201
|
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137:731-755. [PMID: 30535946 DOI: 10.1007/s00401-018-1944-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.
Collapse
Affiliation(s)
- Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah C Hellewell
- Sydney Translational Imaging Laboratory, Charles Perkins Centre, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Nicole Bye
- Department of Pharmacy, College of Health and Medicine, University of Tasmania, Sandy Bay, TAS, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
202
|
Shah EJ, Gurdziel K, Ruden DM. Mammalian Models of Traumatic Brain Injury and a Place for Drosophila in TBI Research. Front Neurosci 2019; 13:409. [PMID: 31105519 PMCID: PMC6499071 DOI: 10.3389/fnins.2019.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI), caused by a sudden blow or jolt to the brain that disrupts normal function, is an emerging health epidemic with ∼2.5 million cases occurring annually in the United States that are severe enough to cause hospitalization or death. Most common causes of TBI include contact sports, vehicle crashes and domestic violence or war injuries. Injury to the central nervous system is one of the most consistent candidates for initiating the molecular and cellular cascades that result in Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Not every TBI event is alike with effects varying from person to person. The majority of people recover from mild TBI within a short period of time, but repeated incidents can have deleterious long-lasting effects which depend on factors such as the number of TBIs sustained, time till medical attention, age, gender and genetics of the individual. Despite extensive research, many questions still remain regarding diagnosis, treatment, and prevention of long-term effects from TBI as well as recovery of brain function. In this review, we present an overview of TBI pathology, discuss mammalian models for TBI and focus on current methods using Drosophila melanogaster as a model for TBI study. The relatively small brain size (∼100,000 neurons and glia), conserved neurotransmitter signaling mechanisms and sophisticated genetics of Drosophila allows for cell biological, molecular and genetic analyses that are impractical in mammalian models of TBI.
Collapse
Affiliation(s)
- Ekta J. Shah
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Douglas M. Ruden
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
203
|
APOE Genotype Specific Effects on the Early Neurodegenerative Sequelae Following Chronic Repeated Mild Traumatic Brain Injury. Neuroscience 2019; 404:297-313. [DOI: 10.1016/j.neuroscience.2019.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
|
204
|
Jaffe RJ, Dave RS, Byrareddy SN. Meningeal lymphatics in aging and Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S2. [PMID: 31032283 DOI: 10.21037/atm.2019.01.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Russell J Jaffe
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rajnish S Dave
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
205
|
Jackson TC, Kochanek PM. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther Hypothermia Temp Manag 2019; 9:13-47. [PMID: 30802174 PMCID: PMC6434603 DOI: 10.1089/ther.2019.0001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three decades of animal studies have reproducibly shown that hypothermia is profoundly cerebroprotective during or after a central nervous system (CNS) insult. The success of hypothermia in preclinical acute brain injury has not only fostered continued interest in research on the classic secondary injury mechanisms that are prevented or blunted by hypothermia but has also sparked a surge of new interest in elucidating beneficial signaling molecules that are increased by cooling. Ironically, while research into cold-induced neuroprotection is enjoying newfound interest in chronic neurodegenerative disease, conversely, the scope of the utility of therapeutic hypothermia (TH) across the field of acute brain injury is somewhat controversial and remains to be fully defined. This has led to the era of Targeted Temperature Management, which emphasizes a wider range of temperatures (33–36°C) showing benefit in acute brain injury. In this comprehensive review, we focus on our current understandings of the novel neuroprotective mechanisms activated by TH, and discuss the critical importance of developmental age germane to its clinical efficacy. We review emerging data on four cold stress hormones and three cold shock proteins that have generated new interest in hypothermia in the field of CNS injury, to create a framework for new frontiers in TH research. We make the case that further elucidation of novel cold responsive pathways might lead to major breakthroughs in the treatment of acute brain injury, chronic neurological diseases, and have broad potential implications for medicines of the distant future, including scenarios such as the prevention of adverse effects of long-duration spaceflight, among others. Finally, we introduce several new phrases that readily summarize the essence of the major concepts outlined by this review—namely, Ultramild Hypothermia, the “Responsivity of Cold Stress Pathways,” and “Hypothermia in a Syringe.”
Collapse
Affiliation(s)
- Travis C Jackson
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
206
|
Hiraoka T. Association of late effects of single, severe traumatic brain injury with Alzheimer's disease using amyloid PET. Neurocase 2019; 25:10-16. [PMID: 30950324 DOI: 10.1080/13554794.2019.1599026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Traumatic brain injury (TBI) is suggested to be a risk factor for the onset of Alzheimer's disease (AD); however, the data remain controversial. This is the first report on cognitive decline in patients with TBI over 30 years post-injury. The medical significance/key learning points of this report are that (1) Functional Independence Measure (FIM) is useful in clinical settings, such as for higher brain dysfunction and dementia; (2) amyloid PET findings represent an essential biomarker for follow-up after TBI; and (3) cognitive decline can occur in patients with TBI more than 30 years post-injury.
Collapse
Affiliation(s)
- Takashi Hiraoka
- a Department of Rehabilitation Medicine , Kawasaki Medical School , Kurashiki , Japan
| |
Collapse
|
207
|
Cherbuin N, Shaw ME, Walsh E, Sachdev P, Anstey KJ. Validated Alzheimer's Disease Risk Index (ANU-ADRI) is associated with smaller volumes in the default mode network in the early 60s. Brain Imaging Behav 2019; 13:65-74. [PMID: 29243120 PMCID: PMC6409311 DOI: 10.1007/s11682-017-9789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Strong evidence is available suggesting that effective reduction of exposure to demonstrated modifiable risk factors in mid-life or before could significantly decrease the incidence of Alzheimer's disease (AD) and delay its onset. A key ingredient to achieving this goal is the reliable identification of individuals at risk well before they develop clinical symptoms. The aim of this study was to provide further neuroimaging evidence of the effectiveness of a validated tool, the ANU Alzheimer's Disease Risk Index, for the assessment of future risk of cognitive decline. Participants were 461 (60-64 years, 48% female) community-living individuals free of dementia at baseline. Associations between risk estimates obtained with the ANU-ADRI, total and regional brain volumes including in the default mode network (DMN) measured at the same assessment and diagnosis of MCI/dementia over a 12-year follow-up were tested in a large sample of community-living individuals free of dementia at baseline. Higher risk estimates on the ANU-ADRI were associated with lower cortical gray matter and particularly in the DMN. Importantly, difference in participants with high and low risk scores explained 7-9% of the observed difference in gray matter volume. In this sample, every one additional risk point on the ANU-ADRI was associated with an 8% increased risk of developing MCI/dementia over a 12-year follow-up and this association was partly mediated by a sub-region of the DMN. Risk of cognitive decline assessed with a validated instrument is associated with gray matter volume, particularly in the DMN, a region known to be implicated in the pathological process of the disease.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia.
| | - Marnie E Shaw
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| | - Erin Walsh
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| | - Perminder Sachdev
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| |
Collapse
|
208
|
Kaup AR, Toomey R, Bangen KJ, Delano-Wood L, Yaffe K, Panizzon MS, Lyons MJ, Franz CE, Kremen WS. Interactive Effect of Traumatic Brain Injury and Psychiatric Symptoms on Cognition among Late Middle-Aged Men: Findings from the Vietnam Era Twin Study of Aging. J Neurotrauma 2019; 36:338-347. [PMID: 29978738 PMCID: PMC6338572 DOI: 10.1089/neu.2018.5695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI), post-traumatic stress disorder (PTSD), and depressive symptoms each increase the risk for cognitive impairment in older adults. We investigated whether TBI has long-term associations with cognition in late middle-aged men, and examined the role of current PTSD/depressive symptoms. Participants were 953 men (ages 56-66) from the Vietnam Era Twin Study of Aging (VETSA), who were classified by presence or absence of (1) history of TBI and (2) current elevated psychiatric symptoms (defined as PTSD or depressive symptoms above cutoffs). TBIs had occurred an average of 35 years prior to assessment. Participants completed cognitive testing examining nine domains. In mixed-effects models, we tested the effect of TBI on cognition including for interactions between TBI and elevated psychiatric symptoms. Models adjusted for age, pre-morbid cognitive ability assessed at average age 20 years, apolipoprotein E genotype, and substance abuse; 33% (n = 310) of participants had TBI, mostly mild and remote; and 23% (n = 72) of those with TBI and 18% (n = 117) without TBI had current elevated psychiatric symptoms. TBI and psychiatric symptoms had interactive effects on cognition, particularly executive functioning. Group comparison analyses showed that men with both TBI and psychiatric symptoms demonstrated deficits primarily in executive functioning. Cognition was largely unaffected in men with either risk factor in isolation. Among late middle-aged men, the combination of even mild and very remote TBI with current elevated psychiatric symptoms is associated with deficits in executive function and related abilities. Future longitudinal studies should investigate how TBI and psychiatric factors interact to impact brain aging.
Collapse
Affiliation(s)
- Allison R. Kaup
- Research Service, San Francisco VA Health Care System and Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California.,Address correspondence to: Allison R. Kaup, PhD, Research Service, San Francisco VA Health Care System and Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, 4150 Clement Street (116B), San Francisco, CA, 94121
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Katherine J. Bangen
- Veterans Affairs San Diego Healthcare System, San Diego, California.,Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System, San Diego, California.,Department of Psychiatry, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, La Jolla, California
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California San Francisco and San Francisco VA Health Care System, San Francisco, California
| | - Matthew S. Panizzon
- Veterans Affairs San Diego Healthcare System, San Diego, California.,Department of Psychiatry, University of California, San Diego, La Jolla, California.,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, California.,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, California.,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California
| |
Collapse
|
209
|
Cheng Y, Pereira M, Raukar N, Reagan JL, Queseneberry M, Goldberg L, Borgovan T, LaFrance WC, Dooner M, Deregibus M, Camussi G, Ramratnam B, Quesenberry P. Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. J Cell Physiol 2019; 234:14377-14388. [PMID: 30644102 PMCID: PMC6478516 DOI: 10.1002/jcp.28139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a common cause of death and acquired disability in adults and children. Identifying biomarkers for mild TBI (mTBI) that can predict functional impairments on neuropsychiatric and neurocognitive testing after head trauma is yet to be firmly established. Extracellular vesicles (EVs) are known to traffic from the brain to the oral cavity and can be detected in saliva. We hypothesize the genetic profile of salivary EVs in patients who have suffered head trauma will differ from normal healthy controls, thus constituting a unique expression signature for mTBI. We enrolled a total of 54 subjects including for saliva sampling, 23 controls with no history of head traumas, 16 patients enrolled from an outpatient concussion clinic, and 15 patients from the emergency department who had sustained a head trauma within 24 hr. We performed real‐time PCR of the salivary EVs of the 54 subjects profiling 96 genes from the TaqMan Human Alzheimer's disease array. Real‐time PCR analysis revealed 57 (15 genes, p < 0.05) upregulated genes in emergency department patients and 56 (14 genes,
p < 0.05) upregulated genes in concussion clinic patients when compared with controls. Three genes were upregulated in both the emergency department patients and concussion clinic patients: CDC2, CSNK1A1, and CTSD (
p < 0.05). Our results demonstrate that salivary EVs gene expression can serve as a viable source of biomarkers for mTBI. This study shows multiple Alzheimer's disease genes present after an mTBI.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mandy Pereira
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Neha Raukar
- Department of Emergency Medicine, Rhode Island Hospital, Providence, Rhode Island
| | - John L Reagan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mathew Queseneberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Laura Goldberg
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Theodor Borgovan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - W Curt LaFrance
- Department of Psychiatry/Neurology, Rhode Island Hospital, Providence, Rhode Island
| | - Mark Dooner
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Maria Deregibus
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Bharat Ramratnam
- Department of Medicine Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island
| | - Peter Quesenberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
210
|
Anthony Jalin AMA, Jin R, Wang M, Li G. EPPS treatment attenuates traumatic brain injury in mice by reducing Aβ burden and ameliorating neuronal autophagic flux. Exp Neurol 2019; 314:20-33. [PMID: 30639321 DOI: 10.1016/j.expneurol.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Beta-amyloid (Aβ) burden and impaired neuronal autophagy contribute to secondary brain injury after traumatic brain injury (TBI). 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic acid (EPPS) treatment has been reported to reduce Aβ aggregation and rescue behavioral deficits in Alzheimer's disease-like mice. Here, we investigated neuroprotective effects of EPPS in a mouse model of TBI. Mice subjected to controlled cortical impact (CCI) were treated with EPPS (120 mg/kg, orally) immediately after CCI and thereafter once daily for 3 or 7 days. We found that EPPS treatment profoundly reduced the accumulation of beta-amyloid precursor protein (β-APP) and Aβ over a widespread area detected in the pericontusional cortex, external capsule (EC), and hippocampal CA1 and CA3 at 3 days after TBI, accompanied by significant reduction in the TBI-induced diffuse axonal injury identified by increased immunoreactivity of SMI-32 (an indicator for axonal damage). We also found that EPPS treatment ameliorated the TBI-induced synaptic damage (as reflected by enhanced postsynaptic density 95, PSD-95), and impairment of autophagy flux in the neurons as reflected by reduced autophagy markers (LC3-II/LC3-I ratio and p62/SQSTM1) and increased lysosomal enzyme cathepsin D (CTSD) in neurons detected in the cortex and hippocampal CA1. As a result, EPPS treatment significantly reduced the TBI-induced early neuronal apoptosis (assessed by active caspase-3), and eventually prevented cortical tissue loss and hippocampal neuronal loss at 28 days after TBI. Additionally, we found that inhibition of autophagic flux with chloroquine by decreasing autophagosome-lysosome fusion significantly reversed the decreased expressions of neuronal p62/SQSTM1 and apoptosis by EPPS treatment. These data suggest that the neuroprotection by EPPS is, at least in part, related to improved autophagy flux. Finally, we found that EPPS treatment significantly improved the cortex-dependent motor and hippocampal-dependent cognitive deficits associated with TBI. Taken together, these findings support the further investigation of EPPS as a treatment for TBI.
Collapse
Affiliation(s)
| | - Rong Jin
- Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey 17033, USA.
| | - Min Wang
- Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey 17033, USA.
| | - Guohong Li
- Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey 17033, USA.
| |
Collapse
|
211
|
Collins-Praino L, Corrigan F. Cerebrovascular contribution to dementia development after traumatic brain injury: promises and problems. ANNALS OF TRANSLATIONAL MEDICINE 2019; 6:S58. [PMID: 30613633 DOI: 10.21037/atm.2018.10.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lyndsey Collins-Praino
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia
| |
Collapse
|
212
|
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15:73-88. [DOI: 10.1038/s41582-018-0116-6] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
213
|
Coronel R, Palmer C, Bernabeu-Zornoza A, Monteagudo M, Rosca A, Zambrano A, Liste I. Physiological effects of amyloid precursor protein and its derivatives on neural stem cell biology and signaling pathways involved. Neural Regen Res 2019; 14:1661-1671. [PMID: 31169172 PMCID: PMC6585543 DOI: 10.4103/1673-5374.257511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathological implication of amyloid precursor protein (APP) in Alzheimer's disease has been widely documented due to its involvement in the generation of amyloid-β peptide. However, the physiological functions of APP are still poorly understood. APP is considered a multimodal protein due to its role in a wide variety of processes, both in the embryo and in the adult brain. Specifically, APP seems to play a key role in the proliferation, differentiation and maturation of neural stem cells. In addition, APP can be processed through two canonical processing pathways, generating different functionally active fragments: soluble APP-α, soluble APP-β, amyloid-β peptide and the APP intracellular C-terminal domain. These fragments also appear to modulate various functions in neural stem cells, including the processes of proliferation, neurogenesis, gliogenesis or cell death. However, the molecular mechanisms involved in these effects are still unclear. In this review, we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells, as well as the possible signaling pathways that could be implicated in these effects. The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer's disease is essential to advance the understanding of the pathogenesis of Alzheimer's disease, and in the search for potential therapeutic targets.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - María Monteagudo
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Alberto Zambrano
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
214
|
Snyder HM, Carare RO, DeKosky ST, de Leon MJ, Dykxhoorn D, Gan L, Gardner R, Hinds SR, Jaffee M, Lamb BT, Landau S, Manley G, McKee A, Perl D, Schneider JA, Weiner M, Wellington C, Yaffe K, Bain L, Pacifico AM, Carrillo MC. Military-related risk factors for dementia. Alzheimers Dement 2018; 14:1651-1662. [PMID: 30415806 PMCID: PMC6281800 DOI: 10.1016/j.jalz.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In recent years, there has been growing discussion to better understand the pathophysiological mechanisms of traumatic brain injury and post-traumatic stress disorder and how they may be linked to an increased risk of neurodegenerative diseases including Alzheimer's disease in veterans. METHODS Building on that discussion, and subsequent to a special issue of Alzheimer's & Dementia published in June 2014, which focused on military risk factors, the Alzheimer's Association convened a continued discussion of the scientific community on December 1, 2016. RESULTS During this meeting, participants presented and evaluated progress made since 2012 and identified outstanding knowledge gaps regarding factors that may impact veterans' risk for later life dementia. DISCUSSION The following is a summary of the invited presentations and moderated discussions of both the review of scientific understanding and identification of gaps to inform further investigations.
Collapse
Affiliation(s)
- Heather M Snyder
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA.
| | - Roxana O Carare
- Clinical Neuroanatomy, Equality and Diversity Lead, University of Southampton, Southampton, United Kingdom
| | - Steven T DeKosky
- Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Mony J de Leon
- Department of Psychiatry, New York University Medical Center, New York City, NY, USA
| | - Derek Dykxhoorn
- Department of Microbiology and Immunology, Miami University, Miami, FL, USA
| | - Li Gan
- Gladstone Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Raquel Gardner
- Department of Psychiatry, Neurology & Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | - Sidney R Hinds
- Blast Injury Research Program Coordinating Office, United States Army Medical Research and Material Command, Frederick, MD, USA
| | - Michael Jaffee
- Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - Susan Landau
- Helen Willis Neuroscience Institute, University of California, Berkley, Berkley, CA, USA
| | - Geoff Manley
- Department of Psychiatry, Neurology & Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ann McKee
- Department of Neurology and Pathology, Boston University, Boston, MA, USA
| | - Daniel Perl
- Department of Pathology, Uniformed Services University, Bethesda, MD, USA
| | - Julie A Schneider
- Neurology Department, Rush University Medical Center, Chicago, IL, USA
| | - Michael Weiner
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kristine Yaffe
- Department of Psychiatry, Neurology & Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Bain
- Independent Science Writer, Philadelphia, PA, USA
| | | | - Maria C Carrillo
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| |
Collapse
|
215
|
Kazmi S, Mujeeb AA, Owais M. Cyclic undecapeptide Cyclosporin A mediated inhibition of amyloid synthesis: Implications in alleviation of amyloid induced neurotoxicity. Sci Rep 2018; 8:17283. [PMID: 30470780 PMCID: PMC6251898 DOI: 10.1038/s41598-018-35645-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/12/2018] [Indexed: 11/24/2022] Open
Abstract
Amyloids are highly organized fibril aggregates arise from inappropriately folded form of the protein or polypeptide precursors under both physiological as well as simulated ambience. Amyloid synthesis is a multistep process that involves formation of several metastable intermediates. Among various intermediate species, the as-formed soluble oligomers are extremely toxic to the neuronal cells. In the present study, we evaluated cyclosporine A (CsA), an undecapeptide, for its potential to prevent aggregation of model protein ovalbumin (OVA). In an attempt to elucidate involved operative mechanism, the preliminary studies delineate that CsA affects both primary nucleation as well as other secondary pathways involved in OVA fibrillation process. By its specific interaction with amyloid intermediates, the cyclic peptide CsA seems to regulate the lag phase of the fibrillation process in concentration dependent manner. The present study further suggests that exposure to CsA during lag phase ensues in reversal of OVA fibrillation process. On the contrary, mature OVA fibril remained impervious to the CsA treatment. The cyclic undecapeptide CsA was also found to successfully alleviate amyloid induced toxicity in neuroblastoma cells.
Collapse
Affiliation(s)
- Shadab Kazmi
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Anzar Abdul Mujeeb
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
216
|
Katsumoto A, Takeuchi H, Takahashi K, Tanaka F. Microglia in Alzheimer's Disease: Risk Factors and Inflammation. Front Neurol 2018; 9:978. [PMID: 30498474 PMCID: PMC6249341 DOI: 10.3389/fneur.2018.00978] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that originate from myeloid progenitor cells in the embryonic yolk sac and are maintained independently of circulating monocytes throughout life. In the healthy state, microglia are highly dynamic and control the environment by rapidly extending and retracting their processes. When the CNS is inflamed, microglia can give rise to macrophages, but the regulatory mechanisms underlying this process have not been fully elucidated. Recent genetic studies have suggested that microglial function is compromised in Alzheimer's disease (AD), and that environmental factors such as diet and brain injury also affect microglial activation. In addition, studies of triggering receptor expressed on myeloid cells 2-deficiency in AD mice revealed heterogeneous microglial reactions at different disease stages, complicating the therapeutic strategy for AD. In this paper, we describe the relationship between genetic and environmental risk factors and the roles of microglia in AD pathogenesis, based on studies performed in human patients and animal models. We also discuss the mechanisms of inflammasomes and neurotransmitters in microglia, which accelerate the development of amyloid-β and tau pathology.
Collapse
Affiliation(s)
- Atsuko Katsumoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
217
|
Zhang X, Fu Z, Meng L, He M, Zhang Z. The Early Events That Initiate β-Amyloid Aggregation in Alzheimer's Disease. Front Aging Neurosci 2018; 10:359. [PMID: 30542277 PMCID: PMC6277872 DOI: 10.3389/fnagi.2018.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the development of amyloid plaques and neurofibrillary tangles (NFTs) consisting of aggregated β-amyloid (Aβ) and tau, respectively. The amyloid hypothesis has been the predominant framework for research in AD for over two decades. According to this hypothesis, the accumulation of Aβ in the brain is the primary factor initiating the pathogenesis of AD. However, it remains elusive what factors initiate Aβ aggregation. Studies demonstrate that AD has multiple causes, including genetic and environmental factors. Furthermore, genetic factors, many age-related events and pathological conditions such as diabetes, traumatic brain injury (TBI) and aberrant microbiota also affect the aggregation of Aβ. Here we provide an overview of the age-related early events and other pathological processes that precede Aβ aggregation.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihui Fu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingyang He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
218
|
Smith DH, Stewart W. Traumatic brain injury: a platform for studies in Aβ processing: Commentary on: "Rapid Aβ oligomer and protofibril accumulation in traumatic brain injury". Brain Pathol 2018; 28:463-465. [PMID: 30133864 DOI: 10.1111/bpa.12534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
- Douglas H Smith
- Department of Neurosurgery and the Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, UK
| |
Collapse
|
219
|
Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer's disease. Acta Neuropathol 2018; 136:663-689. [PMID: 30349969 PMCID: PMC6208728 DOI: 10.1007/s00401-018-1918-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022]
Abstract
The dominant hypothesis of Alzheimer’s disease (AD) aetiology, the neuropathological guidelines for diagnosing AD and the majority of high-profile therapeutic efforts, in both research and in clinical practice, have been built around one possible causal factor, amyloid-β (Aβ). However, the causal link between Aβ and AD remains unproven. Here, in the context of a detailed assessment of historical and contemporary studies, we raise critical questions regarding the role of Aβ in the definition, diagnosis and aetiology of AD. We illustrate that a holistic view of the available data does not support an unequivocal conclusion that Aβ has a central or unique role in AD. Instead, the data suggest alternative views of AD aetiology are potentially valid, at this time. We propose that an unbiased way forward for the field, beyond the current Aβ-centric approach, without excluding a role for Aβ, is required to come to an accurate understanding of AD dementia and, ultimately, an effective treatment.
Collapse
|
220
|
Esopenko C, Simonds AH, Anderson EZ. The synergistic effect of concussions and aging in women? Disparities and perspectives on moving forward. Concussion 2018; 3:CNC55. [PMID: 30364380 PMCID: PMC6195093 DOI: 10.2217/cnc-2018-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Adrienne H Simonds
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Ellen Z Anderson
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
221
|
Ge X, Yu J, Huang S, Yin Z, Han Z, Chen F, Wang Z, Zhang J, Lei P. A novel repetitive mild traumatic brain injury mouse model for chronic traumatic encephalopathy research. J Neurosci Methods 2018; 308:162-172. [DOI: 10.1016/j.jneumeth.2018.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
|
222
|
Maneshi MM, Ziegler L, Sachs F, Hua SZ, Gottlieb PA. Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1. Sci Rep 2018; 8:14267. [PMID: 30250223 PMCID: PMC6155315 DOI: 10.1038/s41598-018-32572-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
Traumatic brain injury (TBI) elevates Abeta (Aβ) peptides in the brain and cerebral spinal fluid. Aβ peptides are amphipathic molecules that can modulate membrane mechanics. Because the mechanosensitive cation channel PIEZO1 is gated by membrane tension and curvature, it prompted us to test the effects of Aβ on PIEZO1. Using precision fluid shear stress as a stimulus, we found that Aβ monomers inhibit PIEZO1 at femtomolar to picomolar concentrations. The Aβ oligomers proved much less potent. The effect of Aβs on Piezo gating did not involve peptide-protein interactions since the D and L enantiomers had similar effects. Incubating a fluorescent derivative of Aβ and a fluorescently tagged PIEZO1, we showed that Aβ can colocalize with PIEZO1, suggesting that they both had an affinity for particular regions of the bilayer. To better understand the PIEZO1 inhibitory effects of Aβ, we examined their effect on wound healing. We observed that over-expression of PIEZO1 in HEK293 cells increased cell migration velocity ~10-fold, and both enantiomeric Aβ peptides and GsMTx4 independently inhibited migration, demonstrating involvement of PIEZO1 in cell motility. As part of the motility study we examined the correlation of PIEZO1 function with tension in the cytoskeleton using a genetically encoded fluorescent stress probe. Aβ peptides increased resting stress in F-actin, and is correlated with Aβ block of PIEZO1-mediated Ca2+ influx. Aβ inhibition of PIEZO1 in the absence of stereospecific peptide-protein interactions shows that Aβ peptides modulate both cell membrane and cytoskeletal mechanics to control PIEZO1-triggered Ca2+ influx.
Collapse
Affiliation(s)
- Mohammad M Maneshi
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA
- Department of Mechanical and Aerospace Engineering, 340 Jarvis Hall, State University of New York at Buffalo, Buffalo, New York, 14260, USA
- 745 N Fairbanks, Tarry 7-718, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lynn Ziegler
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Susan Z Hua
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA
- Department of Mechanical and Aerospace Engineering, 340 Jarvis Hall, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | - Philip A Gottlieb
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
223
|
Mouzon B, Bachmeier C, Ojo J, Acker C, Ferguson S, Crynen G, Davies P, Mullan M, Stewart W, Crawford F. Chronic White Matter Degeneration, but No Tau Pathology at One-Year Post-Repetitive Mild Traumatic Brain Injury in a Tau Transgenic Model. J Neurotrauma 2018; 36:576-588. [PMID: 29993324 DOI: 10.1089/neu.2018.5720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tau pathology associated with chronic traumatic encephalopathy has been documented in the brains of individuals with a history of repetitive mild traumatic brain injury (r-mTBI). At this stage, the pathobiological role of tau in r-mTBI has not been extensively explored in appropriate pre-clinical models. Here, we describe the acute and chronic behavioral and histopathological effects of single and repetitive mild TBI (five injuries given at 48 h intervals) in young adult (3 months old) hTau mice that express all six isoforms of hTau on a null murine tau background. Animals exposed to r-mTBI showed impaired visuospatial learning in the Barnes maze test that progressively worsened from two weeks to 12 months post-injury, which was also accompanied by significant deficits in visuospatial memory consolidation at 12 months post-injury. In contrast, only marginal changes were observed in visuospatial learning at six and 12 months after single mTBI. Histopathological analyses revealed that hTau mice developed axonal injury, thinning of the corpus callosum, microgliosis and astrogliosis in the white matter at acute and chronic time points after injury. Tau immunohistochemistry and enzyme-linked immunosorbent assay data suggest, however, only transient, injury-dependent increases in phosphorylated tau in the cerebral cortex beneath the impact site and in the CA1/CA3 subregion of the hippocampus after single or r-mTBI. This study implicates white matter degeneration as a prominent feature of survival from mTBI, while the role of tau pathology in the neuropathological sequelae of TBI remains elusive.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Davies
- 2 Feinstein Institute for Medical Research , Manhasset, New York
| | | | - William Stewart
- 3 Department of Neuropathology, Laboratory Medicine Building, Queen Elizabeth University Hospital , Glasgow, Scotland
| | | |
Collapse
|
224
|
Wang H, Zhu X, Liao Z, Xiang H, Ren M, Xu M, Zhao H. Novel-graded traumatic brain injury model in rats induced by closed head impacts. Neuropathology 2018; 38:484-492. [PMID: 30187543 DOI: 10.1111/neup.12509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Xiyan Zhu
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine; Third Military Medical University; Chongqing China
| | - Zhikang Liao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine; Third Military Medical University; Chongqing China
| | - Hongyi Xiang
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine; Third Military Medical University; Chongqing China
| | - Mingliang Ren
- Department of Neurosurgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital; Third Military Medical University; Chongqing China
| | - Hui Zhao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine; Third Military Medical University; Chongqing China
| |
Collapse
|
225
|
Wang C, Iashchishyn IA, Pansieri J, Nyström S, Klementieva O, Kara J, Horvath I, Moskalenko R, Rofougaran R, Gouras G, Kovacs GG, Shankar SK, Morozova-Roche LA. S100A9-Driven Amyloid-Neuroinflammatory Cascade in Traumatic Brain Injury as a Precursor State for Alzheimer's Disease. Sci Rep 2018; 8:12836. [PMID: 30150640 PMCID: PMC6110751 DOI: 10.1038/s41598-018-31141-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Pro-inflammatory and amyloidogenic S100A9 protein is an important contributor to Alzheimer's disease (AD) pathology. Traumatic brain injury (TBI) is viewed as a precursor state for AD. Here we have shown that S100A9-driven amyloid-neuroinflammatory cascade was initiated in TBI and may serve as a mechanistic link between TBI and AD. By analyzing the TBI and AD human brain tissues, we demonstrated that in post-TBI tissues S100A9, produced by neurons and microglia, becomes drastically abundant compared to Aβ and contributes to both precursor-plaque formation and intracellular amyloid oligomerization. Conditions implicated in TBI, such as elevated S100A9 concentration, acidification and fever, provide strong positive feedback for S100A9 nucleation-dependent amyloid formation and delay in its proteinase clearance. Consequently, both intracellular and extracellular S100A9 oligomerization correlated with TBI secondary neuronal loss. Common morphology of TBI and AD plaques indicated their similar initiation around multiple aggregation centers. Importantly, in AD and TBI we found S100A9 plaques without Aβ. S100A9 and Aβ plaque pathology was significantly advanced in AD cases with TBI history at earlier age, signifying TBI as a risk factor. These new findings highlight the detrimental consequences of prolonged post-TBI neuroinflammation, which can sustain S100A9-driven amyloid-neurodegenerative cascade as a specific mechanism leading to AD development.
Collapse
Affiliation(s)
- Chao Wang
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden.
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden.,Department of General Chemistry, Sumy State University, Sumy, 40000, Ukraine
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Sofie Nyström
- IFM-Department of Chemistry, Linköping University, 58183, Linköping, Sweden
| | - Oxana Klementieva
- Department of Experimental Medical Sciences, Lund University, 22184, Lund, Sweden
| | - John Kara
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Istvan Horvath
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Roman Moskalenko
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden.,Department of Pathology, Sumy State University, Sumy, 40000, Ukraine
| | - Reza Rofougaran
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Gunnar Gouras
- Department of Experimental Medical Sciences, Lund University, 22184, Lund, Sweden
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1097, Vienna, Austria
| | - S K Shankar
- Human Brain Tissue Repository, Department of Neuropathology, National Institute of Mental Health and Neurosciences, 560029, Bangalore, India
| | | |
Collapse
|
226
|
Clark VD, Layson A, Charkviani M, Muradashvili N, Lominadze D. Hyperfibrinogenemia-mediated astrocyte activation. Brain Res 2018; 1699:158-165. [PMID: 30153459 DOI: 10.1016/j.brainres.2018.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022]
Abstract
Fibrinogen (Fg)-containing plaques are associated with memory loss during various inflammatory neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, stroke, and traumatic brain injury. However, mechanisms of its action in neurovascular unit are not clear. As Fg is a high molecular weight blood protein and cannot translocate far from the vessel after extravasation, we hypothesized that it may interact with astrocytes first causing their activation. Cultured mouse cortical astrocytes were treated with Fg in the presence or absence of function-blocking anti-mouse intercellular adhesion molecule 1 (ICAM-1) antibody, or with medium alone (control). Expressions of ICAM-1 and tyrosine receptor kinase B (TrkB) as markers of astrocyte activation, and phosphorylation of TrkB (pTrkB) were assessed. Fg dose-dependently increased activation of astrocytes defined by their shape change, retraction of processes, and enhanced expressions of ICAM-1 and TrkB, and increased pTrkB. Blocking of ICAM-1 function ameliorated these Fg effects. Data suggest that Fg interacts with astrocytes causing overexpression of ICAM-1 and TrkB, and TrkB phosphorylation, and thus, astrocyte activation. Since TrkB is known to be involved in neurodegeneration, interaction of Fg with astrocytes and the resultant activation of TrkB can be a possible mechanism involved in memory reduction, which were observed in previous studies and were associated with formation of complexes of Fg deposited in extravascular space with proteins such as Amyloid beta or prion, the proteins involved in development of dementia.
Collapse
Affiliation(s)
- Vincent D Clark
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Ailey Layson
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA.
| |
Collapse
|
227
|
Al-Dahhak R, Khoury R, Qazi E, Grossberg GT. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer Disease. Clin Geriatr Med 2018; 34:617-635. [PMID: 30336991 DOI: 10.1016/j.cger.2018.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a major health and economic burden. With increasing aging population, this issue is expected to continue to rise. Neurodegenerative disorders are more common with aging population in general regardless of history of TBI. Recent evidence continues to support a relation between a TBI and neurocognitive decline later in life (such as in athletes and military). This article summarizes the pathologic and clinical effects of TBI (regardless of severity) on the later development of dementia in individuals 65 years or older.
Collapse
Affiliation(s)
- Roula Al-Dahhak
- Department of Neurology, Saint Louis University, 1438 South Grand Boulevard, Suite 105, St Louis, MO 63104, USA.
| | - Rita Khoury
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| | - Erum Qazi
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| |
Collapse
|
228
|
Ignowski E, Winter AN, Duval N, Fleming H, Wallace T, Manning E, Koza L, Huber K, Serkova NJ, Linseman DA. The cysteine-rich whey protein supplement, Immunocal®, preserves brain glutathione and improves cognitive, motor, and histopathological indices of traumatic brain injury in a mouse model of controlled cortical impact. Free Radic Biol Med 2018; 124:328-341. [PMID: 29940352 PMCID: PMC6211803 DOI: 10.1016/j.freeradbiomed.2018.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a major public health problem estimated to affect nearly 1.7 million people in the United States annually. Due to the often debilitating effects of TBI, novel preventative agents are highly desirable for at risk populations. Here, we tested a whey protein supplement, Immunocal®, for its potential to enhance resilience to TBI. Immunocal® is a non-denatured whey protein preparation which has been shown to act as a cysteine delivery system to increase levels of the essential antioxidant glutathione (GSH). Twice daily oral supplementation of CD1 mice with Immunocal® for 28 days prior to receiving a moderate TBI prevented an ~ 25% reduction in brain GSH/GSSG observed in untreated TBI mice. Immunocal® had no significant effect on the primary mechanical injury induced by TBI, as assessed by MRI, changes in Tau phosphorylation, and righting reflex time or apnea. However, pre-injury supplementation with Immunocal® resulted in statistically significant improvements in motor function (beam walk and rotarod) and cognitive function (Barnes maze). We also observed a significant preservation of corpus callosum width (axonal myelination), a significant decrease in degenerating neurons, a reduction in Iba1 (microglial marker), decreased lipid peroxidation, and preservation of brain-derived neurotrophic factor (BDNF) in the brains of Immunocal®-pretreated mice compared to untreated TBI mice. Taken together, these data indicate that pre-injury supplementation with Immunocal® significantly enhances the resilience to TBI induced by a moderate closed head injury in mice. We conclude that Immunocal® may hold significant promise as a preventative agent for TBI, particularly in certain high risk populations such as athletes and military personnel.
Collapse
Affiliation(s)
- Elizabeth Ignowski
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Aimee N Winter
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Nathan Duval
- University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States.
| | - Holly Fleming
- University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States.
| | - Tyler Wallace
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Evan Manning
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Lilia Koza
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Kendra Huber
- University of Colorado Cancer Center, Aurora, CO 80045, United States.
| | - Natalie J Serkova
- University of Colorado Cancer Center, Aurora, CO 80045, United States.
| | - Daniel A Linseman
- University of Denver, Department of Biological Sciences and Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave., Denver, CO 80208, United States.
| |
Collapse
|
229
|
Thau-Zuchman O, Gomes RN, Dyall SC, Davies M, Priestley JV, Groenendijk M, De Wilde MC, Tremoleda JL, Michael-Titus AT. Brain Phospholipid Precursors Administered Post-Injury Reduce Tissue Damage and Improve Neurological Outcome in Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:25-42. [PMID: 29768974 PMCID: PMC6306688 DOI: 10.1089/neu.2017.5579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) leads to cellular loss, destabilization of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PLs), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesized that supporting PL synthesis post-injury could improve outcome post-TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of PLs and available for clinical use. The multi-nutrient, Fortasyn® Connect (FC), contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, cofactors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor, Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis post-TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients and is safe and well tolerated, which would enable rapid clinical exploration in TBI.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rita N Gomes
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Simon C Dyall
- 3 Bournemouth University, Royal London House, Bournemouth, United Kingdom
| | - Meirion Davies
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - John V Priestley
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Martine Groenendijk
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Martijn C De Wilde
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jordi L Tremoleda
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
230
|
Stewan Feltrin F, Zaninotto AL, Guirado VMP, Macruz F, Sakuno D, Dalaqua M, Magalhães LGA, Paiva WS, Andrade AFD, Otaduy MCG, Leite CC. Longitudinal changes in brain volumetry and cognitive functions after moderate and severe diffuse axonal injury. Brain Inj 2018; 32:1208-1217. [PMID: 30024781 DOI: 10.1080/02699052.2018.1494852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Diffuse axonal injury (DAI) induces a long-term process of brain atrophy and cognitive deficits. The goal of this study was to determine whether there are correlations between brain volume loss, microhaemorrhage load (MHL) and neuropsychological performance during the first year after DAI. METHODS Twenty-four patients with moderate or severe DAI were evaluated at 2, 6 and 12 months post-injury. MHL was evaluated at 3 months, and brain volumetry was evaluated at 3, 6 and 12 months. The trail making test (TMT) was used to evaluate executive function (EF), and the Hopkins verbal learning test (HVLT) was used to evaluate episodic verbal memory (EVM) at 6 and 12 months. RESULTS There were significant white matter volume (WMV), subcortical grey matter volume and total brain volume (TBV) reductions during the study period (p < 0.05). MHL was correlated only with WMV reduction. EF and EVM were not correlated with MHL but were, in part, correlated with WMV and TBV reductions. CONCLUSIONS Our findings suggest that MHL may be a predictor of WMV reduction but cannot predict EF or EVM in DAI. Brain atrophy progresses over time, but patients showed better EF and EVM in some of the tests, which could be due to neuroplasticity.
Collapse
Affiliation(s)
- Fabrício Stewan Feltrin
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Ana Luiza Zaninotto
- b Division of Psychology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Vinícius M P Guirado
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Fabiola Macruz
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Daniel Sakuno
- d Department of Radiology , Hospital Universitário HU-UEPG, Universidade Estadual de Ponta Grossa , Ponta Grossa , Brazil
| | - Mariana Dalaqua
- e Department of Radiology , Hospital Israelita Albert Einstein , São Paulo , Brazil
| | | | - Wellingson Silva Paiva
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Almir Ferreira de Andrade
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Maria C G Otaduy
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Claudia C Leite
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| |
Collapse
|
231
|
Khan M, Shunmugavel A, Dhammu TS, Khan H, Singh I, Singh AK. Combined treatment with GSNO and CAPE accelerates functional recovery via additive antioxidant activities in a mouse model of TBI. J Neurosci Res 2018; 96:1900-1913. [PMID: 30027580 DOI: 10.1002/jnr.24279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is the major cause of physical disability and emotional vulnerability. Treatment of TBI is lacking due to its multimechanistic etiology, including derailed mitochondrial and cellular energy metabolism. Previous studies from our laboratory show that an endogenous nitric oxide (NO) metabolite S-nitrosoglutathione (GSNO) provides neuroprotection and improves neurobehavioral function via anti-inflammatory and anti-neurodegenerative mechanisms. To accelerate the rate and enhance the degree of recovery, we investigated combining GSNO with caffeic acid phenethyl ester (CAPE), a potent antioxidant compound, using a male mouse model of TBI, controlled cortical impact in mice. The combination therapy accelerated improvement of cognitive and depressive-like behavior compared with GSNO or CAPE monotherapy. Separately, both GSNO and CAPE improved mitochondrial integrity/function and decreased oxidative damage; however, the combination therapy had greater effects on Drp1 and MnSOD. Additionally, while CAPE alone activated AMPK, this activation was heightened in combination with GSNO. CAPE treatment of normal animals also significantly increased the expression levels of pAMPK, pACC (activation of AMPK substrate ACC), and pLKB1 (activation of upstream to AMPK kinase LKB1), indicating that CAPE activates AMPK via LKB1. These results show that while GSNO and CAPE provide neuroprotection and improve functional recovery separately, the combination treatment invokes greater recovery by significantly improving mitochondrial functions and activating the AMPK enzyme. Both GSNO and CAPE are in human consumption without any known adverse effects; therefore, a combination therapy-based multimechanistic approach is worthy of investigation in human TBI.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | | | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Hamza Khan
- College of Medicine, University of South Carolina, Columbia, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Avtar K Singh
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
232
|
Lyons DN, Vekaria H, Macheda T, Bakshi V, Powell DK, Gold BT, Lin AL, Sullivan PG, Bachstetter AD. A Mild Traumatic Brain Injury in Mice Produces Lasting Deficits in Brain Metabolism. J Neurotrauma 2018; 35:2435-2447. [PMID: 29808778 PMCID: PMC6196750 DOI: 10.1089/neu.2018.5663] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Metabolic uncoupling has been well-characterized during the first minutes-to-days after a traumatic brain injury (TBI), yet mitochondrial bioenergetics during the weeks-to-months after a brain injury is poorly defined, particularly after a mild TBI. We hypothesized that a closed head injury (CHI) would be associated with deficits in mitochondrial bioenergetics at one month after the injury. A significant decrease in state-III (adenosine triphosphate production) and state-V (complex-I) driven mitochondrial respiration was found at one month post-injury in adult C57Bl/6J mice. Isolation of synaptic mitochondria demonstrated that the deficit in state-III and state-V was primarily neuronal. Injured mice had a temporally consistent deficit in memory recall at one month post-injury. Using proton magnetic resonance spectroscopy (1H MRS) at 7-Tesla, we found significant decreases in phosphocreatine, N-Acetylaspartic acid, and total choline. We also found regional variations in cerebral blood flow, including both hypo- and hyperperfusion, as measured by a pseudocontinuous arterial spin labeling MR sequence. Our results highlight a chronic deficit in mitochondrial bioenergetics associated with a CHI that may lead toward a novel approach for neurorestoration after a mild TBI. MRS provides a potential biomarker for assessing the efficacy of candidate treatments targeted at improving mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Danielle N Lyons
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Hemendra Vekaria
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Teresa Macheda
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Vikas Bakshi
- 4 Sanders-Brown Center on Aging, University of Kentucky , Lexington Kentucky.,5 Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington Kentucky
| | - David K Powell
- 2 Department of Neuroscience, University of Kentucky , Lexington Kentucky.,3 Department of Biomedical Engineering, University of Kentucky , Lexington Kentucky
| | - Brian T Gold
- 2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Ai-Ling Lin
- 4 Sanders-Brown Center on Aging, University of Kentucky , Lexington Kentucky.,5 Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington Kentucky
| | - Patrick G Sullivan
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Adam D Bachstetter
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| |
Collapse
|
233
|
Ramesh S, Govindarajulu M, Suppiramaniam V, Moore T, Dhanasekaran M. Autotaxin⁻Lysophosphatidic Acid Signaling in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071827. [PMID: 29933579 PMCID: PMC6073975 DOI: 10.3390/ijms19071827] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
The brain contains various forms of lipids that are important for maintaining its structural integrity and regulating various signaling cascades. Autotaxin (ATX) is an ecto-nucleotide pyrophosphatase/phosphodiesterase-2 enzyme that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA). LPA is a major bioactive lipid which acts through G protein-coupled receptors (GPCRs) and plays an important role in mediating cellular signaling processes. The majority of synthesized LPA is derived from membrane phospholipids through the action of the secreted enzyme ATX. Both ATX and LPA are highly expressed in the central nervous system. Dysfunctional expression and activity of ATX with associated changes in LPA signaling have recently been implicated in the pathogenesis of Alzheimer’s disease (AD). This review focuses on the current understanding of LPA signaling, with emphasis on the importance of the autotaxin–lysophosphatidic acid (ATX–LPA) pathway and its alterations in AD and a brief note on future therapeutic applications based on ATX–LPA signaling.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
234
|
Mohamed AZ, Cumming P, Srour H, Gunasena T, Uchida A, Haller CN, Nasrallah F. Amyloid pathology fingerprint differentiates post-traumatic stress disorder and traumatic brain injury. Neuroimage Clin 2018; 19:716-726. [PMID: 30009128 PMCID: PMC6041560 DOI: 10.1016/j.nicl.2018.05.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/01/2018] [Accepted: 05/13/2018] [Indexed: 11/29/2022]
Abstract
Introduction Traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) are risk factors for early onset of Alzheimer's disease (AD) and may accelerate the progression rate of AD pathology. As amyloid-beta (Aβ) plaques are a hallmark of AD pathology, we hypothesized that TBI and PTSD might increase Aβ accumulation in the brain. Methods We examined PET and neuropsychological data from Vietnam War veterans compiled by the US Department of Defense Alzheimer's Disease Neuroimaging Initiative, to examine the spatial distribution of Aβ in male veterans' who had experienced a TBI and/or developed PTSD. Subjects were classified into controls, TBI only, PTSD only, and TBI with PTSD (TBI_PTSD) groups and data were analyzed using both voxel-based and ROI-based approaches. Results Compared to controls, all three clinical groups showed a pattern of mainly increased referenced standard uptake values (SUVR) for the amyloid tracer [18F]-AV45 PET, with rank order PTSD > TBI_PTSD > TBI > Control, and same rank order was seen in the deficits of cognitive functions. SUVR increase was observed in widespread cortical regions of the PTSD group; in white matter of the TBI_PTSD group; and cerebellum and precuneus area of the TBI group, in contrast with controls. The [18F]-AV45 SUVR correlated negatively with cerebrospinal fluid (CSF) amyloid levels and positively with the CSF tau concentrations. Conclusion These results suggest that both TBI and PTSD are substantial risk factors for cognition decline and increased Aβ deposition resembling that in AD. In addition, both PTSD and TBI_PTSD have a different pathways of Aβ accumulation.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, QLD 4059, Australia; QIMR-Berghofer Institute, Brisbane, QLD 4006, Australia
| | - Hussein Srour
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tamara Gunasena
- School of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aya Uchida
- School of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
235
|
Newfound effect of N-acetylaspartate in preventing and reversing aggregation of amyloid-beta in vitro. Neurobiol Dis 2018; 117:161-169. [PMID: 29859874 DOI: 10.1016/j.nbd.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Although N-acetylaspartate (NAA) has long been recognized as the most abundant amino acid in neurons by far, its primary role has remained a mystery. Based on its unique tertiary structure, we explored the potential of NAA to modulate aggregation of amyloid-beta (Aβ) peptide 1-42 via multiple corroborating aggregation assays along with electron microscopy. Thioflavin-T fluorescence assay demonstrated that at physiological concentrations, NAA substantially inhibited the initiation of Aβ fibril formation. In addition, NAA added after 25 min of Aβ aggregation was shown to break up preformed fibrils. Electron microscopy analysis confirmed the absence of mature fibrils following NAA treatment. Furthermore, fluorescence correlation spectroscopy and dynamic light scattering measurements confirmed significant reductions in Aβ fibril hydrodynamic radius following treatment with NAA. These results suggest that physiological levels of NAA could play an important role in controlling Aβ aggregation in vivo where they are both found in the same neuronal compartments.
Collapse
|
236
|
Persistent Infiltration and Impaired Response of Peripherally-Derived Monocytes after Traumatic Brain Injury in the Aged Brain. Int J Mol Sci 2018; 19:ijms19061616. [PMID: 29848996 PMCID: PMC6032263 DOI: 10.3390/ijms19061616] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause for neurological disabilities world-wide. TBI occurs most frequently among the elderly population, and elderly TBI survivors suffer from reduced recovery and poorer quality of life. The effect of age on the pathophysiology of TBI is still poorly understood. We previously established that peripherally-derived monocytes (CCR2+) infiltrate the injured brain and contribute to chronic TBI-induced cognitive deficits in young animals. Furthermore, age was shown to amplify monocyte infiltration acutely after injury. In the current study, we investigated the impact of age on the subchronic response of peripherally-derived monocytes (CD45hi; CCR2+) and their role in the development of chronic cognitive deficits. In the aged brain, there was a significant increase in the number of peripherally-derived monocytes after injury compared to young, injured animals. The infiltration rate of peripherally-derived monocytes remained elevated subchronically and corresponded with enhanced expression of CCR2 chemotactic ligands. Interestingly, the myeloid cell populations observed in injured aged brains had impaired anti-inflammatory responses compared to those in young animals. Additionally, in the aged animals, there was an expansion of the blood CCR2+ monocyte population after injury that was not present in the young animals. Importantly, knocking out CCR2 to inhibit infiltration of peripherally-derived monocytes prevented chronic TBI-induced spatial memory deficits in the aged mice. Altogether, these results demonstrate the critical effects of age on the peripherally-derived monocyte response during the progression of TBI pathophysiology.
Collapse
|
237
|
Ling H, Neal JW, Revesz T. Evolving concepts of chronic traumatic encephalopathy as a neuropathological entity. Neuropathol Appl Neurobiol 2018; 43:467-476. [PMID: 28664614 DOI: 10.1111/nan.12425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a long-term neurodegenerative consequence of repetitive head impacts which can only be definitively diagnosed in post-mortem. Recently, the consensus neuropathological criteria for the diagnosis of CTE was published requiring the presence of the accumulation of abnormal tau in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci in an irregular pattern as the mandatory features. The clinical diagnosis and antemortem prediction of CTE pathology remain challenging if not impossible due to the common co-existing underlying neurodegenerative pathologies and the lack of specific clinical pointers and reliable biomarkers. This review summarizes the historical evolution of CTE as a neuropathological entity and highlights the latest advances and future directions of research studies on the topic of CTE.
Collapse
Affiliation(s)
- H Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, University College London, London, UK.,Reta Lila Weston Institute for Neurological Studies, UCL Institute of Neurology, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - J W Neal
- Department of Cellular Pathology, Cardiff University, Wales, UK
| | - T Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, University College London, London, UK.,Reta Lila Weston Institute for Neurological Studies, UCL Institute of Neurology, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
238
|
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that presents as a late sequela from traumatic brain injury (TBI). TBI is a growing and under-recognized public health concern with a high degree of morbidity and large associated global costs. While the immune response to TBI is complex, its contribution to the development of CTE remains largely unknown. In this review, we summarize the current understanding of the link between CTE and the resident innate immune system of the brain-microglia. We discuss the neuropathology underlying CTE including the creation and aggregation of phosphorylated tau protein into neurofibrillary tangles and the formation of amyloid beta deposits. We also present how microglia, the resident innate immune cells of the brain, drive the continuous low-level inflammation associated with the insidious onset of CTE. In this review, we conclude that the latency period between the index brain injury and the long-term development of CTE presents an opportunity for therapeutic intervention. Encouraging advances with microtubule stabilizers, cis p-tau antibodies, and the ability to therapeutically alter the inflammatory state of microglia have shown positive results in both animal and human trials. Looking forward, recent advancements in next-generation sequencing technology for the study of genomic, transcriptomic, and epigenetic information will provide an opportunity for significant advancement in our understanding of prorepair and pro-injury gene signatures allowing for targeted intervention in this highly morbid injury process.
Collapse
|
239
|
Edlow BL, Keene CD, Perl DP, Iacono D, Folkerth RD, Stewart W, Mac Donald CL, Augustinack J, Diaz-Arrastia R, Estrada C, Flannery E, Gordon WA, Grabowski TJ, Hansen K, Hoffman J, Kroenke C, Larson EB, Lee P, Mareyam A, McNab JA, McPhee J, Moreau AL, Renz A, Richmire K, Stevens A, Tang CY, Tirrell LS, Trittschuh EH, van der Kouwe A, Varjabedian A, Wald LL, Wu O, Yendiki A, Young L, Zöllei L, Fischl B, Crane PK, Dams-O'Connor K. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project. J Neurotrauma 2018; 35:1604-1619. [PMID: 29421973 DOI: 10.1089/neu.2017.5457] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.
Collapse
Affiliation(s)
- Brian L Edlow
- 1 Department of Neurology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts.,2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - C Dirk Keene
- 3 Department of Pathology, University of Washington , Seattle, Washington
| | - Daniel P Perl
- 4 Brain Tissue Repository and Neuropathology Core, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Department of Pathology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Diego Iacono
- 4 Brain Tissue Repository and Neuropathology Core, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Department of Pathology, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,6 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,7 The Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda, Maryland
| | - Rebecca D Folkerth
- 8 Department of Pathology, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts.,9 City of New York Office of the Chief Medical Examiner and New York University School of Medicine , New York, New York
| | - William Stewart
- 10 Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow , United Kingdom
| | | | - Jean Augustinack
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Ramon Diaz-Arrastia
- 12 Department of Neurology and Center for Brain Injury and Repair, Hospital of the University of Pennsylvania , Philadelphia
| | - Camilo Estrada
- 13 Kaiser Permanente Washington Health Research Institute , Seattle, Washington
| | - Elissa Flannery
- 14 Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Wayne A Gordon
- 14 Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Thomas J Grabowski
- 15 Department of Neurology, University of Washington , Seattle, Washington.,16 Department of Radiology, University of Washington , Seattle, Washington
| | - Kelly Hansen
- 13 Kaiser Permanente Washington Health Research Institute , Seattle, Washington
| | - Jeanne Hoffman
- 17 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington
| | - Christopher Kroenke
- 18 Advanced Imaging Research Center, Oregon Health and Science University , Portland, Oregon
| | - Eric B Larson
- 13 Kaiser Permanente Washington Health Research Institute , Seattle, Washington
| | - Patricia Lee
- 4 Brain Tissue Repository and Neuropathology Core, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,7 The Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda, Maryland
| | - Azma Mareyam
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Jennifer A McNab
- 19 Department of Radiology, Stanford University , Stanford, California
| | - Jeanne McPhee
- 14 Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Allison L Moreau
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Anne Renz
- 13 Kaiser Permanente Washington Health Research Institute , Seattle, Washington
| | - KatieRose Richmire
- 13 Kaiser Permanente Washington Health Research Institute , Seattle, Washington
| | - Allison Stevens
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Cheuk Y Tang
- 20 Department of Radiology, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Lee S Tirrell
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Emily H Trittschuh
- 21 Department of Psychiatry and Behavioral Sciences, University of Washington , Seattle, Washington.,22 Geriatric Research Education and Clinical Center , VA Puget Sound Health Care System, Seattle, Washington
| | - Andre van der Kouwe
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Ani Varjabedian
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Lawrence L Wald
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Ona Wu
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Anastasia Yendiki
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Liza Young
- 16 Department of Radiology, University of Washington , Seattle, Washington
| | - Lilla Zöllei
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Bruce Fischl
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Paul K Crane
- 23 Department of Medicine, University of Washington , Seattle, Washington
| | - Kristen Dams-O'Connor
- 14 Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai , New York, New York.,24 Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
240
|
LoBue C, Woon FL, Rossetti HC, Hynan LS, Hart J, Cullum CM. Traumatic brain injury history and progression from mild cognitive impairment to Alzheimer disease. Neuropsychology 2018; 32:401-409. [PMID: 29809031 PMCID: PMC5975979 DOI: 10.1037/neu0000431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To examine whether history of traumatic brain injury (TBI) is associated with more rapid progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHOD Data from 2,719 subjects with MCI were obtained from the National Alzheimer's Coordinating Center. TBI was categorized based on presence (TBI+) or absence (TBI-) of reported TBI with loss of consciousness (LOC) without chronic deficit occurring >1 year prior to diagnosis of MCI. Survival analyses were used to determine if a history of TBI predicted progression from MCI to AD up to 8 years. Random regression models were used to examine whether TBI history also predicted rate of decline on the Clinical Dementia Rating scale Sum of Boxes score (CDR-SB) among subjects who progress to AD. RESULTS Across 8 years, TBI history was not significantly associated with progression from MCI to a diagnosis of AD in unadjusted (HR = 0.80; 95% CI [0.63, 1.01]; p = .06) and adjusted (p = .15) models. Similarly, a history of TBI was a nonsignificant predictor for rate of decline on CDR-SB among subjects who progressed to AD (b = 0.15, p = .38). MCI was, however, diagnosed a mean of 2.6 years earlier (p < .001) in TBI+ subjects compared with the TBI- group. CONCLUSIONS A history of TBI with LOC was not associated with progression from MCI to AD, but was linked to an earlier age of MCI diagnosis. These findings add to a growing literature suggesting that TBI might reduce the threshold for onset of MCI and certain neurodegenerative conditions, but appears unrelated to progression from MCI to AD. (PsycINFO Database Record
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Fu L. Woon
- Seton Brain & Spine Institute – Neurology/Dell Medical School, University of Texas, Austin, TX
| | - Heidi C. Rossetti
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Linda S. Hynan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - C. Munro Cullum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
241
|
Lowry JR, Klegeris A. Emerging roles of microglial cathepsins in neurodegenerative disease. Brain Res Bull 2018; 139:144-156. [DOI: 10.1016/j.brainresbull.2018.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/23/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
|
242
|
Abu Hamdeh S, Shevchenko G, Mi J, Musunuri S, Bergquist J, Marklund N. Proteomic differences between focal and diffuse traumatic brain injury in human brain tissue. Sci Rep 2018; 8:6807. [PMID: 29717219 PMCID: PMC5931620 DOI: 10.1038/s41598-018-25060-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
The early molecular response to severe traumatic brain injury (TBI) was evaluated using biopsies of structurally normal-appearing cortex, obtained at location for intracranial pressure (ICP) monitoring, from 16 severe TBI patients. Mass spectrometry (MS; label free and stable isotope dimethyl labeling) quantitation proteomics showed a strikingly different molecular pattern in TBI in comparison to cortical biopsies from 11 idiopathic normal pressure hydrocephalus patients. Diffuse TBI showed increased expression of peptides related to neurodegeneration (Tau and Fascin, p < 0.05), reduced expression related to antioxidant defense (Glutathione S-transferase Mu 3, Peroxiredoxin-6, Thioredoxin-dependent peroxide reductase; p < 0.05) and increased expression of potential biomarkers (e.g. Neurogranin, Fatty acid-binding protein, heart p < 0.05) compared to focal TBI. Proteomics of human brain biopsies displayed considerable molecular heterogeneity among the different TBI subtypes with consequences for the pathophysiology and development of targeted treatments for TBI.
Collapse
Affiliation(s)
- Sami Abu Hamdeh
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Ganna Shevchenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Jia Mi
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.,Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Sravani Musunuri
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.,Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
243
|
Brothers HM, Gosztyla ML, Robinson SR. The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer's Disease. Front Aging Neurosci 2018; 10:118. [PMID: 29922148 PMCID: PMC5996906 DOI: 10.3389/fnagi.2018.00118] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyloid-ß (Aß) is best known as the misfolded peptide that is involved in the pathogenesis of Alzheimer's disease (AD), and it is currently the primary therapeutic target in attempts to arrest the course of this disease. This notoriety has overshadowed evidence that Aß serves several important physiological functions. Aß is present throughout the lifespan, it has been found in all vertebrates examined thus far, and its molecular sequence shows a high degree of conservation. These features are typical of a factor that contributes significantly to biological fitness, and this suggestion has been supported by evidence of functions that are beneficial for the brain. The putative roles of Aß include protecting the body from infections, repairing leaks in the blood-brain barrier, promoting recovery from injury, and regulating synaptic function. Evidence for these beneficial roles comes from in vitro and in vivo studies, which have shown that the cellular production of Aß rapidly increases in response to a physiological challenge and often diminishes upon recovery. These roles are further supported by the adverse outcomes of clinical trials that have attempted to deplete Aß in order to treat AD. We suggest that anti-Aß therapies will produce fewer adverse effects if the known triggers of Aß deposition (e.g., pathogens, hypertension, and diabetes) are addressed first.
Collapse
Affiliation(s)
- Holly M Brothers
- Department of Psychology, The Ohio State University Columbus, Columbus, OH, United States
| | - Maya L Gosztyla
- Department of Neuroscience, The Ohio State University Columbus, Columbus, OH, United States
| | - Stephen R Robinson
- Discipline of Psychology, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
244
|
Kokiko-Cochran ON, Godbout JP. The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer's Disease. Front Immunol 2018; 9:672. [PMID: 29686672 PMCID: PMC5900037 DOI: 10.3389/fimmu.2018.00672] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered.
Collapse
Affiliation(s)
- Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
245
|
Lusch B, Weholt J, Maia PD, Kutz JN. Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks. Brain Cogn 2018; 123:154-164. [PMID: 29597065 DOI: 10.1016/j.bandc.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 11/17/2017] [Accepted: 02/27/2018] [Indexed: 01/10/2023]
Abstract
The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated.
Collapse
Affiliation(s)
- Bethany Lusch
- Department of Applied Mathematics, University of Washington, United States.
| | - Jake Weholt
- Department of Applied Mathematics, University of Washington, United States
| | - Pedro D Maia
- Department of Applied Mathematics, University of Washington, United States
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, United States
| |
Collapse
|
246
|
Chang JL, Hinrich AJ, Roman B, Norrbom M, Rigo F, Marr RA, Norstrom EM, Hastings ML. Targeting Amyloid-β Precursor Protein, APP, Splicing with Antisense Oligonucleotides Reduces Toxic Amyloid-β Production. Mol Ther 2018; 26:1539-1551. [PMID: 29628304 DOI: 10.1016/j.ymthe.2018.02.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022] Open
Abstract
Alterations in amyloid beta precursor protein (APP) have been implicated in cognitive decline in Alzheimer's disease (AD), which is accelerated in Down syndrome/Trisomy 21 (DS/TS21), likely due to the extra copy of the APP gene, located on chromosome 21. Proteolytic cleavage of APP generates amyloid-β (Aβ) peptide, the primary component of senile plaques associated with AD. Reducing Aβ production is predicted to lower plaque burden and mitigate AD symptoms. Here, we designed a splice-switching antisense oligonucleotide (SSO) that causes skipping of the APP exon that encodes proteolytic cleavage sites required for Aβ peptide production. The SSO induced exon skipping in Down syndrome cell lines, resulting in a reduction of Aβ. Treatment of mice with the SSO resulted in widespread distribution in the brain accompanied by APP exon skipping and a reduction of Aβ. Overall, we show that an alternatively spliced isoform of APP encodes a cleavage-incompetent protein that does not produce Aβ peptide and that promoting the production of this isoform with an SSO can reduce Aβ in vivo. These findings demonstrate the utility of using SSOs to induce a spliced isoform of APP to reduce Aβ as a potential approach for treating AD.
Collapse
Affiliation(s)
- Jennifer L Chang
- Department of Cell Biology and Anatomy, Center for Genetic Diseases, Chicago Medical School and School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Anthony J Hinrich
- Department of Cell Biology and Anatomy, Center for Genetic Diseases, Chicago Medical School and School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Brandon Roman
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Robert A Marr
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Eric M Norstrom
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Center for Genetic Diseases, Chicago Medical School and School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
247
|
White CS, Lawrence CB, Brough D, Rivers-Auty J. Inflammasomes as therapeutic targets for Alzheimer's disease. Brain Pathol 2018; 27:223-234. [PMID: 28009077 DOI: 10.1111/bpa.12478] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is the most common form of progressive dementia, typified initially by short term memory deficits which develop into a dramatic global cognitive decline. The classical hall marks of Alzheimer's disease include the accumulation of amyloid oligomers and fibrils, and the intracellular formation of neurofibrillary tangles of hyperphosphorylated tau. It is now clear that inflammation also plays a central role in the pathogenesis of the disease through a number of neurotoxic mechanisms. Microglia are the key immune regulators of the CNS which detect amyloidopathy through cell surface and cytosolic pattern recognition receptors (PRRs) and respond by initiating inflammation through the secretion of cytokines such as interleukin-1β (IL-1β). Inflammasomes, which regulate IL-1β release, are formed following activation of cytosolic PRRs, and using genetic and pharmacological approaches, NLRP3 and NLRP1 inflammasomes have been found to be integral in pathogenic neuroinflammation in animal models of Alzheimer's disease. Therefore, the inflammasomes are very promising novel pharmacological targets which merit further research in the continued endeavor for efficacious therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Claire S White
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - David Brough
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
248
|
Schaffert J, LoBue C, White CL, Chiang HS, Didehbani N, Lacritz L, Rossetti H, Dieppa M, Hart J, Cullum CM. Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 2018; 32:410-416. [PMID: 29389151 DOI: 10.1037/neu0000423] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To evaluate whether a history of traumatic brain injury (TBI) with reported loss of consciousness (LOC) is a risk factor for earlier onset of Alzheimer's disease (AD) in an autopsy-confirmed sample. METHOD Data from 2,133 participants with autopsy-confirmed AD (i.e., at least Braak neurofibrillary tangle stages III to VI and CERAD neuritic plaque score moderate to frequent) were obtained from the National Alzheimer's Coordinating Center (NACC). Participants were categorized by presence/absence of self-reported remote (i.e., >1 year prior to their first Alzheimer's Disease Center visit) history of TBI with LOC (TBI+ vs. TBI-). Analyses of Covariance (ANCOVA) controlling for sex, education, and race compared groups on clinician-estimated age of symptom onset and age of diagnosis. RESULTS Average age of onset was 2.34 years earlier (p = .01) for the TBI+ group (n = 194) versus the TBI- group (n = 1900). Dementia was diagnosed on average 2.83 years earlier (p = .002) in the TBI+ group (n = 197) versus the TBI- group (n = 1936). Using more stringent neuropathological criteria (i.e., Braak stages V-VI and CERAD frequent), both age of AD onset and diagnosis were 3.6 years earlier in the TBI+ group (both p's < .001). CONCLUSIONS History of TBI with reported LOC appears to be a risk factor for earlier AD onset. This is the first study to use autopsy-confirmed cases, supporting previous investigations that used clinical criteria for the diagnosis of AD. Further investigation as to possible underlying mechanisms of association is needed. (PsycINFO Database Record
Collapse
|
249
|
Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link. EBioMedicine 2018; 28:21-30. [PMID: 29396300 PMCID: PMC5835563 DOI: 10.1016/j.ebiom.2018.01.021] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating neurological disorders, whose complex relationship is not completely understood. Cerebrovascular pathology, a key element in both conditions, could represent a mechanistic link between Aβ/tau deposition after TBI and the development of post concussive syndrome, dementia and chronic traumatic encephalopathy (CTE). In addition to debilitating acute effects, TBI-induced neurovascular injuries accelerate amyloid β (Aβ) production and perivascular accumulation, arterial stiffness, tau hyperphosphorylation and tau/Aβ-induced blood brain barrier damage, giving rise to a deleterious feed-forward loop. We postulate that TBI can initiate cerebrovascular pathology, which is causally involved in the development of multiple forms of neurodegeneration including AD-like dementias. In this review, we will explore how novel biomarkers, animal and human studies with a focus on cerebrovascular dysfunction are contributing to the understanding of the consequences of TBI on the development of AD-like pathology. Cerebrovascular dysfunction (CVD) is emerging as a key element in the development of neurodegeneration after TBI. We propose that TBI initiates CVD, accelerating Aβ/tau deposition and leading to neurodegeneration and dementias. Clarifying this connection will support the development of novel biomarkers and therapeutic approaches for both TBI and AD.
Collapse
|
250
|
Kusne Y, Wolf AB, Townley K, Conway M, Peyman GA. Visual system manifestations of Alzheimer's disease. Acta Ophthalmol 2017; 95:e668-e676. [PMID: 27864881 DOI: 10.1111/aos.13319] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD.
Collapse
Affiliation(s)
- Yael Kusne
- University of Arizona College of Medicine; Phoenix Arizona USA
| | - Andrew B. Wolf
- University of Colorado School of Medicine; Aurora Colorado USA
| | - Kate Townley
- University of Arizona College of Medicine; Phoenix Arizona USA
| | - Mandi Conway
- University of Arizona College of Medicine; Phoenix Arizona USA
- Arizona Retinal Specialists; Sun City Arizona USA
| | - Gholam A. Peyman
- University of Arizona College of Medicine; Phoenix Arizona USA
- Arizona Retinal Specialists; Sun City Arizona USA
| |
Collapse
|