201
|
Pancreatic Ductal Adenocarcinoma: Relating Biomechanics and Prognosis. J Clin Med 2021; 10:jcm10122711. [PMID: 34205335 PMCID: PMC8234178 DOI: 10.3390/jcm10122711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and carries a dismal prognosis. Resectable patients are treated predominantly with surgery while borderline resectable patients may receive neoadjuvant treatment (NAT) to downstage their disease prior to possible resection. PDAC tissue is stiffer than healthy pancreas, and tissue stiffness is associated with cancer progression. Another feature of PDAC is increased tissue heterogeneity. We postulate that tumour stiffness and heterogeneity may be used alongside currently employed diagnostics to better predict prognosis and response to treatment. In this review we summarise the biomechanical changes observed in PDAC, explore the factors behind these changes and describe the clinical consequences. We identify methods available for assessing PDAC biomechanics ex vivo and in vivo, outlining the relative merits of each. Finally, we discuss the potential use of radiological imaging for prognostic use.
Collapse
|
202
|
Tumor spheroid-based microtumor models for preclinical evaluation of anticancer nanomedicines. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
203
|
Zhang W, Zhang S, Zhang W, Yue Y, Qian W, Wang Z. Matrix stiffness and its influence on pancreatic diseases. Biochim Biophys Acta Rev Cancer 2021; 1876:188583. [PMID: 34139274 DOI: 10.1016/j.bbcan.2021.188583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 01/12/2023]
Abstract
The matrix stiffness of the extracellular matrix(ECM), which is the slow elastic force on cells, has gradually become investigated. And a higher stiffness could induce changes in cell biological behaviors and activation of internal signaling pathways. Imbalanced stiffness of ECM is associated with a number of diseases, including pancreatic disease. In this review, we discuss the components of the ECM and the increased stiffness caused by unbalanced ECM changes. Next, we describe how matrix stiffness transmits mechanical signals and what signaling pathways are altered within the cell in detail. Finally, we discuss the effect of ECM on the behavior of pancreatic diseases from the perspective of matrix stiffness.
Collapse
Affiliation(s)
- Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Wunai Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Yangyang Yue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China.
| |
Collapse
|
204
|
Vecchi L, Araújo TG, Azevedo FVPDV, Mota STS, Ávila VDMR, Ribeiro MA, Goulart LR. Phospholipase A 2 Drives Tumorigenesis and Cancer Aggressiveness through Its Interaction with Annexin A1. Cells 2021; 10:cells10061472. [PMID: 34208346 PMCID: PMC8231270 DOI: 10.3390/cells10061472] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Phospholipids are suggested to drive tumorigenesis through their essential role in inflammation. Phospholipase A2 (PLA2) is a phospholipid metabolizing enzyme that releases free fatty acids, mostly arachidonic acid, and lysophospholipids, which contribute to the development of the tumor microenvironment (TME), promoting immune evasion, angiogenesis, tumor growth, and invasiveness. The mechanisms mediated by PLA2 are not fully understood, especially because an important inhibitory molecule, Annexin A1, is present in the TME but does not exert its action. Here, we will discuss how Annexin A1 in cancer does not inhibit PLA2 leading to both pro-inflammatory and pro-tumoral signaling pathways. Moreover, Annexin A1 promotes the release of cancer-derived exosomes, which also lead to the enrichment of PLA2 and COX-1 and COX-2 enzymes, contributing to TME formation. In this review, we aim to describe the role of PLA2 in the establishment of TME, focusing on cancer-derived exosomes, and modulatory activities of Annexin A1. Unraveling how these proteins interact in the cancer context can reveal new strategies for the treatment of different tumors. We will also describe the possible strategies to inhibit PLA2 and the approaches that could be used in order to resume the anti-PLA2 function of Annexin A1.
Collapse
Affiliation(s)
- Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
| | - Thaise Gonçalves Araújo
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil;
| | | | - Sara Teixeria Soares Mota
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil;
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
- Correspondence: ; Tel.: +55-3432258440
| |
Collapse
|
205
|
Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol 2021; 14:91. [PMID: 34108022 PMCID: PMC8190846 DOI: 10.1186/s13045-021-01105-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Single-cell sequencing, including genomics, transcriptomics, epigenomics, proteomics and metabolomics sequencing, is a powerful tool to decipher the cellular and molecular landscape at a single-cell resolution, unlike bulk sequencing, which provides averaged data. The use of single-cell sequencing in cancer research has revolutionized our understanding of the biological characteristics and dynamics within cancer lesions. In this review, we summarize emerging single-cell sequencing technologies and recent cancer research progress obtained by single-cell sequencing, including information related to the landscapes of malignant cells and immune cells, tumor heterogeneity, circulating tumor cells and the underlying mechanisms of tumor biological behaviors. Overall, the prospects of single-cell sequencing in facilitating diagnosis, targeted therapy and prognostic prediction among a spectrum of tumors are bright. In the near future, advances in single-cell sequencing will undoubtedly improve our understanding of the biological characteristics of tumors and highlight potential precise therapeutic targets for patients.
Collapse
Affiliation(s)
- Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
206
|
Nicolas-Boluda A, Vaquero J, Vimeux L, Guilbert T, Barrin S, Kantari-Mimoun C, Ponzo M, Renault G, Deptula P, Pogoda K, Bucki R, Cascone I, Courty J, Fouassier L, Gazeau F, Donnadieu E. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 2021; 10:58688. [PMID: 34106045 PMCID: PMC8203293 DOI: 10.7554/elife.58688] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.
Collapse
Affiliation(s)
- Alba Nicolas-Boluda
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Laboratoire Matière et Systèmes Complexes (MSC), CNRS, Université de Paris, Paris, France
| | - Javier Vaquero
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,LPP (Laboratoire de physique des plasmas, UMR 7648), Sorbonne Université, Centre national de la recherche scientifique (CNRS), Ecole Polytechnique, Paris, France.,Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Lene Vimeux
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Thomas Guilbert
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Sarah Barrin
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Chahrazade Kantari-Mimoun
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Matteo Ponzo
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - Gilles Renault
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Piotr Deptula
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Ilaria Cascone
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - José Courty
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS, Université de Paris, Paris, France
| | - Emmanuel Donnadieu
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
207
|
Rabie EM, Zhang SX, Dunn CE, Nelson CM. Substratum stiffness signals through integrin-linked kinase and β1-integrin to regulate midbody proteins and abscission during EMT. Mol Biol Cell 2021; 32:1664-1676. [PMID: 34038147 PMCID: PMC8684726 DOI: 10.1091/mbc.e21-02-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abscission is the final stage of cytokinesis during which the parent cell physically separates to yield two identical daughters. Failure of abscission results in multinucleation (MNC), a sign of genomic instability and a precursor to aneuploidy, enabling characteristics of neoplastic progression. Induction of epithelial-mesenchymal transition (EMT) causes MNC in mammary epithelial cells cultured on stiff microenvironments that have mechanical properties similar to those found in breast tumors, but not on soft microenvironments reminiscent of the normal mammary gland. Here we report that on stiff microenvironments, EMT signaling through Snail up-regulates the midbody-associated proteins septin-6, Mklp1, and anillin, leading to abscission failure and MNC. To uncover the mechanism by which stiff microenvironments promote MNC in cells undergoing EMT, we investigated the role of cell-matrix adhesion through β1-integrin and integrin-linked kinase (ILK). We found that ILK expression, but not kinase activity, is required for EMT-associated MNC in cells on stiff microenvironments. Conversely, increasing focal adhesions by expressing an autoclustering mutant of β1-integrin promotes MNC in cells on soft microenvironments. Our data suggest that signaling through focal adhesions causes failure of cytokinesis in cells actively undergoing EMT. These results highlight the importance of tissue mechanics and adhesion in regulating the cellular response to EMT inducers.
Collapse
Affiliation(s)
- Emann M Rabie
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854.,Departments of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Sherry X Zhang
- Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Connor E Dunn
- Departments of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Celeste M Nelson
- Departments of Molecular Biology, Princeton University, Princeton, NJ 08544.,Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
208
|
Cruz-Acuña R, Vunjak-Novakovic G, Burdick JA, Rustgi AK. Emerging technologies provide insights on cancer extracellular matrix biology and therapeutics. iScience 2021; 24:102475. [PMID: 34027324 PMCID: PMC8131321 DOI: 10.1016/j.isci.2021.102475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent engineering technologies have transformed traditional perspectives of cancer to include the important role of the extracellular matrix (ECM) in recapitulating the malignant behaviors of cancer cells. Novel biomaterials and imaging technologies have advanced our understanding of the role of ECM density, structure, mechanics, and remodeling in tumor cell-ECM interactions in cancer biology and have provided new approaches in the development of cancer therapeutics. Here, we review emerging technologies in cancer ECM biology and recent advances in engineered systems for evaluating cancer therapeutics and provide new perspectives on how engineering tools present an opportunity for advancing the modeling and treatment of cancer. This review offers the cell biology and cancer cell biology communities insight into how engineering tools can improve our understanding of cancer ECM biology and therapeutic development.
Collapse
Affiliation(s)
- Ricardo Cruz-Acuña
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
209
|
Bone marrow-derived macrophages converted into cancer-associated fibroblast-like cells promote pancreatic cancer progression. Cancer Lett 2021; 512:15-27. [PMID: 33961925 DOI: 10.1016/j.canlet.2021.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic reaction caused by cancer-associated fibroblasts (CAFs), which provokes treatment resistance. CAFs are newly proposed to be heterogeneous populations with different functions within the PDAC microenvironment. The most direct sources of CAFs are resident tissue fibroblasts and mesenchymal stem cells, however, the origins and functions of CAF subtypes remain unclear. Here, we established allogeneic bone marrow (BM) transplantation models using spontaneous PDAC mice, and then investigated what subtype cells derived from BM modulate the tumor microenvironment and affect the behavior of pancreatic cancer cells (PCCs). BM-derived multilineage hematopoietic cells were engrafted in recipient pancreas, and accumulated at the invasive front and central lesion of PDAC. We identified BM macrophages-derived CAFs in tumors. BM-derived macrophages treated with PCC-conditioned media expressed CAF markers. BM-derived macrophages led the local invasion of PCCs in vitro and enhanced the tumor invasive growth in vivo. Our data suggest that BM-derived cells are recruited to the pancreas during carcinogenesis and that the specific subpopulation of BM-derived macrophages partially converted into CAF-like cells, acted as leading cells, and facilitated pancreatic cancer progression. The control of the conversion of BM-derived macrophages into CAF-like cells may be a novel therapeutic strategy to suppress tumor growth.
Collapse
|
210
|
Monteiro MV, Gaspar VM, Mendes L, Duarte IF, Mano JF. Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. SMALL METHODS 2021; 5:e2001207. [PMID: 34928079 DOI: 10.1002/smtd.202001207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Indexed: 06/14/2023]
Abstract
Cancer-associated pancreatic stellate cells installed in periacinar/periductal regions are master players in generating the characteristic biophysical shield found in pancreatic ductal adenocarcinoma (PDAC). Recreating this unique PDAC stromal architecture and its desmoplastic microenvironment in vitro is key to discover innovative treatments. However, this still remains highly challenging to realize. Herein, organotypic 3D microtumors that recapitulate PDAC-stroma spatial bioarchitecture, as well as its biomolecular, metabolic, and desmoplastic signatures, are bioengineered. Such newly engineered platforms, termed stratified microenvironment spheroid models - STAMS - mimic the spatial stratification of cancer-stromal cells, exhibit a reproducible morphology and sub-millimeter size. In culture, 3D STAMS secrete the key molecular biomarkers found in human pancreatic cancer, namely TGF-β, FGF-2, IL-1β, and MMP-9, among others. This is accompanied by an extensive desmoplastic reaction where collagen and glycosaminoglycans (GAGs) de novo deposition is observed. These stratified models also recapitulate the resistance to various chemotherapeutics when compared to standard cancer-stroma random 3D models. Therapeutics resistance is further evidenced upon STAMS inclusion in a tumor extracellular matrix (ECM)-mimetic hydrogel matrix, reinforcing the importance of mimicking PDAC-stroma bioarchitectural features in vitro. The 3D STAMS technology represents a next generation of biomimetic testing platforms with improved potential for advancing high-throughput screening and preclinical validation of innovative pancreatic cancer therapies.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Luís Mendes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Iola F Duarte
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
211
|
Pogoda K, Cieśluk M, Deptuła P, Tokajuk G, Piktel E, Król G, Reszeć J, Bucki R. Inhomogeneity of stiffness and density of the extracellular matrix within the leukoplakia of human oral mucosa as potential physicochemical factors leading to carcinogenesis. Transl Oncol 2021; 14:101105. [PMID: 33946032 PMCID: PMC8111093 DOI: 10.1016/j.tranon.2021.101105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Oral leukoplakia is a clinical term relating to various morphological lesions, including squamous cell hyperplasia, dysplasia and carcinoma. Leukoplakia morphologically manifested as hyperplasia with epithelial dysplasia is clinically treated as precancerous condition. Nevertheless, there is a lack of good markers indicating the transformation of premalignancies towards cancer. A better understanding of the mechanical environment within the tissues where tumors grow might be beneficial for the development of prevention, diagnostic, and treatment methods in cancer management. Atomic force microscopy (AFM) and immunohistology techniques were used to assess changes in the stiffness and morphology of oral mucosa and leukoplakia samples at different stages of their progression towards cancer. The Young's moduli of the tested leukoplakia samples were significantly higher than those of the surrounding mucus. Robust inhomogeneity of stiffness within leukoplakia samples, reflecting an increase in regeneration and collagen accumulation (increasing density) in the extracellular matrix (ECM), was observed. Within the histologically confirmed cancer samples, Young's moduli were significantly lower than those within the precancerous ones. Inhomogeneous stiffness within leukoplakia might act as "a mechanoagonist" that promotes oncogenesis. In contrast, cancer growth might require the reorganization of tissue structure to create a microenvironment with lower and homogenous stiffness. The immunohistology data collected here indicates that changes in tissue stiffness are achieved by increasing cell/ECM density. The recognition of new markers of premalignancy will aid in the development of new therapies and will expand the diagnostic methods.
Collapse
Affiliation(s)
- Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, PL-15222 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, PL-15222 Bialystok, Poland
| | - Grażyna Tokajuk
- Department of Integrated Dentistry, Medical University of Bialystok, PL-15269 Bialystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, PL-15222 Bialystok, Poland
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, PL-15269 Bialystok, Poland
| | - Robert Bucki
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland.
| |
Collapse
|
212
|
Zhao J, Wang R, Zhang J, Zhao Y, Qiao S, Crouzier T, Yan H, Tian W. A novel 4D cell culture mimicking stomach peristalsis altered gastric cancer spheroids growth and malignance. Biofabrication 2021; 13. [PMID: 33836517 DOI: 10.1088/1758-5090/abf6bf] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 11/12/2022]
Abstract
In vitrocancer models that can largely mimic thein vivomicroenvironment are crucial for conducting more accurate research. Models of three-dimensional (3D) culture that can mimic some aspects of cancer microenvironment or cancer biopsies that can adequately represent tumor heterogeneity are intensely used currently. Those models still lack the dynamic stress stimuli in gastric carcinoma exposed to stomach peristalsisin vivo. This study leveraged a lab-developed four-dimensional (4D) culture model by a magnetic responsive alginate-based hydrogel to rotating magnets that can mimic stress stimuli in gastric cancer (GC). We used the 4D model to culture human GC cell line AGS and SGC7901, cells at the primary and metastasis stage. We revealed the 4D model altered the cancer cell growth kinetics mechanistically by alteringPCNAandp53expression compared to the 3D culture that lacks stress stimuli. We found the 4D model altered the cancer spheroids stemness as evidenced by enhanced cancer stem cells (CD44) marker expression in AGS spheroids but the expression was dampened in SGC7901 cells. We examined the multi-drug resistance (MDR1) marker expression and found the 4D model dampened the MDR1 expression in SGC7901 cell spheroids, but not in spheroids of AGS cells. Such a model provides the stomach peristalsis mimic and is promising for conducting basic or translational GC-associated research, drug screening, and culturing patient gastric biopsies to tailor the therapeutic strategies in precision medicine.
Collapse
Affiliation(s)
- Juzhi Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Jinyu Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Yufang Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
213
|
Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior. Methods Mol Biol 2021; 2174:277-297. [PMID: 32813257 DOI: 10.1007/978-1-0716-0759-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stiffness control of cell culture platforms provides researchers in cell biology with the ability to study different experimental models in conditions of mimicking physiological or pathological microenvironments. Nevertheless, the signal transduction pathways and drug sensibility of cancer cells have been poorly characterized widely using biomimetic platforms because the limited experience of cancer cell biology groups about handling substrates with specific mechanical properties. The protein cross-linking and stiffening control are crucial checkpoints that could strongly affect cell adhesion and spreading, misrepresenting the data acquired, and also generating inaccurate cellular models. Here, we introduce a simple method to adhere to polyacrylamide (PAA) hydrogels on glass coverslips without any special treatment for mechanics studies in cancer cell biology. By using a commercial photosensitive glue, Loctite 3525, it is possible to polymerize PAA hydrogels directly on glass surfaces. Furthermore, we describe a cross-linking reaction method to attach proteins to PAA as an alternative method to Sulfo-SANPAH cross-linking, which is sometimes difficult to implement and reproduce. In this chapter, we describe a reliable procedure to fabricate ECM protein-cross-linked PAA hydrogels for mechanotransduction studies on cancer cells.
Collapse
|
214
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
215
|
Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, Eisenblätter M, Wildgruber M. Tumor-Associated Macrophages-Implications for Molecular Oncology and Imaging. Biomedicines 2021; 9:biomedicines9040374. [PMID: 33918295 PMCID: PMC8066018 DOI: 10.3390/biomedicines9040374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the largest group of leukocytes within the tumor microenvironment (TME) of solid tumors and orchestrate the composition of anti- as well as pro-tumorigenic factors. This makes TAMs an excellent target for novel cancer therapies. The plasticity of TAMs resulting in varying membrane receptors and expression of intracellular proteins allow the specific characterization of different subsets of TAMs. Those markers similarly allow tracking of TAMs by different means of molecular imaging. This review aims to provides an overview of the origin of tumor-associated macrophages, their polarization in different subtypes, and how characteristic markers of the subtypes can be used as targets for molecular imaging and theranostic approaches.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Christopher Klenk
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Sophia Kästle
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Michel Eisenblätter
- Department of Diagnostic and Interventional Radiology, Freiburg University Hospital, 79106 Freiburg, Germany;
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
- Correspondence: ; Tel.: +49-0-89-4400-76640
| |
Collapse
|
216
|
Evers TMJ, Holt LJ, Alberti S, Mashaghi A. Reciprocal regulation of cellular mechanics and metabolism. Nat Metab 2021; 3:456-468. [PMID: 33875882 PMCID: PMC8863344 DOI: 10.1038/s42255-021-00384-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Metabolism and mechanics are intrinsically intertwined. External forces, sensed through the cytoskeleton or distortion of the cell and organelles, induce metabolic changes in the cell. The resulting changes in metabolism, in turn, feed back to regulate every level of cell biology, including the mechanical properties of cells and tissues. Here we examine the links between metabolism and mechanics, highlighting signalling pathways involved in the regulation and response to cellular mechanosensing. We consider how forces and metabolism regulate one another through nanoscale molecular sensors, micrometre-scale cytoskeletal networks, organelles and dynamic biomolecular condensates. Understanding this cross-talk will create diagnostic and therapeutic opportunities for metabolic disorders such as cancer, cardiovascular pathologies and obesity.
Collapse
Affiliation(s)
- Tom M J Evers
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, the Netherlands
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
217
|
A Theoretical Approach to Coupling the Epithelial-Mesenchymal Transition (EMT) to Extracellular Matrix (ECM) Stiffness via LOXL2. Cancers (Basel) 2021; 13:cancers13071609. [PMID: 33807227 PMCID: PMC8037024 DOI: 10.3390/cancers13071609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Epithelial-mesenchymal transition (EMT) is a key process in cancer progression through which cells weaken their cell-cell adhesion and gain mobility and invasive traits. Besides chemical signaling, recent studies have established the connection of EMT to mechanical microenvironment, such as the stiffness of extracellular matrix (ECM). LOXL2 is representative of a family of enzymes that promotes fiber cross-linking in ECM. With increased cross-linking comes increased stiffness, which induces EMT that can, in turn, elevate LOXL2 levels. As such, a positive feedback loop among EMT, LOXL2, and ECM stiffness can be formed. We built a mathematical model on a core biochemical reaction network featuring this feedback loop, and showed how strongly it drives EMT. We also illustrated mechanistically how cross-linking connects with stiffness, using a mechanical model of collagen (a major component of ECM). Using this theoretical framework, we demonstrated the heterogeneity of LOXL2/stiffness and its implications on migrating cancer cells that could seed metastasis, the growth of secondary malignant tumors. This framework can inspire experimental studies of more fine-grained mechanotransduction and biomechanical heterogeneity in cancers. Abstract The epithelial-mesenchymal transition (EMT) plays a critical role in cancer progression, being responsible in many cases for the onset of the metastatic cascade and being integral in the ability of cells to resist drug treatment. Most studies of EMT focus on its induction via chemical signals such as TGF-β or Notch ligands, but it has become increasingly clear that biomechanical features of the microenvironment such as extracellular matrix (ECM) stiffness can be equally important. Here, we introduce a coupled feedback loop connecting stiffness to the EMT transcription factor ZEB1, which acts via increasing the secretion of LOXL2 that leads to increased cross-linking of collagen fibers in the ECM. This increased cross-linking can effectively increase ECM stiffness and increase ZEB1 levels, thus setting a positive feedback loop between ZEB1 and ECM stiffness. To investigate the impact of this non-cell-autonomous effect, we introduce a computational approach capable of connecting LOXL2 concentration to increased stiffness and thereby to higher ZEB1 levels. Our results indicate that this positive feedback loop, once activated, can effectively lock the cells in a mesenchymal state. The spatial-temporal heterogeneity of the LOXL2 concentration and thus the mechanical stiffness also has direct implications for migrating cells that attempt to escape the primary tumor.
Collapse
|
218
|
Chen Z, Huang J, Li M, Zhang L, Wan D, Lin S. High expression of MMP28 indicates unfavorable prognosis in pancreatic cancer. Medicine (Baltimore) 2021; 100:e25320. [PMID: 33761734 PMCID: PMC9282082 DOI: 10.1097/md.0000000000025320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/02/2021] [Indexed: 01/05/2023] Open
Abstract
To investigate the expression pattern and diagnostic performance of matrix metalloproteinase 28 (MMP28) in pancreatic cancer (PC).The RNA-seq data of PC and normal pancreas tissue were acquired from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression. Clinical information of PC that included prognostic data was obtained from TCGA. Later, Fisher exact test was applied for comparison of different clinicopathological features between high and low expression of MMP28 in PC. Afterwards, Kaplan-Meier survival analysis and Cox analysis (univariate and multivariate analysis) were used to explore the prognostic performance of MMP28 in PC cohort. Finally, gene set enrichment analysis (GSEA) revealed the potential signaling pathways related to high expression of MMP28 in PC.Upregulation of MMP28 was identified in PC tissue compared to normal pancreas tissue (P < .001). Overexpression of MMP28 was related to histological grade (P < .001), M classification (P = .014), and survival status (P = .028). Kaplan-Meier survival analysis revealed that high level of MMP28 implied unfavorable prognosis in PC (P = .002). Multivariate analysis confirmed that MMP28 was an independent risk factor in PC (hazard rate = 1.308, P = .018). Our GSEA analysis found that signaling pathways including glycolysis, p53 pathway, notch signaling, estrogen response late, cholesterol homeostasis, estrogen response early, mitotic spindle, and transforming growth factor beta signaling were enriched in the group with higher MMP28 expression.High expression of MMP28 could be identified in PC, which also served as an independent risk element for PC.
Collapse
Affiliation(s)
- Zhitao Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine
- School of Medicine, Zhejiang University
- Key Laboratory of Combined Multi-organ Transplantation, Hangzhou
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Jiacheng Huang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine
- School of Medicine, Zhejiang University
- Key Laboratory of Combined Multi-organ Transplantation, Hangzhou
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Mengxia Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine
- School of Medicine, Zhejiang University
- Key Laboratory of Combined Multi-organ Transplantation, Hangzhou
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Lele Zhang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine
- School of Medicine, Zhejiang University
- Key Laboratory of Combined Multi-organ Transplantation, Hangzhou
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine
| | - Shengzhang Lin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College
- School of Medicine, Zhejiang University
| |
Collapse
|
219
|
Nemec S, Lam J, Zhong J, Heu C, Timpson P, Li Q, Youkhana J, Sharbeen G, Phillips PA, Kilian KA. Interfacial Curvature in Confined Coculture Directs Stromal Cell Activity with Spatial Corralling of Pancreatic Cancer Cells. Adv Biol (Weinh) 2021; 5:e2000525. [PMID: 33754491 DOI: 10.1002/adbi.202000525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Indexed: 01/18/2023]
Abstract
Interfacial cues in the tumor microenvironment direct the activity and assembly of multiple cell types. Pancreatic cancer, along with breast and prostate cancers, is enriched with cancer-associated fibroblasts (CAFs) that activate to coordinate the deposition of the extracellular matrix, which can comprise over 90% of the tumor mass. While it is clear that matrix underlies the severity of the disease, the relationship between stromal-tumor cell assembly and cell-matrix dynamics remains elusive. Micropatterned hydrogels deconstruct the interplay between matrix stiffness and geometric confinement, guiding heterotypic cell populations and matrix assembly in pancreatic cancer. Interfacial cues at the perimeter of microislands guide CAF migration and direct cancer cell assembly. Computational modeling shows curvature-stress dependent cellular localization for cancer and CAFs in coculture. Regions of convex curvature enhance edge stress that activates a myofibroblast phenotype in the CAFs with migration and increased collagen I deposition, ultimately leading to a central "corralling" of cancer cells. Inhibiting mechanotransduction pathways decreases CAF activation and the associated corralling phenotype. Together, this work reveals how interfacial biophysical cues underpin aspects of stromal desmoplasia, a hallmark of disease severity and chemoresistance in the pancreatic, breast, and prostate cancers, thereby providing a tool to expand stroma-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie Nemec
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Joey Lam
- School of Chemistry Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Celine Heu
- Biomedical Imaging Facility, Mark Wainwright Analytical Center, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, 2052, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Chemistry Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
220
|
Tam NW, Chung D, Baldwin SJ, Simmons JR, Xu L, Rainey JK, Dellaire G, Frampton JP. Material properties of disulfide-crosslinked hyaluronic acid hydrogels influence prostate cancer cell growth and metabolism. J Mater Chem B 2021; 8:9718-9733. [PMID: 33015692 DOI: 10.1039/d0tb01570a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells reside in vivo within three dimensional environments in which they interact with extracellular matrices (ECMs) that play an integral role in maintaining tissue homeostasis and preventing tumour growth. Thus, tissue culture approaches that more faithfully reproduce these interactions with the ECM are needed to study cancer development and progression. Many materials exist for modeling tissue environments, and the effects of differing mechanical, physical, and biochemical properties of such materials on cell behaviour are often intricately coupled and difficult to tease apart. Here, an optimized protocol was developed to generate low reaction volume disulfide-crosslinked hyaluronic acid (HA) hydrogels for use in cell culture applications to relate the properties of ECM materials to cell signalling and behaviour. Mechanically, HA hydrogels are comparable to other soft hydrogel materials such as Matrigel and agarose or to tissues lacking type I collagen and other fibrillar ECM components. The diffusion of soluble materials in these hydrogels is affected by unique mass transfer properties. Specifically, HA hydrogel concentration affects the diffusion of anionic particles above 500 kDa, whereas diffusion of smaller particles appears unimpeded by HA content, likely reflecting hydrogel pore size. The HA hydrogels have a strong exclusion effect that limits the movement of proteins into and out of the material once fully formed. Such mass transfer properties have interesting implications for cell culture, as they ultimately affect access to nutrients and the distribution of signalling molecules, affecting nutrient sensing and metabolic activity. The use of disulfide-crosslinked HA hydrogels for the culture of the model prostate cancer cell lines PC3 and LNCaP reveals correlations of protein activation linked to metabolic flux, which parallel and can thus potentially provide insights into cell survival mechanisms in response to starvation that occurs in cancer cell microenvironments.
Collapse
Affiliation(s)
- Nicky W Tam
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Samuel J Baldwin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Jeffrey R Simmons
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Lingling Xu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jan K Rainey
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada. and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Department of Chemistry, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada. and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
221
|
Huang PC, Chaney EJ, Aksamitiene E, Barkalifa R, Spillman DR, Bogan BJ, Boppart SA. Biomechanical sensing of in vivo magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography. Theranostics 2021; 11:5620-5633. [PMID: 33897871 PMCID: PMC8058715 DOI: 10.7150/thno.55333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Magnetic nanoparticle hyperthermia (MH) therapy is capable of thermally damaging tumor cells, yet a biomechanically-sensitive monitoring method for the applied thermal dosage has not been established. Biomechanical changes to tissue are known indicators for tumor diagnosis due to its association with the structural organization and composition of tissues at the cellular and molecular level. Here, by exploiting the theranostic functionality of magnetic nanoparticles (MNPs), we aim to explore the potential of using stiffness-based metrics that reveal the intrinsic biophysical changes of in vivo melanoma tumors after MH therapy. Methods: A total of 14 melanoma-bearing mice were intratumorally injected with dextran-coated MNPs, enabling MH treatment upon the application of an alternating magnetic field (AMF) at 64.7 kHz. The presence of the MNP heating sources was detected by magnetomotive optical coherence tomography (MM-OCT). For the first time, the elasticity alterations of the hyperthermia-treated, MNP-laden, in vivo tumors were also measured with magnetomotive optical coherence elastography (MM-OCE), based on the mechanical resonant frequency detected. To investigate the correlation between stiffness changes and the intrinsic biological changes, histopathology was performed on the excised tumor after the in vivo measurements. Results: Distinct shifts in mechanical resonant frequency were observed only in the MH-treated group, suggesting a heat-induced stiffness change in the melanoma tumor. Moreover, tumor cellularity, protein conformation, and temperature rise all play a role in tumor stiffness changes after MH treatment. With low cellularity, tumor softens after MH even with low temperature elevation. In contrast, with high cellularity, tumor softening occurs only with a low temperature rise, which is potentially due to protein unfolding, whereas tumor stiffening was seen with a higher temperature rise, likely due to protein denaturation. Conclusions: This study exploits the theranostic functionality of MNPs and investigates the MH-induced stiffness change on in vivo melanoma-bearing mice with MM-OCT and MM-OCE for the first time. It was discovered that the elasticity alteration of the melanoma tumor after MH treatment depends on both thermal dosage and the morphological features of the tumor. In summary, changes in tissue-level elasticity can potentially be a physically and physiologically meaningful metric and integrative therapeutic marker for MH treatment, while MM-OCE can be a suitable dosimetry technique.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Bethany J. Bogan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
222
|
Genetic and Non-Genetic Mechanisms Underlying Cancer Evolution. Cancers (Basel) 2021; 13:cancers13061380. [PMID: 33803675 PMCID: PMC8002988 DOI: 10.3390/cancers13061380] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Our manuscript summarizes the up-to-date data on the complex and dynamic nature of adaptation mechanisms and evolutionary processes taking place during cancer initiation, development and progression. Although for decades cancer has been viewed as a process governed by genetic mechanisms, it is becoming more and more clear that non-genetic mechanisms may play an equally important role in cancer evolution. In this review, we bring together these fundamental concepts and discuss how those tightly interconnected mechanisms lead to the establishment of highly adaptive quickly evolving cancers. Furthermore, we argue that in depth understanding of cancer progression from the evolutionary perspective may allow the prediction and direction of the evolutionary path of cancer populations towards drug sensitive phenotypes and thus facilitate the development of more effective anti-cancer approaches. Abstract Cancer development can be defined as a process of cellular and tissular microevolution ultimately leading to malignancy. Strikingly, though this concept has prevailed in the field for more than a century, the precise mechanisms underlying evolutionary processes occurring within tumours remain largely uncharacterized and rather cryptic. Nevertheless, although our current knowledge is fragmentary, data collected to date suggest that most tumours display features compatible with a diverse array of evolutionary paths, suggesting that most of the existing macro-evolutionary models find their avatar in cancer biology. Herein, we discuss an up-to-date view of the fundamental genetic and non-genetic mechanisms underlying tumour evolution with the aim of concurring into an integrated view of the evolutionary forces at play throughout the emergence and progression of the disease and into the acquisition of resistance to diverse therapeutic paradigms. Our ultimate goal is to delve into the intricacies of genetic and non-genetic networks underlying tumour evolution to build a framework where both core concepts are considered non-negligible and equally fundamental.
Collapse
|
223
|
Baruffaldi D, Palmara G, Pirri C, Frascella F. 3D Cell Culture: Recent Development in Materials with Tunable Stiffness. ACS APPLIED BIO MATERIALS 2021; 4:2233-2250. [PMID: 35014348 DOI: 10.1021/acsabm.0c01472] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness.
Collapse
Affiliation(s)
- Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Gianluca Palmara
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Candido Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,Center for Sustainable Futures@Polito, Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| |
Collapse
|
224
|
Chang CY, Lin CC. Hydrogel Models with Stiffness Gradients for Interrogating Pancreatic Cancer Cell Fate. Bioengineering (Basel) 2021; 8:37. [PMID: 33805737 PMCID: PMC8002168 DOI: 10.3390/bioengineering8030037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and has seen only modest improvements in patient survival rate over the past few decades. PDAC is highly aggressive and resistant to chemotherapy, owing to the presence of a dense and hypovascularized fibrotic tissue, which is composed of stromal cells and extracellular matrices. Increase deposition and crosslinking of matrices by stromal cells lead to a heterogeneous microenvironment that aids in PDAC development. In the past decade, various hydrogel-based, in vitro tumor models have been developed to mimic and recapitulate aspects of the tumor microenvironment in PDAC. Advances in hydrogel chemistry and engineering should provide a venue for discovering new insights regarding how matrix properties govern PDAC cell growth, migration, invasion, and drug resistance. These engineered hydrogels are ideal for understanding how variation in matrix properties contributes to the progressiveness of cancer cells, including durotaxis, the directional migration of cells in response to a stiffness gradient. This review surveys the various hydrogel-based, in vitro tumor models and the methods to generate gradient stiffness for studying migration and other cancer cell fate processes in PDAC.
Collapse
Affiliation(s)
- Chun-Yi Chang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
225
|
Azam S, Eriksson M, Sjölander A, Gabrielson M, Hellgren R, Czene K, Hall P. Predictors of mammographic microcalcifications. Int J Cancer 2021; 148:1132-1143. [PMID: 32949149 PMCID: PMC7821182 DOI: 10.1002/ijc.33302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
We examined the association between established risk factors for breast cancer and microcalcification clusters and their asymmetry. A cohort study of 53 273 Swedish women aged 30 to 80 years, with comprehensive information on breast cancer risk factors and mammograms, was conducted. Total number of microcalcification clusters and the average mammographic density area were measured using a Computer Aided Detection system and the STRATUS method, respectively. A polygenic risk score for breast cancer, including 313 single nucleotide polymorphisms, was calculated for those women genotyped (N = 7387). Odds ratios (ORs) and 95% confidence intervals (CIs), with adjustment for potential confounders, were estimated. Age was strongly associated with microcalcification clusters. Both high mammographic density (>40 cm2 ), and high polygenic risk score (80-100 percentile) were associated with microcalcification clusters, OR = 2.08 (95% CI = 1.93-2.25) and OR = 1.22 (95% CI = 1.06-1.48), respectively. Among reproductive risk factors, life-time breastfeeding duration >1 year was associated with microcalcification clusters OR = 1.22 (95% CI = 1.03-1.46). The association was confined to postmenopausal women. Among lifestyle risk factors, women with a body mass index ≥30 kg/m2 had the lowest risk of microcalcification clusters OR = 0.79 (95% CI = 0.73-0.85) and the association was stronger among premenopausal women. Our results suggest that age, mammographic density, genetic predictors of breast cancer, having more than two children, longer duration of breast-feeding are significantly associated with increased risk of microcalcification clusters. However, most lifestyle risk factors for breast cancer seem to protect against presence of microcalcification clusters. More research is needed to study biological mechanisms behind microcalcifications formation.
Collapse
Affiliation(s)
- Shadi Azam
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Arvid Sjölander
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Marike Gabrielson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Roxanna Hellgren
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
- Department of MammographySouth General HospitalStockholmSweden
| | - Kamila Czene
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Per Hall
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
- Department of OncologySouth General HospitalStockholmSweden
| |
Collapse
|
226
|
Betriu N, Bertran-Mas J, Andreeva A, Semino CE. Syndecans and Pancreatic Ductal Adenocarcinoma. Biomolecules 2021; 11:biom11030349. [PMID: 33669066 PMCID: PMC7996579 DOI: 10.3390/biom11030349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.
Collapse
|
227
|
Amos SE, Choi YS. The Cancer Microenvironment: Mechanical Challenges of the Metastatic Cascade. Front Bioeng Biotechnol 2021; 9:625859. [PMID: 33644019 PMCID: PMC7907606 DOI: 10.3389/fbioe.2021.625859] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The metastatic cascade presents a significant challenge to patient survival in the fight against cancer. As metastatic cells disseminate and colonize a secondary site, stepwise exposure to microenvironment-specific mechanical stimuli influences and protects successful metastasis. Following cancerous transformation and associated cell recruitment, the tumor microenvironment (TME) becomes a mechanically complex niche, owing to changes in extracellular matrix (ECM) stiffness and architecture. The ECM mechanically reprograms the cancer cell phenotype, priming cells for invasion. 2D and 3D hydrogel-based culture platforms approximate these environmental variables and permit investigations into tumor-dependent shifts in malignancy. Following TME modification, malignant cells must invade the local ECM, driven toward blood, and lymph vessels by sensing biochemical and biophysical gradients. Microfluidic chips recreate cancer-modified ECM tracks, empowering studies into modes of confined motility. Intravasation and extravasation consist of complex cancer-endothelial interactions that modify an otherwise submicron-scale migration. Perfused microfluidic platforms facilitate the physiological culture of endothelial cells and thus enhance the translatability of basic research into metastatic transendothelial migration. These platforms also shed light on the poorly understood circulating tumor cell, which defies adherent cell norms by surviving the shear stress of blood flow and avoiding anoikis. Metastatic cancers possess the plasticity to adapt to new mechanical conditions, permitting their invasiveness, and ensuring their survival against anomalous stimuli. Here, we review the cellular mechanics of metastasis in the context of current in vitro approaches. Advances that further expose the mechanisms underpinning the phenotypic fluidity of metastatic cancers remain central to the development of novel interventions targeting cancer.
Collapse
Affiliation(s)
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
228
|
Colombo E, Cattaneo MG. Multicellular 3D Models to Study Tumour-Stroma Interactions. Int J Mol Sci 2021; 22:ijms22041633. [PMID: 33562840 PMCID: PMC7915117 DOI: 10.3390/ijms22041633] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Two-dimensional (2D) cell cultures have been the standard for many different applications, ranging from basic research to stem cell and cancer research to regenerative medicine, for most of the past century. Hence, almost all of our knowledge about fundamental biological processes has been provided by primary and established cell lines cultured in 2D monolayer. However, cells in tissues and organs do not exist as single entities, and life in multicellular organisms relies on the coordination of several cellular activities, which depend on cell–cell communication across different cell types and tissues. In addition, cells are embedded within a complex non-cellular structure known as the extracellular matrix (ECM), which anchors them in a three-dimensional (3D) formation. Likewise, tumour cells interact with their surrounding matrix and tissue, and the physical and biochemical properties of this microenvironment regulate cancer differentiation, proliferation, invasion, and metastasis. 2D models are unable to mimic the complex and dynamic interactions of the tumour microenvironment (TME) and ignore spatial cell–ECM and cell–cell interactions. Thus, multicellular 3D models are excellent tools to recapitulate in vitro the spatial dimension, cellular heterogeneity, and molecular networks of the TME. This review summarizes the biological significance of the cell–ECM and cell–cell interactions in the onset and progression of tumours and focuses on the requirement for these interactions to build up representative in vitro models for the study of the pathophysiology of cancer and for the design of more clinically relevant treatments.
Collapse
|
229
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
230
|
Uhler C, Shivashankar GV. Mechanogenomic coupling of lung tissue stiffness, EMT and coronavirus pathogenicity. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100874. [PMID: 33519291 PMCID: PMC7833345 DOI: 10.1016/j.cossms.2020.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
In this Current Opinion, we highlight the importance of the material properties of tissues and how alterations therein, which influence epithelial-to-mesenchymal transitions, represent an important layer of regulation in a number of diseases and potentially also play a critical role in host-pathogen interactions. In light of the current SARS-CoV-2 pandemic, we here highlight the possible role of lung tissue stiffening with ageing and how this might facilitate increased SARS-CoV-2 replication through matrix-stiffness dependent epithelial-to-mesenchymal transitions of the lung epithelium. This emphasizes the need for integrating material properties of tissues in drug discovery programs.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Biosystems Science & Engineering (D-BSSE), ETH Zurich, Switzerland
| | - G V Shivashankar
- Department of Health Sciences & Technology (D-HEST), ETH Zurich, Switzerland
- Paul Scherrer Institute, Switzerland
| |
Collapse
|
231
|
Mueller AC, Piper M, Goodspeed A, Bhuvane S, Williams JS, Bhatia S, Phan AV, Van Court B, Zolman KL, Peña B, Oweida AJ, Zakem S, Meguid C, Knitz MW, Darragh L, Bickett TE, Gadwa J, Mestroni L, Taylor MRG, Jordan KR, Dempsey P, Lucia MS, McCarter MD, Chiaro MD, Messersmith WA, Schulick RD, Goodman KA, Gough MJ, Greene CS, Costello JC, Neto AG, Lagares D, Hansen KC, Van Bokhoven A, Karam SD. Induction of ADAM10 by Radiation Therapy Drives Fibrosis, Resistance, and Epithelial-to-Mesenchyal Transition in Pancreatic Cancer. Cancer Res 2021; 81:3255-3269. [PMID: 33526513 DOI: 10.1158/0008-5472.can-20-3892] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Stromal fibrosis activates prosurvival and proepithelial-to-mesenchymal transition (EMT) pathways in pancreatic ductal adenocarcinoma (PDAC). In patient tumors treated with neoadjuvant stereotactic body radiation therapy (SBRT), we found upregulation of fibrosis, extracellular matrix (ECM), and EMT gene signatures, which can drive therapeutic resistance and tumor invasion. Molecular, functional, and translational analysis identified two cell-surface proteins, a disintegrin and metalloprotease 10 (ADAM10) and ephrinB2, as drivers of fibrosis and tumor progression after radiation therapy (RT). RT resulted in increased ADAM10 expression in tumor cells, leading to cleavage of ephrinB2, which was also detected in plasma. Pharmacologic or genetic targeting of ADAM10 decreased RT-induced fibrosis and tissue tension, tumor cell migration, and invasion, sensitizing orthotopic tumors to radiation killing and prolonging mouse survival. Inhibition of ADAM10 and genetic ablation of ephrinB2 in fibroblasts reduced the metastatic potential of tumor cells after RT. Stimulation of tumor cells with ephrinB2 FC protein reversed the reduction in tumor cell invasion with ADAM10 ablation. These findings represent a model of PDAC adaptation that explains resistance and metastasis after RT and identifies a targetable pathway to enhance RT efficacy. SIGNIFICANCE: Targeting a previously unidentified adaptive resistance mechanism to radiation therapy in PDAC tumors in combination with radiation therapy could increase survival of the 40% of PDAC patients with locally advanced disease.See related commentary by Garcia Garcia et al., p. 3158 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3255/F1.large.jpg.
Collapse
Affiliation(s)
- Adam C Mueller
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Comprehensive Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Shiv Bhuvane
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jason S Williams
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andy V Phan
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kathryn L Zolman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Brisa Peña
- Department of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayman J Oweida
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sara Zakem
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Cheryl Meguid
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Laurel Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Luisa Mestroni
- Department of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Matthew R G Taylor
- Department of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Human Immune Monitoring Shared Resource, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Peter Dempsey
- Department of Gastroenterology, Hepatology and Nutrition, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - M Scott Lucia
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Martin D McCarter
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Department of Medical Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Richard D Schulick
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Radiation Oncology, Mount Sinai Hospital, New York, New York
| | | | - Casey S Greene
- Center for Health Artificial Intelligence, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado Comprehensive Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Antonio Galveo Neto
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Adrie Van Bokhoven
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
232
|
Masullo U, Cavallo A, Greco MR, Reshkin SJ, Mastrodonato M, Gallo N, Salvatore L, Verri T, Sannino A, Cardone RA, Madaghiele M. Semi-interpenetrating polymer network cryogels based on poly(ethylene glycol) diacrylate and collagen as potential off-the-shelf platforms for cancer cell research. J Biomed Mater Res B Appl Biomater 2021; 109:1313-1326. [PMID: 33427396 DOI: 10.1002/jbm.b.34792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 01/09/2023]
Abstract
In the present work, we investigated the potential of novel semi-interpenetrating polymer network (semi-IPN) cryogels, obtained through ultraviolet exposure of aqueous mixtures of poly(ethylene glycol) diacrylate and type I collagen, as tunable off-the-shelf platforms for 3D cancer cell research. We synthesized semi-IPN cryogels with variable collagen amounts (0.1% and 1% w/v) and assessed the effect of collagen on key cryogel properties for cell culture, for example, porosity, degradation rate and mechanical stiffness. Then, we investigated the ability of the cryogels to sustain the long-term growth of two pancreatic ductal adenocarcinoma (PDAC) cell populations, the parenchymal Panc1 cells and their derived cancer stem cells. Results revealed that both cell lines efficiently infiltrated, attached and expanded in the cryogels over a period of 14 days. However, only when grown in the cryogels with the highest collagen concentration, both cell lines reproduced their characteristic growth pattern previously observed in collagen-enriched organotypic cultures, biomimetic of the highly fibrotic PDAC stroma. Cellular preembedding in Matrigel, that is, the classical approach to develop/grow organoids, interfered with an efficient intra-scaffold migration and growth. Although preliminary, these findings highlight the potential of the proposed cryogels as reproducible and tunable cancer cell research platforms.
Collapse
Affiliation(s)
- Ugo Masullo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Anna Cavallo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Maria Raffaella Greco
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stephan J Reshkin
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Rosa Angela Cardone
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
233
|
Pennacchio FA, Nastały P, Poli A, Maiuri P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front Bioeng Biotechnol 2021; 8:596746. [PMID: 33490050 PMCID: PMC7820809 DOI: 10.3389/fbioe.2020.596746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paulina Nastały
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alessandro Poli
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
234
|
Yemanyi F, Vranka J, Raghunathan VK. Crosslinked Extracellular Matrix Stiffens Human Trabecular Meshwork Cells Via Dysregulating β-catenin and YAP/TAZ Signaling Pathways. Invest Ophthalmol Vis Sci 2021; 61:41. [PMID: 32832971 PMCID: PMC7452853 DOI: 10.1167/iovs.61.10.41] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The purpose of this study was to determine whether genipin-induced crosslinked cell-derived matrix (XCDM) precipitates fibrotic phenotypes in human trabecular meshwork (hTM) cells by dysregulating β-catenin and Yes-associated protein (YAP)/ transcriptional coactivator with PDZ-binding motif (TAZ) signaling pathways. Methods Cell-derived matrices were treated with control or genipin for 5 hours to obtain respective uncrosslinked (CDM) and XCDMs and characterized. hTM cells were seeded on these matrices with/without Wnt pathway modulators in serum-free media for 24 hours. Elastic modulus, gene, and protein (whole cell and subcellular fractions) expressions of signaling mediators and targets of Wnt/β-catenin and YAP/TAZ pathways were determined. Results At the highest genipin concentration (10% XCDM), XCDM had increased immunostaining of N-ε(γ-glutamyl)-lysine crosslinks, appeared morphologically fused, and was stiffer (5.3-fold, P < 0.001). On 10% XCDM, hTM cells were 7.8-fold (P < 0.001) stiffer, total β-catenin was unchanged, pβ-catenin was elevated, and pGSK3β was suppressed. Although 10% XCDM had no effect on cytoplasmic β-catenin levels, it reduced nuclear β-catenin, cadherin 11, and key Wnt target genes/proteins. The 10% XCDM increased total TAZ, decreased pTAZ, and increased cytoplasmic TAZ levels in hTM cells. The 10% XCDM increased total YAP, reduced nuclear YAP levels, and critical YAP/TAZ target genes/proteins. Wnt activation rescued hTM cells from 10% XCDM-induced stiffening associated with increased nuclear β-catenin. Conclusions Increased cytoplasmic TAZ may inhibit β-catenin from its nuclear shuttling or regulating cadherin 11 important for aqueous homeostasis. Elevated cytoplasmic TAZ may inhibit YAP's probable homeostatic function in the nucleus. Together, TAZ's cytoplasmic localization may be an important downstream event of how increased TM extracellular matrix (ECM) crosslinking may cause increased stiffness and ocular hypertension in vivo. However, Wnt pathway activation may ameliorate ocular hypertensive phenotypes induced by crosslinked ECM.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
235
|
Kilinc AN, Han S, Barrett LA, Anandasivam N, Nelson CM. Integrin-linked kinase tunes cell-cell and cell-matrix adhesions to regulate the switch between apoptosis and EMT downstream of TGFβ1. Mol Biol Cell 2021; 32:402-412. [PMID: 33405954 PMCID: PMC8098849 DOI: 10.1091/mbc.e20-02-0092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a morphogenetic process that endows epithelial cells with migratory and invasive potential. Mechanical and chemical signals from the tumor microenvironment can activate the EMT program, thereby permitting cancer cells to invade the surrounding stroma and disseminate to distant organs. Transforming growth factor β1 (TGFβ1) is a potent inducer of EMT that can also induce apoptosis depending on the microenvironmental context. In particular, stiff microenvironments promote EMT while softer ones promote apoptosis. Here, we investigated the molecular signaling downstream of matrix stiffness that regulates the phenotypic switch in response to TGFβ1 and uncovered a critical role for integrin-linked kinase (ILK). Specifically, depleting ILK from mammary epithelial cells precludes their ability to sense the stiffness of their microenvironment. In response to treatment with TGFβ1, ILK-depleted cells undergo apoptosis on both soft and stiff substrata. We found that knockdown of ILK decreases focal adhesions and increases cell–cell adhesions, thus shifting the balance from cell–matrix to cell–cell adhesion. High cell–matrix adhesion promotes EMT whereas high cell–cell adhesion promotes apoptosis downstream of TGFβ1. These results highlight an important role for ILK in controlling cell phenotype by regulating adhesive connections to the local microenvironment.
Collapse
Affiliation(s)
- Ayse Nihan Kilinc
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Siyang Han
- Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Lena A Barrett
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Niroshan Anandasivam
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Celeste M Nelson
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544.,Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
236
|
Jonckheere S, Adams J, De Groote D, Campbell K, Berx G, Goossens S. Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target. Cells Tissues Organs 2021; 211:157-182. [PMID: 33401271 DOI: 10.1159/000512218] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022] Open
Abstract
Metastasis is the spread of cancer cells from the primary tumour to distant sites and organs throughout the body. It is the primary cause of cancer morbidity and mortality, and is estimated to account for 90% of cancer-related deaths. During the initial steps of the metastatic cascade, epithelial cancer cells undergo an epithelial-mesenchymal transition (EMT), and as a result become migratory and invasive mesenchymal-like cells while acquiring cancer stem cell properties and therapy resistance. As EMT is involved in such a broad range of processes associated with malignant transformation, it has become an increasingly interesting target for the development of novel therapeutic strategies. Anti-EMT therapeutic strategies could potentially not only prevent the invasion and dissemination of cancer cells, and as such prevent the formation of metastatic lesions, but also attenuate cancer stemness and increase the effectiveness of more classical chemotherapeutics. In this review, we give an overview about the pros and cons of therapies targeting EMT and discuss some already existing candidate drug targets and high-throughput screening tools to identify novel anti-EMT compounds.
Collapse
Affiliation(s)
- Sven Jonckheere
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jamie Adams
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Dominic De Groote
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Kyra Campbell
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium, .,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,
| |
Collapse
|
237
|
Coban B, Bergonzini C, Zweemer AJM, Danen EHJ. Metastasis: crosstalk between tissue mechanics and tumour cell plasticity. Br J Cancer 2021; 124:49-57. [PMID: 33204023 PMCID: PMC7782541 DOI: 10.1038/s41416-020-01150-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the fact that different genetic programmes drive metastasis of solid tumours, the ultimate outcome is the same: tumour cells are empowered to pass a series of physical hurdles to escape the primary tumour and disseminate to other organs. Epithelial-to-mesenchymal transition (EMT) has been proposed to drive the detachment of individual cells from primary tumour masses and facilitate the subsequent establishment of metastases in distant organs. However, this concept has been challenged by observations from pathologists and from studies in animal models, in which partial and transient acquisition of mesenchymal traits is seen but tumour cells travel collectively rather than as individuals. In this review, we discuss how crosstalk between a hybrid E/M state and variations in the mechanical aspects of the tumour microenvironment can provide tumour cells with the plasticity required for strategies to navigate surrounding tissues en route to dissemination. Targeting such plasticity provides therapeutic opportunities to combat metastasis.
Collapse
Affiliation(s)
- Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
238
|
Boyle ST, Johan MZ, Samuel MS. Tumour-directed microenvironment remodelling at a glance. J Cell Sci 2020; 133:133/24/jcs247783. [PMID: 33443095 DOI: 10.1242/jcs.247783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tissue microenvironment supports normal tissue function and regulates the behaviour of parenchymal cells. Tumour cell behaviour, on the other hand, diverges significantly from that of their normal counterparts, rendering the microenvironment hostile to tumour cells. To overcome this problem, tumours can co-opt and remodel the microenvironment to facilitate their growth and spread. This involves modifying both the biochemistry and the biophysics of the normal microenvironment to produce a tumour microenvironment. In this Cell Science at a Glance article and accompanying poster, we outline the key processes by which epithelial tumours influence the establishment of the tumour microenvironment. As the microenvironment is populated by genetically normal cells, we discuss how controlling the microenvironment is both a significant challenge and a key vulnerability for tumours. Finally, we review how new insights into tumour-microenvironment interactions has led to the current consensus on how these processes may be targeted as novel anti-cancer therapies.
Collapse
Affiliation(s)
- Sarah T Boyle
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia .,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
239
|
Nagai T, Ishikawa T, Minami Y, Nishita M. Tactics of cancer invasion: solitary and collective invasion. J Biochem 2020; 167:347-355. [PMID: 31926018 DOI: 10.1093/jb/mvaa003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomohiro Ishikawa
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
240
|
Petersen EV, Chudakova DA, Skorova EY, Anikin V, Reshetov IV, Mynbaev OA. The Extracellular Matrix-Derived Biomarkers for Diagnosis, Prognosis, and Personalized Therapy of Malignant Tumors. Front Oncol 2020; 10:575569. [PMID: 33425730 PMCID: PMC7793707 DOI: 10.3389/fonc.2020.575569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
The tumor biomarkers already have proven clinical value and have become an integral part in cancer management and modern translational oncology. The tumor tissue microenvironment (TME), which includes extracellular matrix (ECM), signaling molecules, immune and stromal cells, and adjacent non-tumorous tissue, contributes to cancer pathogenesis. Thus, TME-derived biomarkers have many clinical applications. This review is predominately based on the most recent publications (manuscripts published in a last 5 years, or seminal publications published earlier) and fills a gap in the current literature on the cancer biomarkers derived from the TME, with particular attention given to the ECM and products of its processing and degradation, ECM-associated extracellular vesicles (EVs), biomechanical characteristics of ECM, and ECM-derived biomarkers predicting response to the immunotherapy. We discuss the clinical utility of the TME-incorporating three-dimensional in vitro and ex vivo cell culture models for personalized therapy. We conclude that ECM is a critical driver of malignancies and ECM-derived biomarkers should be included in diagnostics and prognostics panels of markers in the clinic.
Collapse
Affiliation(s)
- Elena V. Petersen
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria A. Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ekaterina Yu. Skorova
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vladimir Anikin
- Harefield Hospital, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, Harefield, United Kingdom
- Department of Oncology and Reconstructive Surgery, Sechenov Medical University, Moscow, Russia
| | - Igor V. Reshetov
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Oncology and Reconstructive Surgery, Sechenov Medical University, Moscow, Russia
| | - Ospan A. Mynbaev
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
241
|
Sarker FA, Prior VG, Bax S, O'Neill GM. Forcing a growth factor response - tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. J Cell Sci 2020; 133:133/23/jcs242461. [PMID: 33310867 DOI: 10.1242/jcs.242461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research throughout the 90s established that integrin crosstalk with growth factor receptors stimulates robust growth factor signaling. These insights were derived chiefly from comparing adherent versus suspension cell cultures. Considering the new understanding that mechanosensory inputs tune adhesion signaling, it is now timely to revisit this crosstalk in different mechanical environments. Here, we present a brief historical perspective on integrin signaling against the backdrop of the mechanically diverse extracellular microenvironment, then review the evidence supporting the mechanical regulation of integrin crosstalk with growth factor signaling. We discuss early studies revealing distinct signaling consequences for integrin occupancy (binding to matrix) and aggregation (binding to immobile ligand). We consider how the mechanical environments encountered in vivo intersect with this diverse signaling, focusing on receptor endocytosis. We discuss the implications of mechanically tuned integrin signaling for growth factor signaling, using the epidermal growth factor receptor (EGFR) as an illustrative example. We discuss how the use of rigid tissue culture plastic for cancer drug screening may select agents that lack efficacy in the soft in vivo tissue environment. Tuning of integrin signaling via external mechanical forces in vivo and subsequent effects on growth factor signaling thus has implications for normal cellular physiology and anti-cancer therapies.
Collapse
Affiliation(s)
- Farhana A Sarker
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Victoria G Prior
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Samuel Bax
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia .,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
242
|
Marino GE, Weeraratna AT. A glitch in the matrix: Age-dependent changes in the extracellular matrix facilitate common sites of metastasis. AGING AND CANCER 2020; 1:19-29. [PMID: 35694033 PMCID: PMC9187055 DOI: 10.1002/aac2.12013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
People over 55 years old represent the majority of cancer patients and suffer from increased metastatic burden compared to the younger patient population. As the aging population increases globally, it is prudent to understand how the intrinsic aging process contributes to cancer progression. As we age, we incur aberrant changes in the extracellular matrix (ECM) of our organs, which contribute to numerous pathologies, including cancer. Notably, the lung, liver, and bone represent the most common sites of distal metastasis for all cancer types. In this review, we describe how age-dependent changes in the ECM of these organs influence cancer progression. Further, we outline how these alterations prime the premetastatic niche and why these may help explain the disparity in outcome for older cancer patients.
Collapse
Affiliation(s)
- Gloria E. Marino
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
243
|
Lai Benjamin FL, Lu Rick X, Hu Y, Davenport HL, Dou W, Wang EY, Radulovich N, Tsao MS, Sun Y, Radisic M. Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ-on-a-chip vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000545. [PMID: 33692660 PMCID: PMC7939064 DOI: 10.1002/adfm.202000545] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tumor progression relies heavily on the interaction between the neoplastic epithelial cells and their surrounding stromal partners. This cell cross-talk affects stromal development, and ultimately the heterogeneity impacts drug efflux and efficacy. To mimic this evolving paradigm, we have micro-engineered a three-dimensional (3D) vascularized pancreatic adenocarcinoma tissue in a tri-culture system composed of patient derived pancreatic organoids, primary human fibroblasts and endothelial cells on a perfusable InVADE platform situated in a 96-well plate. Uniquely, through synergistic engineering we combined the benefits of cellular fidelity of patient tumor derived organoids with the addressability of a plastic organ-on-a-chip platform. Validation of this platform included demonstrating the growth of pancreatic tumor organoids by monitoring the change in metabolic activity of the tissue. Investigation of tumor microenvironmental behavior highlighted the role of fibroblasts in symbiosis with patient organoid cells, resulting in a six-fold increase of collagen deposition and a corresponding increase in tissue stiffness in comparison to fibroblast free controls. The value of a perfusable vascular network was evident in drug screening, as perfusion of gemcitabine into a stiffened matrix did not show the dose-dependent effects on tumor viability as those under static conditions. These findings demonstrate the importance of studying the dynamic synergistic relationship between patient cells with stromal fibroblasts, in a 3D perfused vascular network, to accurately understand and recapitulate the tumor microenvironment.
Collapse
Affiliation(s)
- F L Lai Benjamin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - X Lu Rick
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yangshuo Hu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Huyer Locke Davenport
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Wenkun Dou
- Material Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Erika Y Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming S Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yu Sun
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Material Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
244
|
Jokela TA, LaBarge MA. Integration of mechanical and ECM microenvironment signals in the determination of cancer stem cell states. CURRENT STEM CELL REPORTS 2020; 7:39-47. [PMID: 33777660 DOI: 10.1007/s40778-020-00182-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Cancer stem cells (CSCs) are increasingly understood to play a central role in tumor progression. Growing evidence implicates tumor microenvironments as a source of signals that regulate or even impose CSC states on tumor cells. This review explores points of integration for microenvironment-derived signals that are thought to regulate CSCs in carcinomas. Recent findings CSC states are directly regulated by the mechanical properties and extra cellular matrix (ECM) composition of tumor microenvironments that promote CSC growth and survival, which may explain some modes of therapeutic resistance. CSCs sense mechanical forces and ECM composition through integrins and other cell surface receptors, which then activate a number of intracellular signaling pathways. The relevant signaling events are dynamic and context-dependent. Summary CSCs are thought to drive cancer metastases and therapeutic resistance. Cells that are in CSC states and more differentiated states appear to be reversible and conditional upon the components of the tumor microenvironment. Signals imposed by tumor microenvironment are of a combinatorial nature, ultimately representing the integration of multiple physical and chemical signals. Comprehensive understanding of the tumor microenvironment-imposed signaling that maintains cells in CSC states may guide future therapeutic interventions.
Collapse
Affiliation(s)
- Tiina A Jokela
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte CA 91010
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte CA 91010
| |
Collapse
|
245
|
Azadi S, Tafazzoli Shadpour M, Warkiani ME. Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model. Biotechnol Bioeng 2020; 118:823-835. [PMID: 33111314 DOI: 10.1002/bit.27612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Different biochemical and biomechanical cues from tumor microenvironment affect the extravasation of cancer cells to distant organs; among them, the mechanical signals are poorly understood. Although the effect of substrate stiffness on the primary migration of cancer cells has been previously probed, its role in regulating the extravasation ability of cancer cells is still vague. Herein, we used a microfluidic device to mimic the extravasation of tumor cells in a 3D microenvironment containing cancer cells, endothelial cells, and the biological matrix. The microfluidic-based extravasation model was utilized to probe the effect of substrate stiffness on the invasion ability of breast cancer cells. MCF7 and MDA-MB-231 cancer cells were cultured among substrates with different stiffness which followed by monitoring their extravasation capability through the microfluidic device. Our results demonstrated that acidic collagen at a concentration of 2.5 mg/ml promotes migration of cancer cells. Additionally, the substrate softening resulted in up to 46% reduction in the invasion of breast cancer cells. The substrate softening not only affected the number of extravasated cells but also reduced their migration distance up to 53%. We further investigated the secreted level of matrix metalloproteinase 9 (MMP9) and identified that there is a positive correlation between substrate stiffening, MMP9 concentration, and extravasation of cancer cells. These findings suggest that the substrate stiffness mediates the cancer cells extravasation in a microfluidic model. Changes in MMP9 level could be one of the possible underlying mechanisms which need more investigations to be addressed thoroughly.
Collapse
Affiliation(s)
- Shohreh Azadi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
246
|
Li Y, Khuu N, Prince E, Tao H, Zhang N, Chen Z, Gevorkian A, McGuigan AP, Kumacheva E. Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy. Biomacromolecules 2020; 22:419-429. [PMID: 33136364 DOI: 10.1021/acs.biomac.0c01287] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interactions between tumor cells and the extracellular matrix (ECM) are an important factor contributing to therapy failure in cancer patients. Current in vitro breast cancer spheroid models examining the role of mechanical properties on spheroid response to chemotherapy are limited by the use of two-dimensional cell culture, as well as simultaneous variation in hydrogel matrix stiffness and other properties, e.g., hydrogel composition, pore size, and cell adhesion ligand density. In addition, currently used hydrogel matrices do not replicate the filamentous ECM architecture in a breast tumor microenvironment. Here, we report a collagen-alginate hydrogel with a filamentous architecture and a 20-fold variation in stiffness, achieved independently of other properties, used for the evaluation of estrogen receptor-positive breast cancer spheroid response to doxorubicin. The variation in hydrogel mechanical properties was achieved by altering the degree of cross-linking of alginate molecules. We show that soft hydrogels promote the growth of larger MCF-7 tumor spheroids with a lower fraction of proliferating cells and enhance spheroid resistance to doxorubicin. Notably, the stiffness-dependent chemotherapeutic response of the spheroids was temporally mediated: it became apparent at sufficiently long cell culture times, when the matrix stiffness has influenced the spheroid growth. These findings highlight the significance of decoupling matrix stiffness from other characteristics in studies of chemotherapeutic resistance of tumor spheroids and in development of drug screening platforms.
Collapse
Affiliation(s)
- Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Elisabeth Prince
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Huachen Tao
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Ningtong Zhang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Albert Gevorkian
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Alison P McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada.,The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada.,The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
247
|
Xin Y, Li K, Yang M, Tan Y. Fluid Shear Stress Induces EMT of Circulating Tumor Cells via JNK Signaling in Favor of Their Survival during Hematogenous Dissemination. Int J Mol Sci 2020; 21:ijms21218115. [PMID: 33143160 PMCID: PMC7663710 DOI: 10.3390/ijms21218115] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor cells metastasize to distal organs mainly through hematogenous dissemination, where they experience considerable levels of fluid shear stress. Epithelial–mesenchymal transition (EMT) plays a critical role in tumor metastasis. However, how fluid shear stress influences the EMT phenotype of circulating tumor cells (CTCs) in suspension has not been fully understood. The role of shear-induced EMT in cell survival under blood shear flow remains unclear. This study shows that the majority of breast CTCs underwent apoptosis under shear flow and the surviving cells exhibited mesenchymal phenotype, suggesting that fluid shear stress induces EMT. Mechanistically, fluid shear stress-activated Jun N-terminal kinase (JNK) signaling, inhibition/activation of which suppressed/promoted the EMT phenotype. In particular, shear flow facilitated the JNK-dependent transition of epithelial CTCs into the mesenchymal status and maintained the pre-existing mesenchymal cells. Importantly, the induction of EMT suppressed the pro-apoptosis gene p53 upregulated modulator of apoptosis (PUMA) and enhanced the survival of suspended CTCs in fluid shear stress, which was rescued by overexpressing PUMA or silencing JNK signaling, suggesting that shear-induced EMT promotes CTC survival through PUMA downregulation and JNK activation. Further, the expressions of EMT markers and JUN were correlated with poor patient survival. In summary, our findings have demonstrated that fluid shear stress induces EMT in suspended CTCs via JNK signaling that promotes their survival in shear flow. This study thus unveils a new role of blood shear stress in CTC survival and facilitates the development of novel therapeutics against tumor metastasis.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; (Y.X.); (K.L.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; (Y.X.); (K.L.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; (Y.X.); (K.L.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
- Correspondence:
| |
Collapse
|
248
|
Luo H, Cong S, Dong J, Jin L, Jiang D, Wang X, Chen Q, Li F. Paired‑related homeobox 1 overexpression promotes multidrug resistance via PTEN/PI3K/AKT signaling in MCF‑7 breast cancer cells. Mol Med Rep 2020; 22:3183-3190. [PMID: 32945446 PMCID: PMC7453582 DOI: 10.3892/mmr.2020.11414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance (MDR) is a major cause of disease relapse and mortality in breast cancer. Paired‑related homeobox 1 (PRRX1) is associated with the epithelial‑mesenchymal transition (EMT), which is involved in tumor development, including cell invasion and MDR. However, the effect of PRRX1 on MDR had not clearly established. The present study investigated the influence of PRRX1 on MDR and the underlying molecular mechanisms in MCF‑7 breast cancer cells. MCF‑7 cells were divided into PRRX1+ group (cells transfected with a recombinant plasmid carrying the PRRX1 gene), negative control group (cells transfected with a blank vector) and blank group (untreated cells). It was found that the relative protein and mRNA expression levels of PRRX1, N‑cadherin, vimentin and P‑glycoprotein were significantly higher in PRRX1‑overexpressing MCF‑7 cells compared with those in control cells. The half‑maximal inhibitory concentration of three groups after treatment with docetaxel and cis‑platinum complexes were significantly higher in PRRX1‑overexpressing MCF‑7 cells compared with those in control cells. Furthermore, relative PTEN expression decreased significantly and levels of phosphorylated PI3K and AKT increased substantially in PRRX1‑overexpressing MCF‑7 cells. These results indicated that PRRX1 overexpression may induce MDR via PTEN/PI3K/AKT signaling in breast cancer. It is highly recommended that PRRX1 gene expression detection should be performed in patients with breast cancer to aid the selection of more appropriate treatments, which will lead to an improved prognosis in clinical practice.
Collapse
Affiliation(s)
- Haoyue Luo
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shaobo Cong
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Jiaojiao Dong
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Litao Jin
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dandan Jiang
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xingang Wang
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qingfeng Chen
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Funian Li
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
249
|
Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF. The Roles of Tissue Rigidity and Its Underlying Mechanisms in Promoting Tumor Growth. Cancer Invest 2020; 38:445-462. [PMID: 32713210 DOI: 10.1080/07357907.2020.1802474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Faculty of Health Sciences, Centre for Healthy Ageing and Wellness, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Gayathri Thevi Selvarajah
- Faculty of Veterinary Medicine, Department of Veterinary Clinical Studies, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Siti Fathiah Masre
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
250
|
IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat Commun 2020; 11:4611. [PMID: 32929072 PMCID: PMC7490368 DOI: 10.1038/s41467-020-18244-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and cancer-associated cachexia (CAC) are multifactorial and characterized by dysregulated inflammatory networks. Whether the proinflammatory cytokine IL-20 is involved in the complex networks of PDAC and CAC remains unclear. Here, we report that elevated IL-20 levels in tumor tissue correlate with poor overall survival in 72 patients with PDAC. In vivo, we establish a transgenic mouse model (KPC) and an orthotopic PDAC model and examine the therapeutic efficacy of an anti-IL-20 monoclonal antibody (7E). Targeting IL-20 not only prolongs survival and attenuates PD-L1 expression in both murine models but also inhibits tumor growth and mitigates M2-like polarization in the orthotopic PDAC model. Combination treatment with 7E and an anti-PD-1 antibody shows better efficacy in inhibiting tumor growth than either treatment alone in the orthotopic PDAC model. Finally, 7E mitigates cachexic symptoms in CAC models. Together, we conclude IL-20 is a critical mediator in PDAC progression. The pro-inflammatory cytokine IL-20 promotes tumor growth in several cancer types. Here, the authors show that high levels of IL-20 are associated with poor survival in patients with pancreatic ductal adenocarcinoma (PDAC) and that IL-20 blockade reduces tumor growth and alleviates cachexia symptoms in mouse models of PDAC.
Collapse
|