201
|
Marques KB, Scorisa JM, Zanon R, Freria CM, Santos LMB, Damasceno BP, Oliveira ALR. The immunomodulator glatiramer acetate influences spinal motoneuron plasticity during the course of multiple sclerosis in an animal model. Braz J Med Biol Res 2009; 42:179-88. [PMID: 19274346 DOI: 10.1590/s0100-879x2009000200006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 01/05/2009] [Indexed: 11/21/2022] Open
Abstract
The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model--experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.
Collapse
Affiliation(s)
- K B Marques
- Departamento de Anatomia, Instituto de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
202
|
Fujita M, Otsuka T, Mizuno M, Tomi C, Yamamura T, Miyake S. Carcinoembryonic antigen-related cell adhesion molecule 1 modulates experimental autoimmune encephalomyelitis via an iNKT cell-dependent mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1116-23. [PMID: 19700760 DOI: 10.2353/ajpath.2009.090265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) is a CEA family member that has been reported to have an important role in the regulation of Th1-mediated colitis. In this study, we examined the role of CEACAM1 in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Treatment of C57BL/6J mice with CEACAM1-Fc fusion protein, a homophilic ligand of CEACAM1, inhibited the severity of EAE and reduced myelin oligodendrocyte glycoprotein-derived peptide (MOG(35-55))-reactive interferon-gamma and interleukin-17 production. In contrast, treatment of these animals with AgB10, an anti-mouse CEACAM1 blocking monoclonal antibody, generated increased severity of EAE in association with increased MOG(35-55)-specific induction of both interferon-gamma and interleukin-17. These results indicated that the signal elicited through CEACAM1 ameliorated EAE disease severity. Furthermore, we found that there was both a rapid and enhanced expression of CEACAM1 on invariant natural killer T cells after activation. The effect of CEACAM1-Fc fusion protein and anti-CEACAM1 mAb on both EAE and MOG(35-55)-reactive cytokine responses were abolished in invariant natural killer T cell-deficient Jalpha18(-/-) mice. Taken together, the ligation of CEACAM1 negatively regulates the severity of EAE by reducing MOG(35-55)-specific induction of both interferon-gamma and interleukin-17 via invariant natural killer T cell-dependent mechanisms.
Collapse
Affiliation(s)
- Mayumi Fujita
- Department of Immunology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
203
|
Martín R, Carvalho-Tavares J, Hernández M, Arnés M, Ruiz-Gutiérrez V, Nieto ML. Beneficial actions of oleanolic acid in an experimental model of multiple sclerosis: a potential therapeutic role. Biochem Pharmacol 2009; 79:198-208. [PMID: 19679109 DOI: 10.1016/j.bcp.2009.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 01/11/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease for which there exist no therapies without undesired side effects. Thus, the establishment of less toxic treatments is an ongoing challenge. Nowadays, research on medicinal plants has been attracting much attention, since screening of its active principles could prove useful in identification of safe and innovative pharmaceutical molecules. In this study we investigated the therapeutic effect of oleanolic acid (OA) a plant-derived triterpene with potent anti-inflammatory and immunomodulatory activities, whose actions on CNS diseases remain far from completely characterized. We focussed on the potential therapeutic effect of oleanolic acid (OA) on an accepted experimental model of MS, the experimental autoimmune encephalomyelitis (EAE). We have found that OA treatment, before or at the early onset of EAE, ameliorates neurological signs of EAE-mice. These beneficial effects of OA seem to be associated with a reduction of blood-brain barrier leakage and lower infiltration of inflammatory cells within the CNS, as well as with its modulatory role in Th1/Th2 polarization: inhibition of proinflammatory cytokines and chemokines, and stimulation of anti-inflammatory ones. Moreover, EAE-animals that were treated with OA had lower levels of anti-MOG antibodies than untreated EAE-mice. Our findings show that the administration of the natural triterpenoid OA reduces and limits the severity and development of EAE. Therefore, OA therapy might be of clinical interest for human MS and other Th1 cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Rubén Martín
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, C/Sanz y Forés s/n, 47003-Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
204
|
Hirsch M, Knight J, Tobita M, Soltys J, Panitch H, Mao-Draayer Y. The effect of interferon-beta on mouse neural progenitor cell survival and differentiation. Biochem Biophys Res Commun 2009; 388:181-6. [PMID: 19619508 DOI: 10.1016/j.bbrc.2009.07.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 01/26/2023]
Abstract
Interferon-beta (IFN-beta) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-beta on the central nervous system (CNS) are not well understood. To determine whether IFN-beta has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-beta and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFNalpha/beta receptor (IFNAR). In response to IFN-beta treatment, no effect was observed on differentiation or proliferation. However, IFN-beta treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-beta treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-beta can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.
Collapse
Affiliation(s)
- Marek Hirsch
- Neurology Department, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
205
|
Affiliation(s)
- Thomas Berger
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria.
| |
Collapse
|
206
|
Abstract
Apoptosis or programmed cell death plays a central role in regulating not only the development of lymphocytes but also in their homeostasis. A breakdown in apoptosis related signaling mechanisms could result in the development of autoimmune disorders. The past decade has witnessed an explosive increase in knowledge with respect to various apoptotic signaling pathways and their aberrant behavior in autoimmune disorders. Although Fas/FasL mediated signaling appears to be a common paradigm that has emerged from studies in various autoimmune disorders, examples suggesting a role for other cell death pathways have also surfaced. Understanding the definitive role of apoptosis in various autoimmune disorders is likely to define novel targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Kanteti V Prasad
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
207
|
Hamerschlak N, Rodrigues M, Moraes DA, Oliveira MC, Stracieri ABPL, Pieroni F, Barros GMN, Madeira MIA, Simões BP, Barreira AA, Brum DG, Ribeiro AAF, Kutner JM, Tylberi CP, Porto PP, Santana CL, Neto JZ, Barros JC, Paes AT, Burt RK, Oliveira EA, Mastropietro AP, Santos AC, Voltarelli JC. Brazilian experience with two conditioning regimens in patients with multiple sclerosis: BEAM/horse ATG and CY/rabbit ATG. Bone Marrow Transplant 2009; 45:239-48. [DOI: 10.1038/bmt.2009.127] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
208
|
Khademi M, Bornsen L, Rafatnia F, Andersson M, Brundin L, Piehl F, Sellebjerg F, Olsson T. The effects of natalizumab on inflammatory mediators in multiple sclerosis: prospects for treatment-sensitive biomarkers. Eur J Neurol 2009; 16:528-36. [PMID: 19220425 DOI: 10.1111/j.1468-1331.2009.02532.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Natalizumab affects systemic cytokine expressions and clinical course in relapsing-remitting multiple sclerosis (RRMS). We analyzed levels of inflammatory cytokines in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs), levels of matrix metalloproteinase (MMP)-9 and osteopontin (OPN) in CSF, and clinical outcome measures in 22 natalizumab-treated RRMS patients. METHODS mRNA levels of cytokines in cells were detected with real-time RT-PCR. Protein levels of OPN and MMP-9 were measured by ELISA. RESULTS Natalizumab reduced CSF cell counts (P < 0.0001). Tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) mRNAs were significantly increased in PBMCs. In contrast, expressions of IFN-gamma and interleukin (IL)-23 were decreased but IL-10 increased in the CSF cells. OPN and MMP-9 were reduced in the CSF. Patients being in remission at baseline showed the same deviations of mediators as those in relapse after natalizumab treatment. The open label clinical outcome measures were either stable or improved during therapy. CONCLUSIONS Natalizumab attenuates pro-inflammatory mediators intrathecally and the reduced pro-inflammatory milieu may allow increased production of the anti-inflammatory mediator IL-10. The increased systemic cytokines may impede the improvement of certain clinical measures like fatigue. The affected mediators seem to be sensitive to an immune-modifying treatment which could be used as biomarkers for this therapy.
Collapse
Affiliation(s)
- M Khademi
- Neuroimmunology Unit, CMM, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Shijie J, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, Liang J, Hua L, Yasuoka S, Zhou Y, Noda M, Kawanokuchi J, Mizuno T, Suzumura A. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. TOHOKU J EXP MED 2009; 217:87-92. [PMID: 19212100 DOI: 10.1620/tjem.217.87] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system. Despite a variety of anti-inflammatory or immunomodulation drugs including interferon-beta are effective to reduce relapse risk, most patients have progressive neurological deterioration due to axonal degeneration. Accumulation of activated microglia is a pathological hallmark of active MS lesion. Microglia can act as not only antigen-presenting cells but also effector cells to damage other cells in the central nervous system. Especially, glutamate released by activated microglia induces excito-neurotoxicity and may contribute to neurodegeneration in MS. Gap junction is a major cell-to-cell channel and is composed of paired hemichannels on coupled cells. Recent studies showed that cells release various small molecules (including ions, ATP, and amino acids) from unpaired hemichannel of gap junction that is openly exposed to the extracellular space. We have previously revealed that activated microglia produce glutamate via glutaminase and release it through hemichannels of gap junctions. Thus, in this study, we examined whether the glutaminase inhibitor and the gap junction blocker relieved experimental autoimmune encephalomyelitis (EAE) that is an animal model of MS. Here we show that the gap junction blocker carbenoxolone (CBX) and the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON) decreased glutamate release from activated microglia and rescued neuronal death in a dose-dependent manner in vitro. In EAE mice, treatment with CBX or DON also attenuated EAE clinical symptoms. Thus, blockade of glutamate release from activated microglia with CBX or DON may be an effective therapeutic strategy against neurodegeneration in MS.
Collapse
Affiliation(s)
- Jin Shijie
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Hartung HP. High-dose, high-frequency recombinant interferon beta-1a in the treatment of multiple sclerosis. Expert Opin Pharmacother 2009; 10:291-309. [PMID: 19236200 DOI: 10.1517/14656560802677882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is at present no cure for multiple sclerosis (MS), and existing therapies are designed primarily to prevent lesion formation, decrease the rate and severity of relapses and delay the resulting disability by reducing levels of inflammation. OBJECTIVE The aim of this review was to assess the treatment of relapsing MS with particular focus on subcutaneous (s.c.) interferon (IFN) beta-1a. METHOD The literature on IFN beta-1a therapy of MS was reviewed based on a PubMed search (English-language publications from 1990) including its pharmacodynamics and pharmacokinetics, clinical efficacy in relapsing MS as shown in placebo-controlled studies and in comparative trials, efficacy in secondary progressive MS, safety and tolerability, and the impact of neutralizing antibodies. CONCLUSION The literature suggests that high-dose, high-frequency s.c. IFN beta-1a offers an effective option for treating patients with relapsing MS, with proven long-term safety and tolerability, and has a favourable benefit-to-risk ratio compared with other forms of IFN beta.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Heinrich-Heine-University, Department of Neurology, Moorenstreet 5, D-40225 Düsseldorf, Germany.
| |
Collapse
|
211
|
Loftus B, Newsom B, Montgomery M, Von Gynz-Rekowski K, Riser M, Inman S, Garces P, Rill D, Zhang J, Williams J. Autologous attenuated T-cell vaccine (Tovaxin®) dose escalation in multiple sclerosis relapsing–remitting and secondary progressive patients nonresponsive to approved immunomodulatory therapies. Clin Immunol 2009; 131:202-15. [DOI: 10.1016/j.clim.2009.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 12/14/2008] [Accepted: 01/06/2009] [Indexed: 11/24/2022]
|
212
|
Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis. PLoS One 2009; 4:e4952. [PMID: 19300513 PMCID: PMC2654159 DOI: 10.1371/journal.pone.0004952] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/18/2009] [Indexed: 01/09/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination leading to autoimmune multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The classic MBP isoforms are predominantly expressed in the oligodendrocytes of the CNS. The splice variants of the single MBP gene (Golli-MBP BG21 and J37) are widely expressed in the neurons and also in the immune cells. The relative contribution of the individual MMPs to the MBP cleavage is not known. Methodology/Principal Findings To elucidate which MMP plays the primary role in cleaving MBP, we determined the efficiency of MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MT1-MMP, MT2-MMP, MT3-MMP, MT4-MMP, MT5-MMP and MT6-MMP in the cleavage of the MBP, BG21 and J37 isoforms in the in vitro cleavage reactions followed by mass-spectroscopy analysis of the cleavage fragments. As a result, we identified the MMP cleavage sites and the sequence of the resulting fragments. We determined that MBP, BG21 and J37 are highly sensitive to redundant MMP proteolysis. MT6-MMP (initially called leukolysin), however, was superior over all of the other MMPs in cleaving the MBP isoforms. Using the mixed lymphocyte culture assay, we demonstrated that MT6-MMP proteolysis of the MBP isoforms readily generated, with a near quantitative yield, the immunogenic N-terminal 1–15 MBP peptide. This peptide selectively stimulated the proliferation of the PGPR7.5 T cell clone isolated from mice with EAE and specific for the 1–15 MBP fragment presented in the MHC H-2U context. Conclusions/Significance In sum, our biochemical observations led us to hypothesize that MT6-MMP, which is activated by furin and associated with the lipid rafts, plays an important role in MS pathology and that MT6-MMP is a novel and promising drug target in MS especially when compared with other individual MMPs.
Collapse
|
213
|
Legostaeva GA, Polosukhina DI, Bezuglova AM, Doronin BM, Buneva VN, Nevinsky GA. Affinity and catalytic heterogeneity of polyclonal myelin basic protein-hydrolyzing IgGs from sera of patients with multiple sclerosis. J Cell Mol Med 2009; 14:699-709. [PMID: 19438809 PMCID: PMC3823467 DOI: 10.1111/j.1582-4934.2009.00738.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human myelin basic protein (hMBP)-hydrolyzing activity was recently shown to be an intrinsic property of antibodies (Abs) from multiple sclerosis (MS) patients. Here, we present the first evidence demonstrating a significant diversity of different fractions of polyclonal IgGs (pIgGs) from MS patients in their affinity for hMBP and in the ability of pIgGs to hydrolyze hBMP at different optimal pHs (3–10.5). IgGs containing λ- and κ-types of light chains demonstrated comparable relative activities in the hydrolysis of hMBP. IgGs of IgG1–IgG4 sub-classes were analyzed for catalytic activity. IgGs of all four sub-classes were catalytically active, with their contribution to the total activity of Abzs in the hydrolysis of hMBP and its 19-mer oligopeptide increasing in the order: IgG1 (1.5–2.1%) < IgG2 (4.9–12.8%) < IgG3 (14.7–25.0%) < IgG4 (71–78%). Our findings suggest that the immune systems of individual MS patients generate a variety of anti-hMBP abzymes with different catalytic properties, which can attack hMBP of myelin-proteolipid shell of axons, playing an important role in MS pathogenesis.
Collapse
Affiliation(s)
- Galina A Legostaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
214
|
Menge T, Weber MS, Hemmer B, Kieseier BC, von Büdingen HC, Warnke C, Zamvil SS, Boster A, Khan O, Hartung HP, Stüve O. Disease-modifying agents for multiple sclerosis: recent advances and future prospects. Drugs 2009; 68:2445-68. [PMID: 19016573 DOI: 10.2165/0003495-200868170-00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the CNS. Currently, six medications are approved for immunmodulatory and immunosuppressive treatment of the relapsing disease course and secondary-progressive MS. In the first part of this review, the pathogenesis of MS and its current treatment options are discussed. During the last decade, our understanding of autoimmunity and the pathogenesis of MS has advanced substantially. This has led to the development of a number of compounds, several of which are currently undergoing clinical testing in phase II and III studies. While current treatment options are only available for parenteral administration, several oral compounds are now in clinical trials, including the immunosuppressive agents cladribine and laquinimod. A novel mode of action has been described for fingolimod, another orally available agent, which inhibits egress of activated lymphocytes from draining lymph nodes. Dimethylfumarate exhibits immunomodulatory as well as immunosuppressive activity when given orally. All of these compounds have successfully shown efficacy, at least in regards to the surrogate marker contrast-enhancing lesions on magnetic resonance imaging. Another class of agents that is highlighted in this review are biological agents, namely monoclonal antibodies (mAb) and recombinant fusion proteins. The humanized mAb daclizumab inhibits T-lymphocyte activation via blockade of the interleukin-2 receptor. Alemtuzumab and rituximab deplete leukocytes and B cells, respectively; the fusion protein atacicept inhibits specific B-cell growth factors resulting in reductions in B-cells and plasma cells. These compounds are currently being tested in phase II and III studies in patients with relapsing MS. The concept of neuro-protection and -regeneration has not advanced to a level where specific compounds have entered clinical testing. However, several agents approved for conditions other than MS are highlighted. Finally, with the advent of these highly potent novel therapies, rare, but potentially serious adverse effects have been noted, namely infections and malignancies. These are critically reviewed and put into perspective.
Collapse
Affiliation(s)
- Til Menge
- Department of Neurology, Heinrich Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Bright JJ, Walline CC, Kanakasabai S, Chakraborty S. Targeting PPAR as a therapy to treat multiple sclerosis. Expert Opin Ther Targets 2009; 12:1565-75. [PMID: 19007323 DOI: 10.1517/14728220802515400] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurological disorder that causes chronic paralysis and immense socio-economic problem among young adults. The etiology of MS is not known but it is generally viewed as an autoimmune inflammatory disease of the CNS. Over the past decade, several anti-inflammatory drugs have been developed to control MS symptoms but there is no medical cure. OBJECTIVE To evaluate the use and mechanism of action of agonists of PPAR, a family of nuclear receptor transcription factors that regulate inflammation, in treatment of MS. METHODS There are several reports showing beneficial effects of PPAR agonists in treating MS-like disease in animal models. We review recent advances in this field. RESULTS/CONCLUSIONS PPAR agonists regulate MS-like disease in animal models by blocking inflammatory signaling pathways, suggesting their use in treatment of MS. Current human trials are likely to confirm the safety and efficacy of PPAR agonists for MS treatment.
Collapse
Affiliation(s)
- John J Bright
- Methodist Research Institute, Neuroscience Research Laboratory, 1800 N Capitol Avenue, Noyes Bldg E-504C, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
216
|
Klotz L, Schmidt S, Heun R, Klockgether T, Kölsch H. Association of the PPARγ gene polymorphism Pro12Ala with delayed onset of multiple sclerosis. Neurosci Lett 2009; 449:81-3. [DOI: 10.1016/j.neulet.2008.10.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/07/2008] [Accepted: 10/19/2008] [Indexed: 11/24/2022]
|
217
|
Gold SM, Voskuhl RR. Estrogen and testosterone therapies in multiple sclerosis. PROGRESS IN BRAIN RESEARCH 2009; 175:239-51. [PMID: 19660660 PMCID: PMC2724009 DOI: 10.1016/s0079-6123(09)17516-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been known for decades that females are more susceptible than men to inflammatory autoimmune diseases, including multiple sclerosis (MS), rheumatoid arthritis, and psoriasis. In addition, female patients with these diseases experience clinical improvements during pregnancy with a temporary "rebound" exacerbation postpartum. These clinical observations indicate an effect of sex hormones on disease and suggest the potential use of the male hormone testosterone and the pregnancy hormone estriol, respectively, for the treatment of MS. A growing number of studies using the MS animal model experimental autoimmune encephalomyelitis (EAE) support a therapeutic effect of these hormones. Both testosterone and estriol have been found to induce anti-inflammatory as well as neuroprotective effects. Findings from two recent pilot studies of transdermal testosterone in male MS patients and oral estriol in female MS patients are encouraging. In this paper, we review the preclinical and clinical evidence for sex hormone treatments in MS and discuss potential mechanisms of action.
Collapse
Affiliation(s)
- Stefan M Gold
- Multiple Sclerosis Program, Department of Neurology, and Cousins Center, Geffen School of Medicine, University of California Los Angeles, Neurosci Res Bldg 1, 4 Floor, 635 Charles E Young Dr S, Los Angeles, CA 90095, U.S.A
| | - Rhonda R Voskuhl
- Multiple Sclerosis Program, Department of Neurology, and Cousins Center, Geffen School of Medicine, University of California Los Angeles, Neurosci Res Bldg 1, 4 Floor, 635 Charles E Young Dr S, Los Angeles, CA 90095, U.S.A
| |
Collapse
|
218
|
Moransard M, Sawitzky M, Fontana A, Suter T. Expression of the HGF receptor c-met by macrophages in experimental autoimmune encephalomyelitis. Glia 2009; 58:559-71. [DOI: 10.1002/glia.20945] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
219
|
Abstract
Recent advances in stem cell biology have raised expectations that both diseases of, and injuries to, the central nervous system may be ameliorated by cell transplantation. In particular, cell therapy has been studied for inducing efficient remyelination in disorders of myelin, including both the largely pediatric disorders of myelin formation and maintenance and the acquired demyelinations of both children and adults. Potential cell-based treatments of two major groups of disorders include both delivery of myelinogenic replacements and mobilization of residual oligodendrocyte progenitor cells as a means of stimulating endogenous repair; the choice of modality is then predicated upon the disease target. In this review we consider the potential application of cell-based therapeutic strategies to disorders of myelin, highlighting the promises as well as the problems and potential perils of this treatment approach.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
220
|
A double mutation of MBP(83-99) peptide induces IL-4 responses and antagonizes IFN-gamma responses. J Neuroimmunol 2008; 200:77-89. [PMID: 18675465 DOI: 10.1016/j.jneuroim.2008.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022]
Abstract
A number of treatment options are available to multiple sclerosis patients, however this needs to be improved. Herein, we designed and synthesized a number of peptides by mutating principal TCR contact residues based on MBP(83-99) peptide epitope. Immunization of SJL/J mice with MBP(83-99) and mutant [A(91)]MBP(83-99), [E(91)]MBP(83-99), [F(91)]MBP(83-99), [Y(91)]MBP(83-99), and [R(91), A(96)]MBP(83-99) peptides, induced IFN-gamma, and only [R(91), A(96)]MBP(83-99) mutant peptide was able to induce IL-4 secretion by T cells. T cells against the native MBP(83-99) peptide cross-reacted with all peptides except [Y(91)]MBP(83-99) and [R(91),A(96)]MBP(83-99). The double mutant [R(91), A(96)]MBP(83-99) was able to antagonize IFN-gamma production in vitro by T cells against the native MBP(83-99) peptide. Antibodies generated to [R(91), A(96)]MBP(83-99) did not cross-react with whole MBP protein. Molecular modeling between peptide analogs and H2 I-A(s) demonstrated novel interactions. The [R(91), A(96)]MBP(83-99) double mutant peptide analog is the most promising for further therapeutic studies.
Collapse
|
221
|
Zeis T, Kinter J, Herrero-Herranz E, Weissert R, Schaeren-Wiemers N. Gene expression analysis of normal appearing brain tissue in an animal model for multiple sclerosis revealed grey matter alterations, but only minor white matter changes. J Neuroimmunol 2008; 205:10-9. [DOI: 10.1016/j.jneuroim.2008.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 07/29/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|
222
|
De Santi L, Cantalupo L, Tassi M, Raspadori D, Cioni C, Annunziata P. Higher expression of BDNF receptor gp145trkB is associated with lower apoptosis intensity in T cell lines in multiple sclerosis. J Neurol Sci 2008; 277:65-70. [PMID: 18992902 DOI: 10.1016/j.jns.2008.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/18/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
Abstract
Conflicting data exist on expression of gp145trkB, the high affinity receptor for brain-derived neurotrophic factor (BDNF), on peripheral blood immunocompetent cells in multiple sclerosis (MS). We analyzed expression of gp145trkB by western blotting and flow cytometry in myelin basic protein (MBP)- and ovalbumin (OVA)-T cell lines prepared from 12 patients with relapsing-remitting MS and 12 normal healthy subjects (NHS) and correlated it with activation-induced apoptosis. We found a higher percentage of gp145trkB-expressing MBP-T cells in MS patients than in NHS (p=0.011). gp145trkB was mainly expressed by CD8(+) T cells to a higher extent in MS patients than in NHS (p=0.04). MBP-T cell lines from MS patients showed significantly lower apoptosis intensity than those from NHS (p=0.011). We found also a significant negative correlation between gp145trkB expression and apoptosis intensity in MS patients only (p=0.02). OVA-T cell lines showed a gp145trkB expression similar to that of MBP-T cell lines, with a higher expression in MS patients than NHS, and similar correlations with apoptosis intensity in MS. These findings suggest that gp145trkB is mainly expressed on T cell lines from MS patients and that the BDNF/gp145trkB axis is involved in the regulation of peripheral T cell apoptosis in MS.
Collapse
Affiliation(s)
- Lorenzo De Santi
- Department of Neurological and Behavioural Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
223
|
Abstract
The IgG molecule is the main component of IVIg. Commercial preparations of IVIg are derived from a pool of donors and subsequently, IVIg products contain smaller amounts of IgA and IgM antibodies as well as Th2 cytokines and cytokine antagonists that may also contribute to therapeutic effects. Numerous targets for IVIg include: T-cells, cytokines, immune cell trafficking, B-cells, complement and Fc-receptors. IVIg has been demonstrated to inactivate auto-reactive T-cells by competing for and interrupting their interaction with antigen presenting cells. The balance of cytokines also appears to be restored by IVIg, with studies showing that IVIg contains antibodies and antagonists to pro-inflammatory cytokines. In addition, IVIg is thought to interfere with and prevent the passage of auto-immune T-cells into the blood-nerve barrier. The effects of exogenous antibodies on B-cells have been well studied; IVIg is thought to down-regulate antibody production by B-cells, interfere with B-cell proliferation via a blockade of cell surface receptors and prevent the activation of certain subtypes of B-cell. In addition, IVIg can affect innate immunity by interrupting the steps in the complement activation cascade and blocking Fc-receptor mediated activity, which results in down-regulation of macrophage activity. In conclusion, IVIg has numerous modes of action, which culminate in the down-regulation of the immune response; many of which may be relevant to neuromuscular disorders and immune neuropathies.
Collapse
|
224
|
Tsutsui S, Hahn JN, Johnson TA, Ali Z, Jirik FR. Absence of the cellular prion protein exacerbates and prolongs neuroinflammation in experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1029-41. [PMID: 18815152 DOI: 10.2353/ajpath.2008.071062] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the physiological roles of the cellular prion protein (PrP C) remain to be fully elucidated, PrP C has been proposed to represent a potential regulator of cellular immunity. To test this hypothesis, we evaluated the consequences of PrP C deficiency on the course of experimental autoimmune encephalomyelitis induced by immunization with myelin oligodendrocyte glycoprotein peptide. Consistent with augmented proliferative responses and increased cytokine gene expression by myelin oligodendrocyte glycoprotein-primed Prnp-/- T cells, PrP C-deficient mice demonstrated more aggressive disease onset and a lack of clinical improvement during the chronic phase of experimental autoimmune encephalomyelitis. Acutely, Prnp-/- spinal cord, cerebellum, and forebrain exhibited higher levels of leukocytic infiltrates and pro-inflammatory cytokine gene expression, as well as increased spinal cord myelin basic protein and axonal loss. During the chronic phase, a remarkable persistence of leukocytic infiltrates was present in the forebrain and cerebellum, accompanied by an increase in interferon-gamma and interleukin-17 transcripts. Attenuation of T cell-dependent neuroinflammation thus represents a potential novel function of PrP C.
Collapse
Affiliation(s)
- Shigeki Tsutsui
- Department of Biochemistry and Molecular Biology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
225
|
Brenner T, Nizri E, Irony-Tur-Sinai M, Hamra-Amitay Y, Wirguin I. Acetylcholinesterase inhibitors and cholinergic modulation in Myasthenia Gravis and neuroinflammation. J Neuroimmunol 2008; 201-202:121-7. [DOI: 10.1016/j.jneuroim.2008.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
|
226
|
Abstract
It has long been thought that astrocytes, like other glial cells, simply provide a support mechanism for neuronal function in the healthy and inflamed central nervous system (CNS). However, recent evidence suggests that astrocytes play an active and dual role in CNS inflammatory diseases such as multiple sclerosis (MS). Astrocytes not only have the ability to enhance immune responses and inhibit myelin repair, but they can also be protective and limit CNS inflammation while supporting oligodendrocyte and axonal regeneration. The particular impact of these cells on the pathogenesis and repair of an inflammatory demyelinating process is dependent upon a number of factors, including the stage of the disease, the type and microenvironment of the lesion, and the interactions with other cell types and factors that influence their activation. In this review, we summarize recent data supporting the idea that astrocytes play a complex role in the regulation of CNS autoimmunity.
Collapse
Affiliation(s)
- A. Nair
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - T. J. Frederick
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - S. D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| |
Collapse
|
227
|
Hohlfeld R, Meinl E, Dornmair K. B- and T-cell responses in multiple sclerosis: novel approaches offer new insights. J Neurol Sci 2008; 274:5-8. [PMID: 18707694 DOI: 10.1016/j.jns.2008.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 11/29/2022]
Abstract
In experimental autoimmune encephalomyelitis (EAE), several target antigens of encephalitogenic T- and B-cell responses have been identified. However, in human multiple sclerosis (MS) the target antigens of pathogenic T and B cells have remained conjectural. Here we discuss how recent methodological advances have offered new insights into the nature of B- and T-cell receptor repertoires expressed in MS tissues, and how novel approaches have helped to identify neurofascin as a target of anti-axonal autoantibodies in MS and EAE.
Collapse
Affiliation(s)
- Reinhard Hohlfeld
- Department of Neuroimmunology, Max Planck Institute for Neurobiology, Am Klopferspitz, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
228
|
Simka M, Rybak Z. Hypothetical molecular mechanisms by which local iron overload facilitates the development of venous leg ulcers and multiple sclerosis lesions. Med Hypotheses 2008; 71:293-7. [PMID: 18400414 DOI: 10.1016/j.mehy.2008.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/22/2008] [Accepted: 02/23/2008] [Indexed: 10/22/2022]
Abstract
This paper presents a hypothetical model of role for iron in the development of venous leg ulcers and multiple sclerosis. Elevated concentrations of iron were found in the skin affected by venous hypertension and also in the areas of brain with multiple sclerosis lesions. Individuals with hemochromatosis gene (HFE) mutations: C282Y and H63D, which result in a less efficient transport of iron by macrophages, are characterized by an increased risk for venous leg ulcer and multiple sclerosis. Multiple sclerosis is a T cell-mediated disease, and T cells probably participate in the development of venous ulcers. This deleterious role of ferric ions could be related to the regulation of T cell proliferation and apoptosis. Under normal conditions excessive accumulation of T cells cannot take place, because nitric oxide and interferon-gamma drive these cells toward apoptosis. However, in tissues with a high concentration of iron, T lymphocytes proliferate instead of undergoing apoptosis. This is possible due to the internalization of the INF-gammaR2 chain of the interferon-gamma receptor, the downregulation of inducible nitric oxide synthase expression in macrophages and the inactivation of the active site of caspases. Yet, it should be emphasized that this hypothesis does not claim for the increased concentration of iron as a direct causal factor for the development of venous ulcerations or multiple sclerosis, but rather, iron is a factor that modulates and exaggerates the autoimmune process. Iron chelators, administered systemically or locally, should potentially exhibit therapeutic and prophylactic activity against venous leg ulcers and multiple sclerosis.
Collapse
Affiliation(s)
- M Simka
- Department of Angiology, Wodzislawska 78, 43-200 Pszczyna, Poland.
| | | |
Collapse
|
229
|
Zhang J, Chen J, Li Y, Cui X, Zheng X, Roberts C, Lu M, Elias SB, Chopp M. Niaspan treatment improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. Neurobiol Dis 2008; 32:273-80. [PMID: 18778774 DOI: 10.1016/j.nbd.2008.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/25/2008] [Accepted: 07/13/2008] [Indexed: 02/02/2023] Open
Abstract
We investigated the treatment of experimental autoimmune encephalomyelitis (EAE) in mice with Niaspan, an agent used to elevate high-density lipoprotein (HDL). EAE mice were treated with Niaspan starting on the immunization or clinical onset day. Neurological functional recovery was significantly increased in the Niaspan treated mice (100 mg/kgbw) compared to the controls. Inflammatory infiltrates were significantly reduced in the Niaspan treatment group compared to the EAE controls. HDL level, intact myelin area, newly formed oligodendrocytes, regenerating axons, gene and protein levels of sonic hedgehog (Shh)/Gli1 were significantly increased in the Niaspan treated mice compared to EAE controls. These data indicate that Niaspan treatment improved functional recovery after EAE, possibly, via reducing inflammatory infiltrates and demyelination areas, and stimulating oligodendrogenesis and axonal regeneration. Niaspan-mediated activation of Shh/Gli1 pathway may promote functional recovery post-EAE.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci 2008; 29:402-12. [PMID: 18617277 DOI: 10.1016/j.tips.2008.06.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/07/2008] [Accepted: 06/10/2008] [Indexed: 01/08/2023]
Abstract
The fascinating capacity that the central nervous system (CNS) has for encoding and retaining memories is thought to be based on activity-dependent forms of synaptic plasticity. The CNS and the immune systems are known to be engaged in an intense bidirectional crosstalk, and glial cells are now viewed as a crucial third element of the synapse. In this opinion article, we review the principal mechanisms by which the immune system, and in particular immune diffusible mediators, influences synaptic transmission and the induction of brain plastic phenomena. Thereafter, we consider the potential implications of inflammation-related overexpression of diffusible mediators in the disruption of synaptic plastic processes and neuronal networks functioning during human neurological diseases. Finally, we propose that a more accurate characterization of the mechanisms underlying the immune-mediated control of synaptic plasticity could represent, in the future, the basis for the development of a novel immune-centred therapeutic approach to neurological disorders.
Collapse
|
231
|
Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol 2008; 67:388-401. [PMID: 18431257 DOI: 10.1097/nen.0b013e31816fc975] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The roles of plasmacytoid dendritic cells (pDCs) and their response to interferon (IFN)-beta therapy in multiple sclerosis (MS) patients are poorly understood. We identified pDC accumulation in white matter lesions and leptomeninges of MS brains and abundant expression of the Type I IFN-induced protein MxA, mainly in perivascular CD3+ lymphocytes in lesions, indicating Type I IFN production by activated pDCs. The pDC chemoattractant chemerin was detected in intralesional cerebrovascular endothelial cells, and the chemerin receptor was expressed on infiltrating leukocytes, including pDCs. The effect of IFN-beta on pDC phenotype and function was evaluated in MS patients before and during IFN-beta treatment. Although IFN-beta did not modify the frequency and immature phenotype of circulating pDC, they showed lower expression of major histocompatibility complex Class II and blood-dendritic cell antigen 2 molecules and upregulation of CD38 and B7H1 costimulatory molecules. On exposure to CpG (a site where cytosine [C] lies next to guanine [G] in the DNA sequence [the p indicates that C and G are connected by a phosphodiester bond]) oligodeoxynucleotides in vitro, pDCs from IFN-beta-treated MS patients showed reduced expression of the pDC maturation markers CD83 and CD86 molecules; in vitro IFN-beta treatment of pDCs from healthy donors resulted in lower secretion of proinflammatory cytokines, including IFN-alpha, and a decreased ability to stimulate allogeneic T cells in response to maturative stimuli. These data indicate that IFN-beta modulates the immunologic functions of pDC, thus identifying pDCs as a novel target of IFN-beta therapy in MS patients.
Collapse
|
232
|
Jilek S, Schluep M, Meylan P, Vingerhoets F, Guignard L, Monney A, Kleeberg J, Le Goff G, Pantaleo G, Du Pasquier RA. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. ACTA ACUST UNITED AC 2008; 131:1712-21. [PMID: 18550621 DOI: 10.1093/brain/awn108] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Epstein-Barr virus (EBV) has been associated with multiple sclerosis (MS), however, most studies examining the relationship between the virus and the disease have been based on serologies, and if EBV is linked to MS, CD8+ T cells are likely to be involved as they are important both in MS pathogenesis and in controlling viruses. We hypothesized that valuable information on the link between MS and EBV would be ascertained from the study of frequency and activation levels of EBV-specific CD8+ T cells in different categories of MS patients and control subjects. We investigated EBV-specific cellular immune responses using proliferation and enzyme linked immunospot assays, and humoral immune responses by analysis of anti-EBV antibodies, in a cohort of 164 subjects, including 108 patients with different stages of MS, 35 with other neurological diseases and 21 healthy control subjects. Additionally, the cohort were all tested against cytomegalovirus (CMV), another neurotropic herpes virus not convincingly associated with MS, nor thought to be deleterious to the disease. We corrected all data for age using linear regression analysis over the total cohorts of EBV- and CMV-infected subjects. In the whole cohort, the rate of EBV and CMV infections were 99% and 51%, respectively. The frequency of IFN-gamma secreting EBV-specific CD8+ T cells in patients with clinically isolated syndrome (CIS) was significantly higher than that found in patients with relapsing-remitting MS (RR-MS), secondary-progressive MS, primary-progressive MS, patients with other neurological diseases and healthy controls. The shorter the interval between MS onset and our assays, the more intense was the EBV-specific CD8+ T-cell response. Confirming the above results, we found that EBV-specific CD8+ T-cell responses decreased in 12/13 patients with CIS followed prospectively for 1.0 +/- 0.2 years. In contrast, there was no difference between categories for EBV-specific CD4+ T cell, or for CMV-specific CD4+ and CD8+ T-cell responses. Anti-EBV-encoded nuclear antigen-1 (EBNA-1)-specific antibodies correlated with EBV-specific CD8+ T cells in patients with CIS and RR-MS. However, whereas EBV-specific CD8+ T cells were increased the most in early MS, EBNA-1-specific antibodies were increased in early as well as in progressive forms of MS. Our data show high levels of CD8+ T-cell activation against EBV--but not CMV--early in the course of MS, which support the hypothesis that EBV might be associated with the onset of this disease.
Collapse
Affiliation(s)
- Samantha Jilek
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Mizuno T, Zhang G, Takeuchi H, Kawanokuchi J, Wang J, Sonobe Y, Jin S, Takada N, Komatsu Y, Suzumura A. Interferon-gamma directly induces neurotoxicity through a neuron specific, calcium-permeable complex of IFN-gamma receptor and AMPA GluR1 receptor. FASEB J 2008; 22:1797-806. [PMID: 18198214 DOI: 10.1096/fj.07-099499] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interferon-gamma (IFN-gamma) is a proinflammatory cytokine that plays a pivotal role in pathology of diseases in the central nervous system (CNS), such as multiple sclerosis. However, the direct effect of IFN-gamma on neuronal cells has yet to be elucidated. We show here that IFN-gamma directly induces neuronal dysfunction, which appears as dendritic bead formation in mouse cortical neurons and enhances glutamate neurotoxicity mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptors but not N-methyl-D-aspartate receptors. In the CNS, IFN-gamma receptor forms a unique, neuron-specific, calcium-permeable receptor complex with AMPA receptor subunit GluR1. Through this receptor complex, IFN-gamma phosphorylates GluR1 at serine 845 position by JAK1.2/STAT1 pathway, increases Ca(2+) influx and following nitric oxide production, and subsequently decreases ATP production, leading to the dendritic bead formation. These findings provide novel mechanisms of neuronal excitotoxicity, which may occur in both inflammatory and neurodegenerative diseases in the CNS.
Collapse
Affiliation(s)
- Tetsuya Mizuno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
van Rossum D, Hilbert S, Strassenburg S, Hanisch UK, Brück W. Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype. Glia 2008; 56:271-83. [PMID: 18069669 DOI: 10.1002/glia.20611] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macrophages are key effectors in demyelinating diseases of the central and peripheral nervous system by phagocytosing myelin and releasing immunoregulatory mediators. Here, we report on a distinct, a priori anti-inflammatory reaction of macrophages phagocytosing myelin upon contact with damaged nerve tissue. Macrophages rapidly invaded peripheral (sciatic) and central (optic) nerve tissues in vitro, readily incorporated myelin and expressed high levels of phagocytosis-associated molecules (e.g., Fc and scavenger receptors). In contrast, factors involved in antigen presentation (MHC class-II, CD80, CD86) revealed only a restricted expression. In parallel, a highly ordered appearance of cytokines and chemokines was detected. IL-10, IL-6, CCL22, and CXCL1 were immediately but transiently induced, whereas CCL2, CCL11, and TGFbeta revealed more persisting levels. Such a profile would attract neutrophils, monocytes/macrophages, and Th2 cells as well as bias for a Th2-supporting environment. Importantly, proinflammatory/Th1-supporting factors, such as TNFalpha, IL-12p70, CCL3, and CCL5, were not induced. Still the simultaneous presence of TGFbeta and IL-6 could assist Th17 development, further depending on yet not present IL-23. The release pattern was clearly distinct from reactive phenotypes induced in isolated macrophages and microglia upon treatment with IL-4, IL-13, bacterial lipopolysaccharide, IFNgamma, or purified myelin. Nerve-exposed macrophages thus commit to a unique functional orientation.
Collapse
Affiliation(s)
- Denise van Rossum
- Institute for Neuropathology, University of Göttingen, D-37075, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
235
|
Folgueras AR, Fueyo A, García-Suárez O, Cox J, Astudillo A, Tortorella P, Campestre C, Gutiérrez-Fernández A, Fanjul-Fernández M, Pennington CJ, Edwards DR, Overall CM, López-Otín C. Collagenase-2 Deficiency or Inhibition Impairs Experimental Autoimmune Encephalomyelitis in Mice. J Biol Chem 2008; 283:9465-74. [DOI: 10.1074/jbc.m709522200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
236
|
Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population. Proc Natl Acad Sci U S A 2008; 105:3915-20. [PMID: 18319343 DOI: 10.1073/pnas.0709592105] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CD4(+)CD25(+) regulatory T (Treg) cells are crucial mediators of autoimmune tolerance. The factors that regulate Treg cells, however, are largely unknown. Here, we show that deficiency in midkine (MK), a heparin-binding growth factor involved in oncogenesis, inflammation, and tissue repair, attenuated experimental autoimmune encephalomyelitis (EAE) because of an expansion of the Treg cell population in peripheral lymph nodes and decreased numbers of autoreactive T-helper type 1 (T(H)1) and T(H)17 cells. MK decreased the Treg cell population ex vivo in a dose-dependent manner by suppression of STAT5 phosphorylation that is essential for Foxp3 expression. Moreover, administration of anti-MK RNA aptamers significantly expanded the Treg cell population and alleviated EAE symptoms. These observations indicate that MK serves as a critical suppressor of Treg cell expansion, and inhibition of MK using RNA aptamers may provide an effective therapeutic strategy against autoimmune diseases, including multiple sclerosis.
Collapse
|
237
|
Syed YA, Baer AS, Lubec G, Hoeger H, Widhalm G, Kotter MR. Inhibition of oligodendrocyte precursor cell differentiation by myelin-associated proteins. Neurosurg Focus 2008; 24:E5. [DOI: 10.3171/foc/2008/24/3-4/e4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Object
Promoting repair of central nervous system (CNS) white matter represents an important approach to easing the course of a number of tragic neurological diseases. For this purpose, strategies are currently being evaluated for transplanting cells capable of generating new oligodendrocytes into areas of demyelination and/or enhancing the potential of endogenous stem/precursor cells to give rise to new oligodendrocytes. Emerging evidence, however, indicates that increasing the presence of cells capable of forming new myelin sheaths is not sufficient to promote repair because of unknown inhibitors that accumulate in lesions as a consequence of myelin degeneration and impair the generation of new oligodendrocytes. The aim of the present study was to characterize the nature of the inhibitory molecules present in myelin.
Methods
Differentiation of primary rat oligodendrocyte precursor cells (OPCs) in the presence of CNS and peripheral nervous system myelin was assessed by immunocytochemical methods. The authors further characterized the nature of the inhibitors by submitting myelin membrane preparations to biochemical precipitation and digestion. Finally, OPCs were grown on purified Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, the most prominent inhibitors of axon regeneration.
Results
Myelin membrane preparations induced a differentiation block in OPCs that was associated with down-regulation of expression of the transcription factor Nkx2.2. The inhibitory activity in myelin was restricted to the CNS and was predominantly associated with white matter. Furthermore, the results demonstrate that myelin proteins that are distinct from the most prominent inhibitors of axon outgrowth are specific inhibitors of OPC differentiation.
Conclusions
The inhibitory effect of unknown myelin-associated proteins should be considered in future treatment strategies aimed at enhancing CNS repair.
Collapse
Affiliation(s)
| | | | | | - Harald Hoeger
- 3Core Unit for Biomedical Research in Neurosurgery, Medical University of Vienna, Austria
| | | | - Mark R. Kotter
- 2Neurosurgery and
- 4Department of Neurosurgery, Karl-August University, Göttingen, Germany
| |
Collapse
|
238
|
Templeton SP, Perlman S. Role of IFN-gamma responsiveness in CD8 T-cell-mediated viral clearance and demyelination in coronavirus-infected mice. J Neuroimmunol 2008; 194:18-26. [PMID: 18082272 PMCID: PMC7112937 DOI: 10.1016/j.jneuroim.2007.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/12/2007] [Accepted: 10/31/2007] [Indexed: 11/15/2022]
Abstract
Immunocompetent, but not RAG1(-/-) mice infected with MHV-JHM develop demyelination. Transferred CD8 T cell-enriched splenocytes reconstitute demyelination, and this ability is dependent on donor IFN-gamma. We used IFN-gammaR1(-/-) mice to examine the target of IFN-gamma in CD8 T cell-mediated demyelination. In IFN-gammaR1(-/-)RAG1(-/-) recipients, demyelination is decreased, but not eliminated, while viral titers are significantly increased when compared to IFN-gammaR1(+/+)RAG1(-/-) recipients. IFN-gammaR1(-/-) CD8 T cells retain virus-specific effector function regardless of IFN-gammaR1 expression. Although IFN-gammaR1 responsiveness is critical for maximal demyelination, increased levels of infectious virus coupled with adoptive transfer of CD8 T cells may result in myelin destruction independent of IFN-gammaR1 expression.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/physiology
- Central Nervous System Viral Diseases/immunology
- Central Nervous System Viral Diseases/pathology
- Central Nervous System Viral Diseases/virology
- Chemotaxis
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Crosses, Genetic
- Demyelinating Autoimmune Diseases, CNS/etiology
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/pathology
- Demyelinating Autoimmune Diseases, CNS/virology
- Dendritic Cells/immunology
- Disease Models, Animal
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Interferon-gamma/analysis
- Interferon-gamma/physiology
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Murine hepatitis virus/isolation & purification
- Murine hepatitis virus/physiology
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Specific Pathogen-Free Organisms
- T-Lymphocytes/transplantation
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Steven P Templeton
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, United States.
| | | |
Collapse
|
239
|
Templeton SP, Perlman S. Pathogenesis of acute and chronic central nervous system infection with variants of mouse hepatitis virus, strain JHM. Immunol Res 2008; 39:160-72. [PMID: 17917063 PMCID: PMC7090838 DOI: 10.1007/s12026-007-0079-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/12/2023]
Abstract
Infection of mice with variants of mouse hepatitis virus, strain JHM (MHV-JHM), provide models of acute and chronic viral infection of the central nervous system (CNS). Through targeted recombination and reverse genetic manipulation, studies of infection with MHV-JHM variants have identified phenotypic differences and examined the effects of these differences on viral pathogenesis and anti-viral host immune responses. Studies employing recombinant viruses with a modified spike (S) glycoprotein of MHV-JHM have identified the S gene as a major determinant of neurovirulence. However, the association of S gene variation and neurovirulence with host ability to generate anti-viral CD8 T cell responses is not completely clear. Partially protective anti-viral immune responses may result in persistent infection and chronic demyelinating disease characterized by myelin removal from axons of the CNS and associated with dense macrophage/microglial infiltration. Demyelinating disease during MHV-JHM infection is immune-mediated, as mice that lack T lymphocytes fail to develop disease despite succumbing to encephalitis with high levels of infectious virus in the CNS. However, the presence of T lymphocytes or anti-viral antibody can induce disease in infected immunodeficient mice. The mechanisms by which these immune effectors induce demyelination share an ability to activate and recruit macrophages and microglia, thus increasing the putative role of these cells in myelin destruction.
Collapse
Affiliation(s)
- Steven P Templeton
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
240
|
The multiple sclerosis degradome: enzymatic cascades in development and progression of central nervous system inflammatory disease. Curr Top Microbiol Immunol 2008; 318:133-75. [PMID: 18219817 DOI: 10.1007/978-3-540-73677-6_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An array of studies implicate different classes of protease and their endogenous inhibitors in multiple sclerosis (MS) pathogenesis based on expression patterns in MS lesions, sera, and/or cerebrospinal fluid (CSF). Growing evidence exists regarding their mechanistic roles in inflammatory and neurodegenerative aspects of this disease. Proteolytic events participate in demyelination, axon injury, apoptosis, and development of the inflammatory response including immune cell activation and extravasation, cytokine and chemokine activation/inactivation, complement activation, and epitope spreading. The potential significance of proteolytic activity to MS therefore relates not only to their potential use as important biomarkers of disease activity, but additionally as prospective therapeutic targets. Experimental data indicate that understanding the net physiological consequence of altered protease levels in MS development and progression necessitates understanding protease activity in the context of substrates, endogenous inhibitors, and proteolytic cascade interactions, which together make up the MS degradome. This review will focus on evidence regarding the potential physiologic role of those protease families already identified as markers of disease activity in MS; that is, the metallo-, serine, and cysteine proteases.
Collapse
|
241
|
Templeton SP, Kim TS, O'Malley K, Perlman S. Maturation and localization of macrophages and microglia during infection with a neurotropic murine coronavirus. Brain Pathol 2007; 18:40-51. [PMID: 17935605 PMCID: PMC7596182 DOI: 10.1111/j.1750-3639.2007.00098.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrophages and microglia are critical in the acute inflammatory response and act as final effector cells of demyelination during chronic infection with the neutrotropic MHV‐JHM strain of mouse hepatitis virus (MHV‐JHM). Herein, we show that “immature” F4/80+Ly‐6Chi monocytes are the first cells, along with neutrophils, to enter the MHV‐JHM‐infected central nervous system (CNS). As the infection progresses, macrophages in the CNS down‐regulate expression of Ly‐6C and CD62L, consistent with maturation, and a higher frequency express CD11c, a marker for dendritic cells (DCs). Microglia also express CD11c during this phase of the infection. CD11c+ macrophages in the infected CNS exhibit variable properties of immature antigen‐presenting cells (APCs), with modestly increased CD40 and MHC expression, and equivalent potent antigen uptake when compared with CD11c‐ macrophages. Furthermore, CDllc+ and F4/80+ macrophages and microglia are localized to areas of demyelination, in some instances directly associated with damaged axons. These results suggest that chronic CNS infection results in the appearance of CD11c‐expressing macrophages from the blood that exhibit properties of immature APCs, are closely associated with areas of demyelination, and may act as final effectors of myelin destruction.
Collapse
|
242
|
Marone R, Cmiljanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase: moving towards therapy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:159-85. [PMID: 17997386 DOI: 10.1016/j.bbapap.2007.10.003] [Citation(s) in RCA: 451] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/28/2007] [Accepted: 10/05/2007] [Indexed: 01/08/2023]
Abstract
Phosphoinositide 3-kinases (PI3K) orchestrate cell responses including mitogenic signaling, cell survival and growth, metabolic control, vesicular trafficking, degranulation, cytoskeletal rearrangement and migration. Deregulation of the PI3K pathway occurs by activating mutations in growth factor receptors or the PIK3CA locus coding for PI3Kalpha, by loss of function of the lipid phosphatase and tensin homolog deleted in chromosome ten (PTEN/MMAC/TEP1), by the up-regulation of protein kinase B (PKB/Akt), or the impairment of the tuberous sclerosis complex (TSC1/2). All these events are linked to growth and proliferation, and have thus prompted a significant interest in the pharmaceutical targeting of the PI3K pathway in cancer. Genetic targeting of PI3Kgamma (p110gamma) and PI3Kdelta (p110delta) in mice has underlined a central role of these PI3K isoforms in inflammation and allergy, as they modulate chemotaxis of leukocytes and degranulation in mast cells. Proof-of-concept molecules selective for PI3Kgamma have already successfully alleviated disease progress in murine models of rheumatoid arthritis and lupus erythematosus. As targeting PI3K moves forward to therapy of chronic, non-fatal disease, safety concerns for PI3K inhibitors increase. Many of the present inhibitor series interfere with target of rapamycin (TOR), DNA-dependent protein kinase (DNA-PK(cs)) and activity of the ataxia telangiectasia mutated gene product (ATM). Here we review the current disease-relevant knowledge for isoform-specific PI3K function in the above mentioned diseases, and review the progress of >400 recent patents covering pharmaceutical targeting of PI3K. Currently, several drugs targeting the PI3K pathway have entered clinical trials (phase I) for solid tumors and suppression of tissue damage after myocardial infarction (phases I,II).
Collapse
Affiliation(s)
- Romina Marone
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | | | | | | |
Collapse
|
243
|
Abstract
The classical field of neuroimmunology deals with the immune response in infectious, autoimmune-mediated, ischemic, degenerative, traumatic, and neoplastic diseases of the nervous system with a major focus on immune-mediated demyelination. Recently more and more evidence points to a broader interaction between the immune and nervous systems via morphological connections, shared signal molecules and common mechanisms of signal transduction. Consequently, immune processes affect nervous functions and vice versa under both physiologic and pathologic conditions. This includes neuroendocrine (hormonal) and vegetative (neurotransmitter-mediated) influences on the immune response including conditioned immunostimulation and immunosuppression (neuroimmunomodulation) as well as effects of immune mediators (cytokines) on neuronal and psychic functions (psychoneuroimmunology). These findings have a strong impact on future strategies for the treatment of somatic as well as psychiatric diseases.
Collapse
Affiliation(s)
- Eilhard Mix
- University of Rostock, Department of Neurology, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | | | | |
Collapse
|
244
|
Klotz L, Diehl L, Dani I, Neumann H, von Oppen N, Dolf A, Endl E, Klockgether T, Engelhardt B, Knolle P. Brain endothelial PPARγ controls inflammation-induced CD4+ T cell adhesion and transmigration in vitro. J Neuroimmunol 2007; 190:34-43. [PMID: 17719655 DOI: 10.1016/j.jneuroim.2007.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/06/2007] [Accepted: 07/25/2007] [Indexed: 11/19/2022]
Abstract
An important step in the pathogenesis of multiple sclerosis is adhesion and transmigration of encephalitogenic T cells across brain endothelial cells (EC) which strongly relies on interaction with EC-expressed adhesion molecules. We provide molecular evidence that the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) is a negative regulator of brain EC inflammation. The PPARgamma agonist pioglitazone reduces transendothelial migration of encephalitogenic T cells across TNFalpha-stimulated brain EC. This effect is clearly PPARgamma mediated, as lentiviral PPARgamma overexpression in brain EC results in selective abrogation of inflammation-induced ICAM-1 and VCAM-1 upregulation and subsequent adhesion and transmigration of T cells. We therefore propose that PPARgamma in brain EC may be exploited to target detrimental EC-T cell interactions under inflammatory conditions.
Collapse
Affiliation(s)
- Luisa Klotz
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Münch C, Meyer R, Linke P, Meyer T, Ludolph AC, Haas J, Hemmer B. The p150 subunit of dynactin (DCTN1) gene in multiple sclerosis. Acta Neurol Scand 2007; 116:231-4. [PMID: 17824900 DOI: 10.1111/j.1600-0404.2007.00884.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Mutations in the p150 subunit of the axonal transport protein dynactin (DCTN1) have been reported in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Given the common features of neurodegeneration in multiple sclerosis (MS), FTD and ALS, sequence variants of the DCTN1 gene may be a contributory factor to neurodegeneration in MS. METHODS We investigated a total of 200 MS patients and 200 controls. A total of 100 patients had a relapsing-remitting form of MS, 100 cases were primary progressive. Sequence alterations were screened for in the coding region of DCTN1 using heteroduplex and sequence analyses. RESULTS Two heterozygous missense mutations (T1249I, I196V) were found in two healthy control subjects. No mutations were identified in 200 MS patients. The frequency of a known single nucleotide polymorphism (R495Q) was not significantly different between patients and controls. CONCLUSION The results indicate that the DCTN1 gene is probably not influencing susceptibility to neurodegeneration in MS.
Collapse
Affiliation(s)
- C Münch
- Department of Neurology, Jewish Hospital, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
246
|
Krumbholz M, Theil D, Steinmeyer F, Cepok S, Hemmer B, Hofbauer M, Farina C, Derfuss T, Junker A, Arzberger T, Sinicina I, Hartle C, Newcombe J, Hohlfeld R, Meinl E. CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J Neuroimmunol 2007; 190:72-9. [PMID: 17825430 DOI: 10.1016/j.jneuroim.2007.07.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 01/16/2023]
Abstract
CCL19 and CCL21 bind to CCR7, which is crucial for both inducing an immune response and establishing immunological tolerance. We report that in the normal human brain CCL19, but not CCL21, is transcribed, and detectable as a protein in tissue lysates and in cerebrospinal fluid. In both active and inactive multiple sclerosis (MS) lesions CCL19 transcripts were elevated. In cerebrospinal fluid from MS and OIND patients CCL19 protein was increased. In relapsing-remitting and secondary progressive MS patients CCL19 correlated with intrathecal IgG production. This study suggests that CCL19 plays a role in both the physiological immunosurveillance of the healthy CNS and the pathological maintenance of immune cells in the CNS of MS patients.
Collapse
Affiliation(s)
- M Krumbholz
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Airas L, Niemelä J, Yegutkin G, Jalkanen S. Mechanism of Action of IFN-beta in the Treatment of Multiple Sclerosis: A Special Reference to CD73 and Adenosine. Ann N Y Acad Sci 2007; 1110:641-8. [PMID: 17911479 DOI: 10.1196/annals.1423.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFN-beta treatment reduces the relapse rate in multiple sclerosis (MS), but the exact mechanism of action of the drug has remained elusive. CD73 (ecto-5'-nucleotidase) is an ectoenzyme, which produces adenosine from adenosine monophosphate (AMP) precursor by enzymatic dephosphorylation. AMP is known to be abundantly present at sites of inflammation, and more importantly adenosine, the product of CD73, is known to possess both anti-inflammatory and neuroprotective activity. Our preliminary work has shown that IFN-beta increases the expression of ecto-5'-nucleotidase on endothelial cells (ECs) both in vitro and after systemic treatment of MS patients in vivo. In the majority of MS patients also an increase in the soluble serum CD73 was noted after IFN-beta treatment. Importantly, this correlated with the clinical outcome. CD73 expression on central nervous system (CNS) microvasculature was confirmed with stainings of frozen tissue sections of MS brain samples taken at autopsy. Adenosine, a known neuroprotective agent, might contribute to the beneficial effects of IFN-beta on MS.
Collapse
Affiliation(s)
- Laura Airas
- Department of Neurology, University of Turku, PL52 20521 Turku, Finland.
| | | | | | | |
Collapse
|
248
|
Abstract
Multiple sclerosis (MS) represents the prototypic inflammatory autoimmune disorder of the CNS. It is the most common cause of neurological disability in young adults and exhibits considerable clinical, radiological and pathological heterogeneity. Increased understanding of the immunopathological processes underlying this disease, advances in biotechnology and the development of powerful magnetic resonance imaging (MRI) technologies, together with improvements in clinical trial design, have led to a variety of valuable therapeutic approaches to MS. Therapy for MS has changed dramatically over the past decade, yielding significant progress in the treatment of relapsing remitting and secondary progressive forms; however, most of the clinically relevant therapeutic approaches are not yet available as oral formulations. A substantial number of preliminary and pivotal reports have provided promising results for oral therapies, and various phase III clinical trials are currently being initiated or are already underway evaluating the efficacy of a variety of orally administered agents, including cladribine, teriflunomide, laquinimod, fingolimod and fumaric acid. It is hoped that these trials will advance the development of oral therapies for MS.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
249
|
Schulze-Topphoff U, Prat A, Bader M, Zipp F, Aktas O. Roles of the kallikrein/kinin system in the adaptive immune system. Int Immunopharmacol 2007; 8:155-60. [PMID: 18182219 DOI: 10.1016/j.intimp.2007.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 01/22/2023]
Abstract
This review deals with the effects of kinins, a family of octa- to decapeptides structurally related to bradykinin (BK), in adaptive immune responses. Herein, we discuss the experimental evidence that kinins may exert influence on multiple players of the immune system (i.e. macrophages, dendritic cells, T and B lymphocytes), and modulate the activation, proliferation, migration and effector functions of these cells. We also give an overview of the possible impact of kinins in human autoimmune diseases and corresponding animal models, with special emphasis on autoimmune neuroinflammation and arthritis. These studies indicate a possible immunomodulatory capacity of kinins beyond our current knowledge of kinin actions regarding the vascular system, and thus the way towards future therapeutic approaches.
Collapse
Affiliation(s)
- U Schulze-Topphoff
- Cecilie-Vogt-Clinic for Molecular Neurology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | |
Collapse
|
250
|
Hohlfeld R, Wekerle H. Drug insight: using monoclonal antibodies to treat multiple sclerosis. ACTA ACUST UNITED AC 2007; 1:34-44. [PMID: 16932490 DOI: 10.1038/ncpneuro0016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 07/25/2005] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is an immunopathological, presumably autoimmune, disease of the CNS. Several immunomodulatory treatments, including various preparations of interferon-beta, glatiramer acetate and mitoxantrone, have been approved for MS therapy. Because these agents are only partially effective, the search for better therapies continues. Therapeutic monoclonal antibodies (mAbs), a class of biotechnological agents, allow the precise targeting of molecules involved in pathological processes. Therapeutic mAbs have shown much promise in the treatment of many disorders, including inflammatory and putative autoimmune diseases such as MS. These agents have intrinsic limitations, however, such as induction of neutralizing 'anti-antibodies', systemic inflammatory reactions and severe adverse effects, some of which remain to be explained. Most notably, natalizumab (Tysabri), a mAb against alpha4 integrin, was very effective in suppressing MS activity, but had to be withdrawn from the market because several treated patients developed progressive multifocal leukoencephalopathy. This article reviews the state of development of various therapeutic mAbs for MS treatment.
Collapse
|