201
|
Xie H, Li W, Hu Y, Yang C, Lu J, Guo Y, Wen L, Tang F. De novo assembly of human genome at single-cell levels. Nucleic Acids Res 2022; 50:7479-7492. [PMID: 35819189 PMCID: PMC9303314 DOI: 10.1093/nar/gkac586] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.
Collapse
Affiliation(s)
- Haoling Xie
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Wen Li
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yuqiong Hu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Cheng Yang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jiansen Lu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yuqing Guo
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Lu Wen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| |
Collapse
|
202
|
Huang AY, Lee EA. Identification of Somatic Mutations From Bulk and Single-Cell Sequencing Data. FRONTIERS IN AGING 2022; 2:800380. [PMID: 35822012 PMCID: PMC9261417 DOI: 10.3389/fragi.2021.800380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Somatic mutations are DNA variants that occur after the fertilization of zygotes and accumulate during the developmental and aging processes in the human lifespan. Somatic mutations have long been known to cause cancer, and more recently have been implicated in a variety of non-cancer diseases. The patterns of somatic mutations, or mutational signatures, also shed light on the underlying mechanisms of the mutational process. Advances in next-generation sequencing over the decades have enabled genome-wide profiling of DNA variants in a high-throughput manner; however, unlike germline mutations, somatic mutations are carried only by a subset of the cell population. Thus, sensitive bioinformatic methods are required to distinguish mutant alleles from sequencing and base calling errors in bulk tissue samples. An alternative way to study somatic mutations, especially those present in an extremely small number of cells or even in a single cell, is to sequence single-cell genomes after whole-genome amplification (WGA); however, it is critical and technically challenging to exclude numerous technical artifacts arising during error-prone and uneven genome amplification in current WGA methods. To address these challenges, multiple bioinformatic tools have been developed. In this review, we summarize the latest progress in methods for identification of somatic mutations and the challenges that remain to be addressed in the future.
Collapse
Affiliation(s)
- August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, United States, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, United States, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
203
|
Manders F, van Boxtel R, Middelkamp S. The Dynamics of Somatic Mutagenesis During Life in Humans. FRONTIERS IN AGING 2022; 2:802407. [PMID: 35822044 PMCID: PMC9261377 DOI: 10.3389/fragi.2021.802407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
From conception to death, human cells accumulate somatic mutations in their genomes. These mutations can contribute to the development of cancer and non-malignant diseases and have also been associated with aging. Rapid technological developments in sequencing approaches in the last few years and their application to normal tissues have greatly advanced our knowledge about the accumulation of these mutations during healthy aging. Whole genome sequencing studies have revealed that there are significant differences in mutation burden and patterns across tissues, but also that the mutation rates within tissues are surprisingly constant during adult life. In contrast, recent lineage-tracing studies based on whole-genome sequencing have shown that the rate of mutation accumulation is strongly increased early in life before birth. These early mutations, which can be shared by many cells in the body, may have a large impact on development and the origin of somatic diseases. For example, cancer driver mutations can arise early in life, decades before the detection of the malignancy. Here, we review the recent insights in mutation accumulation and mutagenic processes in normal tissues. We compare mutagenesis early and later in life and discuss how mutation rates and patterns evolve during aging. Additionally, we outline the potential impact of these mutations on development, aging and disease.
Collapse
Affiliation(s)
- Freek Manders
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
204
|
Galeota-Sprung B, Sniegowski P. Aging: Lifespan and the evolution of somatic mutation rates. Curr Biol 2022; 32:R753-R755. [PMID: 35820389 DOI: 10.1016/j.cub.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new study finds an inverse correlation between lifespan and somatic mutation rate in mammals. This suggests an evolutionary relationship between aging and somatic mutation rates, perhaps mediated by selection against noncancerous selfish lineages.
Collapse
Affiliation(s)
- Ben Galeota-Sprung
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19063, USA.
| | - Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19063, USA
| |
Collapse
|
205
|
Robinson PS, Thomas LE, Abascal F, Jung H, Harvey LMR, West HD, Olafsson S, Lee BCH, Coorens THH, Lee-Six H, Butlin L, Lander N, Truscott R, Sanders MA, Lensing SV, Buczacki SJA, Ten Hoopen R, Coleman N, Brunton-Sim R, Rushbrook S, Saeb-Parsy K, Lalloo F, Campbell PJ, Martincorena I, Sampson JR, Stratton MR. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat Commun 2022; 13:3949. [PMID: 35803914 PMCID: PMC9270427 DOI: 10.1038/s41467-022-31341-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequence normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 4-fold in all individuals, except for one showing a 31-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C > A changes. Different mutation rates and signatures between individuals are likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.
Collapse
Affiliation(s)
- Philip S Robinson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laura E Thomas
- Institute of Life Science, Swansea University, Swansea, SA28PP, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Hyunchul Jung
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Hannah D West
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Sigurgeir Olafsson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Bernard C H Lee
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Hereditary Gastrointestinal Cancer Genetic Diagnosis Laboratory, Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Henry Lee-Six
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Laura Butlin
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Nicola Lander
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Rebekah Truscott
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Haematology, Erasmus University Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Stefanie V Lensing
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Simon J A Buczacki
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simon Rushbrook
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford Road, Manchester, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
| |
Collapse
|
206
|
Fowler JC, Jones PH. Somatic Mutation: What Shapes the Mutational Landscape of Normal Epithelia? Cancer Discov 2022; 12:1642-1655. [PMID: 35397477 PMCID: PMC7613026 DOI: 10.1158/2159-8290.cd-22-0145] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Epithelial stem cells accumulate mutations throughout life. Some of these mutants increase competitive fitness and may form clones that colonize the stem cell niche and persist to acquire further genome alterations. After a transient expansion, mutant stem cells must revert to homeostatic behavior so normal tissue architecture is maintained. Some positively selected mutants may promote cancer development, whereas others inhibit carcinogenesis. Factors that shape the mutational landscape include wild-type and mutant stem cell dynamics, competition for the niche, and environmental exposures. Understanding these processes may give new insight into the basis of cancer risk and opportunities for cancer prevention. SIGNIFICANCE Recent advances in sequencing have found somatic mutations in all epithelial tissues studied to date. Here we review how the mutational landscape of normal epithelia is shaped by clonal competition within the stem cell niche combined with environmental exposures. Some of the selected mutant genes are oncogenic, whereas others may be inhibitory of transformation. Discoveries in this area leave many open questions, such as the definition of cancer driver genes, the mechanisms by which tissues constrain a high proportion of oncogenic mutant cells, and whether clonal fitness can be modulated to decrease cancer risk.
Collapse
Affiliation(s)
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
207
|
Abstract
The number of (TTAGGG)n repeats at the ends of chromosomes is highly variable between individual chromosomes, between different cells and between species. Progressive loss of telomere repeats limits the proliferation of pre-malignant human cells but also contributes to aging by inducing apoptosis and senescence in normal cells. Despite enormous progress in understanding distinct pathways that result in loss and gain of telomeric DNA in different cell types, many questions remain. Further studies are needed to delineate the role of damage to telomeric DNA, replication errors, chromatin structure, liquid-liquid phase transition, telomeric transcripts (TERRA) and secondary DNA structures such as guanine quadruplex structures, R-loops and T-loops in inducing gains and losses of telomere repeats in different cell types. Limitations of current telomere length measurements techniques and differences in telomere biology between species and different cell types complicate generalizations about the role of telomeres in aging and cancer. Here some of the factors regulating the telomere length in embryonic and adult cells in mammals are discussed from a mechanistic and evolutionary perspective.
Collapse
Affiliation(s)
- Peter Lansdorp
- Terry Fox Laboratory, British Columbia (BC) Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Peter Lansdorp,
| |
Collapse
|
208
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
209
|
Aitken RJ. Role of sperm DNA damage in creating de-novo mutations in human offspring: the 'post-meiotic oocyte collusion' hypothesis. Reprod Biomed Online 2022; 45:109-124. [PMID: 35513995 DOI: 10.1016/j.rbmo.2022.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
Abstract
Spermatogonial stem cells exhibit a low level of spontaneous mutation that is heavily impacted by paternal age via mechanisms that appear to involve the aberrant repair of DNA damage. This background de-novo mutation frequency can be increased 1000-fold by mutations affecting a key signal transduction pathway that confers upon its descendants a selective advantage, leading to clonal expansion and nests of mutant germ cells in the testes of ageing males. This 'selfish selection' model effectively explains the origin of several dominant developmental disorders, such as achondroplasia and Apert syndrome, but cannot be generalized to account for the majority of de-novo mutations where no selective advantage is apparent. In this article, an additional germline mutation pathway is proposed that recognizes the unique susceptibility of spermatozoa to DNA damage and the importance of the oocyte in repairing these lesions prior to the S phase of the first mitotic division. Any deficiency or inaccuracy on the part of the oocyte in effecting this repair process has the potential to fix paternal DNA damage as a de-novo mutation in the embryo. Such a mechanism supports emerging data indicating that assisted conception procedures may enhance the mutational load carried by ART offspring.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, College of Engineering, Science and Environment, The University of Newcastle, Callaghan New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights New South Wales, Australia.
| |
Collapse
|
210
|
Gabbutt C, Wright NA, Baker A, Shibata D, Graham TA. Lineage tracing in human tissues. J Pathol 2022; 257:501-512. [PMID: 35415852 PMCID: PMC9253082 DOI: 10.1002/path.5911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 11/11/2022]
Abstract
The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Calum Gabbutt
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
- London Interdisciplinary Doctoral Training Programme (LIDo)LondonUK
| | - Nicholas A Wright
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ann‐Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| | - Darryl Shibata
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Trevor A Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| |
Collapse
|
211
|
Kostecka A, Nowikiewicz T, Olszewski P, Koczkowska M, Horbacz M, Heinzl M, Andreou M, Salazar R, Mair T, Madanecki P, Gucwa M, Davies H, Skokowski J, Buckley PG, Pęksa R, Śrutek E, Szylberg Ł, Hartman J, Jankowski M, Zegarski W, Tiemann-Boege I, Dumanski JP, Piotrowski A. High prevalence of somatic PIK3CA and TP53 pathogenic variants in the normal mammary gland tissue of sporadic breast cancer patients revealed by duplex sequencing. NPJ Breast Cancer 2022; 8:76. [PMID: 35768433 PMCID: PMC9243094 DOI: 10.1038/s41523-022-00443-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
The mammary gland undergoes hormonally stimulated cycles of proliferation, lactation, and involution. We hypothesized that these factors increase the mutational burden in glandular tissue and may explain high cancer incidence rate in the general population, and recurrent disease. Hence, we investigated the DNA sequence variants in the normal mammary gland, tumor, and peripheral blood from 52 reportedly sporadic breast cancer patients. Targeted resequencing of 542 cancer-associated genes revealed subclonal somatic pathogenic variants of: PIK3CA, TP53, AKT1, MAP3K1, CDH1, RB1, NCOR1, MED12, CBFB, TBX3, and TSHR in the normal mammary gland at considerable allelic frequencies (9 × 10-2- 5.2 × 10-1), indicating clonal expansion. Further evaluation of the frequently damaged PIK3CA and TP53 genes by ultra-sensitive duplex sequencing demonstrated a diversified picture of multiple low-level subclonal (in 10-2-10-4 alleles) hotspot pathogenic variants. Our results raise a question about the oncogenic potential in non-tumorous mammary gland tissue of breast-conserving surgery patients.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland.
| | - Tomasz Nowikiewicz
- Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum UMK, Bydgoszcz, Poland.
- Department of Breast Cancer and Reconstructive Surgery, Prof. F. Lukaszczyk Oncology Center, Bydgoszcz, Poland.
| | - Paweł Olszewski
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
| | - Monika Horbacz
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
| | - Monika Heinzl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Maria Andreou
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
| | - Renato Salazar
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Piotr Madanecki
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gucwa
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jarosław Skokowski
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | | | - Rafał Pęksa
- Department of Patomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Śrutek
- Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum UMK, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology, Prof. F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Perinatology, Gynaecology and Gynaecologic, Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
- MedTech Labs, Bioclinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Michał Jankowski
- Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum UMK, Bydgoszcz, Poland
| | - Wojciech Zegarski
- Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum UMK, Bydgoszcz, Poland
| | | | - Jan P Dumanski
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
212
|
Franco I, Eriksson M. Reverting to old theories of ageing with new evidence for the role of somatic mutations. Nat Rev Genet 2022; 23:645-646. [PMID: 35676537 DOI: 10.1038/s41576-022-00513-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Irene Franco
- Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
213
|
Guo Y, Yu D, Zhou K, Wang J, Lei D, Xu Z, Tang W, Wu M, Fang X, Shen J, Peng Z, Xiang J. The effect of hemolysis on quality control metrics for noninvasive prenatal testing. BMC Med Genomics 2022; 15:125. [PMID: 35659298 PMCID: PMC9167518 DOI: 10.1186/s12920-022-01280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Noninvasive prenatal testing (NIPT) is the testing of blood samples from pregnant women to screen for fetal risk of chromosomal disorders. Even though in vitro hemolysis of blood specimens is common in clinical laboratories, its influence on NIPT has not been well investigated. METHODS Peripheral blood samples were collected from 205 pregnant women and categorized according to the concentration of free hemoglobin in the plasma. After performing NIPT using massively parallel sequencing, the quality control metrics were analyzed and compared with samples that did not undergo hemolysis or samples redrawn from the same women. RESULTS The specimens were divided into four groups based on the concentration of free hemoglobin: Group I (0-1 g/L, n = 53), Group II (1-2 g/L, n = 97), Group III (2-4 g/L, n = 30), and Group IV (> 4 g/L, n = 25). There was no significant difference in the quality control metrics of clinical samples with slight or moderate hemolysis (Group II and III). However, samples with severe hemolysis (Group IV) showed a significantly increased rate of duplicated reads (duplication rate) and fetal fraction, as well as decreased library concentration compared with samples without hemolysis. Moreover, the increase in fetal fraction caused by hemolysis was confirmed by redrawing blood samples in Group IV. CONCLUSION For NIPT using massively parallel sequencing, samples with slight or moderate hemolysis (≤ 4 g/L) are acceptable. However, careful consideration should be taken regarding the use of severely hemolyzed samples (> 4 g/L), since they might increase the risk of test failure.
Collapse
Affiliation(s)
- Yaya Guo
- BGI College, Zhengzhou University, Zhengzhou, 450007, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Dandan Yu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Kaisu Zhou
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Jie Wang
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China
| | - Dongzhu Lei
- Center of Prenatal Diagnosis, Chenzhou No.1 People's Hospital, Chenzhou, 423000, China
| | - Zhenpeng Xu
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 430074, China
| | - Weijiang Tang
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 430074, China
| | - Miaofeng Wu
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xingxing Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiankun Shen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhiyu Peng
- BGI College, Zhengzhou University, Zhengzhou, 450007, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiale Xiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
214
|
Alekseenko A, Wang J, Barrett D, Pelechano V. OPUSeq simplifies detection of low-frequency DNA variants and uncovers fragmentase-associated artifacts. NAR Genom Bioinform 2022; 4:lqac048. [PMID: 35769342 PMCID: PMC9235115 DOI: 10.1093/nargab/lqac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Detection of low-frequency DNA variants (below 1%) is becoming increasingly important in biomedical research and clinical practice, but is challenging to do with standard sequencing approaches due to high error rates. The use of double-stranded unique molecular identifiers (dsUMIs) allows correction of errors by comparing reads arising from the same original DNA duplex. However, the implementation of such approaches is still challenging. Here, we present a novel method, one-pot dsUMI sequencing (OPUSeq), which allows incorporation of dsUMIs in the same reaction as the library PCR. This obviates the need for adapter pre-synthesis or additional enzymatic steps. OPUSeq can be incorporated into standard DNA library preparation approaches and coupled with hybridization target capture. We demonstrate successful error correction and detection of variants down to allele frequency of 0.01%. Using OPUSeq, we also show that the use of enzymatic fragmentation can lead to the appearance of spurious double-stranded variants, interfering with detection of variant fractions below 0.1%.
Collapse
Affiliation(s)
- Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden
| | - Jingwen Wang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden
| | - Donal Barrett
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 17165, Solna, Sweden
| |
Collapse
|
215
|
Fabre MA, de Almeida JG, Fiorillo E, Mitchell E, Damaskou A, Rak J, Orrù V, Marongiu M, Chapman MS, Vijayabaskar MS, Baxter J, Hardy C, Abascal F, Williams N, Nangalia J, Martincorena I, Campbell PJ, McKinney EF, Cucca F, Gerstung M, Vassiliou GS. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 2022; 606:335-342. [PMID: 35650444 PMCID: PMC9177423 DOI: 10.1038/s41586-022-04785-z] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Clonal expansions driven by somatic mutations become pervasive across human tissues with age, including in the haematopoietic system, where the phenomenon is termed clonal haematopoiesis1-4. The understanding of how and when clonal haematopoiesis develops, the factors that govern its behaviour, how it interacts with ageing and how these variables relate to malignant progression remains limited5,6. Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age or older over a median of 13 years. We find that 92.4% of clones expanded at a stable exponential rate over the study period, with different mutations driving substantially different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year (SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% per year, proportionately affecting slow drivers more substantially. By combining our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of haematopoietic colonies from 7 individuals from an older age group, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially expanded early in life and displayed slower growth in old age, in the context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations drove expansion only later in life, whereas TET2-mutant clones emerged across all ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of malignant progression. Our findings characterize the lifelong natural history of clonal haematopoiesis and give fundamental insights into the interactions between somatic mutation, ageing and clonal selection.
Collapse
Affiliation(s)
- Margarete A Fabre
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - José Guilherme de Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Aristi Damaskou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
| | - Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
| | - Michael Spencer Chapman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - M S Vijayabaskar
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Joanna Baxter
- Cambridge Blood and Stem Cell Biobank, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Claire Hardy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Federico Abascal
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Nicholas Williams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Cambridge, UK.
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany.
| | - George S Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
216
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
217
|
Lee S, Lee JH. Brain somatic mutations as RNA therapeutic targets in neurological disorders. Ann N Y Acad Sci 2022; 1514:11-20. [PMID: 35527236 DOI: 10.1111/nyas.14786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research into the genetic etiology of a neurological disorder can provide directions for genetic diagnosis and targeted therapy. In the past, germline mutations, which are transmitted from parents or newly arise from parental germ cells, were considered as major genetic causes of neurological disorders. However, recent evidence has shown that somatic mutations in the brain, which can arise from neural stem cells during development or over aging, account for a significant number of brain disorders, ranging from neurodevelopmental, neurodegenerative, and neuropsychiatric to neoplastic disease. Moreover, the identification of disease-causing somatic mutations or mutated genes has provided new insights into molecular pathogenesis and unveiled potential therapeutic targets for treating neurological disorders that have few, or no, therapeutic options. RNA therapeutics, including antisense oligonucleotide (ASO) and small interfering RNA (siRNA), are emerging as promising therapeutic tools for treating genetic neurological disorders. As the number of approved and investigational ASO and siRNA drugs for neurological disorders associated with germline mutations increases, they may also prove to be attractive modalities for treating neurologic disorders resulting from somatic mutations. In this perspective, we highlight several neurological diseases caused by brain somatic mutations and discuss the potential role of RNA therapeutics in these conditions.
Collapse
Affiliation(s)
- Sungyul Lee
- SoVarGen Co., Ltd., Daejeon, Republic of Korea
| | - Jeong Ho Lee
- SoVarGen Co., Ltd., Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute Science and Technology (KAIST), KAIST BioMedical Research Center, Daejeon, Republic of Korea
| |
Collapse
|
218
|
Franco I, Revêchon G, Eriksson M. Challenges of proving a causal role of somatic mutations in the aging process. Aging Cell 2022; 21:e13613. [PMID: 35435316 PMCID: PMC9124308 DOI: 10.1111/acel.13613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/21/2022] Open
Abstract
Aging is accompanied by the progressive accumulation of permanent changes to the genomic sequence, termed somatic mutations. Small mutations, including single‐base substitutions and insertions/deletions, are key determinants of the malignant transformations leading to cancer, but their role as initiators of other age‐related phenotypes is controversial. Here, we present recent advances in the study of somatic mutagenesis in aging tissues and posit that the current uncertainty about its causal effects in the aging process is due to technological and methodological weaknesses. We highlight classical and novel experimental systems, including premature aging syndromes, that could be used to model the increase of somatic mutation burden and understand its functional role. It is important that studies are designed to take into account the biological context and peculiarities of each tissue and that the downstream impact of somatic mutation accumulation is measured by methods able to resolve subtle cellular changes.
Collapse
Affiliation(s)
- Irene Franco
- Cystic Kidney Disorders Unit Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
| |
Collapse
|
219
|
Lobon I, Solís-Moruno M, Juan D, Muhaisen A, Abascal F, Esteller-Cucala P, García-Pérez R, Martí MJ, Tolosa E, Ávila J, Rahbari R, Marques-Bonet T, Casals F, Soriano E. Somatic Mutations Detected in Parkinson Disease Could Affect Genes With a Role in Synaptic and Neuronal Processes. FRONTIERS IN AGING 2022; 3:851039. [PMID: 35821807 PMCID: PMC9261316 DOI: 10.3389/fragi.2022.851039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
The role of somatic mutations in complex diseases, including neurodevelopmental and neurodegenerative disorders, is becoming increasingly clear. However, to date, no study has shown their relation to Parkinson disease’s phenotype. To explore the relevance of embryonic somatic mutations in sporadic Parkinson disease, we performed whole-exome sequencing in blood and four brain regions of ten patients. We identified 59 candidate somatic single nucleotide variants (sSNVs) through sensitive calling and a careful filtering strategy (COSMOS). We validated 27 of them with amplicon-based ultra-deep sequencing, with a 70% validation rate for the highest-confidence variants. The identified sSNVs are in genes with synaptic functions that are co-expressed with genes previously associated with Parkinson disease. Most of the sSNVs were only called in blood but were also found in the brain tissues with ultra-deep amplicon sequencing, demonstrating the strength of multi-tissue sampling designs.
Collapse
Affiliation(s)
- Irene Lobon
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- *Correspondence: Irene Lobon, ; Eduardo Soriano,
| | - Manuel Solís-Moruno
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Federico Abascal
- Cancer, Ageing, and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | - Maria Josep Martí
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
| | - Eduardo Tolosa
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
| | - Jesús Ávila
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | - Raheleh Rahbari
- Cancer, Ageing, and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- *Correspondence: Irene Lobon, ; Eduardo Soriano,
| |
Collapse
|
220
|
Mitiushkina NV, Yanus GA, Kuligina ES, Laidus TA, Romanko AA, Kholmatov MM, Ivantsov AO, Aleksakhina SN, Imyanitov EN. Preparation of Duplex Sequencing Libraries for Archival Paraffin-Embedded Tissue Samples Using Single-Strand-Specific Nuclease P1. Int J Mol Sci 2022; 23:4586. [PMID: 35562977 PMCID: PMC9105346 DOI: 10.3390/ijms23094586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
DNA from formalin-fixed paraffin-embedded (FFPE) tissues, which are frequently utilized in cancer research, is significantly affected by chemical degradation. It was suggested that approaches that are based on duplex sequencing can significantly improve the accuracy of mutation detection in FFPE-derived DNA. However, the original duplex sequencing method cannot be utilized for the analysis of formalin-fixed paraffin-embedded (FFPE) tissues, as FFPE DNA contains an excessive number of damaged bases, and these lesions are converted to false double-strand nucleotide substitutions during polymerase-driven DNA end repair process. To resolve this drawback, we replaced DNA polymerase by a single strand-specific nuclease P1. Nuclease P1 was shown to efficiently remove RNA from DNA preparations, to fragment the FFPE-derived DNA and to remove 5'/3'-overhangs. To assess the performance of duplex sequencing-based methods in FFPE-derived DNA, we constructed the Bottleneck Sequencing System (BotSeqS) libraries from five colorectal carcinomas (CRCs) using either DNA polymerase or nuclease P1. As expected, the number of identified mutations was approximately an order of magnitude higher in libraries prepared with DNA polymerase vs. nuclease P1 (626 ± 167/Mb vs. 75 ± 37/Mb, paired t-test p-value 0.003). Furthermore, the use of nuclease P1 but not polymerase-driven DNA end repair allowed a reliable discrimination between CRC tumors with and without hypermutator phenotypes. The utility of newly developed modification was validated in the collection of 17 CRCs and 5 adjacent normal tissues. Nuclease P1 can be recommended for the use in duplex sequencing library preparation from FFPE-derived DNA.
Collapse
Affiliation(s)
- Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Grigory A. Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Ekatherina Sh. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Tatiana A. Laidus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Alexandr A. Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Maksim M. Kholmatov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Alexandr O. Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, 191015 St.-Petersburg, Russia
| |
Collapse
|
221
|
Bowes A, Tarabichi M, Pillay N, Van Loo P. Leveraging single cell sequencing to unravel intra-tumour heterogeneity and tumour evolution in human cancers. J Pathol 2022; 257:466-478. [PMID: 35438189 PMCID: PMC9322001 DOI: 10.1002/path.5914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Intra-tumour heterogeneity and tumour evolution are well-documented phenomena in human cancers. While the advent of next-generation sequencing technologies has facilitated the large-scale capture of genomic data, the field of single cell genomics is nascent but rapidly advancing and generating many new insights into the complex molecular mechanisms of tumour biology. In this review, we provide an overview of current single cell DNA sequencing technologies, exploring how recent methodological advancements have enumerated new insights into intra-tumour heterogeneity and tumour evolution. Areas highlighted include the potential power of single cell genome sequencing studies to explore evolutionary dynamics contributing to tumourigenesis through to progression, metastasis and therapy resistance. We also explore the use of in-situ sequencing technologies to study intra-tumour heterogeneity in a spatial context, as well as examining the use of single cell genomics to perform lineage tracing in both normal and malignant tissues. Finally, we consider the use of multi-modal single cell sequencing technologies. Taken together, it is hoped that these many facets of single cell genome sequencing will improve our understanding of tumourigenesis, progression and lethality in cancer leading to the development of novel therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amy Bowes
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK
| | - Maxime Tarabichi
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nischalan Pillay
- Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK.,Department of Histopathology, The Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Peter Van Loo
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Department of Genetics, The University of Texas MD Anderson Cancer Centre, Houston, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, USA
| |
Collapse
|
222
|
Matas J, Kohrn B, Fredrickson J, Carter K, Yu M, Wang T, Gui X, Soussi T, Moreno V, Grady WM, Peinado MA, Risques RA. Colorectal Cancer Is Associated with the Presence of Cancer Driver Mutations in Normal Colon. Cancer Res 2022; 82:1492-1502. [PMID: 35425963 PMCID: PMC9022358 DOI: 10.1158/0008-5472.can-21-3607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Although somatic mutations in colorectal cancer are well characterized, little is known about the accumulation of cancer mutations in the normal colon before cancer. Here, we have developed and applied an ultrasensitive, single-molecule mutational test based on CRISPR-DS technology, which enables mutation detection at extremely low frequency (<0.001) in normal colon from patients with and without colorectal cancer. This testing platform revealed that normal colon from patients with and without colorectal cancer carries mutations in common colorectal cancer genes, but these mutations are more abundant in patients with cancer. Oncogenic KRAS mutations were observed in the normal colon of about one third of patients with colorectal cancer but in none of the patients without colorectal cancer. Patients with colorectal cancer also carried more TP53 mutations than patients without cancer and these mutations were more pathogenic and formed larger clones, especially in patients with early-onset colorectal cancer. Most mutations in the normal colon were different from the driver mutations in tumors, suggesting that the occurrence of independent clones with pathogenic KRAS and TP53 mutations is a common event in the colon of individuals who develop colorectal cancer. These results indicate that somatic evolution contributes to clonal expansions in the normal colon and that this process is enhanced in individuals with cancer, particularly in those with early-onset colorectal cancer. SIGNIFICANCE This work suggests prevalent somatic evolution in the normal colon of patients with colorectal cancer, highlighting the potential of using ultrasensitive gene sequencing to predict disease risk.
Collapse
Affiliation(s)
- Julia Matas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
- Institut Germans Trias i Pujol, Badalona, Spain
| | - Brendan Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Kelly Carter
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ming Yu
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ting Wang
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Xianyong Gui
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Sorbonne Université, UPMC Univ Paris 06, F- 75005 Paris, France
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | - Rosa Ana Risques
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| |
Collapse
|
223
|
Maslov AY, Makhortov S, Sun S, Heid J, Dong X, Lee M, Vijg J. Single-molecule, quantitative detection of low-abundance somatic mutations by high-throughput sequencing. SCIENCE ADVANCES 2022; 8:eabm3259. [PMID: 35394831 PMCID: PMC8993124 DOI: 10.1126/sciadv.abm3259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Postzygotic somatic mutations have been found associated with human disease, including diseases other than cancer. Most information on somatic mutations has come from studying clonally amplified mutant cells, based on a growth advantage or genetic drift. However, almost all somatic mutations are unique for each cell, and the quantitative analysis of these low-abundance mutations in normal tissues remains a major challenge in biology. Here, we introduce single-molecule mutation sequencing (SMM-seq), a novel approach for quantitative identification of point mutations in normal cells and tissues.
Collapse
Affiliation(s)
- Alexander Y. Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Sergey Makhortov
- Department of Programming and Information Technology, Voronezh State University, Voronezh, Russia
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Johanna Heid
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiao Dong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute on the Biology of Aging and Metabolism and Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
224
|
Wadden J, Ravi K, John V, Babila CM, Koschmann C. Cell-Free Tumor DNA (cf-tDNA) Liquid Biopsy: Current Methods and Use in Brain Tumor Immunotherapy. Front Immunol 2022; 13:882452. [PMID: 35464472 PMCID: PMC9018987 DOI: 10.3389/fimmu.2022.882452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
Gliomas are tumors derived from mutations in glial brain cells. Gliomas cause significant morbidity and mortality and development of precision diagnostics and novel targeted immunotherapies are critically important. Radiographic imaging is the most common technique to diagnose and track response to treatment, but is an imperfect tool. Imaging does not provide molecular information, which is becoming critically important for identifying targeted immunotherapies and monitoring tumor evolution. Furthermore, immunotherapy induced inflammation can masquerade as tumor progression in images (pseudoprogression) and confound clinical decision making. More recently, circulating cell free tumor DNA (cf-tDNA) has been investigated as a promising biomarker for minimally invasive glioma diagnosis and disease monitoring. cf-tDNA is shed by gliomas into surrounding biofluids (e.g. cerebrospinal fluid and plasma) and, if precisely quantified, might provide a quantitative measure of tumor burden to help resolve pseudoprogression. cf-tDNA can also identify tumor genetic mutations to help guide targeted therapies. However, due to low concentrations of cf-tDNA, recovery and analysis remains challenging. Plasma cf-tDNA typically represents <1% of total cf-DNA due to the blood-brain barrier, limiting their usefulness in practice and motivating the development and use of highly sensitive and specific detection methods. This mini review summarizes the current and future trends of various approaches for cf-tDNA detection and analysis, including new methods that promise more rapid, lower-cost, and accessible diagnostics. We also review the most recent clinical case studies for longitudinal disease monitoring and highlight focus areas, such as novel accurate detection methodologies, as critical research priorities to enable translation to clinic.
Collapse
Affiliation(s)
- Jack Wadden
- Department of Pediatric Hematology and Oncology, Michigan Medicine, Ann Arbor, MI, United States
| | | | | | | | - Carl Koschmann
- Department of Pediatric Hematology and Oncology, Michigan Medicine, Ann Arbor, MI, United States
| |
Collapse
|
225
|
Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, Lawson ARJ, Harvey LMR, Bhosle S, Jones D, Alcantara RE, Butler TM, Hooks Y, Roberts K, Anderson E, Lunn S, Flach E, Spiro S, Januszczak I, Wrigglesworth E, Jenkins H, Dallas T, Masters N, Perkins MW, Deaville R, Druce M, Bogeska R, Milsom MD, Neumann B, Gorman F, Constantino-Casas F, Peachey L, Bochynska D, Smith ESJ, Gerstung M, Campbell PJ, Murchison EP, Stratton MR, Martincorena I. Somatic mutation rates scale with lifespan across mammals. Nature 2022; 604:517-524. [PMID: 35418684 PMCID: PMC9021023 DOI: 10.1038/s41586-022-04618-z] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.
Collapse
Affiliation(s)
- Alex Cagan
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| | - Adrian Baez-Ortega
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Natalia Brzozowska
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Shriram Bhosle
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - David Jones
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Raul E Alcantara
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Kirsty Roberts
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Elizabeth Anderson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Sharna Lunn
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Inez Januszczak
- Wildlife Health Services, Zoological Society of London, London, UK
- The Natural History Museum, London, UK
| | | | - Hannah Jenkins
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Tilly Dallas
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Nic Masters
- Wildlife Health Services, Zoological Society of London, London, UK
| | | | - Robert Deaville
- Institute of Zoology, Zoological Society of London, London, UK
| | - Megan Druce
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Ruzhica Bogeska
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Björn Neumann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Frank Gorman
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Laura Peachey
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Langford, UK
| | - Diana Bochynska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, Faculty of Veterinary Medicine, Universitatea de Stiinte Agricole si Medicina Veterinara, Cluj-Napoca, Romania
| | | | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | | | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
226
|
Miller MB, Huang AY, Kim J, Zhou Z, Kirkham SL, Maury EA, Ziegenfuss JS, Reed HC, Neil JE, Rento L, Ryu SC, Ma CC, Luquette LJ, Ames HM, Oakley DH, Frosch MP, Hyman BT, Lodato MA, Lee EA, Walsh CA. Somatic genomic changes in single Alzheimer's disease neurons. Nature 2022; 604:714-722. [PMID: 35444284 PMCID: PMC9357465 DOI: 10.1038/s41586-022-04640-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/14/2022] [Indexed: 02/02/2023]
Abstract
Dementia in Alzheimer's disease progresses alongside neurodegeneration1-4, but the specific events that cause neuronal dysfunction and death remain poorly understood. During normal ageing, neurons progressively accumulate somatic mutations5 at rates similar to those of dividing cells6,7 which suggests that genetic factors, environmental exposures or disease states might influence this accumulation5. Here we analysed single-cell whole-genome sequencing data from 319 neurons from the prefrontal cortex and hippocampus of individuals with Alzheimer's disease and neurotypical control individuals. We found that somatic DNA alterations increase in individuals with Alzheimer's disease, with distinct molecular patterns. Normal neurons accumulate mutations primarily in an age-related pattern (signature A), which closely resembles 'clock-like' mutational signatures that have been previously described in healthy and cancerous cells6-10. In neurons affected by Alzheimer's disease, additional DNA alterations are driven by distinct processes (signature C) that highlight C>A and other specific nucleotide changes. These changes potentially implicate nucleotide oxidation4,11, which we show is increased in Alzheimer's-disease-affected neurons in situ. Expressed genes exhibit signature-specific damage, and mutations show a transcriptional strand bias, which suggests that transcription-coupled nucleotide excision repair has a role in the generation of mutations. The alterations in Alzheimer's disease affect coding exons and are predicted to create dysfunctional genetic knockout cells and proteostatic stress. Our results suggest that known pathogenic mechanisms in Alzheimer's disease may lead to genomic damage to neurons that can progressively impair function. The aberrant accumulation of DNA alterations in neurodegeneration provides insight into the cascade of molecular and cellular events that occurs in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Michael B Miller
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Junho Kim
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Zinan Zhou
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Samantha L Kirkham
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eduardo A Maury
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Jennifer S Ziegenfuss
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah C Reed
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Allegheny College, Meadville, PA, USA
| | - Jennifer E Neil
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Lariza Rento
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Steven C Ryu
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chanthia C Ma
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lovelace J Luquette
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Heather M Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Derek H Oakley
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Michael A Lodato
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
227
|
Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:275-286. [PMID: 35322263 DOI: 10.1038/s41583-022-00572-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/18/2022]
Abstract
Genetic mosaicism is the result of the accumulation of somatic mutations in the human genome starting from the first postzygotic cell generation and continuing throughout the whole life of an individual. The rapid development of next-generation and single-cell sequencing technologies is now allowing the study of genetic mosaicism in normal tissues, revealing unprecedented insights into their clonal architecture and physiology. The somatic variant repertoire of an adult human neuron is the result of somatic mutations that accumulate in the brain by different mechanisms and at different rates during development and ageing. Non-pathogenic developmental mutations function as natural barcodes that once identified in deep bulk or single-cell sequencing can be used to retrospectively reconstruct human lineages. This approach has revealed novel insights into the clonal structure of the human brain, which is a mosaic of clones traceable to the early embryo that contribute differentially to the brain and distinct areas of the cortex. Some of the mutations happening during development, however, have a pathogenic effect and can contribute to some epileptic malformations of cortical development and autism spectrum disorder. In this Review, we discuss recent findings in the context of genetic mosaicism and their implications for brain development and disease.
Collapse
|
228
|
Abstract
Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
229
|
Song P, Wu LR, Yan YH, Zhang JX, Chu T, Kwong LN, Patel AA, Zhang DY. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng 2022; 6:232-245. [PMID: 35102279 PMCID: PMC9336539 DOI: 10.1038/s41551-021-00837-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Cell-free DNA (cfDNA) in the circulating blood plasma of patients with cancer contains tumour-derived DNA sequences that can serve as biomarkers for guiding therapy, for the monitoring of drug resistance, and for the early detection of cancers. However, the analysis of cfDNA for clinical diagnostic applications remains challenging because of the low concentrations of cfDNA, and because cfDNA is fragmented into short lengths and is susceptible to chemical damage. Barcodes of unique molecular identifiers have been implemented to overcome the intrinsic errors of next-generation sequencing, which is the prevailing method for highly multiplexed cfDNA analysis. However, a number of methodological and pre-analytical factors limit the clinical sensitivity of the cfDNA-based detection of cancers from liquid biopsies. In this Review, we describe the state-of-the-art technologies for cfDNA analysis, with emphasis on multiplexing strategies, and discuss outstanding biological and technical challenges that, if addressed, would substantially improve cancer diagnostics and patient care.
Collapse
Affiliation(s)
- Ping Song
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Lucia Ruojia Wu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Tianqing Chu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Abhijit A Patel
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
230
|
Salazar R, Arbeithuber B, Ivankovic M, Heinzl M, Moura S, Hartl I, Mair T, Lahnsteiner A, Ebner T, Shebl O, Pröll J, Tiemann-Boege I. Discovery of an unusually high number of de novo mutations in sperm of older men using duplex sequencing. Genome Res 2022; 32:499-511. [PMID: 35210354 PMCID: PMC8896467 DOI: 10.1101/gr.275695.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
De novo mutations (DNMs) are important players in heritable diseases and evolution. Of particular interest are highly recurrent DNMs associated with congenital disorders that have been described as selfish mutations expanding in the male germline, thus becoming more frequent with age. Here, we have adapted duplex sequencing (DS), an ultradeep sequencing method that renders sequence information on both DNA strands; thus, one mutation can be reliably called in millions of sequenced bases. With DS, we examined ∼4.5 kb of the FGFR3 coding region in sperm DNA from older and younger donors. We identified sites with variant allele frequencies (VAFs) of 10-4 to 10-5, with an overall mutation frequency of the region of ∼6 × 10-7 Some of the substitutions are recurrent and are found at a higher VAF in older donors than in younger ones or are found exclusively in older donors. Also, older donors harbor more mutations associated with congenital disorders. Other mutations are present in both age groups, suggesting that these might result from a different mechanism (e.g., postzygotic mosaicism). We also observe that independent of age, the frequency and deleteriousness of the mutational spectra are more similar to COSMIC than to gnomAD variants. Our approach is an important strategy to identify mutations that could be associated with a gain of function of the receptor tyrosine kinase activity, with unexplored consequences in a society with delayed fatherhood.
Collapse
Affiliation(s)
- Renato Salazar
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | | | - Maja Ivankovic
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Monika Heinzl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Sofia Moura
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | | | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital, Linz, Austria 4020
| | - Omar Shebl
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital, Linz, Austria 4020
| | - Johannes Pröll
- Center for Medical Research, Faculty of Medicine, Johannes Kepler University, Linz, Austria 4020
| | | |
Collapse
|
231
|
Lansdorp PM. Telomeres, aging, and cancer: the big picture. Blood 2022; 139:813-821. [PMID: 35142846 PMCID: PMC8832478 DOI: 10.1182/blood.2021014299] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The role of telomeres in human health and disease is yet to be fully understood. The limitations of mouse models for the study of human telomere biology and difficulties in accurately measuring the length of telomere repeats in chromosomes and cells have diverted attention from many important and relevant observations. The goal of this perspective is to summarize some of these observations and to discuss the antagonistic role of telomere loss in aging and cancer in the context of developmental biology, cell turnover, and evolution. It is proposed that both damage to DNA and replicative loss of telomeric DNA contribute to aging in humans, with the differences in leukocyte telomere length between humans being linked to the risk of developing specific diseases. These ideas are captured in the Telomere Erosion in Disposable Soma theory of aging proposed herein.
Collapse
Affiliation(s)
- Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada; and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
232
|
Demeulemeester J, Dentro SC, Gerstung M, Van Loo P. Biallelic mutations in cancer genomes reveal local mutational determinants. Nat Genet 2022; 54:128-133. [PMID: 35145300 PMCID: PMC8837546 DOI: 10.1038/s41588-021-01005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
The infinite sites model of molecular evolution posits that every position in the genome is mutated at most once1. By restricting the number of possible mutation histories, haplotypes and alleles, it forms a cornerstone of tumor phylogenetic analysis2 and is often implied when calling, phasing and interpreting variants3,4 or studying the mutational landscape as a whole5. Here we identify 18,295 biallelic mutations, where the same base is mutated independently on both parental copies, in 559 (21%) bulk sequencing samples from the Pan-Cancer Analysis of Whole Genomes study. Biallelic mutations reveal ultraviolet light damage hotspots at E26 transformation-specific (ETS) and nuclear factor of activated T cells (NFAT) binding sites, and hypermutable motifs in POLE-mutant and other cancers. We formulate recommendations for variant calling and provide frameworks to model and detect biallelic mutations. These results highlight the need for accurate models of mutation rates and tumor evolution, as well as their inference from sequencing data.
Collapse
Affiliation(s)
- Jonas Demeulemeester
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Stefan C Dentro
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
233
|
Caldecott KW, Ward ME, Nussenzweig A. The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nat Genet 2022; 54:115-120. [PMID: 35145299 DOI: 10.1038/s41588-021-01001-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of 'programmed' DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
234
|
Reijns MAM, Parry DA, Williams TC, Nadeu F, Hindshaw RL, Rios Szwed DO, Nicholson MD, Carroll P, Boyle S, Royo R, Cornish AJ, Xiang H, Ridout K, Schuh A, Aden K, Palles C, Campo E, Stankovic T, Taylor MS, Jackson AP. Signatures of TOP1 transcription-associated mutagenesis in cancer and germline. Nature 2022; 602:623-631. [PMID: 35140396 PMCID: PMC8866115 DOI: 10.1038/s41586-022-04403-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4-a cancer insertion-deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions -is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome.
Collapse
Affiliation(s)
- Martin A M Reijns
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| | - David A Parry
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Thomas C Williams
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Biomedical Genomics, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Rebecca L Hindshaw
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Diana O Rios Szwed
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Michael D Nicholson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Paula Carroll
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Shelagh Boyle
- Genome Regulation, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Hang Xiang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kate Ridout
- Department of Oncology, University of Oxford, Oxford, UK
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martin S Taylor
- Biomedical Genomics, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| | - Andrew P Jackson
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
235
|
Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, Dawson KJ, Menzies A, Godfrey AL, Green AR, Campbell PJ, Nangalia J. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 2022; 602:162-168. [PMID: 35058638 DOI: 10.1038/s41586-021-04312-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Mutations in cancer-associated genes drive tumour outgrowth, but our knowledge of the timing of driver mutations and subsequent clonal dynamics is limited1-3. Here, using whole-genome sequencing of 1,013 clonal haematopoietic colonies from 12 patients with myeloproliferative neoplasms, we identified 580,133 somatic mutations to reconstruct haematopoietic phylogenies and determine clonal histories. Driver mutations were estimated to occur early in life, including the in utero period. JAK2V617F was estimated to have been acquired by 33 weeks of gestation to 10.8 years of age in 5 patients in whom JAK2V617F was the first event. DNMT3A mutations were acquired by 8 weeks of gestation to 7.6 years of age in 4 patients, and a PPM1D mutation was acquired by 5.8 years of age. Additional genomic events occurred before or following JAK2V617F acquisition and as independent clonal expansions. Sequential driver mutation acquisition was separated by decades across life, often outcompeting ancestral clones. The mean latency between JAK2V617F acquisition and diagnosis was 30 years (range 11-54 years). Estimated historical rates of clonal expansion varied substantially (3% to 190% per year), increased with additional driver mutations, and predicted latency to diagnosis. Our study suggests that early driver mutation acquisition and life-long growth and evolution underlie adult myeloproliferative neoplasms, raising opportunities for earlier intervention and a new model for cancer development.
Collapse
Affiliation(s)
| | - Joe Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Luiza Moore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - James Hewinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kevin J Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew Menzies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anna L Godfrey
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
236
|
Melamed D, Nov Y, Malik A, Yakass MB, Bolotin E, Shemer R, Hiadzi EK, Skorecki KL, Livnat A. De novo mutation rates at the single-mutation resolution in a human HBB gene-region associated with adaptation and genetic disease. Genome Res 2022; 32:488-498. [PMID: 35031571 PMCID: PMC8896469 DOI: 10.1101/gr.276103.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Although it is known that the mutation rate varies across the genome, previous estimates were based on averaging across various numbers of positions. Here, we describe a method to measure the origination rates of target mutations at target base positions and apply it to a 6-bp region in the human hemoglobin subunit beta (HBB) gene and to the identical, paralogous hemoglobin subunit delta (HBD) region in sperm cells from both African and European donors. The HBB region of interest (ROI) includes the site of the hemoglobin S (HbS) mutation, which protects against malaria, is common in Africa, and has served as a classic example of adaptation by random mutation and natural selection. We found a significant correspondence between de novo mutation rates and past observations of alleles in carriers, showing that mutation rates vary substantially in a mutation-specific manner that contributes to the site frequency spectrum. We also found that the overall point mutation rate is significantly higher in Africans than in Europeans in the HBB region studied. Finally, the rate of the 20A→T mutation, called the “HbS mutation” when it appears in HBB, is significantly higher than expected from the genome-wide average for this mutation type. Nine instances were observed in the African HBB ROI, where it is of adaptive significance, representing at least three independent originations; no instances were observed elsewhere. Further studies will be needed to examine mutation rates at the single-mutation resolution across these and other loci and organisms and to uncover the molecular mechanisms responsible.
Collapse
|
237
|
Abstract
Advances in population-scale genomic sequencing have greatly expanded the understanding of the inherited basis of cardiovascular disease (CVD). Reanalysis of these genomic datasets identified an unexpected risk factor for CVD, somatically acquired DNA mutations. In this review, we provide an overview of somatic mutations and their contributions to CVD. We focus on the most common and well-described manifestation, clonal hematopoiesis of indeterminate potential. We also review the currently available data regarding how somatic mutations lead to tissue mosaicism in various forms of CVD, including atrial fibrillation and aortic aneurism associated with Marfan Syndrome. Finally, we highlight future research directions given current knowledge gaps and consider how technological advances will enhance the discovery of somatic mutations in CVD and management of patients with somatic mutations.
Collapse
Affiliation(s)
- J. Brett Heimlich
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | - Alexander G. Bick
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center
| |
Collapse
|
238
|
Sun S, Wang Y, Maslov AY, Dong X, Vijg J. SomaMutDB: a database of somatic mutations in normal human tissues. Nucleic Acids Res 2022; 50:D1100-D1108. [PMID: 34634815 PMCID: PMC8728264 DOI: 10.1093/nar/gkab914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022] Open
Abstract
De novo mutations, a consequence of errors in DNA repair or replication, have been reported to accumulate with age in normal tissues of humans and model organisms. This accumulation during development and aging has been implicated as a causal factor in aging and age-related pathology, including but not limited to cancer. Due to their generally very low abundance mutations have been difficult to detect in normal tissues. Only with recent advances in DNA sequencing of single-cells, clonal lineages or ultra-high-depth sequencing of small tissue biopsies, somatic mutation frequencies and spectra have been unveiled in several tissue types. The rapid accumulation of such data prompted us to develop a platform called SomaMutDB (https://vijglab.einsteinmed.org/SomaMutDB) to catalog the 2.42 million single nucleotide variations (SNVs) and 0.12 million small insertions and deletions (INDELs) thus far identified using these advanced methods in nineteen human tissues or cell types as a function of age or environmental stress conditions. SomaMutDB employs a user-friendly interface to display and query somatic mutations with their functional annotations. Moreover, the database provides six powerful tools for analyzing mutational signatures associated with the data. We believe such an integrated resource will prove valuable for understanding somatic mutations and their possible role in human aging and age-related diseases.
Collapse
Affiliation(s)
- Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yujue Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism, and Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
239
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
240
|
Kusne Y, Xie Z, Patnaik MM. Clonal Hematopoiesis: Molecular and Clinical Implications. Leuk Res 2022; 113:106787. [DOI: 10.1016/j.leukres.2022.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
|
241
|
Mircea M, Semrau S. How a cell decides its own fate: a single-cell view of molecular mechanisms and dynamics of cell-type specification. Biochem Soc Trans 2021; 49:2509-2525. [PMID: 34854897 PMCID: PMC8786291 DOI: 10.1042/bst20210135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
On its path from a fertilized egg to one of the many cell types in a multicellular organism, a cell turns the blank canvas of its early embryonic state into a molecular profile fine-tuned to achieve a vital organismal function. This remarkable transformation emerges from the interplay between dynamically changing external signals, the cell's internal, variable state, and tremendously complex molecular machinery; we are only beginning to understand. Recently developed single-cell omics techniques have started to provide an unprecedented, comprehensive view of the molecular changes during cell-type specification and promise to reveal the underlying gene regulatory mechanism. The exponentially increasing amount of quantitative molecular data being created at the moment is slated to inform predictive, mathematical models. Such models can suggest novel ways to manipulate cell types experimentally, which has important biomedical applications. This review is meant to give the reader a starting point to participate in this exciting phase of molecular developmental biology. We first introduce some of the principal molecular players involved in cell-type specification and discuss the important organizing ability of biomolecular condensates, which has been discovered recently. We then review some of the most important single-cell omics methods and relevant findings they produced. We devote special attention to the dynamics of the molecular changes and discuss methods to measure them, most importantly lineage tracing. Finally, we introduce a conceptual framework that connects all molecular agents in a mathematical model and helps us make sense of the experimental data.
Collapse
Affiliation(s)
- Maria Mircea
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
242
|
Nelakurti DD, Rossetti T, Husbands AY, Petreaca RC. Arginine Depletion in Human Cancers. Cancers (Basel) 2021; 13:6274. [PMID: 34944895 PMCID: PMC8699593 DOI: 10.3390/cancers13246274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Arginine is encoded by six different codons. Base pair changes in any of these codons can have a broad spectrum of effects including substitutions to twelve different amino acids, eighteen synonymous changes, and two stop codons. Four amino acids (histidine, cysteine, glutamine, and tryptophan) account for over 75% of amino acid substitutions of arginine. This suggests that a mutational bias, or "purifying selection", mechanism is at work. This bias appears to be driven by C > T and G > A transitions in four of the six arginine codons, a signature that is universal and independent of cancer tissue of origin or histology. Here, we provide a review of the available literature and reanalyze publicly available data from the Catalogue of Somatic Mutations in Cancer (COSMIC). Our analysis identifies several genes with an arginine substitution bias. These include known factors such as IDH1, as well as previously unreported genes, including four cancer driver genes (FGFR3, PPP6C, MAX, GNAQ). We propose that base pair substitution bias and amino acid physiology both play a role in purifying selection. This model may explain the documented arginine substitution bias in cancers.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Tiffany Rossetti
- Biology Undergraduate Program, The Ohio State University, Marion, OH 43302, USA;
| | - Aman Y. Husbands
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43215, USA
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
243
|
Valori M, Jansson L, Tienari PJ. CD8+ cell somatic mutations in multiple sclerosis patients and controls-Enrichment of mutations in STAT3 and other genes implicated in hematological malignancies. PLoS One 2021; 16:e0261002. [PMID: 34874980 PMCID: PMC8651110 DOI: 10.1371/journal.pone.0261002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/23/2021] [Indexed: 01/14/2023] Open
Abstract
Somatic mutations have a central role in cancer but their role in other diseases such as common autoimmune disorders is not clear. Previously we and others have demonstrated that especially CD8+ T cells in blood can harbor persistent somatic mutations in some patients with multiple sclerosis (MS) and rheumatoid arthritis. Here we concentrated on CD8+ cells in more detail and tested (i) how commonly somatic mutations are detectable, (ii) does the overall mutation load differ between MS patients and controls, and (iii) do the somatic mutations accumulate non-randomly in certain genes? We separated peripheral blood CD8+ cells from newly diagnosed relapsing MS patients (n = 21) as well as matched controls (n = 21) and performed next-generation sequencing of the CD8+ cells' DNA, limiting our search to a custom panel of 2524 immunity and cancer related genes, which enabled us to obtain a median sequencing depth of over 2000x. We discovered nonsynonymous somatic mutations in all MS patients' and controls' CD8+ cell DNA samples, with no significant difference in number between the groups (p = 0.60), at a median allelic fraction of 0.5% (range 0.2-8.6%). The mutations showed statistically significant clustering especially to the STAT3 gene, and also enrichment to the SMARCA2, DNMT3A, SOCS1 and PPP3CA genes. Known activating STAT3 mutations were found both in MS patients and controls and overall 1/5 of the mutations were previously described cancer mutations. The detected clustering suggests a selection advantage of the mutated CD8+ clones and calls for further research on possible phenotypic effects.
Collapse
Affiliation(s)
- Miko Valori
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Lilja Jansson
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
| | - Pentti J. Tienari
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
244
|
Steensma DP. How predictive is the finding of clonal hematopoiesis for the development of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML)? Best Pract Res Clin Haematol 2021; 34:101327. [PMID: 34865699 DOI: 10.1016/j.beha.2021.101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clonal hematopoiesis (CH) - a biological state in which one or a small number of hematopoietic stem or progenitor cells contribute disproportionately to blood cell production, usually as a result of somatic gene mutations in the stem cells - is often considered to be a precursor to myeloid neoplasia, especially myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). However, the majority of people with CH never develop an overt myeloid neoplasm, and CH can be a precursor to lymphoid cancers as well as myeloid neoplasms. In addition, CH increases all-cause mortality and augments the risk of several non-neoplastic medical conditions, including atherosclerotic cardiovascular disease. CH can arise during aging, or in the context of an inherited marrow failure syndrome, aplastic anemia, or hematopoietic cell transplantation. Risk factors for progression of CH to myeloid neoplasia include larger clone size; the presence of a TP53, IDH1/2, or splicing mutation; multiple mutations; and associated cytopenias or abnormal red blood cell indices. The receipt of genotoxic chemotherapy or radiation, which can promote clonal expansion of mutant clones at the expense of healthy progenitor cells, may result in therapy-related MDS/AML.
Collapse
|
245
|
Liu X, Tong Y, Xia D, Peng E, Yang X, Liu H, Ye T, Wang X, He Y, Ye Z, Chen Z, Tang K. Circular RNAs in prostate cancer: Biogenesis,biological functions, and clinical significance. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1130-1147. [PMID: 34820150 PMCID: PMC8585584 DOI: 10.1016/j.omtn.2021.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules that play important regulatory roles in various tumors. Prostate cancer (PCa) is one of the most common malignant tumors in the world, with high morbidity and mortality. In recent years, more and more circRNAs have been found to be abnormally expressed and involved in the occurrence and development of PCa, including cell proliferation, apoptosis, invasion, migration, metastasis, chemotherapy resistance, and radiotherapy resistance. Most of the circRNAs regulate biological behaviors of cancer through a competitive endogenous RNA (ceRNA) regulatory mechanism, and some can exert their functions by binding to proteins. circRNAs are also associated with many clinicopathological features of PCa, including tumor grade, lymph node metastasis, and distant metastasis. In addition, circRNAs are potential diagnostic and prognostic biomarkers for PCa. Considering their critical regulatory roles in the progression of PCa, circRNAs would be the potential therapeutic targets. In this paper, the current research status of circRNAs in PCa is briefly reviewed.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hailang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinguang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
246
|
Catania F, Rothering R, Vitali V. One Cell, Two Gears: Extensive Somatic Genome Plasticity Accompanies High Germline Genome Stability in Paramecium. Genome Biol Evol 2021; 13:6443145. [PMID: 34849843 PMCID: PMC8670300 DOI: 10.1093/gbe/evab263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mutation accumulation (MA) experiments are conventionally employed to study spontaneous germline mutations. However, MA experiments can also shed light on somatic genome plasticity in a habitual and genetic drift-maximizing environment. Here, we revisit an MA experiment that uncovered extraordinary germline genome stability in Paramecium tetraurelia, a single-celled eukaryote with nuclear dimorphism. Our re-examination of isogenic P. tetraurelia MA lines propagated in nutrient-rich medium for >40 sexual cycles reveals that their polyploid somatic genome accrued hundreds of intervening DNA segments (IESs), which are normally eliminated during germline-soma differentiation. These IESs frequently occupy a fraction of the somatic DNA copies of a given locus, producing IES excision/retention polymorphisms, and preferentially fall into a class of epigenetically controlled sequences. Relative to control lines, retained IESs are flanked by stronger cis-acting signals and interrupt an excess of highly expressed coding exons. These findings suggest that P. tetraurelia’s elevated germline DNA replication fidelity is associated with pervasive somatic genome plasticity. They show that MA regimes are powerful tools for investigating the role that developmental plasticity, somatic mutations, and epimutations have in ecology and evolution.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany.,Institute of Environmental Radioactivity, Fukushima University, Japan
| | - Rebecca Rothering
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, Germany
| |
Collapse
|
247
|
Abbasi A, Alexandrov LB. Significance and limitations of the use of next-generation sequencing technologies for detecting mutational signatures. DNA Repair (Amst) 2021; 107:103200. [PMID: 34411908 PMCID: PMC9478565 DOI: 10.1016/j.dnarep.2021.103200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Next generation sequencing technologies (NGS) have been critical in characterizing the genomic landscape and untangling the genetic heterogeneity of human cancer. Since its advent, NGS has played a pivotal role in identifying the patterns of somatic mutations imprinted on cancer genomes and in deciphering the signatures of the mutational processes that have generated these patterns. Mutational signatures serve as phenotypic molecular footprints of exposures to environmental factors as well as deficiency and infidelity of DNA replication and repair pathways. Since the first roadmap of mutational signatures in human cancer was generated from whole-genome and whole-exome sequencing data, there has been a growing interest to extract mutational signatures from other NGS technologies such as targeted panel sequencing, RNA sequencing, single-cell sequencing, duplex sequencing, reduced representation sequencing, and long-read sequencing. Many of these technologies have their inherent sequencing biases and produce technical artifacts that can confound the extraction of reliable and interpretable mutational signatures. In this review, we highlight the relevance, limitations, and prospects of using different NGS technologies for examining mutational patterns and for deciphering mutational signatures.
Collapse
Affiliation(s)
- Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
248
|
Mead S. The Intractable Puzzle of Sporadic Creutzfeldt-Jakob Disease in Very Young People. Neurology 2021; 97:801-802. [PMID: 34497066 DOI: 10.1212/wnl.0000000000012739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Simon Mead
- From the MRC Prion Unit at UCL, Institute of Prion Diseases; and National Prion Clinic, University College London Hospitals NHS Foundation Trust, UK.
| |
Collapse
|
249
|
Dai P, Wu LR, Chen SX, Wang MX, Cheng LY, Zhang JX, Hao P, Yao W, Zarka J, Issa GC, Kwong L, Zhang DY. Calibration-free NGS quantitation of mutations below 0.01% VAF. Nat Commun 2021; 12:6123. [PMID: 34675197 PMCID: PMC8531361 DOI: 10.1038/s41467-021-26308-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Quantitation of rare somatic mutations is essential for basic research and translational clinical applications including minimal residual disease (MRD) detection. Though unique molecular identifier (UMI) has suppressed errors for rare mutation detection, the sequencing depth requirement is high. Here, we present Quantitative Blocker Displacement Amplification (QBDA) which integrates sequence-selective variant enrichment into UMI quantitation for accurate quantitation of mutations below 0.01% VAF at only 23,000X depth. Using a panel of 20 genes recurrently altered in acute myeloid leukemia, we demonstrate quantitation of various mutations including single base substitutions and indels down to 0.001% VAF at a single locus with less than 4 million sequencing reads, allowing sensitive MRD detection in patients during complete remission. In a pan-cancer panel and a melanoma hotspot panel, we detect mutations down to 0.1% VAF using only 1 million reads. QBDA provides a convenient and versatile method for sensitive mutation quantitation using low-depth sequencing.
Collapse
Affiliation(s)
- Peng Dai
- Department of Bioengineering, Rice University, Houston, TX, USA
- NuProbe USA, Houston, TX, USA
| | - Lucia Ruojia Wu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sherry Xi Chen
- Department of Bioengineering, Rice University, Houston, TX, USA
- NuProbe USA, Houston, TX, USA
| | | | | | | | | | | | - Jabra Zarka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA.
- NuProbe USA, Houston, TX, USA.
| |
Collapse
|
250
|
Rosendahl Huber A, Van Hoeck A, Van Boxtel R. The Mutagenic Impact of Environmental Exposures in Human Cells and Cancer: Imprints Through Time. Front Genet 2021; 12:760039. [PMID: 34745228 PMCID: PMC8565797 DOI: 10.3389/fgene.2021.760039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
During life, the DNA of our cells is continuously exposed to external damaging processes. Despite the activity of various repair mechanisms, DNA damage eventually results in the accumulation of mutations in the genomes of our cells. Oncogenic mutations are at the root of carcinogenesis, and carcinogenic agents are often highly mutagenic. Over the past decade, whole genome sequencing data of healthy and tumor tissues have revealed how cells in our body gradually accumulate mutations because of exposure to various mutagenic processes. Dissection of mutation profiles based on the type and context specificities of the altered bases has revealed a variety of signatures that reflect past exposure to environmental mutagens, ranging from chemotherapeutic drugs to genotoxic gut bacteria. In this review, we discuss the latest knowledge on somatic mutation accumulation in human cells, and how environmental mutagenic factors further shape the mutation landscapes of tissues. In addition, not all carcinogenic agents induce mutations, which may point to alternative tumor-promoting mechanisms, such as altered clonal selection dynamics. In short, we provide an overview of how environmental factors induce mutations in the DNA of our healthy cells and how this contributes to carcinogenesis. A better understanding of how environmental mutagens shape the genomes of our cells can help to identify potential preventable causes of cancer.
Collapse
Affiliation(s)
- Axel Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Arne Van Hoeck
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ruben Van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|