-L1 expression can be modulated by small molecule inhibitors to potentiate immunotherapies.
Collapse
|
240
|
Brescia P, Schneider C, Holmes AB, Shen Q, Hussein S, Pasqualucci L, Basso K, Dalla-Favera R. MEF2B Instructs Germinal Center Development and Acts as an Oncogene in B Cell Lymphomagenesis. Cancer Cell 2018; 34:453-465.e9. [PMID: 30205047 PMCID: PMC6223119 DOI: 10.1016/j.ccell.2018.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/15/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022]
Abstract
The gene encoding the MEF2B transcription factor is mutated in germinal center (GC)-derived B cell lymphomas, but its role in GC development and lymphomagenesis is unknown. We demonstrate that Mef2b deletion reduces GC formation in mice and identify MEF2B transcriptional targets in GC, with roles in cell proliferation, apoptosis, GC confinement, and differentiation. The most common lymphoma-associated MEF2B mutant (MEF2BD83V) is hypomorphic, yet escapes binding and negative regulation by components of the HUCA complex and class IIa HDACs. Mef2bD83V expression in mice leads to GC enlargement and lymphoma development, a phenotype that becomes fully penetrant in combination with BCL2 de-regulation, an event associated with human MEF2B mutations. These results identify MEF2B as a critical GC regulator and a driver oncogene in lymphomagenesis.
Collapse
Affiliation(s)
- Paola Brescia
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Christof Schneider
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Shafinaz Hussein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA; The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
241
|
Bolli N, Maura F, Minvielle S, Gloznik D, Szalat R, Fullam A, Martincorena I, Dawson KJ, Samur MK, Zamora J, Tarpey P, Davies H, Fulciniti M, Shammas MA, Tai YT, Magrangeas F, Moreau P, Corradini P, Anderson K, Alexandrov L, Wedge DC, Avet-Loiseau H, Campbell P, Munshi N. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun 2018; 9:3363. [PMID: 30135448 PMCID: PMC6105687 DOI: 10.1038/s41467-018-05058-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
We analyzed whole genomes of unique paired samples from smoldering multiple myeloma (SMM) patients progressing to multiple myeloma (MM). We report that the genomic landscape, including mutational profile and structural rearrangements at the smoldering stage is very similar to MM. Paired sample analysis shows two different patterns of progression: a "static progression model", where the subclonal architecture is retained as the disease progressed to MM suggesting that progression solely reflects the time needed to accumulate a sufficient disease burden; and a "spontaneous evolution model", where a change in the subclonal composition is observed. We also observe that activation-induced cytidine deaminase plays a major role in shaping the mutational landscape of early subclinical phases, while progression is driven by APOBEC cytidine deaminases. These results provide a unique insight into myelomagenesis with potential implications for the definition of smoldering disease and timing of treatment initiation.
Collapse
Affiliation(s)
- Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Department of Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Francesco Maura
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Stephane Minvielle
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, 44035, France
- CHU de Nantes, Nantes, 44093, France
| | - Dominik Gloznik
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Raphael Szalat
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Anthony Fullam
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Kevin J Dawson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mehmet Kemal Samur
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Jorge Zamora
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Patrick Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Helen Davies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Masood A Shammas
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Yu Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Florence Magrangeas
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, 44035, France
- CHU de Nantes, Nantes, 44093, France
| | - Philippe Moreau
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, 44035, France
- CHU de Nantes, Nantes, 44093, France
| | - Paolo Corradini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Department of Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Kenneth Anderson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Ludmil Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Herve Avet-Loiseau
- Genomics of Myeloma Laboratory, L'Institut Universitaire du Cancer Oncopole, Toulouse, 31100, France.
| | - Peter Campbell
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.
| | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA.
- Veterans Administration Boston Healthcare System, West Roxbury, 02132, MA, USA.
| |
Collapse
|
242
|
Singling out the out-of-tune in lymphoma. Nat Immunol 2018; 19:903-905. [PMID: 30104632 DOI: 10.1038/s41590-018-0189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
243
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|
244
|
Vistarop AG, Cohen M, Huaman F, Irazu L, Rodriguez M, De Matteo E, Preciado MV, Chabay PA. The interplay between local immune response and Epstein-Barr virus-infected tonsillar cells could lead to viral infection control. Med Microbiol Immunol 2018; 207:319-327. [PMID: 30046954 DOI: 10.1007/s00430-018-0553-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Epstein Barr virus (EBV) gains access to the host through tonsillar crypts. Our aim was to characterize microenvironment composition around EBV+ cells in tonsils from pediatric carriers, to disclose its role on viral pathogenesis. LMP1 expression, assessed by immunohistochemistry (IHC), was used to discriminate EBV + and - zones in 41 tonsil biopsies. Three regions were defined: Subepithelial (SE), interfollicular (IF) and germinal center (GC). CD8, GrB, CD68, IL10, Foxp3, PD1, CD56 and CD4 markers were evaluated by IHC; positive cells/100 total cells were counted. CD8+, GrB+, CD68+ and IL10+ cells were prevalent in EBV+ zones at the SE region (p < 0.0001, p = 0.03, p = 0.002 and p = 0.002 respectively, Wilcoxon test). CD4+ and CD68+ cell count were higher in EBV + GC (p = 0.01 and p = 0.0002 respectively, Wilcoxon test). Increment of CD8, GrB and CD68 at the SE region could indicate a specific response that may be due to local homing at viral entry, which could be counterbalanced by IL10, an immunosuppressive cytokine. Additionally, it could be hypothesized that CD4 augment at the GC may be involved in the EBV-induced B-cell growth control at this region, in which macrophages could also participate.
Collapse
Affiliation(s)
- Aldana G Vistarop
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina. .,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina.
| | - Melina Cohen
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Fuad Huaman
- Histopathological Laboratory, National Academy of Medicine, Buenos Aires, Argentina
| | - Lucia Irazu
- National Institute of Infectious Diseases, National Laboratories and Health Institutes Administration "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Marcelo Rodriguez
- National Institute of Infectious Diseases, National Laboratories and Health Institutes Administration "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Elena De Matteo
- Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - María Victoria Preciado
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Paola A Chabay
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| |
Collapse
|
245
|
Dalla-Favera R. Molecular genetics of aggressive B-cell lymphoma. Hematol Oncol 2018; 35 Suppl 1:76-79. [PMID: 28591417 DOI: 10.1002/hon.2405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
246
|
Laidlaw BJ, Lu Y, Amezquita RA, Weinstein JS, Vander Heiden JA, Gupta NT, Kleinstein SH, Kaech SM, Craft J. Interleukin-10 from CD4 + follicular regulatory T cells promotes the germinal center response. Sci Immunol 2018; 2:2/16/eaan4767. [PMID: 29054998 DOI: 10.1126/sciimmunol.aan4767] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
CD4+ follicular regulatory T (Tfr) cells suppress B cell responses through modulation of follicular helper T (Tfh) cells and germinal center (GC) development. We found that Tfr cells can also promote the GC response through provision of interleukin-10 (IL-10) after acute infection with lymphocytic choriomeningitis virus (LCMV). Sensing of IL-10 by B cells was necessary for optimal development of the GC response. GC B cells formed in the absence of Treg cell-derived IL-10 displayed an altered dark zone state and decreased expression of the transcription factor Forkhead box protein 1 (FOXO1). IL-10 promoted nuclear translocation of FOXO1 in activated B cells. These data indicate that Tfr cells play a multifaceted role in the fine-tuning of the GC response and identify IL-10 as an important mediator by which Tfr cells support the GC reaction.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yisi Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason S Weinstein
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Namita T Gupta
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
247
|
Kerres N, Steurer S, Schlager S, Bader G, Berger H, Caligiuri M, Dank C, Engen JR, Ettmayer P, Fischerauer B, Flotzinger G, Gerlach D, Gerstberger T, Gmaschitz T, Greb P, Han B, Heyes E, Iacob RE, Kessler D, Kölle H, Lamarre L, Lancia DR, Lucas S, Mayer M, Mayr K, Mischerikow N, Mück K, Peinsipp C, Petermann O, Reiser U, Rudolph D, Rumpel K, Salomon C, Scharn D, Schnitzer R, Schrenk A, Schweifer N, Thompson D, Traxler E, Varecka R, Voss T, Weiss-Puxbaum A, Winkler S, Zheng X, Zoephel A, Kraut N, McConnell D, Pearson M, Koegl M. Chemically Induced Degradation of the Oncogenic Transcription Factor BCL6. Cell Rep 2018; 20:2860-2875. [PMID: 28930682 DOI: 10.1016/j.celrep.2017.08.081] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/29/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023] Open
Abstract
The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL). Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.
Collapse
Affiliation(s)
- Nina Kerres
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Helmut Berger
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Christian Dank
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | - Daniel Gerlach
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | - Peter Greb
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Heike Kölle
- Boehringer Ingelheim, MedChem, Structural Research, Birkendorfer Str. 65, 88397 Biberach, Germany
| | - Lyne Lamarre
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Simon Lucas
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Katharina Mayr
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Katja Mück
- Boehringer Ingelheim, MedChem, Structural Research, Birkendorfer Str. 65, 88397 Biberach, Germany
| | | | | | - Ulrich Reiser
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Carina Salomon
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Dirk Scharn
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | | | - Diane Thompson
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Roland Varecka
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Tilman Voss
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Sandra Winkler
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria.
| |
Collapse
|
248
|
Mendoza P, Martínez-Martín N, Bovolenta ER, Reyes-Garau D, Hernansanz-Agustín P, Delgado P, Diaz-Muñoz MD, Oeste CL, Fernández-Pisonero I, Castellano E, Martínez-Ruiz A, Alonso-Lopez D, Santos E, Bustelo XR, Kurosaki T, Alarcón B. R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes. Sci Signal 2018; 11:11/532/eaal1506. [DOI: 10.1126/scisignal.aal1506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
249
|
Primary central nervous system lymphoma: time for diagnostic biomarkers and biotherapies? Curr Opin Neurol 2018; 30:669-676. [PMID: 28922238 DOI: 10.1097/wco.0000000000000492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Primary central nervous system lymphoma (PCNSL) is a rare cancer with a somber prognosis in older patients, which it affects predominantly. Only in recent years have molecular alterations characterizing PCNSL been thoroughly described. This opens possibilities for the use of targeted therapies. Developments in imaging and biomarkers have also great potential to help clinicians faced with diagnostic and prognostic uncertainties. RECENT FINDINGS Several biomarkers for PCNSL, such as different microRNAs, which could be tested in cerebrospinal fluid and vitreous fluid, and IL-10, which has been shown to have excellent sensitivity and specificity in the cerebrospinal fluid, have emerged in the last years. Methotrexate-based regimens remain the gold standard first-line treatment, with recent studies looking at the best adjunctive molecules to methotrexate, including rituximab, and at the role of autologous stem cell transplantation. As mutations leading to the activation of nuclear factor-kappa-B signaling are found in most PCNSLs, with mutations of MYD88 and CD79B particularly, ibrutinib is studied as molecule of great interest and encouraging results have been found in pilot studies. There is also great interest in the immunomodulatory drugs (lenalidomide) and immunotherapy (anti-programmed cell death 1/programmed cell death 1 ligand 1). SUMMARY Identification of molecular genetic and cytokine changes in tumor and liquid biopsies will have an increasing role in the diagnostic and follow-up of PCNSL but also in the treatment and management of the disease.
Collapse
|
250
|
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 2018; 24:679-690. [PMID: 29713087 DOI: 10.1038/s41591-018-0016-8] [Citation(s) in RCA: 1180] [Impact Index Per Article: 196.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification.
Collapse
|