201
|
Chen J, Wen P, Tang YH, Li H, Wang Z, Wang X, Zhou X, Gao XD, Fujita M, Yang G. Proteome and Glycoproteome Analyses Reveal Regulation of Protein Glycosylation Site-Specific Occupancy and Lysosomal Hydrolase Maturation by N-Glycan-Dependent ER-Quality Control. J Proteome Res 2024; 23:4409-4421. [PMID: 39235835 DOI: 10.1021/acs.jproteome.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
N-Glycan-dependent endoplasmic reticulum quality control (ERQC) primarily mediates protein folding, which determines the fate of the polypeptide. Monoglucose residues on N-glycans determine whether the nascent N-glycosylated proteins enter into and escape from the calnexin (CANX)/calreticulin (CALR) cycle, which is a central system of the ERQC. To reveal the impact of ERQC on glycosylation and protein fate, we performed comprehensive quantitative proteomic and glycoproteomic analyses using cells defective in N-glycan-dependent ERQC. Deficiency of MOGS encoding the ER α-glucosidase I, CANX, or/and CALR broadly affected protein expression and glycosylation. Among the altered glycoproteins, the occupancy of oligomannosidic N-glycans was significantly affected. Besides the expected ER stress, proteins and glycoproteins involved in pathways for lysosome and viral infection are differentially changed in those deficient cells. We demonstrated that lysosomal hydrolases were not correctly modified with mannose-6-phosphates on the N-glycans and were directly secreted to the culture medium in N-glycan-dependent ERQC mutant cells. Overall, the CANX/CALR cycle promotes the correct folding of glycosylated peptides and influences the transport of lysosomal hydrolases.
Collapse
Affiliation(s)
- Jingru Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Piaopiao Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-He Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanjie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Zibo Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuyuan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
202
|
Holland SH, Carmona-Martinez R, O’Connor K, O’Neil D, Roos A, Spendiff S, Lochmüller H. A Deficiency in Glutamine-Fructose-6-Phosphate Transaminase 1 (Gfpt1) in Skeletal Muscle Results in Reduced Glycosylation of the Delta Subunit of the Nicotinic Acetylcholine Receptor (AChRδ). Biomolecules 2024; 14:1252. [PMID: 39456185 PMCID: PMC11506803 DOI: 10.3390/biom14101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
The neuromuscular junction (NMJ) is the site where the motor neuron innervates skeletal muscle, enabling muscular contraction. Congenital myasthenic syndromes (CMS) arise when mutations in any of the approximately 35 known causative genes cause impaired neuromuscular transmission at the NMJ, resulting in fatigable muscle weakness. A subset of five of these CMS-causative genes are associated with protein glycosylation. Glutamine-fructose-6-phosphate transaminase 1 (Gfpt1) is the rate-limiting enzyme within the hexosamine biosynthetic pathway (HBP), a metabolic pathway that produces the precursors for glycosylation. We hypothesized that deficiency in Gfpt1 expression results in aberrant or reduced glycosylation, impairing the proper assembly and stability of key NMJ-associated proteins. Using both in vitro and in vivo Gfpt1-deficient models, we determined that the acetylcholine receptor delta subunit (AChRδ) has reduced expression and is hypo-glycosylated. Using laser capture microdissection, NMJs were harvested from Gfpt1 knockout mouse muscle. A lower-molecular-weight species of AChRδ was identified at the NMJ that was not detected in controls. Furthermore, Gfpt1-deficient muscle lysates showed impairment in protein O-GlcNAcylation and sialylation, suggesting that multiple glycan chains are impacted. Other key NMJ-associated proteins, in addition to AChRδ, may also be differentially glycosylated in Gfpt1-deficient muscle.
Collapse
Affiliation(s)
- Stephen Henry Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Kaela O’Connor
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Daniel O’Neil
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andreas Roos
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
- Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, Medical Center, University of Freiburg, 79085 Freiburg, Germany
- Centro Nacional de Analisis Genomico (CNAG), 08028 Barcelona, Spain
| |
Collapse
|
203
|
Liu Y, Bineva-Todd G, Meek RW, Mazo L, Piniello B, Moroz O, Burnap SA, Begum N, Ohara A, Roustan C, Tomita S, Kjaer S, Polizzi K, Struwe WB, Rovira C, Davies GJ, Schumann B. A Bioorthogonal Precision Tool for Human N-Acetylglucosaminyltransferase V. J Am Chem Soc 2024; 146:26707-26718. [PMID: 39287665 PMCID: PMC11450819 DOI: 10.1021/jacs.4c05955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme-substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
Collapse
Affiliation(s)
- Yu Liu
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Richard W. Meek
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Laura Mazo
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Beatriz Piniello
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Olga Moroz
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Sean A. Burnap
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Nadima Begum
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - André Ohara
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Chloe Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Sara Tomita
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Svend Kjaer
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Karen Polizzi
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Weston B. Struwe
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020 Barcelona, Spain
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Benjamin Schumann
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| |
Collapse
|
204
|
Sou YS, Yamaguchi J, Masuda K, Uchiyama Y, Maeda Y, Koike M. Golgi pH homeostasis stabilizes the lysosomal membrane through N-glycosylation of membrane proteins. Life Sci Alliance 2024; 7:e202402677. [PMID: 39079741 PMCID: PMC11289521 DOI: 10.26508/lsa.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in N-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using Gphr-deficient MEFs. We showed that Gphr deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein N-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that Gphr deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete N-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.
Collapse
Affiliation(s)
- Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Keisuke Masuda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| |
Collapse
|
205
|
Tang L, Wang M, Shi L. Diagnostic value and application prospect of tumor abnormal protein test in head and neck tumors. Sci Prog 2024; 107:368504241300844. [PMID: 39587891 PMCID: PMC11590133 DOI: 10.1177/00368504241300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Tumor abnormal protein (TAP) test also called abnormal glycoprotein chain test assesses the level of abnormal glycosylation in the body by measuring the agglutination of 10 different agglutinins, including wheat germ agglutinin, cuttle bean agglutinin, and so on. The lectins are proteins containing one or more binding sites with a strong affinity for particular carbohydrate chains that can specifically identify and bind to abnormal glycan molecules on malignant cells. It has been widely used clinically in recent years for the early diagnosis of tumourigenesis. Numerous studies have been conducted to investigate the mechanisms by which lectins bind to a set of glycans. As the incidence of head and neck cancer is high, with squamous cell carcinoma being the most common type. The lack of highly specific and sensitive tests makes early screening difficult, and treatment is often delayed, resulting in organ loss or even death, and often has a negative psychological impact. This narrative review will analyze the principle and current status of clinical application of TAP detection to prove TAP test will offer more sensitive methods for the precancerous risk assessment of head and neck squamous cell carcinoma, as well as for tracking metastases and recurrence.
Collapse
Affiliation(s)
- Linghao Tang
- Department of Otorhinolaryngology, The First Hospital of Dalian Medical University, Dalian, China
| | - Minjun Wang
- Department of Otorhinolaryngology, The First Hospital of Dalian Medical University, Dalian, China
- Department of Otorhinolaryngology, Shanghai General Hospital, Shanghai, China
| | - Lin Shi
- Department of Otorhinolaryngology, The First Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
206
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
207
|
Chang Y, Shao J, Zhao X, Qin H, Du Y, Li J, Li Q, Sun W, Wang G, Qing G. Precise AIE-Based Ternary Co-Assembly for Saccharide Recognition and Classification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405613. [PMID: 39193873 PMCID: PMC11633354 DOI: 10.1002/advs.202405613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Indexed: 08/29/2024]
Abstract
Saccharides are involved in nearly all life processes. However, due to the complexity and diversity of saccharide structures, their selective recognition is one of the most challenging tasks. Distinct from conventional receptor designs that rely on delicate and complicated molecular structures, here a novel and precise ternary co-assembled strategy is reported for achieving saccharide recognition, which originates from a halogen ions-driven aggregation-induced emission module called p-Toluidine, N, N'-1-propen-1-yl-3-ylidene hydrochloride (PN-Tol). It exhibits ultra-strong self-assembly capability and specifically binds to 4-mercaptophenylboronic acid (MPBA), forming highly ordered co-assemblies. Subsequent binding of various saccharides results in heterogeneous ternary assembly behaviors, generating cluster-like, spherical, and rod-like microstructures with well-defined crystalline patterns, accompanied by significant enhancement of fluorescence. Owing to the excellent expandability of the PN module, an array sensor is constructed that enables easy classification of diverse saccharides, including epimer and optical isomers. This strategy demonstrates wide applicability and paves a new avenue for saccharide recognition, analysis, and sequencing.
Collapse
Affiliation(s)
- Yongxin Chang
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Juan Shao
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Xinjia Zhao
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical TechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Yanqing Du
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityHohhot010110P. R. China
| | - Junrong Li
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Qiongya Li
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Wenjing Sun
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Guoxiong Wang
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical ProteomicsNational Chromatographic R. & A. CenterCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| |
Collapse
|
208
|
Kumari M, Tetala KKR. Preparation, characterization and application of boronic acid functionalized porous polymer for glycoproteins enrichment from biological samples. Polym Bull (Berl) 2024; 81:14161-14182. [DOI: 10.1007/s00289-024-05377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 01/05/2025]
|
209
|
Böttinger K, Regl C, Schäpertöns V, Rapp E, Wohlschlager T, Huber CG. "Small is beautiful" - Examining reliable determination of low-abundant therapeutic antibody glycovariants. J Pharm Anal 2024; 14:100982. [PMID: 39850237 PMCID: PMC11755342 DOI: 10.1016/j.jpha.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 01/25/2025] Open
Abstract
Glycans associated with biopharmaceutical drugs play crucial roles in drug safety and efficacy, and therefore, their reliable detection and quantification is essential. Our study introduces a multi-level quantification approach for glycosylation analysis in monoclonal antibodies (mAbs), focusing on minor abundant glycovariants. Mass spectrometric data is evaluated mainly employing open-source software tools. Released N-glycan and glycopeptide data form the basis for integrating information across different structural levels up to intact glycoproteins. Comprehensive comparison showed that indeed, variations across structural levels were observed especially for minor abundant species. Utilizing modification finder (MoFi), a tool for annotating mass spectra of intact proteins, we quantify isobaric glycosylation variants at the intact protein level. Our workflow's utility is demonstrated on NISTmAb, rituximab and adalimumab, profiling their minor abundant variants for the first time across diverse structural levels. This study enhances understanding and accessibility in glycosylation analysis, spotlighting minor abundant glycovariants in therapeutic antibodies.
Collapse
Affiliation(s)
- Katharina Böttinger
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, 5020, Austria
| | - Veronika Schäpertöns
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
| | - Erdmann Rapp
- glyXera GmbH, Magdeburg, Sachsen-Anhalt, 39014, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, 39106, Germany
| | - Therese Wohlschlager
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
| | - Christian G. Huber
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, 5020, Austria
| |
Collapse
|
210
|
Guan Y, Zhao S, Fu C, Zhang J, Yang F, Luo J, Dai L, Li X, Schlüter H, Wang J, Xu C. nQuant Enables Precise Quantitative N-Glycomics. Anal Chem 2024; 96:15531-15539. [PMID: 39302767 DOI: 10.1021/acs.analchem.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
N-glycosylation is a highly heterogeneous post-translational modification that modulates protein function. Defects in N-glycosylation are directly linked to various human diseases. Despite the importance of quantifying N-glycans with high precision, existing glycoinformatics tools are limited. Here, we developed nQuant, a glycoinformatics tool that enables label-free and isotopic labeling quantification of N-glycomics data obtained via LC-MS/MS, ensuring a low false quantitation rate. Using the label-free quantification module, we profiled the N-glycans released from purified glycoproteins and HEK293 cells as well as the dynamic changes of N-glycosylation during mouse corpus callosum development. Through the isotopic labeling quantification module, we revealed the dynamic changes of N-glycans in acute promyelocytic leukemia cells after all-trans retinoic acid treatment. Taken together, we demonstrate that nQuant enables fast and precise quantitative N-glycomics.
Collapse
Affiliation(s)
- Yudong Guan
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Shanshan Zhao
- Section Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Chunjin Fu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fan Yang
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Jiankai Luo
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Lingyun Dai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Xihai Li
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jigang Wang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Chengchao Xu
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
211
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
212
|
Dalton HM, Young NJ, Berman AR, Evans HD, Peterson SJ, Patterson KA, Chow CY. A drug repurposing screen reveals dopamine signaling as a critical pathway underlying potential therapeutics for the rare disease DPAGT1-CDG. PLoS Genet 2024; 20:e1011458. [PMID: 39466823 PMCID: PMC11542785 DOI: 10.1371/journal.pgen.1011458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks effective therapies. It is caused by mutations in the gene DPAGT1 which encodes the first enzyme in N-linked glycosylation. We used a Drosophila rough eye model of DPAGT1-CDG with an improperly developed, small eye phenotype. We performed a drug repurposing screen on this model using 1,520 small molecules that are 98% FDA/EMA-approved to find drugs that improved its eye. We identified 42 candidate drugs that improved the DPAGT1-CDG model. Notably from this screen, we found that pharmacological and genetic inhibition of the dopamine D2 receptor partially rescued the DPAGT1-CDG model. Loss of both dopamine synthesis and recycling partially rescued the model, suggesting that dopaminergic flux and subsequent binding to D2 receptors is detrimental under DPAGT1 deficiency. This links dopamine signaling to N-glycosylation and represents a new potential therapeutic target for treating DPAGT1-CDG. We also genetically validate other top drug categories including acetylcholine-related drugs, COX inhibitors, and an inhibitor of NKCC1. These drugs and subsequent analyses reveal novel biology in DPAGT1 mechanisms, and they may represent new therapeutic options for DPAGT1-CDG.
Collapse
Affiliation(s)
- Hans M. Dalton
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Naomi J. Young
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alexys R. Berman
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Heather D. Evans
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sydney J. Peterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kaylee A. Patterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
213
|
Novak J, King RG, Yother J, Renfrow MB, Green TJ. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Glycobiology 2024; 34:cwae060. [PMID: 39095059 PMCID: PMC11442006 DOI: 10.1093/glycob/cwae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, United States
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| |
Collapse
|
214
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
215
|
Zhu W, Zhou Y, Guo L, Feng S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov 2024; 10:415. [PMID: 39349440 PMCID: PMC11442784 DOI: 10.1038/s41420-024-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Sialic acids are predominantly found at the terminal ends of glycoproteins and glycolipids and play key roles in cellular communication and function. The process of sialylation, a form of post-translational modification, involves the covalent attachment of sialic acid to the terminal residues of oligosaccharides and glycoproteins. This modification not only provides a layer of electrostatic repulsion to cells but also serves as a receptor for various biological signaling pathways. Sialylation is involved in several pathophysiological processes. Given its multifaceted involvement in cellular functions, sialylation presents a promising avenue for therapeutic intervention. Current studies are exploring agents that target sialic acid residues on sialoglycans or the sialylation process. These efforts are particularly focused on the fields of cancer therapy, stroke treatment, antiviral strategies, and therapies for central nervous system disorders. In this review, we aimed to summarize the biological functions of sialic acid and the process of sialylation, explore their roles in various pathophysiological contexts, and discuss their potential applications in the development of novel therapeutics.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Shenghui Feng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
216
|
Labeille RO, Elliott J, Abdulla H, Seemann F. Hyperglycosylation as an Indicator of Aging in the Bone Metabolome of Oryzias latipes. Metabolites 2024; 14:525. [PMID: 39452906 PMCID: PMC11509322 DOI: 10.3390/metabo14100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Chronological aging of bone tissues is a multi-faceted process that involves a complex interplay of cellular, biochemical, and molecular mechanisms. Metabolites play a crucial role for bone homeostasis, and a changed metabolome is indicative for bone aging, although bone metabolomics are currently understudied. The vertebral bone metabolome of the model fish Japanese medaka (Oryzias latipes) was employed to identify sex-specific markers of bone aging. 265 and 213 metabolites were differently expressed in 8-month-old vs. 3-month-old female and male fish, respectively. The untargeted metabolomics pathway enrichment analysis indicated a sex-independent increased hyperglycosylation in 8-month-old individuals. The upregulated glycosylation pathways included glycosphingolipids, glycosylphosphatidylinositol anchors, O-glycans, and N-glycans. UDP-sugars and sialic acid were found to be major drivers in regulating glycosylation pathways and metabolic flux. The data indicate a disruption of protein processing at the endoplasmic reticulum and changes in O-glycan biosynthesis. Dysregulation of glycosylation, particularly through the hexosamine biosynthetic pathway, may contribute to bone aging and age-related bone loss. The results warrant further investigation into the functional involvement of increased glycosylation in bone aging. The potential of glycan-based biomarkers as early warning systems for bone aging should be explored and would aid in an advanced understanding of the progression of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Remi O. Labeille
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Justin Elliott
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Hussain Abdulla
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Frauke Seemann
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
217
|
Cuong NC, Haltrich D, Min TT, Nguyen TH, Yamabhai M. Value creation of copra meal mannan into functional manno-oligosaccharides (β-MOS) using the mannanase Bacillus man B (BlMan26B). Sci Rep 2024; 14:22363. [PMID: 39333607 PMCID: PMC11436642 DOI: 10.1038/s41598-024-73255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Agricultural wastes rich in β-mannan are an important environmental problem in tropical and sub-tropical countries. This research aims at dealing with this and investigates the valorization of mannan-rich copra meal from virgin coconut oil manufacturing into mannan-oligosaccharides (β-MOS) by enzymatic hydrolysis using β-mannanase from Bacillus licheniformis (BlMan26B). Lab-scale process, involving pre-treatment and bioconversion steps, were conducted and evaluated. Lyophilized β-MOS was analyzed and its biological activities were assessed. The size of oligosaccharides obtained ranged from dimers to hexamers with 36.7% conversion yields. The prebiotic effects of β-MOS were demonstrated in comparison with commercial inulin and fructo-oligosaccharides (FOS). In vitro toxicity assays of β -MOS on human dermal fibroblasts and monocytes showed no cytotoxic effect. Interestingly, β-MOS at concentrations ranging from 10 to 200 µg/mL also demonstrated potent anti-inflammatory activity against LPS-induced inflammation of human macrophage THP-1 in a dose-dependent manner. However, at high dose, β-MOS could also stimulate inflammation. Therefore, further investigation must be conducted to ensure its efficacy and safe use in the future. These results indicate that β-MOS have the potential to be used as valued-added health-promoting nutraceutical or feed additive after additional in-depth studies. These finding should be applicable for other agricultural wastes rich in mannan as well.
Collapse
Grants
- 179306, 4693955, FF3-304-66-12-200(H31), FF6-614-66-24-38(H) Thailand Science Research and Innovation (TSRI), National Science, Research and Innovation Fund (NRSF)
- 179306, 4693955, FF3-304-66-12-200(H31), FF6-614-66-24-38(H) Thailand Science Research and Innovation (TSRI), National Science, Research and Innovation Fund (NRSF)
- RGJ-Ph.D/0108/2552 The Royal Golden Jubilee scholarship
- RGJ-Ph.D/0108/2552 The Royal Golden Jubilee scholarship
- Full-time 66/12/2024 Suranaree University of Technology
- FWF Projects P 37092 and P 35611 Austrian Science Fund
- FSUT3-304-63-12-3 Forthcoming Research to Industry Convergence
Collapse
Affiliation(s)
- Nguyen Cao Cuong
- Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Hue, 530000, Thua Thien Hue, Vietnam
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, Vienna, 1190, Austria
| | - Thae Thae Min
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, Vienna, 1190, Austria.
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
218
|
Lee CH, Li H, Hyun JY, Shin I. Strategy for Construction of Homogeneous Glycoproteins in Mammalian Cells. Bioconjug Chem 2024. [PMID: 39319574 DOI: 10.1021/acs.bioconjchem.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A general strategy that combines genetic code expansion with bio-orthogonal ligation techniques was developed and utilized to prepare homogeneously glycosylated receptors on the surface of mammalian cells. Using this approach, conjugates of the cell-surface oxytocin receptor (OTR) with oligosaccharides were efficiently generated in the cells. Cell studies revealed that glycans linked to the OTR are not essential for agonist-induced calcium flux and its internalization into cells via an OTR-mediated endocytosis.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
219
|
Belliveau NM, Footer MJ, Platenkamp A, Kim H, Eustis TE, Theriot JA. Galvanin is an electric-field sensor for directed cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614580. [PMID: 39386424 PMCID: PMC11463530 DOI: 10.1101/2024.09.23.614580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Directed cell migration is critical for the rapid response of immune cells, such as neutrophils, following tissue injury or infection. Endogenous electric fields, generated by the disruption of the transepithelial potential across the skin, help to guide the movement of immune and skin cells toward the wound site. However, the mechanisms by which cells sense these physical cues remain largely unknown. Through a CRISPR-based screen, we identified Galvanin, a previously uncharacterized single-pass transmembrane protein that is required for human neutrophils to change their direction of migration in response to an applied electric field. Our results indicate that Galvanin rapidly relocalizes to the anodal side of a cell on exposure to an electric field, and that the net charge on its extracellular domain is necessary and sufficient to drive this relocalization. The spatial pattern of neutrophil protrusion and retraction changes immediately upon Galvanin relocalization, suggesting that it acts as a direct sensor of the electric field that then transduces spatial information about a cell's electrical environment to the migratory apparatus. The apparent mechanism of cell steering by sensor relocalization represents a new paradigm for directed cell migration.
Collapse
Affiliation(s)
- Nathan M. Belliveau
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Matthew J. Footer
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Amy Platenkamp
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Heonsu Kim
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Tara E. Eustis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A. Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
220
|
Peng B, Bartkowiak K, Song F, Nissen P, Schlüter H, Siebels B. Hypoxia-Induced Adaptations of N-Glycomes and Proteomes in Breast Cancer Cells and Their Secreted Extracellular Vesicles. Int J Mol Sci 2024; 25:10216. [PMID: 39337702 PMCID: PMC11432262 DOI: 10.3390/ijms251810216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The hypoxic tumor microenvironment significantly impacts cellular behavior and intercellular communication, with extracellular vesicles (EVs) playing a crucial role in promoting angiogenesis, metastasis, and host immunosuppression, and presumed cancer progression and metastasis are closely associated with the aberrant surface N-glycan expression in EVs. We hypothesize that hypoxic tumors synthesize specific hypoxia-induced N-glycans in response to or as a consequence of hypoxia. This study utilized nano-LC-MS/MS to integrate quantitative proteomic and N-glycomic analyses of both cells and EVs derived from the MDA-MB-231 breast cancer cell line cultured under normoxic and hypoxic conditions. Whole N-glycome and proteome profiling revealed that hypoxia has an impact on the asparagine N-linked glycosylation patterns and on the glycolysis/gluconeogenesis proteins in cells in terms of altered N-glycosylation for their adaptation to low-oxygen conditions. Distinct N-glycan types, high-mannose glycans like Man3 and Man9, were highly abundant in the hypoxic cells. On the other hand, alterations in the sialylation and fucosylation patterns were observed in the hypoxic cells. Furthermore, hypoxia-induced EVs exhibit a signature consisting of mono-antennary structures and specific N-glycans (H4N3F1S2, H3N3F1S0, and H7N4F3S2; H8N4F1S0 and H8N6F1S2), which are significantly associated with poor prognoses for breast tumors, presumably altering the interactions within the tumor microenvironment to promote tumorigenesis and metastasis. Our findings provide an overview of the N-glycan profiles, particularly under hypoxic conditions, and offer insights into the potential biomarkers for tracking tumor microenvironment dynamics and for developing precision medicine approaches in oncology.
Collapse
Affiliation(s)
- Bojia Peng
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Kai Bartkowiak
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Paula Nissen
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Bente Siebels
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| |
Collapse
|
221
|
Compañón I, Ballard CJ, Lira-Navarrete E, Santos T, Monaco S, Muñoz-García JC, Delso I, Angulo J, Gerken TA, Schjoldager KT, Clausen H, Tejero T, Merino P, Corzana F, Hurtado-Guerrero R, Ghirardello M. Rational Design of Dual-Domain Binding Inhibitors for N-Acetylgalactosamine Transferase 2 with Improved Selectivity over the T1 and T3 Isoforms. JACS AU 2024; 4:3649-3656. [PMID: 39328774 PMCID: PMC11423303 DOI: 10.1021/jacsau.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
The GalNAc-transferase (GalNAc-T) family, consisting of 20 isoenzymes, regulates the O-glycosylation process of mucin glycopeptides by transferring GalNAc units to serine/threonine residues. Dysregulation of specific GalNAc-Ts is associated with various diseases, making these enzymes attractive targets for drug development. The development of inhibitors is key to understanding the implications of GalNAc-Ts in human diseases. However, developing selective inhibitors for individual GalNAc-Ts represents a major challenge due to shared structural similarities among the isoenzymes and some degree of redundancy among the natural substrates. Herein, we report the development of a GalNAc-T2 inhibitor with higher potency compared to those of the T1 and T3 isoforms. The most promising candidate features bivalent GalNAc and thiophene moieties on a peptide chain, enabling binding to both the lectin and catalytic domains of the enzyme. The binding mode was confirmed by competitive saturation transfer difference NMR experiments and validated through molecular dynamics simulations. The inhibitor demonstrated an IC50 of 21.4 μM for GalNAc-T2, with 8- and 32-fold higher selectivity over the T3 and T1 isoforms, respectively, representing a significant step forward in the synthesis of specific GalNAc-T inhibitors tailored to the unique structural features of the targeted isoform.
Collapse
Affiliation(s)
- Ismael Compañón
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja, Universidad
de La Rioja, Logroño 26006, Spain
| | - Collin J. Ballard
- Department
of Biochemistry, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, Ohio 44106, United States
| | - Erandi Lira-Navarrete
- Department
of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen
Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tanausú Santos
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja, Universidad
de La Rioja, Logroño 26006, Spain
| | - Serena Monaco
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
| | - Juan C. Muñoz-García
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
- Instituto
de Investigaciones Químicas, Consejo
Superior de Investigaciones Científicas and Universidad de
Sevilla, Avenida Américo
Vespucio, 49, Sevilla 41092, Spain
| | - Ignacio Delso
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
| | - Jesus Angulo
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
- Instituto
de Investigaciones Químicas, Consejo
Superior de Investigaciones Científicas and Universidad de
Sevilla, Avenida Américo
Vespucio, 49, Sevilla 41092, Spain
| | - Thomas A. Gerken
- Department
of Biochemistry, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, Ohio 44106, United States
- Departments
of Biochemistry and Chemistry, Case Western
Reserve University, 2109
Adelbert Rd, Cleveland, Ohio 44106, United States
| | - Katrine T. Schjoldager
- Department
of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen
Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Henrik Clausen
- Department
of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen
Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tomás Tejero
- Department
of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
- Institute
of Chemical Synthesis and Homogeneous Catalysis, University of Zaragoza-CSIC, Zaragoza 50009, Spain
| | - Pedro Merino
- Department
of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
- Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza 50018, Spain
| | - Francisco Corzana
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja, Universidad
de La Rioja, Logroño 26006, Spain
| | - Ramon Hurtado-Guerrero
- Department
of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen
Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
- Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza 50018, Spain
- Fundación ARAID, Zaragoza 50018, Spain
| | - Mattia Ghirardello
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja, Universidad
de La Rioja, Logroño 26006, Spain
| |
Collapse
|
222
|
Unione L, Jiménez-Barbero J. The power lies in the glycans. eLife 2024; 13:e102427. [PMID: 39302337 PMCID: PMC11415072 DOI: 10.7554/elife.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.
Collapse
Affiliation(s)
- Luca Unione
- Center for Cooperative Research in Biosciences, Basque Research and Technology AllianceDerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences, Basque Research and Technology AllianceDerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque CountryLeioaSpain
- Centro de Investigacion Biomedica En Red de Enfermedades RespiratoriasMadridSpain
| |
Collapse
|
223
|
Yang W, Ramadan S, Zu Y, Sun M, Huang X, Yu B. Chemical synthesis and functional evaluation of glycopeptides and glycoproteins containing rare glycosyl amino acid linkages. Nat Prod Rep 2024; 41:1403-1440. [PMID: 38888170 DOI: 10.1039/d4np00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.
Collapse
Affiliation(s)
- Weizhun Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Yan Zu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Mengxia Sun
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
224
|
Obón-Santacana M, Moratalla-Navarro F, Guinó E, Carreras-Torres R, Díez-Obrero V, Bars-Cortina D, Ibáñez-Sanz G, Rodríguez-Alonso L, Mata A, García-Rodríguez A, Devall M, Casey G, Li L, Moreno V. Diet Impacts on Gene Expression in Healthy Colon Tissue: Insights from the BarcUVa-Seq Study. Nutrients 2024; 16:3131. [PMID: 39339731 PMCID: PMC11434945 DOI: 10.3390/nu16183131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Introduction: The global rise of gastrointestinal diseases, including colorectal cancer and inflammatory bowel diseases, highlights the need to understand their causes. Diet is a common risk factor and a crucial regulator of gene expression, with alterations observed in both conditions. This study aims to elucidate the specific biological mechanisms through which diet influences the risk of bowel diseases. (2) Methods: We analyzed data from 436 participants from the BarcUVa-Seq population-based cross-sectional study utilizing gene expression profiles (RNA-Seq) from frozen colonic mucosal biopsies and dietary information from a semi-quantitative food frequency questionnaire. Dietary variables were evaluated based on two dietary patterns and as individual variables. Differential expression gene (DEG) analysis was performed for each dietary factor using edgeR. Protein-protein interaction (PPI) analysis was conducted with STRINGdb v11 for food groups with more than 10 statistically significant DEGs, followed by Reactome-based enrichment analysis for the resulting networks. (3) Results: Our findings reveal that food intake, specifically the consumption of blue fish, alcohol, and potatoes, significantly influences gene expression in the colon of individuals without tumor pathology, particularly in pathways related to DNA repair, immune system function, and protein glycosylation. (4) Discussion: These results demonstrate how these dietary components may influence human metabolic processes and affect the risk of bowel diseases.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Department of Gastroenterology, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, 17190 Salt, Girona, Spain
| | - Virginia Díez-Obrero
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - David Bars-Cortina
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Ibáñez-Sanz
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Rodríguez-Alonso
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Alfredo Mata
- Digestive System Service, Moisés Broggi Hospital, 08970 Sant Joan Despí, Spain
| | - Ana García-Rodríguez
- Endoscopy Unit, Digestive System Service, Viladecans Hospital-IDIBELL, 08840 Viladecans, Barcelona, Spain
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Graham Casey
- Department of Genome Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
225
|
Shu T, Zhang Y, Sun T, Zhu Y. Polypeptide N-Acetylgalactosaminyl transferase 14 is a novel mediator in pancreatic β-cell function and growth. Mol Cell Endocrinol 2024; 591:112269. [PMID: 38763428 DOI: 10.1016/j.mce.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Polypeptide N-Acetylgalactosaminyl transferase 14 (GALNT14) plays important roles in cancer progression and chemotherapy response. Here, we show that GALNT14 is highly expressed in pancreatic β cells and regulates β cell function and growth. We found that the expression level of Ganlt14 was significantly decreased in the primary islets from three rodent type-2 diabetic models. Single-Cell sequencing defined that Galnt14 was mainly expressed in β cells of mouse islets. Galnt14 knockout (G14KO) INS-1 cell line, constructed by using CRISPR/Cas9 technology were growth normal, but showed blunt shape, and increased basal insulin secretion. Combined proteomics and glycoproteomics demonstrated that G14KO altered cell-to-cell junctions, communication, and adhesion. Insulin receptor (IR) and IGF1-1R were indirectly confirmed for GALNT14 substrates, contributed to diminished IGF1-induced p-AKT levels and cell growth in G14KO cells. Overall, this study uncovers that GALNT14 is a novel modulator in regulating β cells biology, providing a missing link of β cells O-glycosylation to diabetes development.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Central Laboratory, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
226
|
Xu Y, Montgomery J. Synthesis of 2-Amino-2-deoxy Sugars via Boron-Catalyzed Coupling of Glycosyl Fluorides and Silyl Ether Acceptors. Org Lett 2024; 26:7474-7478. [PMID: 39185923 PMCID: PMC11407749 DOI: 10.1021/acs.orglett.4c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Although aminosugars are important components in a variety of bioactive molecules, their stereoselective formation is made challenging by the Lewis basic nature of amino substituents. Additionally, the use of N-acyl protecting groups is often problematic due to the competing formation of oxazolines during the glycosylation of 2-aminosugar derivatives. Herein, we report a boron-catalyzed strategy utilizing silyl ether glycosyl acceptors and 2-aminosugar donors that employs the 2,2,2-trichloroethoxycarbonyl (Troc) protecting group for the C2 amino functionality in glycosyl fluorides. This modification allows for operationally simple room-temperature glycosylations and features a rapid reaction profile that addresses some of the limitations in the synthesis of 2-amino-2-deoxy sugar-containing glycosides. Tailoring the order of reactivity of the silyl acceptors enables one-pot iterative glycosylations, thus streamlining the synthesis of complex oligosaccharides while allowing fewer intermediates and purification steps.
Collapse
Affiliation(s)
- Yishu Xu
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
227
|
Ramström M, Lavén M, Amini A, Holst BS. Pregnancy-related changes in the canine serum N-glycosylation pattern studied by Rapifluor HILIC-UPLC-FLR-MS. Sci Rep 2024; 14:20861. [PMID: 39242599 PMCID: PMC11379866 DOI: 10.1038/s41598-024-71352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Canine reproduction differs from that of many other domestic animals, and increased knowledge on biochemical changes during canine pregnancy is important for investigations of infertility or subfertility. The total glycosylation pattern, i.e., the glycome, of body fluids reflects cellular status in health and disease. The aim of the present pilot study was to investigate pregnancy-related changes of the serum N-glycome in bitches. A method based on Rapifluor HILIC-UPLC-FLR-MS was optimized and applied for analysis and quantification of N-glycans in canine serum. Serum samples from six pregnant and five non-pregnant bitches, collected at four well-defined time points, were included. The levels of sialylated and galactosylated complex glycans were significantly elevated in serum from pregnant bitches, consistent with previous reports on human pregnancy. The levels of fucosylated and agalactosylated glycans decreased significantly in pregnant dogs. In non-pregnant dogs, the glycosylation pattern did not change during the cycle. Pregnancy is an inflammatory state, but our findings during canine pregnancy are quite the opposite to changes that have previously been described for dogs with a known parasitic infection. Evaluation of the canine glycome may thus be valuable in studies of canine pregnancy, possibly differing inflammatory changes related to pregnancy to those caused by an infection.
Collapse
Affiliation(s)
| | - Martin Lavén
- Swedish Medical Products Agency, P. O. Box 26, 751 03, Uppsala, Sweden
| | - Ahmad Amini
- Swedish Medical Products Agency, P. O. Box 26, 751 03, Uppsala, Sweden
| | - Bodil Ström Holst
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P. O. Box 7054, 750 07, Uppsala, Sweden.
| |
Collapse
|
228
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
229
|
Feng Y, Sun L, Dang X, Liu D, Liao Z, Yao J, Zhang Y, Deng Z, Li J, Zhao M, Liu F. Aberrant glycosylation in schizophrenia: insights into pathophysiological mechanisms and therapeutic potentials. Front Pharmacol 2024; 15:1457811. [PMID: 39286629 PMCID: PMC11402814 DOI: 10.3389/fphar.2024.1457811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder characterized by cognitive, affective, and social dysfunction, resulting in hallucinations, delusions, emotional blunting, and disordered thinking. In recent years, proteomics has been increasingly influential in SCZ research. Glycosylation, a key post-translational modification, can alter neuronal stability and normal signaling in the nervous system by affecting protein folding, stability, and cellular signaling. Recent research evidence suggests that abnormal glycosylation patterns exist in different brain regions in autopsy samples from SCZ patients, and that there are significant differences in various glycosylation modification types and glycosylation modifying enzymes. Therefore, this review explores the mechanisms of aberrant modifications of N-glycosylation, O-glycosylation, glycosyltransferases, and polysialic acid in the brains of SCZ patients, emphasizing their roles in neurotransmitter receptor function, synaptic plasticity, and neural adhesion. Additionally, the effects of antipsychotic drugs on glycosylation processes and the potential for glycosylation-targeted therapies are discussed. By integrating these findings, this review aims to provide a comprehensive perspective to further understand the role of aberrant glycosylation modifications in the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Yanchen Feng
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziqi Deng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinyao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Feixiang Liu
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
230
|
Miki T, Yamamoto S, Liu C, Torikai K, Kinoshita M, Matsumori N, Kawai T. Highly sensitive two-dimensional profiling of N-linked glycans by hydrophilic interaction liquid chromatography and dual stacking capillary gel electrophoresis. Anal Chim Acta 2024; 1320:342990. [PMID: 39142768 DOI: 10.1016/j.aca.2024.342990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND N-Glycosylation is one of the most important post-translational modifications in proteins. As the N-glycan profiles in biological samples are diverse and change according to the pathological condition, various profiling methods have been developed, such as liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry. However, conventional analytical methods have limitations in sensitivity and/or resolution, hindering the discovery of minor but specific N-glycans that are important both in the basic glycobiology research and in the medical application as biomarkers. Therefore, a highly sensitive and high-resolution N-glycan profiling method is required. RESULTS In this study, we developed a novel two-dimensional (2D) separation system, which couples hydrophilic interaction liquid chromatography (HILIC) with capillary gel electrophoresis (CGE) via large-volume dual preconcentration by isotachophoresis and stacking (LDIS). Owing to the efficient preconcentration efficiency of LDIS, limit of detection reached 12 pM (60 amol, S/N = 3) with good calibration curve linearity (R2 > 0.999) in the 2D analysis of maltoheptaose. Finally, 2D profiling of N-glycans obtained from standard glycoproteins and cell lysates were demonstrated. High-resolution 2D profiles were successfully obtained by data alignment using triple internal standards. N-glycans were well distributed on the HILIC/CGE 2D plane based on the glycan size, number of sialic acids, linkage type, and so on. As a result, specific minor glycans were successfully identified in HepG2 and HeLa cell lysates. SIGNIFICANCE AND NOVELTY In conclusion, the HILIC/CGE 2D analysis method showed sufficient sensitivity and resolution for identifying minor but specific N-glycans from complicated cellular samples, indicating the potential as a next-generation N-glycomics tool. Our novel approach for coupling LC and CE can also dramatically improve the sensitivity in other separation modes, which can be a new standard of 2D bioanalysis applicable not only to glycans, but also to other diverse biomolecules such as metabolites, proteins, and nucleic acids.
Collapse
Affiliation(s)
- Takaya Miki
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Chenchen Liu
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Torikai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Faculty of Chemistry, National University of Uzbekistan named after Mirzo Ulugbek, 4 University Str., Tashkent, 100174, Uzbekistan
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Kawai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; RIKEN Center for Biosystems Dynamics Research, 6-2-4 Furuedai, Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
231
|
Wang Y, Zhang P, Luo Z, Huang C. Insights into the role of glycosyltransferase in the targeted treatment of gastric cancer. Biomed Pharmacother 2024; 178:117194. [PMID: 39137647 DOI: 10.1016/j.biopha.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Yueling Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengshan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
232
|
Novak J, Reily C, Steers NJ, Schumann T, Rizk DV, Julian BA, Kiryluk K, Gharavi AG, Green TJ. Emerging Biochemical and Immunologic Mechanisms in the Pathogenesis of IgA Nephropathy. Semin Nephrol 2024; 44:151565. [PMID: 40087124 PMCID: PMC11972156 DOI: 10.1016/j.semnephrol.2025.151565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
IgA nephropathy is a mesangioproliferative glomerular disease with significant morbidity and mortality. Most patients with IgA nephropathy develop kidney failure in their lifetime, reducing their life expectancy by a decade. Since its first description in 1968, it has been established that kidneys of IgA nephropathy patients are injured as "innocent bystanders" by nephritogenic IgA1-containing immune complexes. Results from clinical, biochemical, immunologic, and genetic studies suggest a multistep pathogenetic mechanism. In genetically predisposed individuals, this process results in formation of circulating immune complexes due to the binding of IgG/IgA autoantibodies to the polymeric IgA1 molecules with incomplete O-glycosylation. This event is followed by the addition of other proteins, such as complement C3, resulting in the formation of nephritogenic immune complexes. These complexes are not effectively removed from the circulation, and some of them pass through the fenestration of glomerular endothelial cells to enter the mesangial space and activate mesangial cells. It is thought that the process is initiated by soluble immune complexes and that their accumulation results in the formation of immunodeposits that further amplify glomerular injury. Here we summarize current understanding of the pathogenesis of IgA nephropathy and discuss experimental model systems that can inform development of new therapeutic strategies and targets.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL.
| | - Colin Reily
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL; Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | | | - Dana V Rizk
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
233
|
Novak J. Pathogenesis of IgA nephropathy: Omics data inform glycomedicine. Nephrology (Carlton) 2024; 29 Suppl 2:18-22. [PMID: 39327757 PMCID: PMC11441619 DOI: 10.1111/nep.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
234
|
Jonny J, Larasati AD, Ramadhani BP, Hernowo BA, Pasiak TF. The role of intravenous glutamine administration in critical care patients with acute kidney injury: a narrative review. EMERGENCY AND CRITICAL CARE MEDICINE 2024; 4:117-125. [DOI: 10.1097/ec9.0000000000000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
The kidneys are complex organs responsible for waste removal and various regulatory functions. Critically ill patients often experience acute kidney injury (AKI). Although renal replacement therapy is used to manage AKI, nutritional therapy is crucial. Glutamine, an amino acid involved in cellular functions, has potential benefits when administered intravenously to critically ill patients. This administration is associated with reduced mortality rates, infectious complications, and hospitalization duration. However, its use in patients with AKI remains controversial. Glutamine is used by various organs, including the kidneys, and its metabolism affects several important pathways. Intravenous glutamine supplementation at specific doses can improve blood marker levels and restore plasma glutamine concentrations. Moreover, this supplementation reduces infections, enhances immune responses, decreases disease severity scores, and reduces complications in critically ill patients. However, caution is advised in patients with multiple organ failure, particularly AKI, as high doses of glutamine may increase mortality rates. Hyperglutaminemia can have adverse effects. Monitoring and appropriate dosing can help to mitigate these risks. Kidneys rely on glutamine for various essential functions. Thus, the use of intravenous glutamine in critically ill patients with AKI remains controversial. Despite its potential benefits in terms of infection reduction, immunomodulation, and improved outcomes, careful consideration of the patient’s condition, dosage, and treatment duration is necessary. Further research is needed to establish optimal guidelines for glutamine administration in this patient population.
Collapse
Affiliation(s)
| | - Astrid Devina Larasati
- Faculty of Medicine of the Jakarta Veteran National Development University, DKI Jakarta, Indonesia
| | | | | | - Taufiq Fredrik Pasiak
- Faculty of Medicine of the Jakarta Veteran National Development University, DKI Jakarta, Indonesia
| |
Collapse
|
235
|
Melrose J. Dystroglycan-HSPG interactions provide synaptic plasticity and specificity. Glycobiology 2024; 34:cwae051. [PMID: 39223703 PMCID: PMC11368572 DOI: 10.1093/glycob/cwae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This study examined the roles of the laminin and proteoglycan receptor dystroglycan (DG) in extracellular matrix stabilization and cellular mechanosensory processes conveyed through communication between the extracellular matrix (ECM) and cytoskeleton facilitated by DG. Specific functional attributes of HS-proteoglycans (HSPGs) are conveyed through interactions with DG and provide synaptic specificity through diverse interactions with an extensive range of cell attachment and adaptor proteins which convey synaptic plasticity. HSPG-DG interactions are important in phototransduction and neurotransduction and facilitate retinal bipolar-photoreceptor neuronal signaling in vision. Besides synaptic stabilization, HSPG-DG interactions also stabilize basement membranes and the ECM and have specific roles in the assembly and function of the neuromuscular junction. This provides neuromuscular control of muscle systems that control conscious body movement as well as essential autonomic control of diaphragm, intercostal and abdominal muscles and muscle systems in the face, mouth and pharynx which assist in breathing processes. DG is thus a multifunctional cell regulatory glycoprotein receptor and regulates a diverse range of biological and physiological processes throughout the human body. The unique glycosylation of the αDG domain is responsible for its diverse interactions with ECM components in cell-ECM signaling. Cytoskeletal cell regulatory switches assembled by the βDG domain in its role as a nuclear scaffolding protein respond to such ECM cues to regulate cellular behavior and tissue homeostasis thus DG has fascinating and diverse roles in health and disease.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
236
|
Aryal RP, Noel M, Zeng J, Matsumoto Y, Sinard R, Waki H, Erger F, Reusch B, Beck BB, Cummings RD. Cosmc regulates O-glycan extension in murine hepatocytes. Glycobiology 2024; 34:cwae069. [PMID: 39216105 PMCID: PMC11398974 DOI: 10.1093/glycob/cwae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galβ1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Rachael Sinard
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Hannah Waki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
237
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
238
|
Li HM, Qiu CS, Du LY, Tang XL, Liao DQ, Xiong ZY, Lai SM, Huang HX, Kuang L, Zhang BY, Li ZH. Causal Association between Circulating Metabolites and Dementia: A Mendelian Randomization Study. Nutrients 2024; 16:2879. [PMID: 39275195 PMCID: PMC11397200 DOI: 10.3390/nu16172879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
The causal association of circulating metabolites with dementia remains uncertain. We assessed the causal association of circulating metabolites with dementia utilizing Mendelian randomization (MR) methods. We performed univariable MR analysis to evaluate the associations of 486 metabolites with dementia, Alzheimer's disease (AD), and vascular dementia (VaD) risk. For secondary validation, we replicated the analyses using an additional dataset with 123 metabolites. We observed 118 metabolites relevant to the risk of dementia, 59 of which were lipids, supporting the crucial role of lipids in dementia pathogenesis. After Bonferroni adjustment, we identified nine traits of HDL particles as potential causal mediators of dementia. Regarding dementia subtypes, protective effects were observed for epiandrosterone sulfate on AD (OR = 0.60, 95% CI: 0.48-0.75) and glycoproteins on VaD (OR = 0.89, 95% CI: 0.83-0.95). Bayesian model averaging MR (MR-BMA) analysis was further conducted to prioritize the predominant metabolites for dementia risk, which highlighted the mean diameter of HDL particles and the concentration of very large HDL particles as the predominant protective factors against dementia. Moreover, pathway analysis identified 17 significant and 2 shared metabolic pathways. These findings provide support for the identification of promising predictive biomarkers and therapeutic targets for dementia.
Collapse
Affiliation(s)
- Hong-Min Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Cheng-Shen Qiu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li-Ying Du
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xu-Lian Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Dan-Qing Liao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Yuan Xiong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shu-Min Lai
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong-Xuan Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ling Kuang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bing-Yun Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
239
|
Diehl R, Chorghade RS, Keys AM, Alam MM, Early SA, Dugan AE, Krupkin M, Ribbeck K, Kulik HJ, Kiessling LL. CH-π Interactions Are Required for Human Galectin-3 Function. JACS AU 2024; 4:3028-3037. [PMID: 39211619 PMCID: PMC11350569 DOI: 10.1021/jacsau.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
Glycan-binding proteins, or lectins, recognize distinct structural elements of polysaccharides, to mediate myriad biological functions. Targeting glycan-binding proteins involved in human disease has been challenging due to an incomplete understanding of the molecular mechanisms that govern protein-glycan interactions. Bioinformatics and structural studies of glycan-binding proteins indicate that aromatic residues with the potential for CH-π interactions are prevalent in glycan-binding sites. However, the contributions of these CH-π interactions to glycan binding and their relevance in downstream function remain unclear. An emblematic lectin, human galectin-3, recognizes lactose and N-acetyllactosamine-containing glycans by positioning the electropositive face of a galactose residue over the tryptophan 181 (W181) indole forming a CH-π interaction. We generated a suite of galectin-3 W181 variants to assess the importance of these CH-π interactions to glycan binding and function. As determined experimentally and further validated with computational modeling, variants with smaller or less electron-rich aromatic side chains (W181Y, W181F, W181H) or sterically similar but nonaromatic residues (W181M, W181R) showed poor or undetectable binding to lactose and attenuated ability to bind mucins or agglutinate red blood cells. The latter functions depend on multivalent binding, highlighting that weakened CH-π interactions cannot be overcome by avidity. Two galectin-3 variants with disrupted hydrogen bonding interactions (H158A and E184A) showed similarly impaired lactose binding. Molecular simulations demonstrate that all variants have decreased binding orientation stability relative to native galectin-3. Thus, W181 collaborates with the endogenous hydrogen bonding network to enhance binding affinity for lactose, and abrogation of these CH-π interactions is as deleterious as eliminating key hydrogen bonding interactions. These findings underscore the critical roles of CH-π interactions in carbohydrate binding and lectin function and will aid the development of novel lectin inhibitors.
Collapse
Affiliation(s)
- Roger
C. Diehl
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Rajeev S. Chorghade
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Allison M. Keys
- Program
in Computational and Systems Biology, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Murshid Alam
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen A. Early
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Amanda E. Dugan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Miri Krupkin
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katharina Ribbeck
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Laura L. Kiessling
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- The Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Koch
Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
240
|
Wang S, Li H, Liu Y, Pang S, Qiao S, Su J, Wang S, Zhang Y. Connectivity Network Feature Sharing in Single-Cell RNA Sequencing Data Identifies Rare Cells. J Chem Inf Model 2024; 64:6596-6609. [PMID: 39096508 DOI: 10.1021/acs.jcim.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Single-cell RNA sequencing is a valuable technique for identifying diverse cell subtypes. A key challenge in this process is that the detection of rare cells is often missed by conventional methods due to low abundance and subtle features of these cells. To overcome this, we developed SCLCNF (Local Connectivity Network Feature Sharing in Single-Cell RNA sequencing), a novel approach that identifies rare cells by analyzing features uniquely expressed in these cells. SCLCNF creates a cellular connectivity network, considering how each cell relates to its neighbors. This network helps to pinpoint coexpression patterns unique to rare cells, utilizing a rarity score to confirm their presence. Our method performs better in detecting rare cells than existing techniques, offering enhanced robustness. It has proven to be effective in human gastrula data sets for accurately pinpointing rare cells, and in sepsis data sets where it uncovers previously unidentified rare cell populations.
Collapse
Affiliation(s)
- Shudong Wang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Hengxiao Li
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yahui Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Shanchen Pang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Sibo Qiao
- The College of Software, Tiangong University, Tianjin 300387, China
| | - Jionglong Su
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Shaoqiang Wang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
241
|
Goode EA, Orozco-Moreno M, Hodgson K, Nabilah A, Murali M, Peng Z, Merx J, Rossing E, Pijnenborg JFA, Boltje TJ, Wang N, Elliott DJ, Munkley J. Sialylation Inhibition Can Partially Revert Acquired Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2953. [PMID: 39272811 PMCID: PMC11393965 DOI: 10.3390/cancers16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer is a lethal solid malignancy and a leading cause of cancer-related deaths in males worldwide. Treatments, including radical prostatectomy, radiotherapy, and hormone therapy, are available and have improved patient survival; however, recurrence remains a huge clinical challenge. Enzalutamide is a second-generation androgen receptor antagonist that is used to treat castrate-resistant prostate cancer. Among patients who initially respond to enzalutamide, virtually all acquire secondary resistance, and an improved understanding of the mechanisms involved is urgently needed. Aberrant glycosylation, and, in particular, alterations to sialylated glycans, have been reported as mediators of therapy resistance in cancer, but a link between tumour-associated glycans and resistance to therapy in prostate cancer has not yet been investigated. Here, using cell line models, we show that prostate cancer cells with acquired resistance to enzalutamide therapy have an upregulation of the sialyltransferase ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) and increased levels of α2,6-sialylated N-glycans. Furthermore, using the sialyltransferase inhibitor P-SiaFNEtoc, we discover that acquired resistance to enzalutamide can be partially reversed by combining enzalutamide therapy with sialic acid blockade. Our findings identify a potential role for ST6GAL1-mediated aberrant sialylation in acquired resistance to enzalutamide therapy for prostate cancer and suggest that sialic acid blockade in combination with enzalutamide may represent a novel therapeutic approach in patients with advanced disease. Our study also highlights the potential to bridge the fields of cancer biology and glycobiology to develop novel combination therapies for prostate cancer.
Collapse
Affiliation(s)
- Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Amirah Nabilah
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Meera Murali
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jona Merx
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Emiel Rossing
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield S10 2TN, UK
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| |
Collapse
|
242
|
Takasaki T, Yamada M, Ikeda H, Fang Y, Sugiura R. Characterization of a valproic acid-sensitive mutant allele of the Golgi GDP-mannose transmembrane transporter Vrg4 in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2024; 2024. [PMID: 39247787 PMCID: PMC11380095 DOI: 10.17912/micropub.biology.001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Valproic acid (VPA) is a widely used drug for epilepsy. However, precise molecular mechanisms relevant to VPA's side effects remain elusive. This study identifies a VPA-sensitive mutant strain ( vas21 ) in fission yeast with a missense mutation (T256I) in the nucleotide sugar-binding motif of the GDP-mannose transporter Vrg4 . This mutation impairs protein glycosylation, as evidenced by altered acid phosphatase mobility. We also found that Vrg4 overexpression deteriorates cell growth. Our results highlight the role of Vrg4 in glycosylation and implicate impaired glycosylation as a potential mechanism underlying VPA sensitivity. The new allele of vrg4 will be useful in glycobiology and pharmacology.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Minami Yamada
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Haruka Ikeda
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Reiko Sugiura
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan
| |
Collapse
|
243
|
Xia Q, Perera HA, Bolarinho R, Piskulich ZA, Guo Z, Yin J, He H, Li M, Ge X, Cui Q, Ramström O, Yan M, Cheng JX. Click-free imaging of carbohydrate trafficking in live cells using an azido photothermal probe. SCIENCE ADVANCES 2024; 10:eadq0294. [PMID: 39167637 PMCID: PMC11338237 DOI: 10.1126/sciadv.adq0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Harini A. Perera
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
244
|
Nieto-Fabregat F, Lenza MP, Marseglia A, Di Carluccio C, Molinaro A, Silipo A, Marchetti R. Computational toolbox for the analysis of protein-glycan interactions. Beilstein J Org Chem 2024; 20:2084-2107. [PMID: 39189002 PMCID: PMC11346309 DOI: 10.3762/bjoc.20.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Protein-glycan interactions play pivotal roles in numerous biological processes, ranging from cellular recognition to immune response modulation. Understanding the intricate details of these interactions is crucial for deciphering the molecular mechanisms underlying various physiological and pathological conditions. Computational techniques have emerged as powerful tools that can help in drawing, building and visualising complex biomolecules and provide insights into their dynamic behaviour at atomic and molecular levels. This review provides an overview of the main computational tools useful for studying biomolecular systems, particularly glycans, both in free state and in complex with proteins, also with reference to the principles, methodologies, and applications of all-atom molecular dynamics simulations. Herein, we focused on the programs that are generally employed for preparing protein and glycan input files to execute molecular dynamics simulations and analyse the corresponding results. The presented computational toolbox represents a valuable resource for researchers studying protein-glycan interactions and incorporates advanced computational methods for building, visualising and predicting protein/glycan structures, modelling protein-ligand complexes, and analyse MD outcomes. Moreover, selected case studies have been reported to highlight the importance of computational tools in studying protein-glycan systems, revealing the capability of these tools to provide valuable insights into the binding kinetics, energetics, and structural determinants that govern specific molecular interactions.
Collapse
Affiliation(s)
- Ferran Nieto-Fabregat
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Angela Marseglia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| |
Collapse
|
245
|
Flender D, Vilenne F, Adams C, Boonen K, Valkenborg D, Baggerman G. Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39152539 DOI: 10.1002/mas.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.
Collapse
Affiliation(s)
- Daniel Flender
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- Health Unit, VITO, Mol, Belgium
| | - Frédérique Vilenne
- Health Unit, VITO, Mol, Belgium
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- ImmuneSpec, Niel, Belgium
| | - Dirk Valkenborg
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Geert Baggerman
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
- ImmuneSpec, Niel, Belgium
| |
Collapse
|
246
|
Xu Y, Liu Q, Chen CW, Wang Q, Du T, Yu R, Zhou Q, Yang D, Wang MW. Absence of PNET formation and normal longevity in a mouse model of Mahvash disease. Heliyon 2024; 10:e35362. [PMID: 39170309 PMCID: PMC11336617 DOI: 10.1016/j.heliyon.2024.e35362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mahvash disease, a rare autosomal recessive metabolic disorder characterized by biallelic loss-of-function mutations in the glucagon receptor gene (GCGR), induces significant pancreatic hyperglucagonemia, resulting in α-cell hyperplasia and occasional hypoglycemia. Utilizing CRISPR-Cas9 technology, we engineered a mouse model, designated as Gcgr V369M/V369M, harboring a homozygous V369M substitution in the glucagon receptor (GCGR). Although wild-type (WT) and Gcgr V369M/V369M mice exhibited no discernible difference in appearance or weight, adult Gcgr V369M/V369M mice, approximately 12 months of age, displayed a notable decrease in fasting blood glucose levels and elevated the levels of cholesterol and low-density lipoprotein-cholesterol. Moreover, plasma amino acid levels such as alanine (Ala), proline (Pro) and arginine (Arg) were elevated in Gcgr V369M/V369M mice contributing to α-cell proliferation and hyperglucagonemia. Despite sustained α-cell hyperplasia and increased circulating glucagon levels in Gcgr V369M/V369M mice, metabolic disparities between the two groups gradually waned with age accompanied by a reduction in α-cell hyperplasia. Throughout the lifespan of the mice (up to approximately 30 months), pancreatic neuroendocrine tumors (PNETs) did not manifest. This prolonged observation of metabolic alterations in Gcgr V369M/V369M mice furnishes valuable insights for a deeper comprehension of mild Mahvash disease in humans.
Collapse
Affiliation(s)
- Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chuan-Wei Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Qiuying Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyuan Du
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 570228, China
| |
Collapse
|
247
|
Visconti A, Rossi N, Bondt A, Ederveen AH, Thareja G, Koeleman CAM, Stephan N, Halama A, Lomax-Browne HJ, Pickering MC, Zhou XJ, Wuhrer M, Suhre K, Falchi M. The genetics and epidemiology of N- and O-immunoglobulin A glycomics. Genome Med 2024; 16:96. [PMID: 39123268 PMCID: PMC11312925 DOI: 10.1186/s13073-024-01369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Immunoglobulin (Ig) glycosylation modulates the immune response and plays a critical role in ageing and diseases. Studies have mainly focused on IgG glycosylation, and little is known about the genetics and epidemiology of IgA glycosylation. METHODS We generated, using a novel liquid chromatography-mass spectrometry method, the first large-scale IgA glycomics dataset in serum from 2423 twins, encompassing 71 N- and O-glycan species. RESULTS We showed that, despite the lack of a direct genetic template, glycosylation is highly heritable, and that glycopeptide structures are sex-specific, and undergo substantial changes with ageing. We observe extensive correlations between the IgA and IgG glycomes, and, exploiting the twin design, show that they are predominantly influenced by shared genetic factors. A genome-wide association study identified eight loci associated with both the IgA and IgG glycomes (ST6GAL1, ELL2, B4GALT1, ABCF2, TMEM121, SLC38A10, SMARCB1, and MGAT3) and two novel loci specifically modulating IgA O-glycosylation (C1GALT1 and ST3GAL1). Validation of our findings in an independent cohort of 320 individuals from Qatar showed that the underlying genetic architecture is conserved across ancestries. CONCLUSIONS Our study delineates the genetic landscape of IgA glycosylation and provides novel potential functional links with the aetiology of complex immune diseases, including genetic factors involved in IgA nephropathy risk.
Collapse
Affiliation(s)
- Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Center for Biostatistics, Epidemiology and Public Health, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Niccolò Rossi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Agnes Hipgrave Ederveen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gaurav Thareja
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nisha Stephan
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Anna Halama
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hannah J Lomax-Browne
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
248
|
Sun X, Chen B, Shan Y, Jian M, Wang Z. Lectin microarray based glycan profiling of exosomes for dynamic monitoring of colorectal cancer progression. Anal Chim Acta 2024; 1316:342819. [PMID: 38969421 DOI: 10.1016/j.aca.2024.342819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Exosomes, as emerging biomarkers in liquid biopsies in recent years, offer profound insights into cancer diagnostics due to their unique molecular signatures. The glycosylation profiles of exosomes have emerged as potential biomarkers, offering a novel and less invasive method for cancer diagnosis and monitoring. Colorectal cancer (CRC) represents a substantial global health challenge and burden. Thus there is a great need for the aberrant glycosylation patterns on the surface of CRC cell-derived exosomes, proposing them as potential biomarkers for tumor characterization. RESULTS The interactions of 27 lectins with exosomes from three CRC cell lines (SW480, SW620, HCT116) and one normal colon epithelial cell line (NCM460) have been analyzed by the lectin microarray. The result indicates that Ulex Europaeus Agglutinin I (UEA-I) exhibits high affinity and specificity towards exosomes derived from SW480 cells. The expression of glycosylation related genes within cells has been analyzed by high-throughput quantitative polymerase chain reaction (HT-qPCR). The experimental result of HT-qPCR is consistent with that of lectin microarray. Moreover, the limit of detection (LOD) of UEA-I microarray is calculated to be as low as 2.7 × 105 extracellular vehicles (EVs) mL-1 (three times standard deviation (3σ) of blank sample). The UEA-I microarray has been successfully utilized to dynamically monitor the progression of tumors in mice-bearing SW480 CRC subtype, applicable in tumor sizes ranging from 2 mm to 20 mm in diameter. SIGNIFICANCE The results reveal that glycan expression pattern of exosome is linked to specific CRC subtypes, and regulated by glycosyltransferase and glycosidase genes of mother cells. Our findings illuminate the potential of glycosylation molecules on the surface of exosomes as reliable biomarkers for diagnosis of tumor at early stage and monitoring of cancer progression.
Collapse
Affiliation(s)
- Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Bowen Chen
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Yongjie Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China; National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| |
Collapse
|
249
|
Wu Y, Zhang Z, Chen L, Sun S. Immunoglobulin G glycosylation and its alterations in aging-related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1221-1233. [PMID: 39126246 PMCID: PMC11399422 DOI: 10.3724/abbs.2024137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Immunoglobulin G (IgG) is an important serum glycoprotein and a major component of antibodies. Glycans on IgG affect the binding of IgG to the Fc receptor or complement C1q, which in turn affects the biological activity and biological function of IgG. Altered glycosylation patterns on IgG emerge as important biomarkers in the aging process and age-related diseases. Key aging-related alterations observed in IgG glycosylation include reductions in galactosylation and sialylation, alongside increases in agalactosylation, and bisecting GlcNAc. Understanding the role of IgG glycosylation in aging-related diseases offers insights into disease mechanisms and provides opportunities for the development of diagnostic and therapeutic strategies. This review summarizes five aspects of IgG: an overview of IgG, IgG glycosylation, IgG glycosylation with inflammation mediation, IgG glycan changes with normal aging, as well as the relevance of IgG glycan changes to aging-related diseases. This review provides a reference for further investigation of the regulatory mechanisms of IgG glycosylation in aging-related diseases, as well as for evaluating the potential of IgG glycosylation changes as markers of aging and aging-related diseases.
Collapse
Affiliation(s)
- Yongqi Wu
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Zhida Zhang
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Lin Chen
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Shisheng Sun
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| |
Collapse
|
250
|
Moon HJ, Luo Y, Chugh D, Zhao L. Human apolipoprotein E glycosylation and sialylation: from structure to function. Front Mol Neurosci 2024; 17:1399965. [PMID: 39169951 PMCID: PMC11335735 DOI: 10.3389/fnmol.2024.1399965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid β (Aβ) and downstream Aβ pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Yan Luo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Diksha Chugh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|