201
|
Characterizing the NLRP3 Inflammasome in Mood Disorders: Overview, Technical Development, and Measures of Peripheral Activation in Adolescent Patients. Int J Mol Sci 2021; 22:ijms222212513. [PMID: 34830395 PMCID: PMC8618969 DOI: 10.3390/ijms222212513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/01/2023] Open
Abstract
The NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) inflammasome is a node of intracellular stress pathways and a druggable target which integrates mitochondrial stress and inflammatory cascades. While a body of evidence suggests the involvement of the NLRP3 inflammasome in numerous diseases, a lack of reliable measurement techniques highlights the need for a robust assay using small quantities of biological samples. We present a literature overview on peripheral activation of the NLRP3 inflammasome in mood disorders, then outline a process to develop and validate a robust assay to measure baseline and activated intracellular levels of “apoptosis-associated speck-like protein containing a CARD” (ASC) as a key component of an inflammatory profile in peripheral blood mononuclear cells (PBMC). A consistent association between high NLRP3 mRNA levels and relevant cytokines was seen in the literature. Using our method to measure ASC, stimulation of PBMC with lipopolysaccharide and nigericin or adenosine triphosphate resulted in microscopic identification of intracellular ASC specks, as well as interleukin 1 (IL-1) beta and caspase-1 p10 in the periphery. This was abolished by dose-dependent pre-treatment with 100 nM MCC950. We also report the use of this technique in a small pilot sample from patients with bipolar disorder and depressive disorders. The results show that levels of intracellular ASC and IL-1 beta are sensitive to change upon activation and maintained over time, which may be used to improve the detection of NLRP3 activation and guide personalized therapeutic strategy in the treatment of patients.
Collapse
|
202
|
Nagar A, Rahman T, Harton JA. The ASC Speck and NLRP3 Inflammasome Function Are Spatially and Temporally Distinct. Front Immunol 2021; 12:752482. [PMID: 34745125 PMCID: PMC8566762 DOI: 10.3389/fimmu.2021.752482] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 01/20/2023] Open
Abstract
Although considered the ternary inflammasome structure, whether the singular, perinuclear NLRP3:ASC speck is synonymous with the NLRP3 inflammasome is unclear. Herein, we report that the NLRP3:ASC speck is not required for nigericin-induced inflammasome activation but facilitates and maximizes IL-1β processing. Furthermore, the NLRP3 agonists H2O2 and MSU elicited IL-1β maturation without inducing specks. Notably, caspase-1 activity is spatially distinct from the speck, occurring at multiple cytoplasmic sites. Additionally, caspase-1 activity negatively regulates speck frequency and speck size, while speck numbers and IL-1β processing are negatively correlated, cyclical and can be uncoupled by NLRP3 mutations or inhibiting microtubule polymerization. Finally, when specks are present, caspase-1 is likely activated after leaving the speck structure. Thus, the speck is not the NLRP3 inflammasome itself, but is instead a dynamic structure which may amplify the NLRP3 response to weak stimuli by facilitating the formation and release of small NLRP3:ASC complexes which in turn activate caspase-1.
Collapse
Affiliation(s)
- Abhinit Nagar
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Tabassum Rahman
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jonathan A Harton
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
203
|
Pastar I, Sawaya AP, Marjanovic J, Burgess JL, Strbo N, Rivas KE, Wikramanayake TC, Head CR, Stone RC, Jozic I, Stojadinovic O, Kornfeld EY, Kirsner RS, Lev-Tov H, Tomic-Canic M. Intracellular Staphylococcus aureus triggers pyroptosis and contributes to inhibition of healing due to Perforin-2 suppression. J Clin Invest 2021; 131:133727. [PMID: 34730110 DOI: 10.1172/jci133727] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Impaired wound healing associated with recurrent Staphylococcus aureus infection and unresolved inflammation are hallmarks of non-healing diabetic foot ulcers (DFU). Perforin-2, an innate immunity molecule against intracellular bacteria, limits cutaneous infection and dissemination of S. aureus in mice. Here we report the intracellular accumulation of S. aureus in the epidermis of DFU with no clinical signs of infection due to marked suppression of Perforin-2. S. aureus residing within the epidermis of DFU triggers AIM2-inflammasome activation and pyroptosis. These findings were corroborated in mice lacking Perforin-2. The effects of pyroptosis on DFU clinical outcomes were further elucidated in a 4-week longitudinal clinical study in DFU patients undergoing standard of care. Increased AIM2-inflammasome and ASC-pyroptosome coupled with induction of IL-1β were found in non-healing when compared to healing DFU. Our findings reveal novel mechanism that includes Perforin-2 suppression, intracellular S. aureus accumulation and associated induction of pyroptosis that contribute to healing inhibition and prolonged inflammation in patients with DFU.
Collapse
Affiliation(s)
- Irena Pastar
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Andrew P Sawaya
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Jelena Marjanovic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Jamie L Burgess
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States of America
| | - Katelyn E Rivas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States of America
| | - Tongyu C Wikramanayake
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Cheyanne R Head
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Rivka C Stone
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Ivan Jozic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Olivera Stojadinovic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Eran Y Kornfeld
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Robert S Kirsner
- University of Miami Miller School of Medicine, Miami, United States of America
| | - Hadar Lev-Tov
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States of America
| |
Collapse
|
204
|
Dziedziech A, Theopold U. Proto-pyroptosis: An Ancestral Origin for Mammalian Inflammatory Cell Death Mechanism in Drosophila melanogaster. J Mol Biol 2021; 434:167333. [PMID: 34756921 DOI: 10.1016/j.jmb.2021.167333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis has been described in mammalian systems to be a form of programmed cell death that is important in immune function through the subsequent release of cytokines and immune effectors upon cell bursting. This form of cell death has been increasingly well-characterized in mammals and can occur using alternative routes however, across phyla, there has been little evidence for the existence of pyroptosis. Here we provide evidence for an ancient origin of pyroptosis in an in vivo immune scenario in Drosophila melanogaster. Crystal cells, a type of insect blood cell, were recruited to wounds and ruptured subsequently releasing their cytosolic content in a caspase-dependent manner. This inflammatory-based programmed cell death mechanism fits the features of pyroptosis, never before described in an in vivo immune scenario in insects and relies on ancient apoptotic machinery to induce proto-pyroptosis. Further, we unveil key players upstream in the activation of cell death in these cells including the apoptosome which may play an alternative role akin to the inflammasome in proto-pyroptosis. Thus, Drosophila may be a suitable model for studying the functional significance of pyroptosis in the innate immune system.
Collapse
Affiliation(s)
- A Dziedziech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 10691 Stockholm, Sweden.
| | - U Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
205
|
De Gaetano A, Solodka K, Zanini G, Selleri V, Mattioli AV, Nasi M, Pinti M. Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells 2021; 10:2898. [PMID: 34831121 PMCID: PMC8616383 DOI: 10.3390/cells10112898] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Besides their role in cell metabolism, mitochondria display many other functions. Mitochondrial DNA (mtDNA), the own genome of the organelle, plays an important role in modulating the inflammatory immune response. When released from the mitochondrion to the cytosol, mtDNA is recognized by cGAS, a cGAMP which activates a pathway leading to enhanced expression of type I interferons, and by NLRP3 inflammasome, which promotes the activation of pro-inflammatory cytokines Interleukin-1beta and Interleukin-18. Furthermore, mtDNA can be bound by Toll-like receptor 9 in the endosome and activate a pathway that ultimately leads to the expression of pro-inflammatory cytokines. mtDNA is released in the extracellular space in different forms (free DNA, protein-bound DNA fragments) either as free circulating molecules or encapsulated in extracellular vesicles. In this review, we discussed the latest findings concerning the molecular mechanisms that regulate the release of mtDNA from mitochondria, and the mechanisms that connect mtDNA misplacement to the activation of inflammation in different pathophysiological conditions.
Collapse
Affiliation(s)
- Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy;
| | - Kateryna Solodka
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy;
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| |
Collapse
|
206
|
Zhang L, Ko CJ, Li Y, Jie Z, Zhu L, Zhou X, Xie X, Gao T, Liu T, Cheng X, Sun SC. Peli1 facilitates NLRP3 inflammasome activation by mediating ASC ubiquitination. Cell Rep 2021; 37:109904. [PMID: 34706239 PMCID: PMC12011377 DOI: 10.1016/j.celrep.2021.109904] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/25/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Inflammasomes are crucial for innate immunity against infections and, when deregulated, also contribute to inflammatory diseases. Here, we identify a critical function of the E3 ubiquitin ligase Peli1 in regulating the activation of NLRP3 inflammasome. Peli1 deficiency impairs induction of interleukin-1β (IL-1β) secretion by different NLRP3 inducers, but not by inducers of the Aim2, NLRP1, and NLRC4 inflammasomes. Peli1-deficient mice have alleviated peritonitis induction by alum and display increased resistance to lipopolysaccharide (LPS) endotoxin shock, coupled with decreased serum concentration of IL-1β. Peli1 is required for NLRP3-induced caspase-1 activation and IL-1β maturation. Mechanistically, Peli1 conjugates K63 ubiquitin chain to lysine 55 of the inflammasome adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which in turn facilitates ASC/NLRP3 interaction and ASC oligomerization, thereby contributing to inflammasome activation. Peli1 deficiency impairs the ubiquitination of ASC and inhibits inflammasome activation. Our findings establish Peli1 as an important inflammasome regulator and suggest a mechanism by which Peli1 mediates inflammatory responses.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Ting Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, USA; MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
207
|
Shaker T, Chattopadhyaya B, Amilhon B, Cristo GD, Weil AG. Transduction of inflammation from peripheral immune cells to the hippocampus induces neuronal hyperexcitability mediated by Caspase-1 activation. Neurobiol Dis 2021; 160:105535. [PMID: 34673150 DOI: 10.1016/j.nbd.2021.105535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/30/2021] [Accepted: 10/17/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recent studies report infiltration of peripheral blood mononuclear cells (PBMCs) into the central nervous system (CNS) in epileptic disorders, suggestive of a potential contribution of PBMC extravasation to the generation of seizures. Nevertheless, the underlying mechanisms involved in PBMC infiltrates promoting neuronal predisposition to ictogenesis remain unclear. Therefore, we developed an in vitro model mimicking infiltration of activated PBMCs into the brain in order to investigate potential transduction of inflammatory signals from PBMCs to the CNS. METHODS To establish our model, we first extracted PBMCs from rat spleen, then, immunologically primed PBMCs with lipopolysaccharide (LPS), followed by further activation with nigericin. Thereafter, we co-cultured these activated PBMCs with organotypic cortico-hippocampal brain slice cultures (OCHSCs) derived from the same rat, and compared PBMC-OCHSC co-cultures to OCHSCs exposed to PBMCs in the culture media. We further targeted a potential molecular pathway underlying transduction of peripheral inflammation to OCHSCs by incubating OCHSCs with the Caspase-1 inhibitor VX-765 prior to co-culturing PBMCs with OCHSCs. After 24 h, we analyzed inflammation markers in the cortex and the hippocampus using semiquantitative immunofluorescence. In addition, we analyzed neuronal activity by whole-cell patch-clamp recordings in cortical layer II/III and hippocampal CA1 pyramidal neurons. RESULTS In the cortex, co-culturing immunoreactive PBMCs treated with LPS + nigericin on top of OCHSCs upregulated inflammatory markers and enhanced neuronal excitation. In contrast, no excitability changes were detected after adding primed PBMCs (i.e. treated with LPS only), to OCHSCs. Strikingly, in the hippocampus, both immunoreactive and primed PBMCs elicited similar pro-inflammatory and pro-excitatory effects. However, when immunoreactive and primed PBMCs were cultured in the media separately from OCHSCs, only immunoreactive PBMCs gave rise to neuroinflammation and hyperexcitability in the hippocampus, whereas primed PBMCs failed to produce any significant changes. Finally, VX-765 application to OCHSCs, co-cultured with either immunoreactive or primed PBMCs, prevented neuroinflammation and hippocampal hyperexcitability in OCHSCs. CONCLUSIONS Our study shows a higher susceptibility of the hippocampus to peripheral inflammation as compared to the cortex, mediated via Caspase-1-dependent signaling pathways. Thus, our findings suggest that Caspase-1 inhibition may potentially provide therapeutic benefits during hippocampal neuroinflammation and hyperexcitability secondary to peripheral innate immunity.
Collapse
Affiliation(s)
- Tarek Shaker
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada.
| | | | - Bénédicte Amilhon
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada
| | - Graziella Di Cristo
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada
| | - Alexander G Weil
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
208
|
Scheiblich H, Bousset L, Schwartz S, Griep A, Latz E, Melki R, Heneka MT. Microglial NLRP3 Inflammasome Activation upon TLR2 and TLR5 Ligation by Distinct α-Synuclein Assemblies. THE JOURNAL OF IMMUNOLOGY 2021; 207:2143-2154. [PMID: 34507948 DOI: 10.4049/jimmunol.2100035] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder and is characterized by the formation of cellular inclusions inside neurons that are rich in an abnormal form of the protein α-synuclein (α-syn). Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of signaling transduction pathways. Here, we studied activation of primary microglia isolated from wild-type mouse by distinct α-syn forms and their clearance. Internalization of α-syn monomers and oligomers efficiently activated the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome via TLR2 and TLR5 ligation, thereby acting on different signaling checkpoints. We found that primary microglia effectively engulf α-syn but hesitate in its degradation. NLRP3 inhibition by the selective inhibitor CRID3 sodium salt and NLRP3 deficiency improved the overall clearance of α-syn oligomers. Together, these data show that distinct α-syn forms exert different microglial NLRP3 inflammasome activation properties, thereby compromising its degradation, which can be prevented by NLRP3 inhibition.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Luc Bousset
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France; and
| | - Stephanie Schwartz
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Angelika Griep
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn Medical Center, Bonn, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France; and
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany; .,German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
209
|
Downregulation of phosphoglycerate mutase 5 improves microglial inflammasome activation after traumatic brain injury. Cell Death Discov 2021; 7:290. [PMID: 34642327 PMCID: PMC8511105 DOI: 10.1038/s41420-021-00686-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is considered as the most common cause of disability and death, and therefore an effective intervention of cascade pathology of secondary brain injury promptly can be a potential therapeutic direction for TBI prognosis. Further study of the physiological mechanism of TBI is urgent and important. Phosphoglycerate mutase 5 (Pgam5), a mitochondrial protein, mediate mitochondrial homeostasis, cellular senescence, and necroptosis. This study evaluated the effects of Pgam5 on neurological deficits and neuroinflammation of controlled cortical impact-induced TBI mouse model in vivo and LPS + ATP-induced microglia model in vitro. Pgam5 was overexpressed post-TBI. Pgam5 depletion reduced pyroptosis-related molecules and improved microglia activation, neuron damage, tissue lesion, and neurological dysfunctions in TBI mice. RNA-seq analysis and molecular biology experiments demonstrated that Pgam5 might regulate inflammatory responses by affecting the post-translational modification and protein expression of related genes, including Nlrp3, caspase1, Gsdmd, and Il-1β. In microglia, Pgam5-sh abrogated LPS + ATP-induced Il-1β secretion through Asc oligomerization-mediated caspase-1 activation, which was independent of Rip3. The data demonstrate the critical role Pgam5 plays in nerve injury in the progression of TBI, which regulates Asc polymerization and subsequently caspase1 activation, and thus reveals a fundamental mechanism linking microglial inflammasome activation to Asc/caspase1-generated Il-1β-mediated neuroinflammation. Thus, our data indicate Pgam5 worsens physiological and neurological outcomes post-TBI, which may be a potential therapeutic target to improve neuroinflammation after TBI.
Collapse
|
210
|
Maruyama K, Cheng JY, Ishii H, Takahashi Y, Zangiacomi V, Satoh T, Hosono T, Yamaguchi K. Activation of NLRP3 Inflammasome Complexes by Beta-Tricalcium Phosphate Particles and Stimulation of Immune Cell Migration in vivo. J Innate Immun 2021; 14:207-217. [PMID: 34619679 DOI: 10.1159/000518953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Beta-tricalcium phosphate (β-TCP) serves as a bone substitute in clinical practice because it is resorbable, biocompatible, osteointegrative, and osteoconductive. Particles of β-TCP are also inflammatory mediators although the mechanism of this function has not been fully elucidated. Regardless, the ability of β-TCP to stimulate the immune system might be useful for immunomodulation. The present study aimed to determine the effects of β-TCP particles on NLR family pyrin domain containing 3 (NLRP3) inflammasome complexes. We found that β-TCP activates NLRP3 inflammasomes, and increases interleukin (IL)-1β production in primary cultured mouse dendritic cells (DCs) and macrophages, and human THP-1 cells in caspase-1 dependent manner. In THP-1 cells, β-TCP increased also IL-18 production, and NLRP3 inflammasome activation by β-TCP depended on phagocytosis, potassium efflux, and reactive oxygen species (ROS) generation. We also investigated the effects of β-TCP in wild-type and NLRP3-deficient mice in vivo. Immune cell migration around subcutaneously injected β-TCP particles was reduced in NLRP3-deficient mice. These findings suggest that the effects of β-TCP particles in vivo are at least partly mediated by NLRP3 inflammasome complexes.
Collapse
Affiliation(s)
- Kouji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Jin-Yan Cheng
- Advanced Analysis Technology Department, Corporate R&D Center, Olympus Corporation, Tokyo, Japan
| | - Hidee Ishii
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yu Takahashi
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Vincent Zangiacomi
- Regional Resource Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takatomo Satoh
- Advanced Analysis Technology Department, Corporate R&D Center, Olympus Corporation, Tokyo, Japan
| | - Tetsuji Hosono
- Laboratory of Medicinal Microbiology, Yokohama College of Pharmacy, Yokohama, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
211
|
Chen P, Bai Q, Wu Y, Zeng Q, Song X, Guo Y, Zhou P, Wang Y, Liao X, Wang Q, Ren Z, Wang Y. The Essential Oil of Artemisia argyi H.Lév. and Vaniot Attenuates NLRP3 Inflammasome Activation in THP-1 Cells. Front Pharmacol 2021; 12:712907. [PMID: 34603026 PMCID: PMC8481632 DOI: 10.3389/fphar.2021.712907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.
Collapse
Affiliation(s)
- Pengxiao Chen
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China.,Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Qi Bai
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Qiongzhen Zeng
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Yuying Guo
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pengjun Zhou
- The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Guangzhou, China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xiaofeng Liao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiaoli Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Guangzhou, China
| |
Collapse
|
212
|
Lu Y, Nanayakkara G, Sun Y, Liu L, Xu K, Drummer C, Shao Y, Saaoud F, Choi ET, Jiang X, Wang H, Yang X. Procaspase-1 patrolled to the nucleus of proatherogenic lipid LPC-activated human aortic endothelial cells induces ROS promoter CYP1B1 and strong inflammation. Redox Biol 2021; 47:102142. [PMID: 34598017 PMCID: PMC8487079 DOI: 10.1016/j.redox.2021.102142] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022] Open
Abstract
To determine the roles of nuclear localization of pro-caspase-1 in human aortic endothelial cells (HAECs) activated by proatherogenic lipid lysophosphatidylcholine (LPC), we examined cytosolic and nuclear localization of pro-caspase-1, identified nuclear export signal (NES) in pro-caspase-1 and sequenced RNAs. We made the following findings: 1) LPC increases nuclear localization of procaspase-1 in HAECs. 2) Nuclear pro-caspase-1 exports back to the cytosol, which is facilitated by a leptomycin B-inhibited mechanism. 3) Increased nuclear localization of pro-caspase-1 by a new NES peptide inhibitor upregulates inflammatory genes in oxidative stress and Th17 pathways; and SUMO activator N106 enhances nuclear localization of pro-caspase-1 and caspase-1 activation (p20) in the nucleus. 4) LPC plus caspase-1 enzymatic inhibitor upregulates inflammatory genes with hypercytokinemia/hyperchemokinemia and interferon pathways, suggesting a novel capsase-1 enzyme-independent inflammatory mechanism. 5) LPC in combination with NES inhibitor and caspase-1 inhibitor upregulate inflammatory gene expression that regulate Th17 activation, endotheli-1 signaling, p38-, and ERK- MAPK pathways. To examine two hallmarks of endothelial activation such as secretomes and membrane protein signaling, LPC plus NES inhibitor upregulate 57 canonical secretomic genes and 76 exosome secretomic genes, respectively, promoting four pathways including Th17, IL-17 promoted cytokines, interferon signaling and cholesterol biosynthesis. LPC with NES inhibitor also promote inflammation via upregulating ROS promoter CYP1B1 and 11 clusters of differentiation (CD) membrane protein pathways. Mechanistically, all the LPC plus NES inhibitor-induced genes are significantly downregulated in CYP1B1-deficient microarray, suggesting that nuclear caspase-1-induced CYP1B1 promotes strong inflammation. These transcriptomic results provide novel insights on the roles of nuclear caspase-1 in sensing DAMPs, inducing ROS promoter CYP1B1 and in regulating a large number of genes that mediate HAEC activation and inflammation. These findings will lead to future development of novel therapeutics for cardiovascular diseases (CVD), inflammations, infections, transplantation, autoimmune disease and cancers. (total words: 284).
Collapse
Affiliation(s)
- Yifan Lu
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | | | - Yu Sun
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Lu Liu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation Lung Research, USA
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation Lung Research, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation Lung Research, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, USA.
| |
Collapse
|
213
|
Li H, Li Y, Song C, Hu Y, Dai M, Liu B, Pan P. Neutrophil Extracellular Traps Augmented Alveolar Macrophage Pyroptosis via AIM2 Inflammasome Activation in LPS-Induced ALI/ARDS. J Inflamm Res 2021; 14:4839-4858. [PMID: 34588792 PMCID: PMC8473117 DOI: 10.2147/jir.s321513] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Uncontrollable inflammation is a critical feature of gram-negative bacterial pneumonia-induced acute respiratory distress syndrome (ARDS). Both neutrophils and alveolar macrophages participate in inflammation, but how their interaction augments inflammation and triggers ARDS is unclear. The authors hypothesize that neutrophil extracellular traps (NETs), which are formed during neutrophil NETosis, partly cause alveolar macrophage pyroptosis and worsen the severity of ARDS. Methods The authors first analysed whether NETs and caspase-1 are involved in clinical cases of ARDS. Then, the authors employed a lipopolysaccharide (LPS)-induced ARDS model to investigate whether targeting NETs or alveolar macrophages is protective. The AIM2 sensor can bind to DNA to promote AIM2 inflammasome activation, so the authors studied whether degradation of NET DNA or silencing of the AIM2 gene could protect alveolar macrophages from pyroptosis in vitro. Results Analysis of aspirate supernatants from ARDS patients showed that NET and caspase-1 levels were correlated with the severity of ARDS and that the levels of NETs and caspase-1 were higher in nonsurvivors than in survivors. In vivo, the NET level and proportion of pyroptotic alveolar macrophages in bronchoalveolar lavage fluid (BALF) were obviously higher in LPS-challenged mice than in control mice 24 h after injury. Administration of DNase I (a NET DNA-degrading agent) and BB-Cl-amidine (a NET formation inhibitor) alleviated alveolar macrophage pyroptosis, and Ac-YVAD-cmk (a pyroptosis inhibitor) attenuated NET levels in BALF and neutrophil infiltration in alveoli. All treatments markedly attenuated the severity of ARDS. Notably, LPS causes NETs to induce alveolar macrophage pyroptosis, and degradation of NET DNA or silencing of the AIM2 gene protected against alveolar macrophage pyroptosis. Conclusion These findings shed light on the proinflammatory role of NETs in mediating the neutrophil-alveolar macrophage interaction, which influences the progression of ARDS.
Collapse
Affiliation(s)
- Haitao Li
- First Department of Thoracic Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Yongbin Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Minhui Dai
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Ben Liu
- Department of Emergency, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Pinhua Pan
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| |
Collapse
|
214
|
Huang S, Wan P, Huang S, Liu S, Xiang Q, Yang G, Shereen MA, Pan P, Wang J, Liu W, Wu K, Wu J. The APC10 subunit of the anaphase-promoting complex/cyclosome orchestrates NLRP3 inflammasome activation during the cell cycle. FEBS Lett 2021; 595:2463-2478. [PMID: 34407203 DOI: 10.1002/1873-3468.14181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/05/2022]
Abstract
The activation of the NLRP3 inflammasome plays a crucial role in the innate immune response. During cell division, NLRP3 inflammasome activation must be strictly controlled. In this study, we discover that the anaphase-promoting complex subunit 10 (APC10), a substrate recognition protein of the anaphase-promoting complex/cyclosome (APC/C), is a critical mediator of NLRP3 inflammasome activation. During interphase, APC10 interacts with NLRP3 to promote NLRP3 inflammasome activation, whereas during mitosis, APC10 disassociates from the NLRP3 inflammasome to repress inflammatory responses. This study reveals a distinct mechanism by which APC10 serves as a switch for NLRP3 inflammasome activation during the cell cycle.
Collapse
Affiliation(s)
- Siyu Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| | - Pin Wan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Shanyu Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| | - Qi Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| | - Ge Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| | | | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jun Wang
- Affiliated ShunDe Hospital of Jinan University, Foshan, China
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, China
| |
Collapse
|
215
|
Nandi D, Shivrayan M, Gao J, Krishna J, Das R, Liu B, Thanyumanavan S, Kulkarni A. Core Hydrophobicity of Supramolecular Nanoparticles Induces NLRP3 Inflammasome Activation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45300-45314. [PMID: 34543013 PMCID: PMC8761361 DOI: 10.1021/acsami.1c14082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designer nanomaterials capable of delivering immunomodulators to specific immune cells have been extensively studied. However, emerging evidence suggests that several of these nanomaterials can nonspecifically activate NLRP3 inflammasomes, an intracellular multiprotein complex controlling various immune cell functions, leading to undesirable effects. To understand what nanoparticle attributes activate inflammasomes, we designed a multiparametric polymer supramolecular nanoparticle system to modulate various surface and core nanoparticle-associated molecular patterns (NAMPs), one at a time. We also investigated several underlying signaling pathways, including lysosomal rupture-cathepsin B maturation and calcium flux-mitochondrial ROS production, to gain mechanistic insights into NAMPs-mediated inflammasome activation. Here, we report that out of the four NAMPs tested, core hydrophobicity strongly activates and positively correlates with the NLRP3 assembly compared to surface charge, core rigidity, and surface hydrophobicity. Moreover, we demonstrate different signaling inclinations and kinetics followed by differential core hydrophobicity patterns with the most hydrophobic ones exhibiting both lysosomal rupture and calcium influx early on. Altogether, this study will help design the next generation of polymeric nanomaterials for specific regulation of inflammasome activation, aiding efficient immunotherapy and vaccine delivery.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Manisha Shivrayan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jingjing Gao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Bin Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - S. Thanyumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
216
|
Diaz-del-Olmo I, Worboys J, Martin-Sanchez F, Gritsenko A, Ambrose AR, Tannahill GM, Nichols EM, Lopez-Castejon G, Davis DM. Internalization of the Membrane Attack Complex Triggers NLRP3 Inflammasome Activation and IL-1β Secretion in Human Macrophages. Front Immunol 2021; 12:720655. [PMID: 34650553 PMCID: PMC8506164 DOI: 10.3389/fimmu.2021.720655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Interleukin 1β (IL-1β) plays a major role in inflammation and is secreted by immune cells, such as macrophages, upon recognition of danger signals. Its secretion is regulated by the inflammasome, the assembly of which results in caspase 1 activation leading to gasdermin D (GSDMD) pore formation and IL-1β release. During inflammation, danger signals also activate the complement cascade, resulting in the formation of the membrane attack complex (MAC). Here, we report that stimulation of LPS-primed human macrophages with sub-lytic levels of MAC results in activation of the NOD-like receptor 3 (NLRP3) inflammasome and GSDMD-mediated IL-1β release. The MAC is first internalized into endosomes and then colocalizes with inflammasome components; adapter protein apoptosis associated speck-like protein containing a CARD (ASC) and NLRP3. Pharmacological inhibitors established that MAC-triggered activation of the NLRP3 inflammasome was dependent on MAC endocytosis. Internalization of the MAC also caused dispersion of the trans-Golgi network. Thus, these data uncover a role for the MAC in activating the inflammasome and triggering IL-1β release in human macrophages.
Collapse
Affiliation(s)
- Ines Diaz-del-Olmo
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | - Jonathan Worboys
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | - Fatima Martin-Sanchez
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | - Anna Gritsenko
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | - Ashley R. Ambrose
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | | | | | - Gloria Lopez-Castejon
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | - Daniel M. Davis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
217
|
Ma J, Zhu F, Zhao M, Shao F, Yu D, Ma J, Zhang X, Li W, Qian Y, Zhang Y, Jiang D, Wang S, Xia P. SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking Gasdermin D cleavage. EMBO J 2021; 40:e108249. [PMID: 34296442 PMCID: PMC8420271 DOI: 10.15252/embj.2021108249] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/03/2022] Open
Abstract
SARS-CoV-2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS-CoV-2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS-CoV-2 viral proteins. Here, we show that the nucleocapsid of SARS-CoV-2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS-CoV-2-infected monocytes show enhanced cellular interleukin-1β (IL-1β) expression, but reduced IL-1β secretion. While SARS-CoV-2 infection promotes activation of the NLRP3 inflammasome and caspase-1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS-CoV-2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase-1. These insights into how SARS-CoV-2 antagonizes cellular inflammatory responses may open new avenues for treating COVID-19 in the future.
Collapse
Affiliation(s)
- Juan Ma
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
- Key Laboratory of Molecular ImmunologyChinese Academy of Medical SciencesBeijingChina
| | - Fangrui Zhu
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
- Key Laboratory of Molecular ImmunologyChinese Academy of Medical SciencesBeijingChina
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Fei Shao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Dou Yu
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Jiangwen Ma
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Xusheng Zhang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Weitao Li
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
- Key Laboratory of Molecular ImmunologyChinese Academy of Medical SciencesBeijingChina
| | - Yan Qian
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
- Key Laboratory of Molecular ImmunologyChinese Academy of Medical SciencesBeijingChina
| | - Yan Zhang
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
- Key Laboratory of Molecular ImmunologyChinese Academy of Medical SciencesBeijingChina
| | - Dong Jiang
- Department of Sports MedicinePeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Sports InjuriesInstitute of Sports Medicine of Peking UniversityBeijingChina
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Pengyan Xia
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
- Key Laboratory of Molecular ImmunologyChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
218
|
XIST Inhibition Attenuates Calcium Oxalate Nephrocalcinosis-Induced Renal Inflammation and Oxidative Injury via the miR-223/NLRP3 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1676152. [PMID: 34512861 PMCID: PMC8429007 DOI: 10.1155/2021/1676152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
The roles of the lncRNA X inactive specific transcript (XIST) in many diseases, including cancers and inflammatory sickness, have been previously elucidated. However, renal calculus remained poorly understood. In this study, we revealed the potential effects of XIST on kidney stones that were exerted via inflammatory response and oxidative stress mechanisms. We established a glyoxylate-induced calcium oxalate (CaOx) stone mouse model and exposed HK-2 cells to calcium oxalate monohydrate (COM). The interactions among XIST, miR-223-3p, and NOD-like receptor protein 3 (NLRP3) and their respective effects were determined by RNAs and protein expression, luciferase activity, and immunohistochemistry (IHC) assays. Cell necrosis, reactive oxygen species (ROS) generation, and inflammatory responses were detected after silencing XIST, activating and inhibiting miR-223-3p, and both knocking down XIST and activating miR-223-3p in vitro and in vivo. The XIST, NLRP3, caspase-1, and IL-1β levels were notably increased in kidney samples from glyoxylate-induced CaOx stone model mice. XIST knockdown significantly suppressed the inflammatory damage and ROS production and further attenuated oxalate crystal deposition. miRNA-223-3p mimics also exerted the same effects. Moreover, we verified the interactions among XIST, miRNA-223-3p and NLRP3, and the subsequent effects. Our results suggest that the lncRNA XIST participates in the formation and progression of renal calculus by interacting with miR-223-3p and the NLRP3/Caspase-1/IL-1β pathway to mediate the inflammatory response and ROS production.
Collapse
|
219
|
From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J 2021; 19:4641-4657. [PMID: 34504660 PMCID: PMC8405902 DOI: 10.1016/j.csbj.2021.07.038] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis, apoptosis and necroptosis are the most genetically well-defined programmed cell death (PCD) pathways, and they are intricately involved in both homeostasis and disease. Although the identification of key initiators, effectors and executioners in each of these three PCD pathways has historically delineated them as distinct, growing evidence has highlighted extensive crosstalk among them. These observations have led to the establishment of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. In this review, we provide a brief overview of the research history of pyroptosis, apoptosis and necroptosis. We then examine the intricate crosstalk among these PCD pathways to discuss the current evidence for PANoptosis. We also detail the molecular evidence for the assembly of the PANoptosome complex, a molecular scaffold for contemporaneous engagement of key molecules from pyroptosis, apoptosis, and/or necroptosis. PANoptosis is now known to be critically involved in many diseases, including infection, sterile inflammation and cancer, and future discovery of novel PANoptotic components will continue to broaden our understanding of the fundamental processes of cell death and inform the development of new therapeutics.
Collapse
|
220
|
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E. Caspase-1 Inhibition Impacts the Formation of Chondrogenic Nodules, and the Expression of Markers Related to Osteogenic Differentiation and Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22179576. [PMID: 34502478 PMCID: PMC8431148 DOI: 10.3390/ijms22179576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.
Collapse
Affiliation(s)
- Alice Ramesova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
| | - Barbora Vesela
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
- Correspondence:
| | - Eva Svandova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| |
Collapse
|
221
|
Abstract
This article presents assays that allow induction and measurement of activation of different inflammasomes in mouse macrophages, human peripheral blood mononuclear cell (PBMC) cultures, and mouse peritonitis and endotoxic shock models. Basic Protocol 1 describes how to prime the inflammasome in mouse macrophages with different Toll-like receptor agonists and TNF-α; how to induce NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation by their corresponding stimuli; and how to measure inflammasome activation-mediated maturation of interleukin (IL)-1β and IL-18 and pyroptosis. Since the well-established agonists for NLRP1 are inconsistent between mice and humans, Basic Protocol 2 describes how to activate the NLRP1 inflammasome in human PBMCs. Basic Protocol 3 describes how to purify, crosslink, and detect the apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome. Formation of the ASC pyroptosome is a signature of inflammasome activation. A limitation of ASC pyroptosome detection is the requirement of a relatively large cell number. Alternate Protocol 1 is provided to stain ASC pyroptosomes using an anti-ASC antibody and to measure ASC specks by fluorescence microscopy in a single cell. Intraperitoneal injection of lipopolysaccharides (LPS) and inflammasome agonists will induce peritonitis, which is seen as an elevation of IL-1β and other proinflammatory cytokines and an infiltration of neutrophils and inflammatory monocytes. Basic Protocol 4 describes how to induce NLRP3 inflammasome activation and peritonitis by priming mice with LPS and subsequently challenging them with monosodium urate (MSU). The method for measuring cytokines in serum and through peritoneal lavage is also described. Finally, Alternate Protocol 2 describes how to induce noncanonical NLRP3 inflammasome activation by high-dose LPS challenge in a sepsis model. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Priming and activation of inflammasomes in mouse macrophages Basic Protocol 2: Activation of human NLRP1 inflammasome by DPP8/9 inhibitor talabostat Basic Protocol 3: Purification and detection of ASC pyroptosome Alternate Protocol 1: Detection of ASC speck by immunofluorescence staining Basic Protocol 4: Activation of canonical NLRP3 inflammasome in mice by intraperitoneal delivery of MSU crystals Alternate Protocol 2: Activation of noncanonical NLRP3 inflammasome in mice by intraperitoneal delivery of LPS.
Collapse
Affiliation(s)
- Haitao Guo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
222
|
Immunohistochemical Study of ASC Expression and Distribution in the Hippocampus of an Aged Murine Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168697. [PMID: 34445402 PMCID: PMC8395512 DOI: 10.3390/ijms22168697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD), and is notably dependent on age. One important inflammatory pathway exerted by innate immune cells of the nervous system in response to danger signals is mediated by inflammasomes (IF) and leads to the generation of potent pro-inflammatory cytokines. The protein “apoptosis-associated speck-like protein containing a caspase recruitment domain” (ASC) modulates IF activation but has also other functions which are crucial in AD. We intended to characterize immunohistochemically ASC and pattern recognition receptors (PRR) of IF in the hippocampus (HP) of the transgenic mouse model Tg2576 (APP), in which amyloid-beta (Aβ) pathology is directly dependent on age. We show in old-aged APP a significant amount of ASC in microglia and astrocytes associated withAβ plaques, in the absence of PRR described by others in glial cells. In addition, APP developed foci with clusters of extracellular ASC granules not spatiallyrelated to Aβ plaques, which density correlated with the advanced age of mice and AD development. Clusters were associated withspecific astrocytes characterized by their enlarged ring-shaped process terminals, ASC content, and frequent perivascular location. Their possible implication in ASC clearance and propagation of inflammation is discussed.
Collapse
|
223
|
Unterberger S, Davies KA, Rambhatla SB, Sacre S. Contribution of Toll-Like Receptors and the NLRP3 Inflammasome in Rheumatoid Arthritis Pathophysiology. Immunotargets Ther 2021; 10:285-298. [PMID: 34350135 PMCID: PMC8326786 DOI: 10.2147/itt.s288547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that is characterized by inflammation of the synovial joints leading to cartilage and bone damage. The pathogenesis is sustained by the production of pro-inflammatory cytokines including tumor necrosis factor (TNF), interleukin (IL)-1 and IL-6, which can be targeted therapeutically to alleviate disease severity. Several innate immune receptors are suggested to contribute to the chronic inflammation in RA, through the production of pro-inflammatory factors in response to endogenous danger signals. Much research has focused on toll-like receptors and more recently the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 (NLRP3) inflammasome, which is required for the processing and release of IL-1β. This review summarizes the current understanding of the potential involvement of these receptors in the initiation and maintenance of inflammation and tissue damage in RA and experimental arthritis models.
Collapse
Affiliation(s)
- Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| | - Kevin A Davies
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| | | | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| |
Collapse
|
224
|
The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders. Neurochem Int 2021; 149:105122. [PMID: 34284076 DOI: 10.1016/j.neuint.2021.105122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
As a double-stranded DNA (dsDNA) sensor, the PYHIN family member absent in melanoma 2 (AIM2) is an essential component of the inflammasome families. Activation of AIM2 by dsDNA leads to the assembly of cytosolic multimolecular complexes termed the AIM2 inflammasome, resulting in activation of caspase-1, the maturation and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18, and pyroptosis. Multiple central nervous system (CNS) diseases are accompanied by immune responses and inflammatory cascade. As the resident macrophage cells, microglia cells act as the first and main form of active immune defense in the CNS. AIM2 is highly expressed in microglia as well as astrocytes and neurons and is essential in neurodevelopment. In this review, we highlight the recent progress on the role of AIM2 inflammasome in CNS disorders, including cerebral stroke, brain injury, neuropsychiatric disease, neurodegenerative diseases, and glioblastoma.
Collapse
|
225
|
Xu X, Li J, Long X, Tao S, Yu X, Ruan X, Zhao K, Tian L. C646 Protects Against DSS-Induced Colitis Model by Targeting NLRP3 Inflammasome. Front Pharmacol 2021; 12:707610. [PMID: 34322027 PMCID: PMC8313226 DOI: 10.3389/fphar.2021.707610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Numerous pieces of evidence have identified that the NLRP3 inflammasome plays a pivotal role in the development and pathogenesis of colitis. Targeting the NLRP3 inflammasome represents a potential therapeutic treatment. Our previous studies have suggested that acetylation of NLRP3 is indispensable to NLRP3 inflammasome activation, and some acetyltransferase inhibitors could suppress the NLRP3 inflammasome activation. Here, we identified that C646, an inhibitor of histone acetyltransferase p300, exerts anti-inflammatory effects in DSS-induced colitis mice by targeting the NLRP3 inflammasome. Mechanistically, C646 not only inhibits NF-κB activation, leading to the decreased expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and NLRP3, but also suppresses the NLRP3 inflammasome assembly by disrupting the interaction between NLRP3 and ASC. In addition, C646 attenuated the LPS-induced acute systemic inflammation model. Thus, our results demonstrate the ability of C646 to suppress the NLRP3 inflammasome activity and its potential application in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Hunan Province, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Hunan Province, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiuyan Long
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Sifan Tao
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Yu
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xixian Ruan
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Kai Zhao
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Hunan Province, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Tian
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
226
|
He L, Huang Z, Huang K, Chen R, Nguyen NT, Wang R, Cai X, Huang Z, Siwko S, Walker JR, Han G, Zhou Y, Jing J. Optogenetic Control of Non-Apoptotic Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100424. [PMID: 34540558 PMCID: PMC8438606 DOI: 10.1002/advs.202100424] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/20/2023]
Abstract
Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zixian Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Kai Huang
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Rui Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Nhung T. Nguyen
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Rui Wang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Xiaoli Cai
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zhiquan Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Stefan Siwko
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | | | - Gang Han
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Yubin Zhou
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyDepartment of Translational Medical SciencesCollege of MedicineTexas A&M UniversityHoustonTX77030USA
| | - Ji Jing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| |
Collapse
|
227
|
Shin JN, Rao L, Sha Y, Abdel Fattah E, Hyser J, Eissa NT. p38 MAPK Activity Is Required to Prevent Hyperactivation of NLRP3 Inflammasome. THE JOURNAL OF IMMUNOLOGY 2021; 207:661-670. [PMID: 34193605 DOI: 10.4049/jimmunol.2000416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2021] [Indexed: 11/19/2022]
Abstract
Inflammation contributes to the pathogenesis and morbidity of wide spectrum of human diseases. The inflammatory response must be actively controlled to prevent bystander damage to tissues. Yet, the mechanisms controlling excessive inflammatory responses are poorly understood. NLRP3 inflammasome plays an important role in innate immune response to cellular infection or stress. Its activation must be tightly regulated because uncontrolled inflammasome activation is associated with a number of human diseases. p38 MAPK signaling plays an essential role in the regulation of inflammation. The role of p38 MAPK in inflammatory response associated with the expression of proinflammatory molecules is known. However, the anti-inflammatory functions of p38 MAPK are largely unknown. In this study, we show that pharmacologic inhibition or genetic deficiency of p38 MAPK leads to hyperactivation of NLRP3 inflammasome, resulting in enhanced Caspase 1 activation and IL-1β and IL-18 production. The deficiency of p38 MAPK activity induced an increase of cytosolic Ca2+ and excessive mitochondrial Ca2+ uptake, leading to exacerbation of mitochondrial damage, which was associated with hyperactivation of NLRP3 inflammasome. In addition, mice with deficiency of p38 MAPK in granulocytes had evidence of in vivo hyperactivation of NLRP3 inflammasome and were more susceptible to LPS-induced sepsis compared with wild-type mice. Our results suggest that p38 MAPK negatively regulates NLRP3 inflammasome through control of Ca2+ mobilization. Hyperactivity of inflammasome in p38-deficient mice causes lung inflammation and increased susceptibility to septic shock.
Collapse
Affiliation(s)
- Jin Na Shin
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Lang Rao
- Department of Medicine, Baylor College of Medicine, Houston, TX; .,Veterans Administration Long Beach Healthcare System, University of California, Irvine, Irvine, CA.,Southern California Institute for Research and Education, Long Beach, CA; and
| | - Youbao Sha
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | - Joseph Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - N Tony Eissa
- Department of Medicine, Baylor College of Medicine, Houston, TX; .,Veterans Administration Long Beach Healthcare System, University of California, Irvine, Irvine, CA
| |
Collapse
|
228
|
Pinto SM, Kim H, Subbannayya Y, Giambelluca MS, Bösl K, Ryan L, Sharma A, Kandasamy RK. Comparative Proteomic Analysis Reveals Varying Impact on Immune Responses in Phorbol 12-Myristate-13-Acetate-Mediated THP-1 Monocyte-to-Macrophage Differentiation. Front Immunol 2021; 12:679458. [PMID: 34234780 PMCID: PMC8255674 DOI: 10.3389/fimmu.2021.679458] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/25/2021] [Indexed: 01/06/2023] Open
Abstract
Macrophages are sentinels of the innate immune system, and the human monocytic cell line THP-1 is one of the widely used in vitro models to study inflammatory processes and immune responses. Several monocyte-to-macrophage differentiation protocols exist, with phorbol 12-myristate-13-acetate (PMA) being the most commonly used and accepted method. However, the concentrations and duration of PMA treatment vary widely in the published literature and could affect the probed phenotype, however their effect on protein expression is not fully deciphered. In this study, we employed a dimethyl labeling-based quantitative proteomics approach to determine the changes in the protein repertoire of macrophage-like cells differentiated from THP-1 monocytes by three commonly used PMA-based differentiation protocols. Employing an integrated network analysis, we show that variations in PMA concentration and duration of rest post-stimulation result in downstream differences in the protein expression and cellular signaling processes. We demonstrate that these differences result in altered inflammatory responses, including variation in the expression of cytokines upon stimulation with various Toll-like receptor (TLR) agonists. Together, these findings provide a valuable resource that significantly expands the knowledge of protein expression dynamics with one of the most common in vitro models for macrophages, which in turn has a profound impact on the immune as well as inflammatory responses being studied.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam S. Giambelluca
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, Medical Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Animesh Sharma
- Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
229
|
Bresch IP, Machtens DA, Reubold TF, Eschenburg S. Development of an in vitro assay for the detection of polymerization of the pyrin domain of ASC. Biotechniques 2021; 70:350-354. [PMID: 34114503 DOI: 10.2144/btn-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multicomponent protein complexes called inflammasomes play a major role in the innate immune system by activating proinflammatory cytokines and promoting a highly inflammatory form of programmed cell death, called pyroptosis. A hallmark of the function of the nucleotide-binding domain, leucine-rich repeat and NLRP3-mediated inflammasome assembly is the polymerization of ASC into large filaments. The ASC filaments recruit and activate procaspase-1 by induced proximity. We developed an in vitro assay for monitoring the polymerization of the pyrin domain of ASC by microscale thermophoresis. We have validated the assay by analyzing the effects of buffer conditions, mutations of ASC and the use of seeds on the polymerization behavior of ASC.
Collapse
Affiliation(s)
- Ian P Bresch
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Dominik A Machtens
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas F Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Susanne Eschenburg
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
230
|
Carter JJ, Nemeno JGE, Oh JJ, Houghton JE, Dix RD. Atypical cytomegalovirus retinal disease in pyroptosis-deficient mice with murine acquired immunodeficiency syndrome. Exp Eye Res 2021; 209:108651. [PMID: 34097907 DOI: 10.1016/j.exer.2021.108651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023]
Abstract
Pyroptosis is a caspase-dependent programmed cell death pathway that initiates and sustains inflammation through release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 following formation of gasdermin D (GSDMD)-mediated membrane pores. To determine the possible pathogenic contributions of pyroptosis toward development of full-thickness retinal necrosis during AIDS-related human cytomegalovirus retinitis, we performed a series of studies using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS). Initial investigations demonstrated significant transcription and translation of key pyroptosis-associated genes within the ocular compartments of MCMV-infected eyes of mice with MAIDS. Subsequent investigations compared MCMV-infected eyes of groups of wildtype MAIDS mice with MCMV-infected eyes of groups of caspase-1-/- MAIDS mice, GSDMD-/- MAIDS mice, or IL-18-/- MAIDS mice to explore a possible contribution of pyroptosis towards the pathogenesis of MAIDS-related MCMV retinitis. Histopathologic analysis revealed typical full-thickness retinal necrosis in 100% of MCMV-infected eyes of wildtype MAIDS mice. In sharp contrast, none (0%) of MCMV-infected eyes of MAIDS mice that were deficient in either caspase-1, GSDMD, or IL-18 developed full-thickness retinal necrosis but instead exhibited an atypical pattern of retinal disease characterized by thickening and proliferation of the retinal pigmented epithelium layer with relative sparing of the neurosensory retina. Surprisingly, MCMV-infected eyes of all groups of deficient MAIDS mice harbored equivalent intraocular amounts of infectious virus as seen in MCMV-infected eyes of groups of wildtype MAIDS mice despite failure to develop full-thickness retinal necrosis. We conclude that pyroptosis plays a significant role in the development of full-thickness retinal necrosis during the pathogenesis of MAIDS-related MCMV retinitis. This observation may extend to the pathogenesis of AIDS-related HCMV retinitis and other AIDS-related opportunistic virus infections.
Collapse
Affiliation(s)
- Jessica J Carter
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia; Department of Ophthalmology, Emory University School of Medicine, Atlanta, 30322, Georgia
| | - Judee Grace E Nemeno
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia
| | - Jay J Oh
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia
| | - John E Houghton
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia
| | - Richard D Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia; Department of Ophthalmology, Emory University School of Medicine, Atlanta, 30322, Georgia.
| |
Collapse
|
231
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
232
|
Oxidized mitochondrial DNA released after inflammasome activation is a disease biomarker for myelodysplastic syndromes. Blood Adv 2021; 5:2216-2228. [PMID: 33890980 DOI: 10.1182/bloodadvances.2020003475] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem cell malignancies that can phenotypically resemble other hematologic disorders. Thus, tools that may add to current diagnostic practices could aid in disease discrimination. Constitutive innate immune activation is a pathogenetic driver of ineffective hematopoiesis in MDS through Nod-like receptor protein 3 (NLRP3)-inflammasome-induced pyroptotic cell death. Oxidized mitochondrial DNA (ox-mtDNA) is released upon cytolysis, acts as a danger signal, and triggers inflammasome oligomerization via DNA sensors. By using immortalized bone marrow cells from murine models of common MDS somatic gene mutations and MDS primary samples, we demonstrate that ox-mtDNA is released upon pyroptosis. ox-mtDNA was significantly increased in MDS peripheral blood (PB) plasma compared with the plasma of healthy donors, and it was significantly higher in lower-risk MDS vs higher-risk MDS, consistent with the greater pyroptotic cell fraction in lower-risk patients. Furthermore, ox-mtDNA was significantly higher in MDS PB plasma compared with all other hematologic malignancies studied, with the exception of chronic lymphocytic leukemia (CLL). Receiver operating characteristic/area under the curve (ROC/AUC) analysis demonstrated that ox-mtDNA is a sensitive and specific biomarker for patients with MDS compared with healthy donors (AUC, 0.964), other hematologic malignancies excluding CLL (AUC, 0.893), and reactive conditions (AUC, 0.940). ox-mtDNA positively and significantly correlated with levels of known alarmins S100A9, S100A8, and apoptosis-associated speck-like protein containing caspase recruitment domain (CARD) specks, which provide an index of medullary pyroptosis. Collectively, these data indicate that quantifiable ox-mtDNA released into the extracellular space upon inflammasome activation serves as a biomarker for MDS and the magnitude of pyroptotic cell death.
Collapse
|
233
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
234
|
Gupta M, Wani A, Ahsan AU, Ali M, Chibber P, Singh S, Digra SK, Datt M, Bharate SB, Vishwakarma RA, Singh G, Kumar A. Safranal inhibits NLRP3 inflammasome activation by preventing ASC oligomerization. Toxicol Appl Pharmacol 2021; 423:115582. [PMID: 34019860 DOI: 10.1016/j.taap.2021.115582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/01/2023]
Abstract
NLRP3 inflammasome is involved in several chronic inflammatory diseases. The inflammatory effect of the NLRP3 inflammasome is executed through IL-1β and IL-18. Therefore, IL-1β is one of the primary targets in chronic inflammatory conditions. However, current treatment regimens are dependent on anti- IL-1β biologicals. The therapies targeting IL-1β through inhibition of NLRP3 inflammasome are thus being actively explored. We identified safranal, a small molecule responsible for the essence of saffron as a potential inhibitor of the NLRP3 inflammasome. Safranal significantly suppressed the release of IL-1β from ATP stimulated J774A.1 and bone marrow-derived macrophages (BMDMs) by regulating CASP1 and CASP8 dependent cleavage of pro-IL-1β. Safranal markedly suppressed the expression of NLRP3 and its ATPase activity. Safranal treatment enhanced the expression of NRF2, whereas, si-RNA mediated silencing of Nrf2 abrogated the anti-NLRP3 effect of safranal. Furthermore, safranal inhibited ASC oligomerization and formation of ASC specks. Safranal also displayed anti-NLRP3 activity in multiple mice models. Treatment of animals with safranal reduced the production of IL-1β in ATP elicited peritoneal inflammation, MSU induced air pouch inflammation, and MSU injected foot paw edema in mice. Thus, our data projects safranal as a potential preclinical drug candidate against NLRP3 inflammasome triggered chronic inflammation.
Collapse
Affiliation(s)
- Mehak Gupta
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abubakar Wani
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aitizaz Ul Ahsan
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Mehboob Ali
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Chibber
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surjeet Singh
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjeev K Digra
- Department of Paediatrics, Government Medical College, Jammu, India
| | - Manish Datt
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat 380009, India
| | - Sandip B Bharate
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Ram A Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Gurdarshan Singh
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ajay Kumar
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
235
|
Zhang X, Liu Y, Deng G, Huang B, Kai G, Chen K, Li J. A Purified Biflavonoid Extract From Selaginella moellendorffii Alleviates Gout Arthritis via NLRP3/ASC/Caspase-1 Axis Suppression. Front Pharmacol 2021; 12:676297. [PMID: 34079466 PMCID: PMC8165565 DOI: 10.3389/fphar.2021.676297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Activation of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in gout. Selaginella moellendorffii has been confirmed effective for the treatment of gout in hospital preparations. Flavonoids, such as amentoflavone (AM), are the main active components of this medicine. Purpose: We aimed to investigate the flavonoid extract (TF) and AM's effects on NLRP3 inflammasome in vitro and their preventive effects on gout in vivo. Methods: LC-MS method was employed to investigate the chemical profile of TF. The cellular inflammation model was established by lipopolysaccharide (LPS) or monosodium urate (MSU) stimulation. The cell membrane integrality and morphological characteristics were determined by using Lactate dehydrogenase (LDH) assay kits, propidium iodide (PI) stain, and scanning electron microscopy (SEM). The inflammatory cytokines and NLRP3 inflammasome activation were determined using enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (RT-PCR), immunofluorescence staining, and western blotting. The acute gout mouse model was induced by MSU injection into footpads, and then the paw edema, inflammatory mediators, and histological examination (HE) were analyzed. Results: The main constituents in TF are AM and robustaflavone. In the cellular inflammation model, TF down-regulated the levels of nitric oxide (NO), TNF-α, and LDH, suppressed NLRP3 inflammasome-derived interleukin-1β (IL-1β) secretion, decreased caspase-1 activation, repressed mature IL-1β expression, inhibited ASC speck formation and NLRP3 protein expression. In an acute gout mouse model, oral administration of TF to mice effectively alleviated paw edema, reduced inflammatory features, and decreased the levels of IL-1β in mouse foot tissue. Similarly, the characteristic constituent AM was also able to down-regulated the levels of NO, TNF-α, and LDH, down-regulate the mRNA expression of IL-1β, TNF-α, caspase-1, and NLRP3. Besides, the foot thickness, lymphocyte infiltration, and IL-1β level were also prevented by AM. Conclusion: The results indicated that TF and its main constituent AM alleviate gout arthritis via NLRP3/ASC/Caspase-1 axis suppression.
Collapse
Affiliation(s)
- Xueyan Zhang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yingbo Liu
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guangrui Deng
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Department of Pharmacy, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, China
| | - Bisheng Huang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoyin Kai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keli Chen
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Li
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
236
|
Ni J, Guan C, Liu H, Huang X, Yue J, Xiang H, Jiang Z, Tao Y, Cao W, Liu J, Wang Z, Wang Y, Wu X. Ubc13 Promotes K63-Linked Polyubiquitination of NLRP3 to Activate Inflammasome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2376-2385. [PMID: 33893171 DOI: 10.4049/jimmunol.2001178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
NLRP3 inflammasome plays an important role in innate immune system through recognizing pathogenic microorganisms and danger-associated molecules. Deubiquitination of NLRP3 has been shown to be essential for its activation, yet the functions of Ubc13, the K63-linked specific ubiquitin-conjugating enzyme E2, in NLRP3 inflammasome activation are not known. In this study, we found that in mouse macrophages, Ubc13 knockdown or knockout dramatically impaired NLRP3 inflammasome activation. Catalytic activity is required for Ubc13 to control NLRP3 activation, and Ubc13 pharmacological inhibitor significantly attenuates NLRP3 inflammasome activation. Mechanistically, Ubc13 associates with NLRP3 and promotes its K63-linked polyubiquitination. Through mass spectrum and biochemical analysis, we identified lysine 565 and lysine 687 as theK63-linked polyubiquitination sites of NLRP3. Collectively, our data suggest that Ubc13 potentiates NLRP3 inflammasome activation via promoting site-specific K63-linked ubiquitination of NLRP3. Our study sheds light on mechanisms of NLRP3 inflammasome activation and identifies that targeting Ubc13 could be an effective therapeutic strategy for treating aberrant NLRP3 inflammasome activation-induced pathogenesis.
Collapse
Affiliation(s)
- Jun Ni
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Guan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinnan Yue
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongrui Xiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Jiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexiao Tao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyi Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yugang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
237
|
Kovacs SB, Oh C, Maltez VI, McGlaughon BD, Verma A, Miao EA, Aachoui Y. Neutrophil Caspase-11 Is Essential to Defend against a Cytosol-Invasive Bacterium. Cell Rep 2021; 32:107967. [PMID: 32726630 PMCID: PMC7480168 DOI: 10.1016/j.celrep.2020.107967] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Either caspase-1 or caspase-11 can cleave gasdermin D to cause pyroptosis, eliminating intracellular replication niches. We previously showed that macrophages detect Burkholderia thailandensis via NLRC4, triggering the release of interleukin (IL)-18 and driving an essential interferon (IFN)-γ response that primes caspase-11. We now identify the IFN-γ-producing cells as a mixture of natural killer (NK) and T cells. Although both caspase-1 and caspase-11 can cleave gasdermin D in macrophages and neutrophils, we find that NLRC4-activated caspase-1 triggers pyroptosis in macrophages, but this pathway does not trigger pyroptosis in neutrophils. In contrast, caspase-11 triggers pyroptosis in both macrophages and neutrophils. This translates to an absolute requirement for caspase-11 in neutrophils during B. thailandensis infection in mice. We present an example of inflammasome sensors causing diverging outcomes in different cell types. Thus, cell fates are dictated not simply by the pathogen or inflammasome, but also by how the cell is wired to respond to detection events. Kovacs et al. demonstrate that natural killer and T cells produce IFN-γ to prime caspase-11 during Burkholderia thailandensis infection. They demonstrate that in neutrophils, caspase-1 and caspase-11 activation lead to gasdermin D cleavage, but only caspase-11 activation leads to pyroptosis that is necessary for clearance of this cytosol-invasive pathogen in vivo.
Collapse
Affiliation(s)
- Stephen B Kovacs
- Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vivien I Maltez
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin D McGlaughon
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ambika Verma
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Edward A Miao
- Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
238
|
Bagherniya M, Khedmatgozar H, Fakheran O, Xu S, Johnston TP, Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother Res 2021; 35:4804-4833. [PMID: 33856730 DOI: 10.1002/ptr.7118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that induces caspase-1 activation and the downstream substrates involved with the processing and secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and tumor necrosis factor-α (TNF- α). The NLRP3 inflammasome is activated by a wide range of danger signals that derive from metabolic dysregulation. Activation of this complex often involves the adaptor ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. It has been shown that nutraceuticals and medicinal plants have antiinflammatory properties and could be used as complementary therapy in the treatment of several chronic diseases that are related to inflammation, for example, cardiovascular diseases and diabetes mellitus. Herb-based medicine has demonstrated protective effects against NLRP3 inflammasome activation. Therefore, this review focuses on the effects of nutraceuticals and bioactive compounds derived from medicinal plants on NLRP3 inflammasome activation and the possible mechanisms of action of these natural products. Thus, herb-based, natural products/compounds can be considered novel, practical, and accessible agents in chronic inflammatory diseases by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Khedmatgozar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Fakheran
- Dental Research Center, Department of Periodontics, Dental Research Institute, Isfahan University of Medical sciences, Isfahan, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
239
|
Makoni NJ, Garrad EC, Redzic A, Nichols MR. Expression of NLRP3 inflammasome proteins in ExpiCHO-S mammalian cells reveals oligomerization properties that are highly sensitive to solution conditions. Biotechnol Prog 2021; 37:e3153. [PMID: 33811748 DOI: 10.1002/btpr.3153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022]
Abstract
The NLRP3 inflammasome is a key intracellular component of the innate immune response. It is a three-protein complex essential for the production of mature interleukin 1-β. The complex, which is comprised of three proteins, NLRP3, ASC, and pro-caspase-1, has been implicated in the physiological response to pathogenic elements of cardiovascular disease and Alzheimer's disease. Investigations into the properties of the three proteins can be aided by larger-scale recombinant expression to produce adequate amounts. In the current study, a variety of NLRP3 inflammasome proteins were expressed in the ExpiCHO-S mammalian cell system with a particular focus on ASC. ASC fusion proteins with glutathione-S transferase, maltose-binding protein, and SUMO increased solubility and aided in determining the stability and oligomerization propensity of individual ASC domains and full-length ASC. ASC oligomerization was highly sensitive to protein concentration, ionic strength, and mutation. These observations provided strategic ways to enhance protein purification and characterize ASC oligomerization. The ExpiCHO-S expression system consistently produced high-yield recombinant NLRP3 inflammasome proteins which led to a further understanding of ASC oligomerization.
Collapse
Affiliation(s)
- Nyasha J Makoni
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Evan C Garrad
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Adela Redzic
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Michael R Nichols
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
240
|
Zhong G, Wan F, Ning Z, Wu S, Jiang X, Tang Z, Huang R, Hu L. The protective role of autophagy against arsenic trioxide-induced cytotoxicity and ROS-dependent pyroptosis in NCTC-1469 cells. J Inorg Biochem 2021; 217:111396. [PMID: 33610032 DOI: 10.1016/j.jinorgbio.2021.111396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 12/30/2022]
Abstract
Arsenic trioxide (As2O3) is widely used in traditional Chinese medicine to treat tumors. This study investigated the effect of As(III) on pyroptosis in murine hepatocytes in vitro and how this relates to autophagy. NCTC1469-cells were treated with As(III) alone (6, 12 and 18 μM) or in combination with N-acetylcysteine (NAC,1 mM), 3-methyladenine (3-MA, 5 mM) or rapamycin (Rapa,100 nM) for 24 h. The results showed that As(III)-treatment reduced cell viability in a dose-dependent manner, but induced lactic dehydrogenase (LDH) activity. As(III)-treatment also resulted in increased intracellular reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential (MMP), therefore promoting pyroptosis. Moreover, As(III)-treatment upregulated the expression of autophagy and pyroptosis-related genes (LC3-A, LC3-B, P62, Beclin-1, Atg5, Caspase-1, Gasdermin D, IL-18, IL-1β) and downregulated the expression of m-TOR, NLRP3, ASC genes. Meanwhile the accumulation of light chain 3-B/A (LC3B/LC3A), autophagy-related gene 5 (Atg-5), Bcl-2-interacting protein (Beclin-1), Caspase-1, Gasdermin D, interleukin-1β (IL-1β), IL-18 and poptosis-associated speck-like protein (ASC) proteins were upregulated while nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) was downregulated in all As(III)-treatment groups. Furthermore, the inhibition of autophagy by 3-MA aggravated AsIII-induced pyroptosis and cytotoxicity. However, NAC or Rapa markedly alleviated the abovementioned phenomenon under As(III) stress. In addition, we speculate that the protective mechanism of NAC on As(III)-induced pyroptosis in hepatocytes mainly include the elimination of ROS because of the chelation of As(III) in the culture medium. In conclusion, these results provide new insight into the mechanisms underlying AsIII-induced cytotoxicity and pyroptosis in hepatocytes in vitro.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhijun Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
241
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1317] [Impact Index Per Article: 329.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
242
|
Friker LL, Scheiblich H, Hochheiser IV, Brinkschulte R, Riedel D, Latz E, Geyer M, Heneka MT. β-Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia. Cell Rep 2021; 30:3743-3754.e6. [PMID: 32187546 PMCID: PMC8729885 DOI: 10.1016/j.celrep.2020.02.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease is the world’s most common neurodegenerative disorder. It is associated with neuroinflammation involving activation of microglia by β-amyloid (Aβ) deposits. Based on previous studies showing apoptosis-associated speck-like protein containing a CARD (ASC) binding and cross-seeding extracellular Aβ, we investigate the propagation of ASC between primary microglia and the effects of ASC-Aβ composites on microglial inflammasomes and function. Indeed, ASC released by a pyroptotic cell can be functionally built into the neighboring microglia NOD-like receptor protein (NLRP3) inflammasome. Compared with protein-only application, exposure to ASC-Aβ composites amplifies the proinflammatory response, resulting in pyroptotic cell death, setting free functional ASC and inducing a feedforward stimulating vicious cycle. Clustering around ASC fibrils also compromises clearance of Aβ by microglia. Together, these data enable a closer look at the turning point from acute to chronic Aβ-related neuroinflammation through formation of ASC-Aβ composites. Friker et al. investigate the reaction of primary microglia to exogenous ASC and ASC-Aβ composites. They uncover a vicious circle involving amplified NLRP3 inflammasome activity and reduced Aβ clearance in the presence of ASC that might play a key role in Alzheimer’s disease progression.
Collapse
Affiliation(s)
- Lea L Friker
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Hannah Scheiblich
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Inga V Hochheiser
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | | | - Dietmar Riedel
- Max Planck Institute for Biophysical Chemistry, Department of Structural Dynamics, 37077 Göttingen, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
243
|
Antimicrobial Peptide LL-37 Drives Rosacea-Like Skin Inflammation in an NLRP3-Dependent Manner. J Invest Dermatol 2021; 141:2885-2894.e5. [PMID: 33745908 DOI: 10.1016/j.jid.2021.02.745] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 01/14/2023]
Abstract
Rosacea is a chronic inflammatory skin disease characterized by immune response-dependent erythema and pustules. Although the precise etiology of rosacea remains elusive, its pathogenesis is reportedly associated with an increased level of antimicrobial peptide LL-37. However, molecular mechanisms underlying the progression of rosacea via LL-37 remain poorly understood. Here, we examined the potential role of LL-37 in rosacea-like skin inflammatory phenotypes at a molecular level. Our in vitro data demonstrated that LL-37 promotes NLRP3-mediated inflammasome activation in lipopolysaccharide-primed macrophages, indicated by the processing of caspase-1 and IL-1β. LL-37 was internalized into the cytoplasm of macrophages through P2X7 receptor-mediated endocytosis. Intracellular LL-37 triggered the assembly and activation of NLRP3-ASC inflammasome complex by facilitating lysosomal destabilization. Consistent with these in vitro results, intradermal LL-37 administration induced in vivo caspase-1 activation and ASC speck formation in the skin of Nlrp3-expressing, but not in Nlrp3-deficient, mice. Intradermal injection of LL-37 elicited profound recruitment of inflammatory Gr1+ cells and subsequent skin inflammation. However, LL-37-induced rosacea-like skin inflammation was significantly abrogated in Nlrp3-deficient mice. Furthermore, an NLRP3-specific inhibitor, MCC950, markedly reduced LL-37-triggered rosacea-like phenotypes. Taken together, our findings clearly indicate that NLRP3 inflammasome activation plays a crucial role in LL-37-induced skin inflammation and rosacea pathogenesis.
Collapse
|
244
|
Guan C, Huang X, Yue J, Xiang H, Shaheen S, Jiang Z, Tao Y, Tu J, Liu Z, Yao Y, Yang W, Hou Z, Liu J, Yang XD, Zou Q, Su B, Liu Z, Ni J, Cheng J, Wu X. SIRT3-mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics 2021; 11:3981-3995. [PMID: 33664876 PMCID: PMC7914345 DOI: 10.7150/thno.55573] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Salmonella typhimurium (S. typhimurium) infection of macrophage induces NLRC4 inflammasome-mediated production of the pro-inflammatory cytokines IL-1β. Post-translational modifications on NLRC4 are critical for its activation. Sirtuin3 (SIRT3) is the most thoroughly studied mitochondrial nicotinamide adenine dinucleotide (NAD+) -dependent deacetylase. We wondered whether SIRT3 mediated-deacetylation could take part in NLRC4 inflammasome activation. Methods: We initially tested IL-1β production and pyroptosis after cytosolic transfection of flagellin or S. typhimurium infection in wild type and SIRT3-deficient primary peritoneal macrophages via immunoblotting and ELISA assay. These results were confirmed in SIRT3-deficient immortalized bone marrow derived macrophages (iBMDMs) which were generated by CRISPR-Cas9 technology. In addition, in vivo experiments were conducted to confirm the role of SIRT3 in S. typhimurium-induced cytokines production. Then NLRC4 assembly was analyzed by immune-fluorescence assay and ASC oligomerization assay. Immunoblotting, ELISA and flow cytometry were performed to clarify the role of SIRT3 in NLRP3 and AIM2 inflammasomes activation. To further investigate the mechanism of SIRT3 in NLRC4 activation, co-immunoprecipitation (Co-IP), we did immunoblot, cellular fractionation and in-vitro deacetylation assay. Finally, to clarify the acetylation sites of NLRC4, we performed liquid chromatography-mass spectrometry (LC-MS) and immunoblotting analysis. Results: SIRT3 deficiency led to significantly impaired NLRC4 inflammasome activation and pyroptosis both in vitro and in vivo. Furthermore, SIRT3 promotes NLRC4 inflammasome assembly by inducing more ASC speck formation and ASC oligomerization. However, SIRT3 is dispensable for NLRP3 and AIM2 inflammasome activation. Moreover, SIRT3 interacts with and deacetylates NLRC4 to promote its activation. Finally, we proved that deacetylation of NLRC4 at Lys71 or Lys272 could promote its activation. Conclusions: Our study reveals that SIRT3 mediated-deacetylation of NLRC4 is pivotal for NLRC4 activation and the acetylation switch of NLRC4 may aid the clearance of S. typhimurium infection.
Collapse
Affiliation(s)
- Chenyang Guan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xian Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jinnan Yue
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hongrui Xiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Samina Shaheen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhenyan Jiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yuexiao Tao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhenshan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yufeng Yao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Wen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhaoyuan Hou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Junling Liu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Dong Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhiduo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jun Ni
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jinke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
245
|
Wang Y, Chen S, Yang PL, Chen JJ, Kong WJ, Wang YJ. AIM2 inflammasome activation may mediate high mobility group box 1 release in murine allergic rhinitis. Braz J Otorhinolaryngol 2021; 88:925-931. [PMID: 33707120 PMCID: PMC9615526 DOI: 10.1016/j.bjorl.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction High mobility group box 1 protein participates in the pathogenesis of allergic rhinitis. Activation of the inflammasome can mediate the release of high mobility group box 1. The role of the absent in melanoma 2 inflammasome in allergic rhinitis remains unclear. Objective This study aimed to investigate the function of absent in melanoma 2 inflammasome in murine allergic rhinitis and the interaction between high mobility group box 1 and the absent in melanoma 2 inflammasome. Methods A murine allergic rhinitis model was established using twenty Balb/c mice. Expression of the components of the absent in melanoma 2 inflammasome: absent in melanoma 2, apoptosis-associated speck-like protein containing a CARD (Asc), caspase-1 p20, and additional nod-like receptor family pyrin domain containing 3 (Nlrp3) were detected by western blotting during allergic rhinitis. Alterations of absent in melanoma 2, caspase-1, and high mobility group box 1 after ovalbumin challenge were demonstrated by immunohistochemistry. TdT-mediated dUTP Nick end labeling, TUNEL assay, and cleavage of caspase-3 and PARP-1 were used for the observation of pyroptosis. Results Eosinophilia and goblet cell infiltration were observed in the nasal mucosa of mice in the allergic rhinitis group. Absent in melanoma 2, Asc, and caspase-1 p20 increased after ovalbumin exposure while Nlrp3 did not. High mobility group box 1 was released in the nasal mucosa of allergic rhinitis mice. TUNEL-positive cells increased in the epithelium and laminae propria, whereas cleavage of caspase-3 and PARP-1 was not observed. Conclusions The absent in melanoma 2 inflammasome was activated and pyroptosis may occur in the nasal mucosa after ovalbumin treatment. These may contribute to the translocation of high mobility group box 1 and the development of allergic rhinitis.
Collapse
Affiliation(s)
- Yan Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Shan Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Ping-Li Yang
- Shihezi University School of Medicine, The First Affiliated Hospital, Department of Otorhinolaryngology, Shihezi, China
| | - Jian-Jun Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Wei-Jia Kong
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| | - Yan-Jun Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| |
Collapse
|
246
|
Wang M, Chen X, Zhang Y. Biological Functions of Gasdermins in Cancer: From Molecular Mechanisms to Therapeutic Potential. Front Cell Dev Biol 2021; 9:638710. [PMID: 33634141 PMCID: PMC7901903 DOI: 10.3389/fcell.2021.638710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Pyroptosis is a type of lytic programmed cell death triggered by various inflammasomes that sense danger signals. Pyroptosis has recently attracted great attention owing to its contributory role in cancer. Pyroptosis plays an important role in cancer progression by inducing cancer cell death or eliciting anticancer immunity. The participation of gasdermins (GSDMs) in pyroptosis is a noteworthy recent discovery. GSDMs have emerged as a group of pore-forming proteins that serve important roles in innate immunity and are composed of GSDMA-E and Pejvakin (PJVK) in human. The N-terminal domains of GSDMs, expect PJVK, can form pores on the cell membrane and function as effector proteins of pyroptosis. Remarkably, it has been found that GSDMs are abnormally expressed in several forms of cancers. Moreover, GSDMs are involved in cancer cell growth, invasion, metastasis and chemoresistance. Additionally, increasing evidence has indicated an association between GSDMs and clinicopathological features in cancer patients. These findings suggest the feasibility of using GSDMs as prospective biomarkers for cancer diagnosis, therapeutic intervention and prognosis. Here, we review the progress in unveiling the characteristics and biological functions of GSDMs. We also focus on the implication and molecular mechanisms of GSDMs in cancer pathogenesis. Investigating the relationship between GSDMs and cancer biology could assist us to explore new therapeutic avenues for cancer prevention and treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
247
|
Camilli G, Bohm M, Piffer AC, Lavenir R, Williams DL, Neven B, Grateau G, Georgin-Lavialle S, Quintin J. β-Glucan-induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies. J Clin Invest 2021; 130:4561-4573. [PMID: 32716363 DOI: 10.1172/jci134778] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of mononuclear phagocytes to β-glucan, a naturally occurring polysaccharide, contributes to the induction of innate immune memory, which is associated with long-term epigenetic, metabolic, and functional reprogramming. Although previous studies have shown that innate immune memory induced by β-glucan confers protection against secondary infections, its impact on autoinflammatory diseases, associated with inflammasome activation and IL-1β secretion, remains poorly understood. In particular, whether β-glucan-induced long-term reprogramming affects inflammasome activation in human macrophages in the context of these diseases has not been explored. We found that NLRP3 inflammasome-mediated caspase-1 activation and subsequent IL-1β production were reduced in β-glucan-reprogrammed macrophages. β-Glucan acted upstream of the NLRP3 inflammasome by preventing potassium (K+) efflux, mitochondrial ROS (mtROS) generation, and, ultimately, apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and speck formation. Importantly, β-glucan-induced memory in macrophages resulted in a remarkable attenuation of IL-1β secretion and caspase-1 activation in patients with an NLRP3-associated autoinflammatory disease, cryopyrin-associated periodic syndromes (CAPS). Our findings demonstrate that β-glucan-induced innate immune memory represses IL-1β-mediated inflammation and support its potential clinical use in NLRP3-driven diseases.
Collapse
Affiliation(s)
- Giorgio Camilli
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - Mathieu Bohm
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - Alícia Corbellini Piffer
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France.,Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rachel Lavenir
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - David L Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Benedicte Neven
- Pediatric Hematology-Immunology and Rheumatology Department, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Gilles Grateau
- Service de Médecine Interne et Centre de Références des Maladies Auto-inflammatoires et des Amyloses Inflammatoires, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Sophie Georgin-Lavialle
- Service de Médecine Interne et Centre de Références des Maladies Auto-inflammatoires et des Amyloses Inflammatoires, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Jessica Quintin
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
248
|
Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Regulation of the NLRP3 Inflammasome by Post-Translational Modifications and Small Molecules. Front Immunol 2021; 11:618231. [PMID: 33603747 PMCID: PMC7884467 DOI: 10.3389/fimmu.2020.618231] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a host protection mechanism that eliminates invasive pathogens from the body. However, chronic inflammation, which occurs repeatedly and continuously over a long period, can directly damage tissues and cause various inflammatory and autoimmune diseases. Pattern recognition receptors (PRRs) respond to exogenous infectious agents called pathogen-associated molecular patterns and endogenous danger signals called danger-associated molecular patterns. Among PRRs, recent advancements in studies of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome have established its significant contribution to the pathology of various inflammatory diseases, including metabolic disorders, immune diseases, cardiovascular diseases, and cancer. The regulation of NLRP3 activation is now considered to be important for the development of potential therapeutic strategies. To this end, there is a need to elucidate the regulatory mechanism of NLRP3 inflammasome activation by multiple signaling pathways, post-translational modifications, and cellular organelles. In this review, we discuss the intracellular signaling events, post-translational modifications, small molecules, and phytochemicals participating in the regulation of NLRP3 inflammasome activation. Understanding how intracellular events and small molecule inhibitors regulate NLRP3 inflammasome activation will provide crucial information for elucidating the associated host defense mechanism and the development of efficient therapeutic strategies for chronic diseases.
Collapse
Affiliation(s)
- Jin Kyung Seok
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
249
|
Tyrkalska SD, Candel S, Mulero V. The neutrophil inflammasome. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103874. [PMID: 32987011 DOI: 10.1016/j.dci.2020.103874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Since inflammasomes were discovered in the early 21st century, knowledge about their biology has multiplied exponentially. These cytosolic multiprotein complexes alert the immune system about the presence of infection or tissue damage, and regulate the subsequent inflammatory responses. As inflammasome dysregulation is increasingly associated with numerous autoinflammatory disorders, there is an urgent need for further research into the inflammasome's involvement in the pathogenesis of such diseases in order to identify novel therapeutic targets and treatments. The zebrafish has become a widely used animal model to study human diseases in recent years, and has already provided relevant findings in the field of inflammasome biology including the identification of new components and pathways. We provide a detailed analysis of current knowledge on neutrophil inflammasome biology and compare its features with those of the better known macrophage inflammasome, focusing on its contribution to innate immunity and its relevance for human health. Importantly, a large body of evidence points to a link between neutrophil inflammasome dysfunction and many neutrophil-mediated human diseases, but the real contribution of the neutrophil inflammasome to the pathogenesis of these disorders is largely unknown. Although neutrophils have remained in the shadow of macrophages and monocytes in the field of inflammasome research since the discovery of these multiprotein platforms, recent studies strongly suggest that the importance of the neutrophil inflammasome has been underestimated.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
250
|
Rincon JC, Hawkins RB, Hollen M, Nacionales DC, Ungaro R, Efron PA, Moldawer LL, Larson SD. Aluminum Adjuvant Improves Survival Via NLRP3 Inflammasome and Myeloid Non-Granulocytic Cells in a Murine Model of Neonatal Sepsis. Shock 2021; 55:274-282. [PMID: 32769820 PMCID: PMC8025597 DOI: 10.1097/shk.0000000000001623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Neonatal sepsis leads to significant morbidity and mortality with the highest risk of death occurring in preterm (<37 weeks) and low birth weight (<2,500 g) infants. The neonatal immune system is developmentally immature with well-described defects in innate and adaptive immune responses. Immune adjuvants used to enhance the vaccine response have emerged as potential therapeutic options, stimulating non-specific immunity and preventing sepsis mortality. Aluminum salts ("alum") have been used as immune adjuvants for over a century, but their mechanism of action remains poorly understood. This study aims to identify potential mechanisms by which pretreatment with alum induces host protective immunity to polymicrobial sepsis in neonatal mice. Utilizing genetic and cell-depletion studies, we demonstrate here that the prophylactic administration of aluminum adjuvants in neonatal mice improves sepsis survival via activation of the nucleotide oligomerization domain-like receptor family, pyrin-domain-containing 3 inflammasome and dendritic cell activation. Furthermore, this beneficial effect is dependent on myeloid, non-granulocytic Gr1-positive cells, and MyD88-signaling pathway activation. These findings suggest a promising therapeutic role for aluminum-based vaccine adjuvants to prevent development of neonatal sepsis and improve mortality in this highly vulnerable population.
Collapse
Affiliation(s)
- Jaimar C Rincon
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | | | |
Collapse
|