201
|
Worel N, Holbro A, Vrielink H, Ootjers C, Le Poole K, Beer-Wekking I, Rintala T, Lozano M, Bonig H. A guide to the collection of T-cells by apheresis for ATMP manufacturing-recommendations of the GoCART coalition apheresis working group. Bone Marrow Transplant 2023; 58:742-748. [PMID: 37024570 DOI: 10.1038/s41409-023-01957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
Autologous chimeric antigen receptor-modified T-cells (CAR-T) provide meaningful benefit for otherwise refractory malignancies. As clinical indications for CAR-T cells are expanding, hospitals hitherto not active in the field of immune effector cell therapy will need to build capacity and expertise. The GoCART Coalition seeks to disseminate knowledge and skills to facilitate the introduction of CAR-T cells and to standardize management and documentation of CAR-T cell recipients, in order to optimize outcomes and to be able to benchmark clinical results against other centers. Apheresis generates the starting material for CAR-T cell manufacturing. This guide provides some initial suggestions for patient's apheresis readiness and performance to collect starting material and should thus facilitate the implementation of a CAR-T-starting material apheresis facility. It cannot replace, of course, the extensive training needed to perform qualitative apheresis collections in compliance with national and international regulations and assess their cellular composition and biological safety.
Collapse
Affiliation(s)
- Nina Worel
- Department for Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria.
| | - Andreas Holbro
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
- Division of Hematology, University Hospital Basel and University Basel, Basel, Switzerland
- Innovation Focus Cell Therapies, University Hospital Basel, Basel, Switzerland
| | - Hans Vrielink
- Department for Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Claudia Ootjers
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kaatje Le Poole
- Department for Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Ingrid Beer-Wekking
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Miquel Lozano
- Apheresis and Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, University Clinic Hospital, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt a.M., Germany
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| |
Collapse
|
202
|
Granit V, Benatar M, Kurtoglu M, Miljković MD, Chahin N, Sahagian G, Feinberg MH, Slansky A, Vu T, Jewell CM, Singer MS, Kalayoglu MV, Howard JF, Mozaffar T. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol 2023; 22:578-590. [PMID: 37353278 PMCID: PMC10416207 DOI: 10.1016/s1474-4422(23)00194-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells are highly effective in treating haematological malignancies, but associated toxicities and the need for lymphodepletion limit their use in people with autoimmune disease. To explore the use of CAR T cells for the treatment of people with autoimmune disease, and to improve their safety, we engineered them with RNA (rCAR-T)-rather than the conventional DNA approach-to target B-cell maturation antigen (BCMA) expressed on plasma cells. To test the suitability of our approach, we used rCAR-T to treat individuals with myasthenia gravis, a prototypical autoantibody disease mediated partly by pathogenic plasma cells. METHODS MG-001 was a prospective, multicentre, open-label, phase 1b/2a study of Descartes-08, an autologous anti-BCMA rCAR-T therapy, in adults (ie, aged ≥18 years) with generalised myasthenia gravis and a Myasthenia Gravis Activities of Daily Living (MG-ADL) score of 6 or higher. The study was done at eight sites (ie, academic medical centres or community neurology clinics) in the USA. Lymphodepletion chemotherapy was not used. In part 1 (phase 1b), participants with Myasthenia Gravis Foundation of America (MGFA) disease class III-IV generalised myasthenia gravis received three ascending doses of Descartes-08 to determine a maximum tolerated dose. In part 2 (phase 2a), participants with generalised myasthenia gravis with MGFA disease class II-IV received six doses at the maximum tolerated dose in an outpatient setting. The primary objective was to establish safety and tolerability of Descartes-08; secondary objectives were to assess myasthenia gravis disease severity and biomarkers in participants who received Descartes-08. This trial is registered with clinicaltrials.gov, NCT04146051. FINDINGS We recruited 16 individuals for screening between Jan 7, 2020 and Aug 3, 2022. 14 participants were enrolled (n=3 in part 1, n=11 in part 2). Ten participants were women and four were men. Two individuals did not qualify due to low baseline MG-ADL score (n=1) or lack of generalised disease (n=1). Median follow-up in part 2 was 5 months (range 3-9 months). There was no dose-limiting toxicity, cytokine release syndrome, or neurotoxicity. Common adverse events were headache (six of 14 participants), nausea (five of 14), vomiting (three of 14), and fever (four of 14), which resolved within 24 h of infusion. Fevers were not associated with increased markers of cytokine release syndrome (IL-6, IL-2, and TNF). Mean improvements from baseline to week 12 were -6 (95% CI -9 to -3) for MG-ADL score, -7 (-11 to -3) for Quantitative Myasthenia Gravis score, -14 (-19 to -9) for Myasthenia Gravis Composite score, and -9 (-15 to -3) for Myasthenia Gravis Quality of Life 15-revised score. INTERPRETATION In this first study of an rCAR-T therapy in individuals with an autoimmune disease, Descartes-08 appeared to be safe and was well tolerated. Descartes-08 infusions were followed by clinically meaningful decreases on myasthenia gravis severity scales at up to 9 months of follow-up. rCAR-T therapy warrants further investigation as a potential new treatment approach for individuals with myasthenia gravis and other autoimmune diseases. FUNDING Cartesian Therapeutics and National Institute of Neurological Disorders and Stroke of the National Institutes of Health.
Collapse
Affiliation(s)
- Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | | | - Nizar Chahin
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | | - Tuan Vu
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | | | | | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
203
|
Das A, Ghose A, Naicker K, Sanchez E, Chargari C, Rassy E, Boussios S. Advances in adoptive T-cell therapy for metastatic melanoma. Curr Res Transl Med 2023; 71:103404. [PMID: 37478776 DOI: 10.1016/j.retram.2023.103404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Adoptive T cell therapy (ACT) is a fast developing, niche area of immunotherapy (IO), which is revolutionising the therapeutic landscape of solid tumour oncology, especially metastatic melanoma (MM). Identifying tumour antigens (TAs) as potential targets, the ACT response is mediated by either Tumour Infiltrating Lymphocytes (TILs) or genetically modified T cells with specific receptors - T cell receptors (TCRs) or chimeric antigen receptors (CARs) or more prospectively, natural killer (NK) cells. Clinical trials involving ACT in MM from 2006 to present have shown promising results. Yet it is not without its drawbacks which include significant auto-immune toxicity and need for pre-conditioning lymphodepletion. Although immune-modulation is underway using various combination therapies in the hope of enhancing efficacy and reducing toxicity. Our review article explores the role of ACT in MM, including the various modalities - their safety, efficacy, risks and their development in the trial and the real world setting.
Collapse
Affiliation(s)
- Aparimita Das
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chennai, India
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London, United Kingdom
| | - Kevin Naicker
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié Salpêtrière University Hospital, Paris, France
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805, Villejuif, France
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Kent and Medway Medical School, University of Kent, Canterbury, United Kingdom; Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, SE1 9RT, London, United Kingdom; AELIA Organization, 9th Km Thessaloniki, Thermi 57001, Thessaloniki, Greece.
| |
Collapse
|
204
|
Hu C, Liu M, Li Y, Zhao Y, Sharma A, Liu H, Schmidt-Wolf IGH. Recent advances and future perspectives of CAR-T cell therapy in head and neck cancer. Front Immunol 2023; 14:1213716. [PMID: 37457699 PMCID: PMC10346844 DOI: 10.3389/fimmu.2023.1213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Head and neck cancer (HNC) ranks as the sixth most prevalent type of cancer globally and accounts for about 4% of all types of cancer. Among all HNC, most are head and neck squamous cell carcinoma (HNSCC) with clinical therapies that include surgery, radiation therapy, chemotherapy, immunotherapy, targeted therapy, and multimodal treatments. In recent years, chimeric antigen receptor (CAR)-T cell immunotherapy has significantly transformed the therapeutic approaches for leukemia and lymphoma and has garnered increased attention as a potential treatment for a wide range of cancers. However, CAR-T immunotherapy in solid tumors, especially HNSCCs, lags significantly behind due to the paucity of tumor-specific antigens, high levels of tumor heterogeneity, immunosuppressive tumor microenvironment, the risk of treatment-related toxicities and off-target adverse events in HNSCCs. The objective of this review is to explore the advancement of CAR-T cell therapy in the treatment of HNSCCs. We aim to outline the targeted antigens in HNSCCs, highlight the challenges and potential solutions, and discuss the relevant combination therapies. Our review presents a comprehensive overview of the recent developments in CAR-T cell therapy for HNSCCs, and provides valuable insights into future research avenues.
Collapse
Affiliation(s)
- Chunmei Hu
- Department of Otolaryngology-Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Yi Zhao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Haotian Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
205
|
Ye X, Wu Y, Zhang H, Zhou Y, Dong J, Cai J. Rapid generation of CD19 CAR-T cells by minicircle DNA enables anti-tumor activity and prevents fatal CAR-B leukemia. Cancer Lett 2023:216278. [PMID: 37354981 DOI: 10.1016/j.canlet.2023.216278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Manufacturing chimeric antigen receptor (CAR)-T cellsusing viral vectors is expensive and time-consuming. In addition, during viral transduction, genes encoding CARs are randomly integrated into the genome, which can cause oncogenesis or produce devastating CARtumor cells. Here, using a virus-free and non-transgenic minicircle DNA (mcDNA) vector, we enabledthe rapid generation of CD19 CAR-T cells within two days. Furthermore, we demonstrated in vitro and in xenograft models that the antitumor effects of CD19 CAR-T cells produced by mcDNA are as effective as those produced by viral vectors. Finally, we showed that our manufacturing process avoids the production of fatal CARtumor cells. Taken together, we have provided a fast, effective, and therapeutically safe method for generating CD19 CAR-T cells for the treatment of leukemia.
Collapse
Affiliation(s)
- Xueshuai Ye
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yongqiang Wu
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Haiqiang Zhang
- Department of Surgery, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050051, China
| | - Ye Zhou
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China; Department of Oncology & Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, China
| | - Jiantao Dong
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China; Department of Oncology & Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China; Department of Oncology & Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, China.
| |
Collapse
|
206
|
Chen Z, Lin C, Pei H, Yuan X, Xu J, Zou M, Zhang X, Fossier A, Liu M, Goo S, Lei L, Yang J, Novick C, Xu J, Ying G, Zhou Z, Wu J, Tang C, Zhang W, Wang Z, Wang Z, Zhang H, Guo W, Hu Q, Ji H, Chen R. Antibody-based binding domain fused to TCRγ chain facilitates T cell cytotoxicity for potent anti-tumor response. Oncogenesis 2023; 12:33. [PMID: 37349298 DOI: 10.1038/s41389-023-00480-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated potent clinical efficacy in the treatment of hematopoietic malignancies. However, the application of CAR-T in solid tumors has been limited due in part to the expression of inhibitory molecules in the tumor microenvironment, leading to T-cell exhaustion. To overcome this limitation, we have developed a synthetic T-cell receptor (TCR) that targets programmed death-ligand 1 (PD-L1), a molecule that is widely expressed in various solid tumors and plays a pivotal role in T-cell exhaustion. Our novel TCR platform is based on antibody-based binding domain, which is typically a single-chain variable fragment (scFv), fused to the γδ TCRs (TCRγδ). We have utilized the T-cell receptor alpha constant (TRAC) locus editing approach to express cell surface scFv of anti-PD-L1, which is fused to the constant region of the TCRγ or TCRδ chain in activated T cells derived from peripheral blood mononuclear cells (PBMCs). Our results indicate that these reconfigured receptors, both γ-TCRγδ and δ-TCRγδ, have the capability to transduce signals, produce inflammatory cytokines, degranulate and exert tumor killing activity upon engagement with PD-L1 antigen in vitro. Additionally, we have also shown that γ-TCRγδ exerted superior efficacy than δ-TCRγδ in in vivo xenograft model.
Collapse
Affiliation(s)
- Zhao Chen
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Changyou Lin
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Hong Pei
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Xiaomei Yuan
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Jia Xu
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Mingwei Zou
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Xinyuan Zhang
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Amber Fossier
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Meizhu Liu
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Seungah Goo
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Lei Lei
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Jia Yang
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Catherine Novick
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Jiqing Xu
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Ge Ying
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Zhihong Zhou
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Jianbo Wu
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Chunyi Tang
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Wenying Zhang
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Zhenping Wang
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Zhihao Wang
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Huitang Zhang
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Wenzhong Guo
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Qidong Hu
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Henry Ji
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA
| | - Runqiang Chen
- Sorrento Therapeutics Inc, 4955 Directors Place, San Diego, CA, USA.
| |
Collapse
|
207
|
Huang W, Lin W, Chen B, Zhang J, Gao P, Fan Y, Lin Y, Wei P. NFAT and NF-κB dynamically co-regulate TCR and CAR signaling responses in human T cells. Cell Rep 2023; 42:112663. [PMID: 37347664 DOI: 10.1016/j.celrep.2023.112663] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
While it has been established that the responses of T cells to antigens are combinatorially regulated by multiple signaling pathways, it remains elusive what mechanisms cells utilize to quantitatively modulate T cell responses during pathway integration. Here, we show that two key pathways in T cell signaling, calcium/nuclear factor of activated T cells (NFAT) and protein kinase C (PKC)/nuclear factor κB (NF-κB), integrate through a dynamic and combinatorial strategy to fine-tune T cell response genes. At the cis-regulatory level, the two pathways integrate through co-binding of NFAT and NF-κB to immune response genes. Pathway integration is further regulated temporally, where T cell receptor (TCR) and chimeric antigen receptor (CAR) activation signals modulate the temporal relationships between the nuclear localization dynamics of NFAT and NF-κB. Such physical and temporal integrations together contribute to distinct modes of expression modulation for genes. Thus, the temporal relationships between regulators can be modulated to affect their co-targets during immune responses, underscoring the importance of dynamic combinatorial regulation in cellular signaling.
Collapse
Affiliation(s)
- Wen Huang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Lin
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Baoqiang Chen
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhan Zhang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peifen Gao
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingying Fan
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yihan Lin
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
208
|
Zhu Y, Feng J, Wan R, Huang W. CAR T Cell Therapy: Remedies of Current Challenges in Design, Injection, Infiltration and Working. Drug Des Devel Ther 2023; 17:1783-1792. [PMID: 37337518 PMCID: PMC10277020 DOI: 10.2147/dddt.s413348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, as an innovative immunotherapy, plays a huge role in current cancer therapy. Although CAR T cell therapy has demonstrated therapeutic effects in some subtypes of B cell leukemia or lymphoma, there are many challenges that limit the therapeutic efficacy of CAR T cells in solid tumors. And how to efficiently transport CAR T cells to tumor tissues is a continuing concern for us. In this review, experiments have been extensively studied and compared. We finally compared the influence of different injection methods on therapeutic efficacy. We also carefully explored the difficulties of designing, homing, and working of CAR T cells, and ultimately came up with better solutions for each process to help CAR T cells reach tumor tissue more efficiently and quickly. These results will have significant implications for guiding CAR T cell therapy in cancer treatment.
Collapse
Affiliation(s)
- Yuxuan Zhu
- The First Clinical Medical School, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jianguo Feng
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Rongxue Wan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Wenhua Huang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou, People’s Republic of China
| |
Collapse
|
209
|
Sailer CJ, Hong Y, Dahal A, Ryan AT, Mir S, Gerber SA, Reagan PM, Kim M. PD-1 Hi CAR-T cells provide superior protection against solid tumors. Front Immunol 2023; 14:1187850. [PMID: 37388744 PMCID: PMC10303811 DOI: 10.3389/fimmu.2023.1187850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising treatment option for several hematologic cancers. However, efforts to achieve the same level of therapeutic success in solid tumors have largely failed mainly due to CAR-T cell exhaustion and poor persistence at the tumor site. Although immunosuppression mediated by augmented programmed cell death protein-1 (PD-1) expression has been proposed to cause CAR-T cell hypofunction and limited clinical efficacy, little is known about the underlying mechanisms and immunological consequences of PD-1 expression on CAR-T cells. With flow cytometry analyses and in vitro and in vivo anti-cancer T cell function assays, we found that both manufactured murine and human CAR-T cell products displayed phenotypic signs of T cell exhaustion and heterogeneous expression levels of PD-1. Unexpectedly, PD-1high CAR-T cells outperformed PD-1low CAR-T cells in multiple T cell functions both in vitro and in vivo. Despite the achievement of superior persistence at the tumor site in vivo, adoptive transfer of PD-1high CAR-T cells alone failed to control tumor growth. Instead, a PD-1 blockade combination therapy significantly delayed tumor progression in mice infused with PD-1high CAR-T cells. Therefore, our data demonstrate that robust T cell activation during the ex vivo CAR-T cell manufacturing process generates a PD-1high CAR-T cell subset with improved persistence and enhanced anti-cancer functions. However, these cells may be vulnerable to the immunosuppressive microenvironment and require combination with PD-1 inhibition to maximize therapeutic functions in solid tumors.
Collapse
Affiliation(s)
- Cooper J. Sailer
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yeonsun Hong
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Ankit Dahal
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Allison T. Ryan
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Sana Mir
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Scott A. Gerber
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Patrick M. Reagan
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
210
|
Zheng W, Zhu T, Tang L, Li Z, Jiang G, Huang X. Inhalable CAR-T cell-derived exosomes as paclitaxel carriers for treating lung cancer. J Transl Med 2023; 21:383. [PMID: 37308954 DOI: 10.1186/s12967-023-04206-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a worldwide health threat with high annual morbidity and mortality. Chemotherapeutic drugs such as paclitaxel (PTX) have been widely applied clinically. However, systemic toxicity due to the non-specific circulation of PTX often leads to multi-organ damage, including to the liver and kidney. Thus, it is necessary to develop a novel strategy to enhance the targeted antitumor effects of PTX. METHODS Here, we engineered exosomes derived from T cells expressing the chimeric antigen receptor (CAR-Exos), which targeted mesothelin (MSLN)-expressing Lewis lung cancer (MSLN-LLC) through the anti-MSLN single-chain variable fragment (scFv) of CAR-Exos. PTX was encapsulated into CAR-Exos (PTX@CAR-Exos) and administered via inhalation to an orthotopic lung cancer mouse model. RESULTS Inhaled PTX@CAR-Exos accumulated within the tumor area, reduced tumor size, and prolonged survival with little toxicity. In addition, PTX@CAR-Exos reprogrammed the tumor microenvironment and reversed the immunosuppression, which was attributed to infiltrating CD8+ T cells and elevated IFN-γ and TNF-α levels. CONCLUSIONS Our study provides a nanovesicle-based delivery platform to promote the efficacy of chemotherapeutic drugs with fewer side effects. This novel strategy may ameliorate the present obstacles to the clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Wei Zheng
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Tianchuan Zhu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Lantian Tang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhijian Li
- Foshan Fourth People's Hospital, Foshan, 528200, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
211
|
Nash A, Lokhorst N, Veiseh O. Localized immunomodulation technologies to enable cellular and organoid transplantation. Trends Mol Med 2023:S1471-4914(23)00097-7. [PMID: 37301656 DOI: 10.1016/j.molmed.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Localized immunomodulation technologies are rapidly emerging as a new modality with the potential to revolutionize transplantation of cells and organs. In the past decade, cell-based immunomodulation therapies saw clinical success in the treatment of cancer and autoimmune diseases. In this review, we describe recent advances in engineering solutions for the development of localized immunomodulation techniques focusing on cellular and organoid transplantation. We begin by describing cell transplantation and highlighting notable clinical successes, particularly in the areas of stem cell therapy, chimeric antigen receptor (CAR)-T cell therapy, and islet transplantation. Next, we detail recent preclinical studies centered on genome editing and biomaterials to enhance localized immunomodulation. We close by discussing future opportunities to improve clinical and commercial success using these approaches to facilitate long-term immunomodulation technologies.
Collapse
Affiliation(s)
- Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Nienke Lokhorst
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
212
|
Drougkas K, Karampinos K, Karavolias I, Koumprentziotis IA, Ploumaki I, Triantafyllou E, Trontzas I, Kotteas E. Comprehensive clinical evaluation of CAR-T cell immunotherapy for solid tumors: a path moving forward or a dead end? J Cancer Res Clin Oncol 2023; 149:2709-2734. [PMID: 36564524 PMCID: PMC10129996 DOI: 10.1007/s00432-022-04547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Chimeric Antigen Receptor (CAR)-T cell therapy is a form of adoptive cell therapy that has demonstrated tremendous results in the treatment of hematopoietic malignancies, leading to the US Food and Drug Administration (FDA) approval of four CD19-targeted CAR-T cell products. With the unprecedented success of CAR-T cell therapy in hematological malignancies, hundreds of preclinical studies and clinical trials are currently undergoing to explore the translation of this treatment to solid tumors. However, the clinical experience in non-hematologic malignancies has been less encouraging, with only a few patients achieving complete responses. Tumor-associated antigen heterogeneity, inefficient CAR-T cell trafficking and the immunosuppressive tumor microenvironment are considered as the most pivotal roadblocks in solid tumor CAR-T cell therapy. MATERIALS AND METHODS We reviewed the relevant literature/clinical trials for CAR-T cell immunotherapy for solid tumors from Pubmed and ClinicalTrials.gov. CONCLUSION Herein, we provide an update on solid tumor CAR-T cell clinical trials, focusing on the studies with published results. We further discuss some of the key hurdles that CAR-T cell therapy is encountering for solid tumor treatment as well as the strategies that are exploited to overcome these obstacles.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece.
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece.
| | - Konstantinos Karampinos
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Ioannis Karavolias
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Ioannis-Alexios Koumprentziotis
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Ioanna Ploumaki
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Efthymios Triantafyllou
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Ioannis Trontzas
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
- Department of Pathology, Yale University School of Medicine, New Haven, USA, CT
| | - Elias Kotteas
- Oncology Unit, Sotiria General Hospital, National and Kapodistrian University of Athens, 152 Mesogeion Avenue, 11527, Athens, Greece
| |
Collapse
|
213
|
Hu Y, Zu C, Zhang M, Wei G, Li W, Fu S, Hong R, Zhou L, Wu W, Cui J, Wang D, Du B, Liu M, Zhang J, Huang H. Safety and efficacy of CRISPR-based non-viral PD1 locus specifically integrated anti-CD19 CAR-T cells in patients with relapsed or refractory Non-Hodgkin's lymphoma: a first-in-human phase I study. EClinicalMedicine 2023; 60:102010. [PMID: 37251628 PMCID: PMC10209187 DOI: 10.1016/j.eclinm.2023.102010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Background Thus far, all approved chimeric antigen receptor (CAR)-T products are manufactured using modified viruses, which increases the risk of tumorigenesis, costs and production time. We aimed to evaluate the safety and efficacy of a kind of virus-free CAR-T cells (PD1-19bbz), in which an anti-CD19 CAR sequence is specifically integrated at the PD1 locus using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, in adults with relapsed/refractory (r/r) B cell non-Hodgkin's lymphoma (B-NHL). Methods This single-arm phase I dose-escalation clinical trial evaluated PD1-19bbz in adult patients with r/r B-NHL from May 3rd 2020 to August 10th 2021. The patients were recruited and treated at the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. Patients underwent leukapheresis and lymphodepleting chemotherapy before PD1-19bbz infusion. After the dose-escalation phase including three cohorts: 2 × 106/kg, 4 × 106/kg, 6 × 106/kg with three patients at each dose level, the optimal biological dose was determined to be 2 × 106/kg, which was then applied to an extended cohort of nine patients. The primary endpoint was the incidence of dose-limiting toxicities (DLT). The secondary endpoint was the response and survival. This trial was registered at www.clinicaltrials.gov as #NCT04213469. Findings Twenty-one patients received PD1-19bbz infusion. Among all treated patients, 19 (90%) patients were diagnosed with stage III or IV disease. Meanwhile, 19 (90%) were stratified as intermediate risk or worse. Of note, four participants had >50% programmed death ligand-1 (PD-L1) expression in pre-treatment tumour sample, including two with extremely high levels (∼80%). There was no DLT identified. Fourteen patients had low-grade (1-2) cytokine release syndrome and two patients received tocilizumab. Four patients experienced immune effector cell-associated neurotoxicity syndrome of grade 1-2. The most common adverse events were hematologic toxicities, including anaemia (n = 6), lymphocyte count decreased (n = 19), neutrophil count decreased (n = 17), white blood cell count decreased (n = 10), and platelet count decreased (n = 2). All patients had objective response and 18 patients reached complete response. At a median follow-up of 19.2 months, nine patients remained in remission, and the estimated median progression-free survival duration was 19.5 months (95% confidence interval: 9.9-infinity), with the median overall survival not reached. Interpretation In this first-in-human study of non-viral specifically integrated CAR-T products, PD1-19bbz exhibited promising efficacy with a manageable toxicity profile. A phase I/II trial of PD1-19bbz in a larger patient cohort is underway. Funding National Key R&D Program of China, National Natural Science Foundation of China, Key Project of Science and Technology Department of Zhejiang Province, Shanghai Zhangjiang National Independent Innovation Demonstration Area, Key Projects of Special Development Funds.
Collapse
Affiliation(s)
- Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Cheng Zu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wei Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - Shan Fu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Linghui Zhou
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - Jiqin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Haematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
214
|
Babakoohi S, Gu SL, Ehsan H, Markova A. Dermatologic complications in transplantation and cellular therapy for acute leukemia. Best Pract Res Clin Haematol 2023; 36:101464. [PMID: 37353285 PMCID: PMC10291442 DOI: 10.1016/j.beha.2023.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Adoptive cellular immunotherapy, mainly hematopoietic stem cell transplant and CAR-T cell therapy have revolutionized treatment of patients with acute leukemia. Indications and inclusion criteria for these treatments have expanded in recent years. While these therapies are associated with significant improvements in disease response and overall survival, patients may experience adverse events from associated chemotherapy conditioning, engraftment, cytokine storm, supportive medications, and post-transplant maintenance targeted therapies. Supportive oncodermatology is a growing specialty to manage cutaneous toxicities resulting from the anti-cancer therapies. In this review, we summarize diagnosis and management of the common cutaneous adverse events including drug eruptions, graft-versus-host disease, neoplastic and paraneoplastic complications in patients undergoing cellular therapies.
Collapse
Affiliation(s)
- Shahab Babakoohi
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA.
| | - Stephanie L Gu
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Hamid Ehsan
- Levine Cancer Institute, Atrium Health Wake Forest Baptist, Charlotte, NC, USA
| | - Alina Markova
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
215
|
Lauriola A, Davalli P, Marverti G, Santi S, Caporali A, D'Arca D. Targeting the Interplay of Independent Cellular Pathways and Immunity: A Challenge in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15113009. [PMID: 37296972 DOI: 10.3390/cancers15113009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy is a cancer treatment that exploits the capacity of the body's immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet. Within the field of cancer immunotherapy, an expansion of the combination strategy that targets independent cellular pathways that can work synergistically is predicted. Here, we review some consequences of tumor cell death and increased immune system engagement in the modulation of oxidative stress and ubiquitin ligase pathways. We also indicate combinations of cancer immunotherapies and immunomodulatory targets. Additionally, we discuss imaging techniques, which are crucial for monitoring tumor responses during treatment and the immunotherapy side effects. Finally, the major outstanding questions are also presented, and directions for future research are described.
Collapse
Affiliation(s)
- Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Pierpaola Davalli
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Spartaco Santi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, Scotland EH4 2XU, UK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
216
|
Izraely S, Ben-Menachem S, Malka S, Sagi-Assif O, Bustos MA, Adir O, Meshel T, Chelladurai M, Ryu S, Ramos RI, Pasmanik-Chor M, Hoon DSB, Witz IP. The Vicious Cycle of Melanoma-Microglia Crosstalk: Inter-Melanoma Variations in the Brain-Metastasis-Promoting IL-6/JAK/STAT3 Signaling Pathway. Cells 2023; 12:1513. [PMID: 37296634 PMCID: PMC10253015 DOI: 10.3390/cells12111513] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Sapir Malka
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Matias A. Bustos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Maharrish Chelladurai
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Suyeon Ryu
- Department of Genome Sequencing, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Romela I. Ramos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| |
Collapse
|
217
|
Zarychta J, Kowalczyk A, Krawczyk M, Lejman M, Zawitkowska J. CAR-T Cells Immunotherapies for the Treatment of Acute Myeloid Leukemia-Recent Advances. Cancers (Basel) 2023; 15:cancers15112944. [PMID: 37296906 DOI: 10.3390/cancers15112944] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In order to increase the effectiveness of cancer therapies and extend the long-term survival of patients, more and more often, in addition to standard treatment, oncological patients receive also targeted therapy, i.e., CAR-T cells. These cells express a chimeric receptor (CAR) that specifically binds an antigen present on tumor cells, resulting in tumor cell lysis. The use of CAR-T cells in the therapy of relapsed and refractory B-type acute lymphoblastic leukemia (ALL) resulted in complete remission in many patients, which prompted researchers to conduct tests on the use of CAR-T cells in the treatment of other hematological malignancies, including acute myeloid leukemia (AML). AML is associated with a poorer prognosis compared to ALL due to a higher risk of relapse caused by the development of resistance to standard treatment. The 5-year relative survival rate in AML patients was estimated at 31.7%. The objective of the following review is to present the mechanism of action of CAR-T cells, and discuss the latest findings on the results of anti-CD33, -CD123, -FLT3 and -CLL-1 CAR-T cell therapy, the emerging challenges as well as the prospects for the future.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Milena Krawczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| |
Collapse
|
218
|
Wong KK. Integrated transcriptomics and proteomics data analysis identifies CDH17 as a key cell surface target in colorectal cancer. Comput Biol Chem 2023; 105:107897. [PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
| |
Collapse
|
219
|
Wang L, Zhang Y, Ma Y, Zhai Y, Ji J, Yang X, Zhai G. Cellular Drug Delivery System for Disease Treatment. Int J Pharm 2023; 641:123069. [PMID: 37225024 DOI: 10.1016/j.ijpharm.2023.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The application of variable novel drug delivery system has shown a flowering trend in recent years. Among them, the cell-based drug delivery system (DDS) utilizes the unique physiological function of cells to deliver drugs to the lesion area, which is the most complex and intelligent DDS at present. Compared with the traditional DDS, the cell-based DDS has the potential of prolonged circulation in body. Cellular DDS is expected to be the best carrier to realize multifunctional drug delivery. This paper introduces and analyzes common cellular DDSs such as blood cells, immune cells, stem cells, tumor cells and bacteria as well as relevant research examples in recent years. We hope that this review can provide a reference for future research on cell vectors and promote the innovative development and clinical transformation of cell-based DDS.
Collapse
Affiliation(s)
- Luyue Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yukun Ma
- Department of Pharmacy, Jinan Stomatologic Hospital, Jinan, Shandong, 250001, P.R. China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84124, United States of America
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
220
|
Liu Z, Yang C, Liu X, Xu X, Zhao X, Fu R. Therapeutic strategies to enhance immune response induced by multiple myeloma cells. Front Immunol 2023; 14:1169541. [PMID: 37275861 PMCID: PMC10232766 DOI: 10.3389/fimmu.2023.1169541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple myeloma (MM)as a haematological malignancy is still incurable. In addition to the presence of somatic genetic mutations in myeloma patients, the presence of immunosuppressive microenvironment greatly affects the outcome of treatment. Although the discovery of immunotherapy makes it possible to break the risk of high toxicity and side effects of traditional chemotherapeutic drugs, there are still obstacles of ineffective treatment or disease recurrence. In this review, we discuss therapeutic strategies to further enhance the specific anti-tumor immune response by activating the immunogenicity of MM cells themselves. New ideas for future myeloma therapeutic approaches are provided.
Collapse
|
221
|
Holborough-Kerkvliet MD, Kroos S, de Wetering RV, Toes REM. Addressing the key issue: Antigen-specific targeting of B cells in autoimmune diseases. Immunol Lett 2023:S0165-2478(23)00075-5. [PMID: 37209914 DOI: 10.1016/j.imlet.2023.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Autoimmune diseases are heterogeneous pathologies characterized by a breakdown of immunological tolerance to self, resulting in a chronic and aberrant immune response to self-antigens. The scope and extent of affected tissues can vary greatly per autoimmune disease and can involve multiple organs and tissue types. The pathogenesis of most autoimmune diseases remains unknown but it is widely accepted that a complex interplay between (autoreactive) B and T cells in the context of breached immunological tolerance drives autoimmune pathology. The importance of B cells in autoimmune disease is exemplified by the successful use of B cell targeting therapies in the clinic. For example, Rituximab, a depleting anti-CD20 antibody, has shown favorable results in reducing the signs and symptoms of multiple autoimmune diseases, including Rheumatoid Arthritis, Anti-Neutrophil Cytoplasmic Antibody associated vasculitis and Multiple Sclerosis. However, Rituximab depletes the entire B cell repertoire, leaving patients susceptible to (latent) infections. Therefore, multiple ways to target autoreactive cells in an antigen-specific manner are currently under investigation. In this review, we will lay out the current state of antigen-specific B cell inhibiting or depleting therapies in the context of autoimmune diseases.
Collapse
Affiliation(s)
| | - Sanne Kroos
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Renee van de Wetering
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
222
|
Chen Y, Pal S, Hu Q. Cell-based Relay Delivery Strategy in Biomedical Applications. Adv Drug Deliv Rev 2023; 198:114871. [PMID: 37196699 DOI: 10.1016/j.addr.2023.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
223
|
Wu L, Chen J, Cai R, Wang X, Liu Y, Zheng Q, Li L. Difference in Efficacy and Safety of Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy Containing 4-1BB and CD28 Co-Stimulatory Domains for B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:2767. [PMID: 37345104 DOI: 10.3390/cancers15102767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 06/23/2023] Open
Abstract
This study quantified the differences in the efficacy and safety of different stimulation domains of anti-CD19 chimeric antigen receptor (CAR) T therapy for B-cell acute lymphoblastic leukemia (B-ALL). Clinical trials related to anti-CD19 CAR T-cell therapy for B-ALL were searched in public databases from database inception to 13 November 2021. The differences in overall survival (OS) and progression-free survival (PFS) of B-ALL patients treated with anti-CAR T-cell therapy containing 4-1BB and CD28 co-stimulatory domains were compared by establishing a parametric survival function. The overall remission rate (ORR), the proportion of people with minimal residual disease (MRD)-negative complete remission (CR), the incidence of cytokine release syndrome (CRS), and the neurotoxicity across different co-stimulatory domains was assessed using a random-effects model. The correlation between the ORR, MRD-negative CR, PFS, and OS was tested. The results showed that the median OS of anti-CAR T-cell treatment containing 4-1BB and CD28 co-stimulatory domains was 15.0 months (95% CI: 11.0-20.0) and 8.5 months (95% CI: 5.0-14.0), and the median PFS was 7.0 months (95% CI: 4.0-11.5) and 3.0 months (95% CI: 1.5-7.0), respectively. Anti-CD19 CAR T-cells in the 4-1BB co-stimulatory domain showed superior benefits in patients who achieved ORR. The incidence of neurotoxicity was significantly higher in the CD28 co-stimulatory domain of anti-CD19 CAR T-cells than in the 4-1BB co-stimulatory domain. In addition, the ORR and MRD-negative CR were strongly correlated with OS and PFS, and PFS and OS were strongly correlated. The 4-1BB co-stimulatory domain suggested a better benefit-risk ratio than the CD28 co-stimulatory domain in B-ALL.
Collapse
Affiliation(s)
- Lijuan Wu
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Junchao Chen
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Ruifen Cai
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Xinrui Wang
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Yixiao Liu
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Qingshan Zheng
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Lujin Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
224
|
Xue F, Yao H, Cui L, Huang Y, Shao C, Shen N, Hu J, Tang Z, Chen X. An Fc Binding Peptide-Based Facile and Versatile Build Platform for Multispecific Antibodies. NANO LETTERS 2023; 23:4191-4200. [PMID: 37186944 DOI: 10.1021/acs.nanolett.3c00071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multispecific antibodies (MsAbs) maintain the specificity of versatile antibodies while simultaneously addressing different epitopes for a cumulative, collaborative effect. They could be an alternative treatment to chimeric antigen receptor-T cell therapy by helping to redirect T cells to tumors in vivo. However, one major limitation of their development is their relatively complex production process, which involves performance of a massive screen with low yield, inconsistent quality, and nonnegligible impurities. Here, a poly(l-glutamic acid)-conjugated multiple Fc binding peptide-based synthesis nanoplatform was proposed, in which MsAbs were constructed by mixing the desired monoclonal antibodies (mAbs) with polymeric Fc binding peptides in aqueous solution without purification. To determine its efficacy, a dual immune checkpoint-based PD1/OX40 bispecific antibody and PDL1/CD3e/4-1BB trispecific antibody-based T cell engager were generated to trigger antitumor CD8+ T responses in mice, showing superior tumor suppression over free mixed mAbs. In this study, a facile, versatile build platform for MsAbs was established.
Collapse
Affiliation(s)
- Fuxin Xue
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Haochen Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Linjie Cui
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| | - Yue Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| | - Changlu Shao
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| |
Collapse
|
225
|
Li J, Xuan S, Dong P, Xiang Z, Gao C, Li M, Huang L, Wu J. Immunotherapy of hepatocellular carcinoma: recent progress and new strategy. Front Immunol 2023; 14:1192506. [PMID: 37234162 PMCID: PMC10206122 DOI: 10.3389/fimmu.2023.1192506] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Due to its widespread occurrence and high mortality rate, hepatocellular carcinoma (HCC) is an abhorrent kind of cancer. Immunotherapy is a hot spot in the field of cancer treatment, represented by immune checkpoint inhibitors (ICIs), which aim to improve the immune system's ability to recognize, target and eliminate cancer cells. The composition of the HCC immune microenvironment is the result of the interaction of immunosuppressive cells, immune effector cells, cytokine environment, and tumor cell intrinsic signaling pathway, and immunotherapy with strong anti-tumor immunity has received more and more research attention due to the limited responsiveness of HCC to ICI monotherapy. There is evidence of an organic combination of radiotherapy, chemotherapy, anti-angiogenic agents and ICI catering to the unmet medical needs of HCC. Moreover, immunotherapies such as adoptive cellular therapy (ACT), cancer vaccines and cytokines also show encouraging efficacy. It can significantly improve the ability of the immune system to eradicate tumor cells. This article reviews the role of immunotherapy in HCC, hoping to improve the effect of immunotherapy and develop personalized treatment regimens.
Collapse
Affiliation(s)
- Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai, China
| | - Peng Dong
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
226
|
Niu A, Zou J, Hu X, Zhang Z, Su L, Wang J, Lu X, Zhang W, Chen W, Zhang X. Differences in the phenotypes and transcriptomic signatures of chimeric antigen receptor T lymphocytes manufactured via electroporation or lentiviral transfection. Front Immunol 2023; 14:1068625. [PMID: 37228617 PMCID: PMC10203401 DOI: 10.3389/fimmu.2023.1068625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is an innovative treatment for CD19-expressing lymphomas. CAR-T cells are primarily manufactured via lentivirus transfection or transposon electroporation. While anti-tumor efficacy comparisons between the two methods have been conducted, there is a current dearth of studies investigating the phenotypes and transcriptome alterations induced in T cells by the two distinct manufacturing methods. Here, we established CAR-T signatures using fluorescent imaging, flow cytometry, and RNA-sequencing. A small fraction of CAR-T cells that were produced using the PiggyBac transposon (PB CAR-T cells) exhibited much higher expression of CAR than those produced using a lentivirus (Lenti CAR-T cells). PB and Lenti CAR-T cells contained more cytotoxic T cell subsets than control T cells, and Lenti CAR-T cells presented a more pronounced memory phenotype. RNA-sequencing further revealed vast disparities between the two CAR-T cell groups, with PB CAR-T cells exhibiting greater upregulation of cytokines, chemokines, and their receptors. Intriguingly, PB CAR-T cells singularly expressed IL-9 and fewer cytokine release syndrome-associated cytokines when activated by target cells. In addition, PB CAR-T cells exerted faster in vitro cytotoxicity against CD19-expressing K562 cells but similar in vivo anti-tumor efficacy with Lenti CAR-T. Taken together, these data provide insights into the phenotypic alterations induced by lentiviral transfection or transposon electroporation and will attract more attention to the clinical influence of different manufacturing procedures.
Collapse
Affiliation(s)
- Anna Niu
- Beijing Institute of Biotechnology, Beijing, China
| | - Jintao Zou
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuan Hu
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhang Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Lingyu Su
- Beijing Institute of Biotechnology, Beijing, China
- Nanhu Laboratory, Jiaxing, Zhejiang, China
| | - Jing Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Xing Lu
- Beijing Institute of Biotechnology, Beijing, China
- Nanhu Laboratory, Jiaxing, Zhejiang, China
| | - Wei Zhang
- Nanhu Laboratory, Jiaxing, Zhejiang, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, China
| | | |
Collapse
|
227
|
Li W, Zhang B, Cao W, Zhang W, Li T, Liu L, Xu L, Gao F, Wang Y, Wang F, Xing H, Jiang Z, Shi J, Bian Z, Song Y. Identification of potential resistance mechanisms and therapeutic targets for the relapse of BCMA CAR-T therapy in relapsed/refractory multiple myeloma through single-cell sequencing. Exp Hematol Oncol 2023; 12:44. [PMID: 37158921 PMCID: PMC10165782 DOI: 10.1186/s40164-023-00402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND BCMA CAR-T is highly effective for relapsed/refractory multiple myeloma(R/R-MM) and significantly improves the survival of patients. However, the short remission time and high relapse rate of MM patients treated with BCMA CAR-T remain bottlenecks that limit long-term survival. The immune microenvironment of the bone marrow (BM) in R/R-MM may be responsible for this. The present study aims to present an in-depth analysis of resistant mechanisms and to explore potential novel therapeutic targets for relapse of BCMA CAR-T treatment via single-cell RNA sequencing (scRNA-seq) of BM plasma cells and immune cells. METHODS This study used 10X Genomic scRNA-seq to identify cell populations in R/R-MM CD45+ BM cells before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. Cell Ranger pipeline and CellChat were used to perform detailed analysis. RESULTS We compared the heterogeneity of CD45+ BM cells before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. We found that the proportion of monocytes/macrophages increased, while the percentage of T cells decreased at relapse after BCMA CAR-T treatment. We then reclustered and analyzed the alterations in plasma cells, T cells, NK cells, DCs, neutrophils, and monocytes/macrophages in the BM microenvironment before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. We show here that the percentage of BCMA positive plasma cells increased at relapse after BCMA CAR-T cell therapy. Other targets such as CD38, CD24, SLAMF7, CD138, and GPRC5D were also found to be expressed in plasma cells of the R/R-MM patient at relapse after BCMA CAR-T cell therapy. Furthermore, exhausted T cells, TIGIT+NK cells, interferon-responsive DCs, and interferon-responsive neutrophils, increased in the R/R-MM patient at relapse after BCMA CAR-T cell treatment. Significantly, the proportion of IL1βhi Mφ, S100A9hi Mφ, interferon-responsive Mφ, CD16hi Mφ, MARCO hi Mφ, and S100A11hi Mφ significantly increased in the R/R-MM patient at relapse after BCMA CAR-T cell therapy. Cell-cell communication analysis indicated that monocytes/macrophages, especially the MIF and APRIL signaling pathway are key players in R/R-MM patient at relapse after BCMA CAR-T cell therapy. CONCLUSION Taken together, our data extend the understanding of intrinsic and extrinsic relapse of BCMA CAR-T treatment in R/R-MM patient and the potential mechanisms involved in the alterations of antigens and the induced immunosuppressive microenvironment, which may provide a basis for the optimization of BCMA CAR-T strategies. Further studies should be performed to confirm these findings.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Binglei Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Wenli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lina Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - LinPing Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Yanmei Wang
- Department of Hematology, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Jianxiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
228
|
Huang S, Wang X, Wang Y, Wang Y, Fang C, Wang Y, Chen S, Chen R, Lei T, Zhang Y, Xu X, Li Y. Deciphering and advancing CAR T-cell therapy with single-cell sequencing technologies. Mol Cancer 2023; 22:80. [PMID: 37149643 PMCID: PMC10163813 DOI: 10.1186/s12943-023-01783-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has made remarkable progress in cancer immunotherapy, but several challenges with unclear mechanisms hinder its wide clinical application. Single-cell sequencing technologies, with the powerful unbiased analysis of cellular heterogeneity and molecular patterns at unprecedented resolution, have greatly advanced our understanding of immunology and oncology. In this review, we summarize the recent applications of single-cell sequencing technologies in CAR T-cell therapy, including the biological characteristics, the latest mechanisms of clinical response and adverse events, promising strategies that contribute to the development of CAR T-cell therapy and CAR target selection. Generally, we propose a multi-omics research mode to guide potential future research on CAR T-cell therapy.
Collapse
Affiliation(s)
- Shengkang Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chenglong Fang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Sifei Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runkai Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
229
|
Wu W, Ding S, Mingming Z, Yuping Z, Sun X, Zhao Z, Yang Y, Hu Y, Dong H. Cost effectiveness analysis of CAR-T cell therapy for patients with relapsed/refractory multiple myeloma in China. J Med Econ 2023; 26:701-709. [PMID: 37145966 DOI: 10.1080/13696998.2023.2207742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND The landscape of treatment strategies for relapsed/refractory multiple myeloma (RRMM) has dramatically changed due to the emergence of chimeric antigen receptor T (CAR-T) cell therapy. The aim of this study was to evaluate the cost-effectiveness of two CAR-T cell treatments for RRMM patients from the perspective of the Chinese healthcare system. METHODS Markov model was used to compare currently available salvage chemotherapy with Idecabtagene vicleucel (Ide-cel) and Ciltacabtagene autoleucel (Cilta-cel) for treatment of patients with RRMM. The model was developed based on data from three studies: CARTITUDE-1, KarMMa and MAMMOTH. The healthcare cost and utility of RRMM patients were collected from a provincial clinical center in China. RESULTS In the base case analysis, 3.4% and 30.6% of RRMM patients were expected to be long-term survivors after 5 years of Ide-cel and Cilta-cel treatment, respectively. Compared to salvage chemotherapy, Ide-cel and Cilta-cel were associated with incremental QALYs of 1.19 and 3.31, and incremental costs of US $140,693 and $119,806, leading to ICERs of $118,229 and $36,195 per QALY, respectively. At an ICER threshold of $37,653/QALY gained, the probability that Ide-cel and Cilta-cel are cost-effective were estimated to be 0% and 72%, respectively. With younger target people entering the model, and partitioned survival model in scenario analysis, the ICERs of Cilta-cel and Ide-cel changed rather mildly and their cost-effectiveness results were same to base analysis. CONCLUSIONS Base on the willingness-to-pay of 3 times China's per capita GDP in 2021, Cilta-cel was considered to be a more cost-effective option compared to salvage chemotherapy for RRMM in China, while Ide-cel was not.
Collapse
Affiliation(s)
- Weijia Wu
- Center for Health Policy Studies, School of Public Health, and Department of Science and Education of the Fourth Affiliated Hospital, Zhejiang University School of Medicine
| | - Shuyi Ding
- Nursing Department, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Mingming
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Zhou Yuping
- Nursing Department, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueshan Sun
- Center for Health Policy Studies, School of Public Health, and Department of Science and Education of the Fourth Affiliated Hospital, Zhejiang University School of Medicine
| | - Zixuan Zhao
- Center for Health Policy Studies, School of Public Health, and Department of Science and Education of the Fourth Affiliated Hospital, Zhejiang University School of Medicine
| | - Yi Yang
- Center for Health Policy Studies, School of Public Health, and Department of Science and Education of the Fourth Affiliated Hospital, Zhejiang University School of Medicine
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Hengjin Dong
- Center for Health Policy Studies, School of Public Health, and Department of Science and Education of the Fourth Affiliated Hospital, Zhejiang University School of Medicine
| |
Collapse
|
230
|
Whiteaker JR, Zhao L, Schoenherr RM, Huang D, Lundeen RA, Voytovich U, Kennedy JJ, Ivey RG, Lin C, Murillo OD, Lorentzen TD, Colantonio S, Caceres TW, Roberts RR, Knotts JG, Reading JJ, Perry CD, Richardson CW, Garcia-Buntley SS, Bocik W, Hewitt SM, Chowdhury S, Vandermeer J, Smith SD, Gopal AK, Ramchurren N, Fling SP, Wang P, Paulovich AG. A multiplexed assay for quantifying immunomodulatory proteins supports correlative studies in immunotherapy clinical trials. Front Oncol 2023; 13:1168710. [PMID: 37205196 PMCID: PMC10185886 DOI: 10.3389/fonc.2023.1168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Immunotherapy is an effective treatment for a subset of cancer patients, and expanding the benefits of immunotherapy to all cancer patients will require predictive biomarkers of response and immune-related adverse events (irAEs). To support correlative studies in immunotherapy clinical trials, we are developing highly validated assays for quantifying immunomodulatory proteins in human biospecimens. Methods Here, we developed a panel of novel monoclonal antibodies and incorporated them into a novel, multiplexed, immuno-multiple reaction monitoring mass spectrometry (MRM-MS)-based proteomic assay targeting 49 proteotypic peptides representing 43 immunomodulatory proteins. Results and discussion The multiplex assay was validated in human tissue and plasma matrices, where the linearity of quantification was >3 orders of magnitude with median interday CVs of 8.7% (tissue) and 10.1% (plasma). Proof-of-principle demonstration of the assay was conducted in plasma samples collected in clinical trials from lymphoma patients receiving an immune checkpoint inhibitor. We provide the assays and novel monoclonal antibodies as a publicly available resource for the biomedical community.
Collapse
Affiliation(s)
- Jeffrey R. Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Regine M. Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Rachel A. Lundeen
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Ulianna Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jacob J. Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Richard G. Ivey
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Oscar D. Murillo
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Travis D. Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Simona Colantonio
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tessa W. Caceres
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rhonda R. Roberts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph G. Knotts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joshua J. Reading
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Candice D. Perry
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Christopher W. Richardson
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Sandra S. Garcia-Buntley
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - William Bocik
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jackie Vandermeer
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA, United States
| | - Stephen D. Smith
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA, United States
| | - Ajay K. Gopal
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA, United States
| | - Nirasha Ramchurren
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Steven P. Fling
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
231
|
Tang X, Yang Y, Zheng M, Yin T, Huang G, Lai Z, Zhang B, Chen Z, Xu T, Ma T, Pan H, Cai L. Magnetic-Acoustic Sequentially Actuated CAR T Cell Microrobots for Precision Navigation and In Situ Antitumor Immunoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211509. [PMID: 36807373 DOI: 10.1002/adma.202211509] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Indexed: 05/05/2023]
Abstract
Despite its clinical success, chimeric antigen receptor T (CAR T)-cell immunotherapy remains limited in solid tumors, owing to the harsh physical barriers and immunosuppressive microenvironment. Here a CAR-T-cell-based live microrobot (M-CAR T) is created by decorating CAR T with immunomagnetic beads using click conjugation. M-CAR Ts are capable of magnetic-acoustic actuation for precision targeting and in situ activation of antitumor immune responses. Sequential actuation endows M-CAR Ts with magnetically actuated anti-flow and obstacle avoidance as well as tissue penetration driven by acoustic propulsion, enabling efficient migration and accumulation in artificial tumor models. In vivo, sequentially actuated M-CAR Ts achieves long-distance targeting and accumulate at the peritumoural area under programmable magnetic guidance, and subsequently acoustic tweezers actuate M-CAR Ts to migrate into deep tumor tissues, resulting in a 6.6-fold increase in accumulated exogenous CD8+ CAR T cells compared with that without actuation. Anti-CD3/CD28 immunomagnetic beads stimulate infiltrated CAR T proliferation and activation in situ, significantly enhancing their antitumor efficacy. Thus, this sequential-actuation-guided cell microrobot combines the merits of autonomous targeting and penetration of intelligent robots with in situ T-cell immunoactivation, and holds considerable promise for precision navigation and cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaofan Tang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ye Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhengyu Lai
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tiantian Xu
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Teng Ma
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
232
|
Braun T, Schrader A. Education and Empowering Special Forces to Eradicate Secret Defectors: Immune System-Based Treatment Approaches for Mature T- and NK-Cell Malignancies. Cancers (Basel) 2023; 15:cancers15092532. [PMID: 37173999 PMCID: PMC10177197 DOI: 10.3390/cancers15092532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mature T- and NK-cell leukemia/lymphoma (MTCL/L) constitute a heterogeneous group of, currently, 30 distinct neoplastic entities that are overall rare, and all present with a challenging molecular markup. Thus, so far, the use of first-line cancer treatment modalities, including chemotherapies, achieve only limited clinical responses associated with discouraging prognoses. Recently, cancer immunotherapy has evolved rapidly, allowing us to help patients with, e.g., solid tumors and also relapsed/refractory B-cell malignancies to achieve durable clinical responses. In this review, we systematically unveiled the distinct immunotherapeutic approaches available, emphasizing the special impediments faced when trying to employ immune system defense mechanisms to target 'one of their own-gone mad'. We summarized the preclinical and clinical efforts made to employ the various platforms of cancer immunotherapies including antibody-drug conjugates, monoclonal as well as bispecific antibodies, immune-checkpoint blockades, and CAR T cell therapies. We emphasized the challenges to, but also the goals of, what needs to be done to achieve similar successes as seen for B-cell entities.
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
- Lymphoma Immuno Biology Team, Equipe Labellisée LIGUE 2023, Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, Faculté de Médecine Lyon-Sud, Hospices Civils de Lyon, Université Claude Bernard Lyon I-ENS de Lyon, 69921 Lyon, France
| |
Collapse
|
233
|
Chao CJ, Zhang E, Zhao Z. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Adv Drug Deliv Rev 2023; 197:114840. [PMID: 37088403 DOI: 10.1016/j.addr.2023.114840] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Cells have emerged as a promising new form of drug delivery carriers owing to their distinguished advantages such as naturally bypassing immune recognition, intrinsic capability to navigate biological barriers, and access to hard-to-reach tissues via onboarding sensing and active motility. Over the past two decades, a large body of work has focused on understanding the ability of cell carriers to breach biological barriers and to modulate drug pharmacokinetics and pharmacodynamics. These efforts have led to the engineering of various cells for tissue-specific drug delivery. Despite exciting advances, clinical translation of cell-based drug carriers demands a thorough understanding of the pressing challenges and potential strategies to overcome them. Here, we summarize recent advances and new concepts in cell-based drug carriers and their clinical translation. We also discuss key considerations and emerging strategies to engineering the next-generation cell-based delivery technologies for more precise, targeted drug delivery.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612.
| |
Collapse
|
234
|
Lau E, Kwong G, Fowler TW, Sun BC, Donohoue PD, Davis RT, Bryan M, McCawley S, Clarke SC, Williams C, Banh L, Irby M, Edwards L, Storlie M, Kohrs B, Lilley GWJ, Smith SC, Gradia S, Fuller CK, Skoble J, Garner E, van Overbeek M, Kanner SB. Allogeneic chimeric antigen receptor-T cells with CRISPR-disrupted programmed death-1 checkpoint exhibit enhanced functional fitness. Cytotherapy 2023:S1465-3249(23)00091-9. [PMID: 37086241 DOI: 10.1016/j.jcyt.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND AIMS Therapeutic disruption of immune checkpoints has significantly advanced the armamentarium of approaches for treating cancer. The prominent role of the programmed death-1 (PD-1)/programmed death ligand-1 axis for downregulating T cell function offers a tractable strategy for enhancing the disease-modifying impact of CAR-T cell therapy. METHODS To address checkpoint interference, primary human T cells were genome edited with a next-generation CRISPR-based platform (Cas9 chRDNA) by knockout of the PDCD1 gene encoding the PD-1 receptor. Site-specific insertion of a chimeric antigen receptor specific for CD19 into the T cell receptor alpha constant locus was implemented to drive cytotoxic activity. RESULTS These allogeneic CAR-T cells (CB-010) promoted longer survival of mice in a well-established orthotopic tumor xenograft model of a B cell malignancy compared with identically engineered CAR-T cells without a PDCD1 knockout. The persistence kinetics of CB-010 cells in hematologic tissues versus CAR-T cells without PDCD1 disruption were similar, suggesting the robust initial debulking of established tumor xenografts was due to enhanced functional fitness. By single-cell RNA-Seq analyses, CB-010 cells, when compared with identically engineered CAR-T cells without a PDCD1 knockout, exhibited fewer Treg cells, lower exhaustion phenotypes and reduced dysfunction signatures and had higher activation, glycolytic and oxidative phosphorylation signatures. Further, an enhancement of mitochondrial metabolic fitness was observed, including increased respiratory capacity, a hallmark of less differentiated T cells. CONCLUSIONS Genomic PD-1 checkpoint disruption in the context of allogeneic CAR-T cell therapy may provide a compelling option for treating B lymphoid malignancies.
Collapse
Affiliation(s)
- Elaine Lau
- Caribou Biosciences, Inc., Berkeley, California, USA
| | - George Kwong
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | - Bee-Chun Sun
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | - Ryan T Davis
- Caribou Biosciences, Inc., Berkeley, California, USA
| | - Mara Bryan
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | | | | | - Lynda Banh
- Caribou Biosciences, Inc., Berkeley, California, USA
| | - Matthew Irby
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | | | - Bryan Kohrs
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | | | - Scott Gradia
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | - Justin Skoble
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | | | | |
Collapse
|
235
|
Chang Y, Cai X, Syahirah R, Yao Y, Xu Y, Jin G, Bhute VJ, Torregrosa-Allen S, Elzey BD, Won YY, Deng Q, Lian XL, Wang X, Eniola-Adefeso O, Bao X. CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat Commun 2023; 14:2266. [PMID: 37080958 PMCID: PMC10119091 DOI: 10.1038/s41467-023-37872-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal solid tumors in human. While efficacious therapeutics, such as emerging chimeric antigen receptor (CAR)-T cells and chemotherapeutics, have been developed to treat various cancers, their effectiveness in GBM treatment has been hindered largely by the blood-brain barrier and blood-brain-tumor barriers. Human neutrophils effectively cross physiological barriers and display effector immunity against pathogens but the short lifespan and resistance to genome editing of primary neutrophils have limited their broad application in immunotherapy. Here we genetically engineer human pluripotent stem cells with CRISPR/Cas9-mediated gene knock-in to express various anti-GBM CAR constructs with T-specific CD3ζ or neutrophil-specific γ-signaling domains. CAR-neutrophils with the best anti-tumor activity are produced to specifically and noninvasively deliver and release tumor microenvironment-responsive nanodrugs to target GBM without the need to induce additional inflammation at the tumor sites. This combinatory chemo-immunotherapy exhibits superior and specific anti-GBM activities, reduces off-target drug delivery and prolongs lifespan in female tumor-bearing mice. Together, this biomimetic CAR-neutrophil drug delivery system is a safe, potent and versatile platform for treating GBM and possibly other devastating diseases.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Xuechao Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Vijesh J Bhute
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | - Bennett D Elzey
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Qing Deng
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | | | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
236
|
Sanoyan DA, Seipel K, Bacher U, Kronig MN, Porret N, Wiedemann G, Daskalakis M, Pabst T. Real-life experiences with CAR T-cell therapy with idecabtagene vicleucel (ide-cel) for triple-class exposed relapsed/refractory multiple myeloma patients. BMC Cancer 2023; 23:345. [PMID: 37061680 PMCID: PMC10105393 DOI: 10.1186/s12885-023-10824-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment landscape of relapsed/refractory multiple myeloma (RRMM), leading to unprecedented responses in this patient population. Idecabtagene vicleucel (ide-cel) has been recently approved for treatment of triple-class exposed RRMM. We report real-life experiences with the commercial use of ide-cel in RRMM patients. METHODS We performed a retrospective analysis of the first 16 triple-class exposed RRMM patients treated with ide-cel at a single academic center. We assessed toxicities, response to treatment, CAR T expansion and soluble BCMA (sBCMA) levels. RESULTS We identified 16 consecutive RRMM patients treated with ide-cel between 06-10/2022. Median age was 69 years, 6 (38%) patients had high-risk cytogenetics, 3 (19%) R-ISS stage III, and 5 (31%) extramedullary disease. Median number of previous treatment lines was 6 (3-12). Manufacturing success rate was 88% (6% required second lymphapheresis, 6% received an out-of-specification product). At 3 months, the overall response rate (ORR) was 69% (44% sCR, 6% CR, 19% VGPR). Cytokine release syndrome (CRS) occurred in 15 (94%) patients (88% G1, 6% G2), immune effector-cell associated neurotoxicity syndrome (ICANS) in 1 (6% G1), febrile neutropenia in 11 (69%), and infections in 5 (31%). Prolonged hematologic toxicity occurred in 4/16 (25%) patients. Other non-hematological toxicities were elevated hepatic enzymes (38%), colitis (6%, G3) and DIC (6%, G2). Responses were more frequent in patients with higher CAR T expansion (100% vs 38%), and lack of decrease or plateau of sBCMA levels was typically observed in non-responders. CONCLUSIONS We report one of the first cohorts of RRMM treated with commercial ide-cel. The ORR was 69% and safety profile was manageable, but prolonged hematologic toxicity still represents a major challenge. Responses correlated with in vivo CAR T cell expansion, underlining the need of further research to optimize CAR T expansion.
Collapse
Affiliation(s)
- Dilara Akhoundova Sanoyan
- Department of Medical Oncology, Inselspital, University Hospital of Bern, Center for Hemato-Oncology; University Cancer Center, Bern, 3010, Switzerland
- Department for Biomedical Research, University of Bern, Bern, 3008, Switzerland
| | - Katja Seipel
- Department for Biomedical Research, University of Bern, Bern, 3008, Switzerland
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marie-Noelle Kronig
- Department of Medical Oncology, Inselspital, University Hospital of Bern, Center for Hemato-Oncology; University Cancer Center, Bern, 3010, Switzerland
| | - Naomi Porret
- Clinical Genomics Lab, Inselspital, University Hospital of Bern, Bern, 3010, Switzerland
| | - Gertrud Wiedemann
- Clinical Genomics Lab, Inselspital, University Hospital of Bern, Bern, 3010, Switzerland
| | - Michael Daskalakis
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, University Hospital of Bern, Center for Hemato-Oncology; University Cancer Center, Bern, 3010, Switzerland.
| |
Collapse
|
237
|
Sasaki T, Sakoda Y, Adachi K, Tokunaga Y, Tamada K. Therapeutic effects of anti-GM2 CAR-T cells expressing IL-7 and CCL19 for GM2-positive solid cancer in xenograft model. Cancer Med 2023. [PMID: 37031457 DOI: 10.1002/cam4.5907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND While chimeric antigen receptor (CAR)-T cell therapy has demonstrated excellent efficacy in hematopoietic malignancies, its clinical application in solid cancers has yet to be achieved. One of the reasons for such hurdle is a lack of suitable CAR targets in solid cancers. METHODS GM2 is one of the gangliosides, a group of glycosphingolipids with sialic acid in the glycan, and overexpressed in various types of solid cancers. In this study, by using interleukin (IL)-7 and chemokine (C-C motif) ligand 19 (CCL19)-producing human CAR-T system which we previously developed, a possibility of GM2 as a solid tumor target for CAR-T cell therapy was explored in a mouse model with human small-cell lung cancer. RESULTS Treatment with anti-GM2 IL-7/CCL19-producing CAR-T cells induced complete tumor regression along with an abundant T cell infiltration into the solid tumor tissue and long-term memory responses, without any detectable adverse events. In addition, as measures to control cytokine-release syndrome and neurotoxicity which could occur in association with clinical use of CAR-T cells, we incorporated Herpes simplex virus-thymidine kinase (HSV-TK), a suicide system to trigger apoptosis by administration of ganciclovir (GCV). HSV-TK-expressing anti-GM2 IL-7/CCL19-producing human CAR-T cells were efficiently eliminated by GCV administration in vivo. CONCLUSIONS Our study revealed the promising therapeutic efficacy of anti-GM2 IL-7/CCL19-producing human CAR-T cells with an enhanced safety for clinical application in the treatment of patients with GM2-positive solid cancers.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yukimi Sakoda
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Keishi Adachi
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoshihiro Tokunaga
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koji Tamada
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
238
|
Bhokisham N, Laudermilch E, Traeger LL, Bonilla TD, Ruiz-Estevez M, Becker JR. CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells 2023; 12:cells12081103. [PMID: 37190012 DOI: 10.3390/cells12081103] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
CRISPR-Cas technology has rapidly changed life science research and human medicine. The ability to add, remove, or edit human DNA sequences has transformative potential for treating congenital and acquired human diseases. The timely maturation of the cell and gene therapy ecosystem and its seamless integration with CRISPR-Cas technologies has enabled the development of therapies that could potentially cure not only monogenic diseases such as sickle cell anemia and muscular dystrophy, but also complex heterogenous diseases such as cancer and diabetes. Here, we review the current landscape of clinical trials involving the use of various CRISPR-Cas systems as therapeutics for human diseases, discuss challenges, and explore new CRISPR-Cas-based tools such as base editing, prime editing, CRISPR-based transcriptional regulation, CRISPR-based epigenome editing, and RNA editing, each promising new functionality and broadening therapeutic potential. Finally, we discuss how the CRISPR-Cas system is being used to understand the biology of human diseases through the generation of large animal disease models used for preclinical testing of emerging therapeutics.
Collapse
Affiliation(s)
| | - Ethan Laudermilch
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | - Lindsay L Traeger
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | - Tonya D Bonilla
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | | | - Jordan R Becker
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| |
Collapse
|
239
|
Wang X, Meng F, Li X, Xue L, Chen A, Qiu Y, Zhang Z, Li L, Liu F, Li Y, Sun Z, Chu Y, Xu R, Yu L, Shao J, Tian M, Qian X, Liu Q, Liu B, Li R. Nanomodified Switch Induced Precise and Moderate Activation of CAR-T Cells for Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205044. [PMID: 36755195 PMCID: PMC10131841 DOI: 10.1002/advs.202205044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a transformative treatment against advanced malignancies. Unfortunately, once administrated in vivo, CAR-T cells become out of artificial control, and fierce response to CAR-T therapy may cause severe adverse events, represented by cytokine-release syndrome and on-target/off-tumor effects. Here, a nanomodified switch strategy is developed, leading to sustained and precise "on-tumor only" activation of CAR-T cells. Here, original gelatinase-responsive nanoparticles (NPs) are used to selectively deliver the heterodimerizing switch, which is the key component of switchable CAR with separated activation modules. The "NanoSwitch" is tumor-specific, thus inactivated switchable CAR-T cells do little harm to normal cells, even if the normal cells express the target of CAR-T. Owing to the sustained-release effect of NPs, the CAR-T cells are activated smoothly, avoiding sudden release of cytokine. These data introduce NanoSwitch as a universal and applicable solution to safety problems of CAR-T therapy regardless of the target.
Collapse
Affiliation(s)
- Xinyue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Xiang Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Luxin Xue
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Anni Chen
- Nanjing Drum Tower HospitalClinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
| | - Yuling Qiu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Zhifan Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Lin Li
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Fengcen Liu
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Yishan Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Zhichen Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Ruihan Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Jie Shao
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Manman Tian
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| |
Collapse
|
240
|
Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023; 20:211-228. [PMID: 36721024 DOI: 10.1038/s41571-023-00729-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.
Collapse
Affiliation(s)
- Jingwen Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yamei Chen
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
241
|
Entezam M, Sanaei MJ, Mirzaei Y, Mer AH, Abdollahpour-Alitappeh M, Azadegan-Dehkordi F, Bagheri N. Current progress and challenges of immunotherapy in gastric cancer: A focus on CAR-T cells therapeutic approach. Life Sci 2023; 318:121459. [PMID: 36720453 DOI: 10.1016/j.lfs.2023.121459] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is a severe malignancy, accounting for the third most common cancer death worldwide. Despite the development of chemo-radiation therapy, there has not been sufficient survival advantage in patients with GC who were treated by these methods. GC immunogenicity is hampered by a highly immunosuppressive microenvironment; therefore, further understanding of the molecular biology of GC is the potential to achieve new therapeutic strategies in GC therapy, including specific immunotherapy. Current immunotherapies are mainly based on cytokines, immune checkpoints, monoclonal antibodies (mAb), bispecific antibodies (BisAbs), antibody-drug conjugates (ADCs), and chimeric antigen receptor (CAR). Immunotherapy has made significant progress in the treatment of GC, so that studies show that nivolumab as a programmed death 1 (PD1) inhibitor has proper safety and effectiveness as a third-line treatment for GC patients. Multiple monoclonal antibodies like ramucirumab and claudiximab were effective in treating GC patients, especially in combination with other treatments. Despite the challenges of CAR therapy in solid tumors, CAR therapy targets various GC cells targets; among them, intercellular adhesion molecule (ICAM)-1 CAR-T cell and CLDN18.2 CAR-T cell have shown promising results. Although responses to all these treatments are encouraging and in some cases, durable, these successes are not seen in all treated patients. The present review represents the development of various immunotherapies especially CAR-T cell therapy, its current use, clinical data in GC, and their limitations.
Collapse
Affiliation(s)
- Mahshad Entezam
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | | | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
242
|
Xu H, Li N, Wang G, Cao Y. Predictive short/long-term efficacy biomarkers and resistance mechanisms of CD19-directed CAR-T immunotherapy in relapsed/refractory B-cell lymphomas. Front Immunol 2023; 14:1110028. [PMID: 37051246 PMCID: PMC10083339 DOI: 10.3389/fimmu.2023.1110028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Genetically modified T-cell immunotherapies are revolutionizing the therapeutic options for hematological malignancies, especially those of B-cell origin. Impressive efficacies of CD19-directed chimeric antigen receptor (CAR)-T therapy have been reported in refractory/relapsed (R/R) B-cell non-Hodgkin lymphoma (NHL) patients who were resistant to current standard therapies, with a complete remission (CR) rate of approximately 50%. At the same time, problems of resistance and relapse following CAR-T therapy have drawn growing attention. Recently, great efforts have been made to determine various factors that are connected to the responses and outcomes following CAR-T therapy, which may not only allow us to recognize those with a higher likelihood of responding and who could benefit most from the therapy but also identify those with a high risk of resistance and relapse and to whom further appropriate treatment should be administered following CAR-T therapy. Thus, we concentrate on the biomarkers that can predict responses and outcomes after CD19-directed CAR-T immunotherapy. Furthermore, the mechanisms that may lead to treatment failure are also discussed in this review.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Ningwen Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
- *Correspondence: Gaoxiang Wang, ; Yang Cao,
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
- *Correspondence: Gaoxiang Wang, ; Yang Cao,
| |
Collapse
|
243
|
Søgaard AB, Pedersen AB, Løvschall KB, Monge P, Jakobsen JH, Džabbarova L, Nielsen LF, Stevanovic S, Walther R, Zelikin AN. Transmembrane signaling by a synthetic receptor in artificial cells. Nat Commun 2023; 14:1646. [PMID: 36964156 PMCID: PMC10039019 DOI: 10.1038/s41467-023-37393-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Signal transduction across biological membranes is among the most important evolutionary achievements. Herein, for the design of artificial cells, we engineer fully synthetic receptors with the capacity of transmembrane signaling, using tools of chemistry. Our receptors exhibit similarity with their natural counterparts in having an exofacial ligand for signal capture, being membrane anchored, and featuring a releasable messenger molecule that performs enzyme activation as a downstream signaling event. The main difference from natural receptors is the mechanism of signal transduction, which is achieved using a self-immolative linker. The receptor scaffold is modular and can readily be re-designed to respond to diverse activation signals including biological or chemical stimuli. We demonstrate an artificial signaling cascade that achieves transmembrane enzyme activation, a hallmark of natural signaling receptors. Results of this work are relevant for engineering responsive artificial cells and interfacing them and/or biological counterparts in co-cultures.
Collapse
Affiliation(s)
- Ane Bretschneider Søgaard
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| | | | | | - Pere Monge
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | | | | | | | | | - Raoul Walther
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
244
|
Frigault MJ, Bishop MR, Rosenblatt J, O’Donnell EK, Raje N, Cook D, Yee AJ, Logan E, Avigan DE, Jakubowiak A, Shaw K, Daley H, Nikiforow S, Griffin F, Cornwell C, Shen A, Heery C, Maus MV. Phase 1 study of CART-ddBCMA for the treatment of subjects with relapsed and refractory multiple myeloma. Blood Adv 2023; 7:768-777. [PMID: 35468618 PMCID: PMC9989524 DOI: 10.1182/bloodadvances.2022007210] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Relapsed and refractory multiple myeloma (RRMM) is a plasma cell neoplasm defined by progressively refractory disease necessitating chronic and increasingly intensive therapy. Despite recent advances, limited treatment options exist for RRMM. This single-arm, open label phase 1 study aimed to evaluate the safety of novel B-cell maturation antigen (BCMA)-targeting chimeric antigen receptor (CAR) T construct that leverages a completely synthetic antigen-binding domain (CART-ddBCMA), which was specifically engineered to reduce immunogenicity and improve CAR cell surface stability. Thirteen patients ≥18 years with RRMM who received at least 3 prior regimens of systemic therapy were enrolled in the study. Patients received a single dose of 100 × 106 CART-ddBCMA (DL1) or 300 × 106 CART-ddBCMA (DL2) following standard lymphodepleting chemotherapy. The primary endpoints of the study were to evaluate the incidence of treatment emergent adverse events, including dose-limiting toxicities, and establish a recommended phase 2 dose. Results showed that CART-ddBCMA was well tolerated and demonstrated a favorable toxicity profile. Only 1 case of grade ≥3 cytokine release syndrome and 1 case of immune effector cell-associated neurotoxicity were reported; both were at DL2 and were manageable with standard treatment. No atypical neurological toxicities and Parkinson disease-like movement disorders were observed. The maximum tolerated dose was not reached. All infused patients responded to CART-ddBCMA, and 9/12 (75%) patients achieved complete response/stringent complete response. Responses deepened over time, and at the time of last data-cut (median follow-up 56 weeks), 8/9 (89%) evaluable patients achieved minimal residual disease negativity. In conclusion, the findings demonstrate the safety of CART-ddBCMA cells and document durable responses to CART-ddBCMA in patients with RRMM. This trial was registered at www.clinicaltrials.gov as #NCT04155749.
Collapse
Affiliation(s)
- Matthew J. Frigault
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Michael R. Bishop
- David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | | | - Elizabeth K. O’Donnell
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Noopur Raje
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Daniella Cook
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Andrew J. Yee
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Emma Logan
- Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Andrzej Jakubowiak
- David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Kit Shaw
- Dana Farber Cancer Institute, Cell Manipulation Core Facility, Brookline, MA
| | - Heather Daley
- Dana Farber Cancer Institute, Cell Manipulation Core Facility, Brookline, MA
| | - Sarah Nikiforow
- Dana Farber Cancer Institute, Cell Manipulation Core Facility, Brookline, MA
| | | | | | | | | | - Marcela V. Maus
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
245
|
Wang J, Wang Y, Pan H, Zhao L, Yang X, Liang Z, Shen X, Zhang J, Yang J, Zhu Y, Xun J, Liang Y, Lin Q, Liang H, Li M, Zhu H. Chemokine Receptors CCR6 and PD1 Blocking scFv E27 Enhances Anti-EGFR CAR-T Therapeutic Efficacy in a Preclinical Model of Human Non-Small Cell Lung Carcinoma. Int J Mol Sci 2023; 24:ijms24065424. [PMID: 36982500 PMCID: PMC10056525 DOI: 10.3390/ijms24065424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells, a therapeutic agent for solid tumors, are not completely effective due to a lack of infiltration of T cells into the tumor site and immunity caused by Programmed Death Receptor 1(PD1). Here, an epidermal growth factor receptor (EGFR) CAR-T cell was engineered to express the chemokine receptor CCR6 and secrete PD1 blocking Single-chain antibody fragment (scFv) E27 to enhance their anti-tumor effects. The findings showed that CCR6 enhanced the migration of EGFR CAR-E27-CCR6 T cells in vitro by the Transwell migration assay. When incubated with tumor cells, EGFR CAR-E27-CCR6 T cells specifically exerted potent cytotoxicity and produced high levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and interferon-γ (IFN-γ). A non-small cell lung carcinoma (NSCLC) cell line-derived xenograft model was constructed by implanting modified A549 cell lines into immunodeficient NOD.PrkdcscidIl2rgem1/Smoc (NSG) mice. In comparison with traditional EGFR CAR-T cells, live imaging indicated that EGFR CAR-E27-CCR6 T cells displayed superior anti-tumor function. In addition, the histopathological examination of mouse organs showed no obvious organic damage. Our findings confirmed that PD1 blocking and CCR6 can enhance the anti-tumor function of EGFR CAR-T cells in an NSCLC xenograft model, providing an effective treatment strategy to improve the efficacy of CAR-T in NSCLC.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jing Zhang
- School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jingna Xun
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
- Correspondence: ; Tel./Fax: +86-021-31246728
| |
Collapse
|
246
|
Nava Lauson CB, Tiberti S, Corsetto PA, Conte F, Tyagi P, Machwirth M, Ebert S, Loffreda A, Scheller L, Sheta D, Mokhtari Z, Peters T, Raman AT, Greco F, Rizzo AM, Beilhack A, Signore G, Tumino N, Vacca P, McDonnell LA, Raimondi A, Greenberg PD, Huppa JB, Cardaci S, Caruana I, Rodighiero S, Nezi L, Manzo T. Linoleic acid potentiates CD8 + T cell metabolic fitness and antitumor immunity. Cell Metab 2023; 35:633-650.e9. [PMID: 36898381 DOI: 10.1016/j.cmet.2023.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/19/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023]
Abstract
The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.
Collapse
Affiliation(s)
- Carina B Nava Lauson
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Silvia Tiberti
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Paola A Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti," National Research Council, Rome, Italy
| | - Punit Tyagi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Markus Machwirth
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Ebert
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Lukas Scheller
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Dalia Sheta
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Timo Peters
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Ayush T Raman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francesco Greco
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy; Institute of Life Sciences, Sant' Anna School of Advanced Studies, Pisa, Italy
| | - Angela M Rizzo
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Giovanni Signore
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Philip D Greenberg
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Simone Cardaci
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Simona Rodighiero
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy.
| |
Collapse
|
247
|
Addison AP, McGinnis J, Ortiz-Guzman J, Tantry EK, Patel DM, Belfort BDW, Srivastava S, Romero JM, Arenkiel BR, Curry DJ. Molecular Neurosurgery: Introduction to Gene Therapy and Clinical Applications. JOURNAL OF PEDIATRIC EPILEPSY 2023. [DOI: 10.1055/s-0042-1760292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractTo date, more than 100 clinical trials have used sequence-based therapies to address diseases of the pediatric central nervous system. The first targeted pathologies share common features: the diseases are severe; they are due (mostly) to single variants; the variants are well characterized within the genome; and the interventions are technically feasible. Interventions range from intramuscular and intravenous injection to intrathecal and intraparenchymal infusions. Whether the therapeutic sequence consists of RNA or DNA, and whether the sequence is delivered via simple oligonucleotide, nanoparticle, or viral vector depends on the disease and the involved cell type(s) of the nervous system. While only one active trial targets an epilepsy disorder—Dravet syndrome—experiences with aromatic L-amino acid decarboxylase deficiency, spinal muscular atrophy, and others have taught us several lessons that will undoubtedly apply to the future of gene therapy for epilepsies. Epilepsies, with their diverse underlying mechanisms, will have unique aspects that may influence gene therapy strategies, such as targeting the epileptic zone or nodes in affected circuits, or alternatively finding ways to target nearly every neuron in the brain. This article focuses on the current state of gene therapy and includes its history and premise, the strategy and delivery vehicles most commonly used, and details viral vectors, current trials, and considerations for the future of pediatric intracranial gene therapy.
Collapse
Affiliation(s)
- Angela P. Addison
- Department of Surgery, Section of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - J.P. McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
| | - Joshua Ortiz-Guzman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Evelyne K. Tantry
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Dhruv M. Patel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | - Benjamin D. W. Belfort
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Snigdha Srivastava
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | - Benjamin R. Arenkiel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Daniel J. Curry
- Department of Surgery, Section of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
248
|
Fenton GA, Mitchell DA. Cellular Cancer Immunotherapy Development and Manufacturing in the Clinic. Clin Cancer Res 2023; 29:843-857. [PMID: 36383184 PMCID: PMC9975672 DOI: 10.1158/1078-0432.ccr-22-2257] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
The transfusion of naturally derived or modified cellular therapies, referred to as adoptive cell therapy (ACT), has demonstrated clinical efficacy in the treatment of hematologic malignancies and metastatic melanoma. In addition, cellular vaccination, such as dendritic cell-based cancer vaccines, continues to be actively explored. The manufacturing of these therapies presents a considerable challenge to expanding the use of ACT as a viable treatment modality, particularly at academic production facilities. Furthermore, the expanding commercial interest in ACT presents new opportunities as well as strategic challenges for the future vision of cellular manufacturing in academic centers. Current trends in the production of ACT at tertiary care centers and prospects for improved manufacturing practices that will foster further clinical benefit are reviewed herein.
Collapse
Affiliation(s)
- Graeme A Fenton
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida.,Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida.,Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
249
|
Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, Lareau C, Sotillo E, Weber EW, Rietberg SP, Dalton GN, Yin Y, Klysz D, Xu P, de la Serna EL, Dunn AR, Satpathy AT, Mackall CL, Majzner RG. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 2023; 615:507-516. [PMID: 36890224 PMCID: PMC10564584 DOI: 10.1038/s41586-023-05778-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.
Collapse
Affiliation(s)
- Aidan M Tousley
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Lea Wenting Rysavy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Won-Ju Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb Lareau
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan W Weber
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Skyler P Rietberg
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Yajie Yin
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dorota Klysz
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Ansuman T Satpathy
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
250
|
Patra T, Cunningham DM, Meyer K, Toth K, Ray RB, Heczey A, Ray R. Targeting Lin28 axis enhances glypican-3-CAR T cell efficacy against hepatic tumor initiating cell population. Mol Ther 2023; 31:715-728. [PMID: 36609146 PMCID: PMC10014222 DOI: 10.1016/j.ymthe.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/01/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
Overexpression of Lin28 is detected in various cancers with involvement in the self-renewal process and cancer stem cell generation. In the present study, we evaluated how the Lin28 axis plays an immune-protective role for tumor-initiating cancer cells in hepatocellular carcinoma (HCC). Our result using HCC patient samples showed a positive correlation between indoleamine 2,3-dioxygenase-1 (IDO1), a kynurenine-producing enzyme with effects on tumor immune escape, and Lin28B. Using in silico prediction, we identified a Sox2/Oct4 transcriptional motif acting as an enhancer for IDO1. Knockdown of Lin28B reduced Sox2/Oct4 and downregulated IDO1 in tumor-initiating hepatic cancer cells. We further observed that inhibition of Lin28 by a small-molecule inhibitor (C1632) suppressed IDO1 expression. Suppression of IDO1 resulted in a decline in kynurenine production from tumor-initiating cells. Inhibition of the Lin28 axis also impaired PD-L1 expression in HCC cells. Consequently, modulating Lin28B enhanced in vitro cytotoxicity of glypican-3 (GPC3)-chimeric antigen receptor (CAR) T and NK cells. Next, we observed that GPC3-CAR T cell treatment together with C1632 in a HCC xenograft mouse model led to enhanced anti-tumor activity. In conclusion, our results suggest that inhibition of Lin28B reduces IDO1 and PD-L1 expression and enhances immunotherapeutic potential of GPC3-CART cells against HCC.
Collapse
Affiliation(s)
- Tapas Patra
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA.
| | - David M Cunningham
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Karoly Toth
- Department of Molecular Microbiology & Immunology and Saint Louis University, St. Louis, MO 63104, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | - Andras Heczey
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA; Department of Molecular Microbiology & Immunology and Saint Louis University, St. Louis, MO 63104, USA.
| |
Collapse
|