201
|
Kaneuchi M, Sasaki M, Tanaka Y, Shiina H, Verma M, Ebina Y, Nomura E, Yamamoto R, Sakuragi N, Dahiya R. Expression and methylation status of 14-3-3 sigma gene can characterize the different histological features of ovarian cancer. Biochem Biophys Res Commun 2004; 316:1156-62. [PMID: 15044106 DOI: 10.1016/j.bbrc.2004.02.171] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 10/26/2022]
Abstract
We hypothesize that 14-3-3 sigma gene expression and its regulation by methylation can characterize histological types of primary human epithelial ovarian cancer. To test this hypothesis, ovarian cancer cell lines and 54 ovarian cancer tissue samples were analyzed for expression and methylation of 14-3-3 sigma gene using methylation specific PCR. The results of our experiments demonstrate that 14-3-3 sigma gene was methylated and inactivated in ES-2 ovarian cell line, which was derived from clear cell adenocarcinoma. Treatment of this cell line with demethylating agent 5-aza-2'-deoxycytidine restored the expression of 14-3-3 sigma gene. In human ovarian cancer tissues, the expression of 14-3-3 sigma protein was inactivated in most of the ovarian clear cell carcinoma tissues. Interestingly, 14-3-3 sigma protein expression was positive in significantly higher percentages of serous (89.5%), endometrioid (90%), and mucinous (81.8%) ovarian adenocarcinoma tissues. The ovarian clear cell carcinoma samples with inactivated 14-3-3 sigma protein were highly methylated, suggesting that inactivation of 14-3-3 sigma gene is through DNA methylation. Using direct DNA sequencing, 14-3-3 sigma gene methylation on all the 17 CpG sites was significantly higher in ovarian clear cell carcinoma as compared to other histological types of ovarian cancer (serous, endometrioid, and mucinous). This is the first report suggesting that 14-3-3 sigma gene expression and methylation status can characterize histological features of different types of ovarian cancer.
Collapse
Affiliation(s)
- Masanori Kaneuchi
- Department of Urology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Selaru FM, Yin J, Olaru A, Mori Y, Xu Y, Epstein SH, Sato F, Deacu E, Wang S, Sterian A, Fulton A, Abraham JM, Shibata D, Baquet C, Stass SA, Meltzer SJ. An unsupervised approach to identify molecular phenotypic components influencing breast cancer features. Cancer Res 2004; 64:1584-8. [PMID: 14996713 DOI: 10.1158/0008-5472.can-03-3208] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To discover a biological basis for clinical subgroupings within breast cancers, we applied principal components (PCs) analysis to cDNA microarray data from 36 breast cancers. We correlated the resulting PCs with clinical features. The 35 PCs discovered were ranked in order of their impact on gene expression patterns. Interestingly, PC 7 identified a unique subgroup consisting of estrogen receptor (ER); (+) African-American patients. This group exhibited global molecular phenotypes significantly different from both ER (-) African-American women and ER (+) or ER (-) Caucasian women (P < 0.001). Additional significant PCs included PC 4, correlating with lymph node metastasis (P = 0.04), and PC 10, with tumor stage (stage 2 versus stage 3; P = 0.007). These results provide a molecular phenotypic basis for the existence of a biologically unique subgroup comprising ER (+) breast cancers from African-American patients. Moreover, these findings illustrate the potential of PCs analysis to detect molecular phenotypic bases for relevant clinical or biological features of human tumors in general.
Collapse
Affiliation(s)
- Florin M Selaru
- Department of Medicine, Division of Gastroenterology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Garnis C, Buys TPH, Lam WL. Genetic alteration and gene expression modulation during cancer progression. Mol Cancer 2004; 3:9. [PMID: 15035667 PMCID: PMC408463 DOI: 10.1186/1476-4598-3-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 03/22/2004] [Indexed: 02/06/2023] Open
Abstract
Cancer progresses through a series of histopathological stages. Progression is thought to be driven by the accumulation of genetic alterations and consequently gene expression pattern changes. The identification of genes and pathways involved will not only enhance our understanding of the biology of this process, it will also provide new targets for early diagnosis and facilitate treatment design. Genomic approaches have proven to be effective in detecting chromosomal alterations and identifying genes disrupted in cancer. Gene expression profiling has led to the subclassification of tumors. In this article, we will describe the current technologies used in cancer gene discovery, the model systems used to validate the significance of the genes and pathways, and some of the genes and pathways implicated in the progression of preneoplastic and early stage cancer.
Collapse
Affiliation(s)
- Cathie Garnis
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre; 601 West 10th Ave, Vancouver, BC, Canada V5Z 1L3
| | - Timon PH Buys
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre; 601 West 10th Ave, Vancouver, BC, Canada V5Z 1L3
| | - Wan L Lam
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre; 601 West 10th Ave, Vancouver, BC, Canada V5Z 1L3
| |
Collapse
|
204
|
Moreira JMA, Gromov P, Celis JE. Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Mol Cell Proteomics 2004; 3:410-9. [PMID: 14736829 DOI: 10.1074/mcp.m300134-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The 14-3-3 proteins constitute a family of abundant, highly conserved and broadly expressed acidic polypeptides that are involved in the regulation of various cellular processes such as cell-cycle progression, cell growth, differentiation, and apoptosis. One member of this family, the 14-3-3 isoform sigma, is expressed only in epithelial cells and is frequently down-regulated in a variety of human cancers. To determine the prevalence of 14-3-3 sigma silencing in bladder cancer progression, we have studied the expression of this protein in normal urothelium and bladder transitional cell carcinomas (TCCs) of various grades and stages using two-dimensional gel electrophoresis in combination with Western blotting and immunohistochemistry. We show that the expression of 14-3-3 sigma is down-regulated in invasive TCCs, particularly in lesions that are undergoing epithelial-to-mesenchymal conversion. Altered expression of 14-3-3 sigma in invasive TCCs is not due to increased externalization of the protein nor to an aberrant proliferative potential of neoplastic cells. Furthermore, we found that impaired 14-3-3 sigma expression is not associated with increased levels of the dominant-negative transcriptional regulator Delta Np63. Down-regulation of 14-3-3 sigma was confirmed by indirect immunofluorescence using a peptide-based rabbit polyclonal antibody specific for this protein. We also show that the expression of 14-3-3 sigma is highly up-regulated in pure squamous cell carcinomas. Taken together, these results provide evidence that deregulation of 14-3-3 sigma may play a key role in bladder cancer progression, in particular in differentiation events leading to epithelial-to-mesenchymal transition and stratified squamous metaplasia.
Collapse
MESH Headings
- 14-3-3 Proteins
- Blotting, Western
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Cell Differentiation
- Cell Division
- Cells, Cultured
- Down-Regulation
- Electrophoresis, Gel, Two-Dimensional
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Fluorescent Antibody Technique, Indirect
- Gene Silencing
- Genes, Dominant
- Genes, Tumor Suppressor
- Humans
- Immunoenzyme Techniques
- Mesoderm/cytology
- Mesoderm/metabolism
- Neoplasm Invasiveness/pathology
- Proteomics/methods
- Tyrosine 3-Monooxygenase/metabolism
- Urinary Bladder/metabolism
- Urinary Bladder/pathology
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Urinary Tract/pathology
Collapse
Affiliation(s)
- José M A Moreira
- Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark.
| | | | | |
Collapse
|
205
|
Slater M, Danieletto S, Pooley M, Cheng Teh L, Gidley-Baird A, Barden JA. Differentiation between Cancerous and Normal Hyperplastic Lobules in Breast Lesions. Breast Cancer Res Treat 2004; 83:1-10. [PMID: 14997049 DOI: 10.1023/b:brea.0000010670.85915.0f] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Determining the risk that a particular area of hyperplastic breast tissue will progress to cancer is difficult and is currently expressed only as a general risk factor within the population. Using an antibody against the apoptotic purinergic receptor P2X7, we examined 40 cases each of the following histological categories: normal, moderate, florid and atypical hyperplasia, lobular carcinoma in situ, ductal carcinoma in situ, invasive lobular and invasive ductal carcinoma. These were previously diagnosed by H&E and supplied by clinical laboratories as tissue sections. Normal and mildly hyperplastic epithelium was devoid of the cytolytic P2X7 receptors whereas all epithelial cells in all cases of in situ or invasive lobular or ductal carcinoma labelled intensely. The lobular and ductal in situ cases labelled intracellularly while the invasive epithelial cancer cells showed intense cell surface label indicating an attempt was being made to induce apoptosis. All these receptors however are non-functional and thus unable to induce apoptosis. Approximately 10% of all hyperplastic lobules examined in the biopsied tissue, regardless of H&E classification, labelled for P2X7, which is suggestive of early metabolic cancerous change. The acini within lobules were either completely labelled with P2X7 or were completely devoid of the receptor. A potential advantage of this method lies in identifying early cancerous change in hyperplastic lobules and in establishing the true extent of cancerous spread in infiltrating lesions, thus facilitating the task of reporting clear surgical margins.
Collapse
MESH Headings
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Female
- Fibrocystic Breast Disease/metabolism
- Fibrocystic Breast Disease/pathology
- Humans
- Immunohistochemistry/methods
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Predictive Value of Tests
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X7
Collapse
Affiliation(s)
- Michael Slater
- Department of Anatomy and Histology, Institute for Biomedical Research, The University of Sydney, Australia
| | | | | | | | | | | |
Collapse
|
206
|
Abstract
Pancreatic cancer is an almost universally fatal disease, with a five-year survival rate of 5%. Research into both sporadic and inherited forms of pancreatic cancer has yielded tremendous advances in the understanding of this disease at the molecular level. Elucidating genetic alterations in pancreatic cancer has identified various abnormalities ranging from gross chromosomal abnormalities to point mutations, many of which influence the development and progression of pancreatic cancer. Identifying precursor lesions within pancreatic ducts has led to the formulation of a progression model of pancreatic cancer and subsequent identification of early- and late-stage changes leading to invasive cancer. Ultimately, understanding the genetic events underlying the development of pancreatic cancer may serve as a useful adjunct in the screening and treatment of patients suffering from, or at risk for, pancreatic cancer.
Collapse
Affiliation(s)
- Donna E Hansel
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA.
| | | | | |
Collapse
|
207
|
Affiliation(s)
- Heiko Hermeking
- Molecular Oncology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| |
Collapse
|
208
|
Abstract
Aberrant DNA methylation of the promoter region is a key mechanism for inactivation of genes that suppress tumorigenesis. Genes that are involved in every step of tumor formation can be silenced by this mechanism. Inhibitors of DNA methylation, such as 5-azadeoxycytidine (5AZA), can reverse this epigenetic event suggesting a potential use in cancer therapy. The structure of chromatin can also play an important role with respect to the regulation of gene expression. Chromatin containing hypoacetylated lysines in histones has a compact structure that is repressive for transcription. Inhibitors of histone deacetylase (HDAC) can convert chromatin to an open structure and activate certain genes that inhibit tumor growth. These HDAC inhibitors also have potential in cancer therapy. A 'cross-talk' between DNA methylation and histone deacetylation can occur and work in concert to silence gene expression. The molecular mechanism involves the attachment of a methylated CpG binding protein (MBP) to the methylated promoters and its recruitment of HDAC to form a complex that suppresses transcription. These two epigenetic modifications represent an interesting target for therapeutic intervention using 5AZA and HDAC inhibitors. These agents in combination have been shown to produce a synergistic reactivation of tumor suppressor genes and an enhanced antineoplastic effect against tumor cells, and should be investigated as a novel form of epigenetic therapy for cancer.
Collapse
Affiliation(s)
- Richard L Momparler
- Département de pharmacology, Université de Montréal, Centre de recherché, Hôpital Sainte-Justine, 3175 Côte Ste-Catherine Montreal, Que H3T 1C5, Canada.
| |
Collapse
|
209
|
Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T, Prasad GL. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 2003; 22:6194-203. [PMID: 13679858 DOI: 10.1038/sj.onc.1206719] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suppression of tropomyosins (TMs), a family of actin-binding, microfilament-associated proteins, is a prominent feature of many transformed cells. Yet it is unclear whether downregulation of TMs occur in human tumors. We have investigated the expression of tropomyosin-1 (TM1) in human breast carcinoma tissues by in situ hybridization and immunofluorescence. TM1 mRNA and protein are readily detectable in normal mammary tissue. In contrast, TM1 expression is abolished in the primary human breast tumors. Expression of other TM isoforms, however, is variable among the tumors. The consistent and profound downregulation of TM1 suggests that TM1 may be a novel and useful biomarker of mammary neoplasms. These data also support the hypothesis that suppression of TM1 expression during the malignant conversion of mammary epithelium as a contributing factor of breast cancer. In support of this hypothesis, we show that the ability to suppress malignant growth properties of breast cancer cells is specific to TM1 isoform. Investigations into the mechanisms of TM1-induced tumor suppression reveal that TM1 induces anoikis (detachment induced apoptosis) in breast cancer cells. Downregulation of TM1 in breast tumors may destabilize microfilament architecture and confer resistance to anoikis, which facilitates survival of neoplastic cells outside the normal microenvironment and promote malignant growth.
Collapse
Affiliation(s)
- Gira N Raval
- Surgical Oncology and Vascular Surgery Services, Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
210
|
Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K, Sukumar S, Argani P. DNA methylation ofRASSF1A, HIN-1, RAR-?, Cyclin D2 andTwist inin situ and invasive lobular breast carcinoma. Int J Cancer 2003; 107:970-5. [PMID: 14601057 DOI: 10.1002/ijc.11508] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Little is known about epigenetic silencing of genes by promoter hypermethylation in lobular breast cancers. The promoter methylation status of 5 cancer-related genes (RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist) was evaluated in 2 types of lobular cancers, in situ (LCIS) and invasive lobular carcinomas (ILC) (n = 32), and compared to ductal in situ (DCIS) and invasive (IDC) breast cancers (n = 71). By using methylation-specific PCR (MSP), 100% of ILC and 69% of LCIS cases were found to have 1 or more hypermethylated genes among the panel of 5 genes (compared to 100% IDC and 95% of DCIS). Two or more hypermethylated genes were detected per tumor in 79% of invasive and 61% of in situ lobular carcinomas compared to 81% of IDC and 77% of DCIS. By contrast, DNA from nearly all normal reduction mammoplasty tissues (n = 8) was unmethylated for the 5 genes. The methylation profiles of lobular vs. ductal carcinomas with respect to RASSF1A, Cyclin D2, RARbeta, and Hin-1 genes were similar, suggesting that gene silencing by promoter hypermethylation is likely to be important in both groups of diseases. Distinctly different, Twist was hyper- methylated less often in ILC (16%, 3/19 cases) than in IDC (56%, 15/27 cases) (p = 0.01). These results suggest that these 2 types of tumors share many common methylation patterns and some molecular differences. Additional studies might lend further understanding into the etiology and clinical behavior of this tumor type.
Collapse
Affiliation(s)
- Mary Jo Fackler
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 401 N. Broadway, Baltimore, MD 21231-2410, USA
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Ito Y, Miyoshi E, Uda E, Yoshida H, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Matsuura N, Kakudo K, Kuma K, Miyauchi A. 14-3-3 sigma possibly plays a constitutive role in papillary carcinoma, but not in follicular tumor of the thyroid. Cancer Lett 2003; 200:161-166. [PMID: 14568170 DOI: 10.1016/s0304-3835(03)00282-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
14-3-3 sigma is a negative regulator of the cell cycle and contributes to G2 arrest. Thus far, the lack of its expression due to hypermethylation of the CpG islands has been reported in some carcinomas. In this study, we investigated the expression of 14-3-3 sigma in thyroid neoplasms by means of immunohistochemistry as well as Western blot analysis. Normal follicules did not express 14-3-3 sigma. In 82 papillary carcinomas, all the cases expressed 14-3-3 sigma and its expression was not reduced but even enhanced in the advanced stage and in poorly differentiated types. Furthermore, 21 of the 23 anaplastic carcinomas expressed 14-3-3 sigma and its expression level tended to be higher than in papillary carcinoma. On the other hand, none of the 34 follicular carcinomas or 29 follicular adenomas expressed 14-3-3 sigma. These results suggest that 14-3-3 sigma plays a constitutive role in papillary carcinoma rather than acting as a cell cycle regulator, whereas it is not required for the occurrence and development of follicular tumor.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Department of Surgery, Kuma Hospital, 8-2-35, Shimoyamate-dori, Chuo-ku, Kobe 650-0011, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Lodygin D, Yazdi AS, Sander CA, Herzinger T, Hermeking H. Analysis of 14-3-3sigma expression in hyperproliferative skin diseases reveals selective loss associated with CpG-methylation in basal cell carcinoma. Oncogene 2003; 22:5519-24. [PMID: 12934112 DOI: 10.1038/sj.onc.1206854] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The p53-regulated 14-3-3sigma gene encodes an inhibitor of cell cycle progression essential for senescence and clonal evolution of keratinocytes in vitro. Here we analysed the in vivo expression of 14-3-3sigma protein in several skin diseases, which are characterized by hyperproliferative keratinocytes. Unexpectedly, the 14-3-3sigma protein was expressed at high levels in psoriasis (11 of 11 patients), condylomata acuminata (11/11), actinic keratoses (11/11) and squamous cell carcinomas (SCC) (11/11). However, keratinocytes that had undergone transformation to basal cell carcinoma (BCC) showed partial (10 of 41; 24.4%) or complete (19 of 41; 46.3%) loss of 14-3-3sigma protein expression. BCC (5/5), SCC (6/6) and actinic keratoses (7/7) concomitantly expressed the p53-homolog p63 and 14-3-3sigma at high levels, ruling out potential inhibitory effects of p63 isoforms on 14-3-3sigma transcription as the basis for loss of 14-3-3sigma expression. Of 41 BCC samples isolated by laser-capture microdissection, 28 (68.3%) showed CpG-hypermethylation of the 14-3-3sigma promoter combined with reduced or absent 14-3-3sigma protein levels in 22 cases (78.6%). Since it has been reported that BCC retain wild-type p16(INK4A) and here BCC with CpG-methylation of 14-3-3sigma did not show CpG-methylation of p16(INK4A) (0/17), silencing of 14-3-3sigma may contribute to evasion of senescence in BCC. As experimental removal of 14-3-3sigma sensitizes to DNA damage, silencing of 14-3-3sigma may explain the high efficacy of radiation therapy in the treatment of BCC.
Collapse
Affiliation(s)
- Dimitri Lodygin
- Molecular Oncology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18A, D-82152 Martinsried near Munich, Germany
| | | | | | | | | |
Collapse
|
213
|
Abstract
We have analyzed changes in approximately 4000 lung mRNAs, with GeneChips, in mice exposed to 1 ppm O(3) for three consecutive nights (8 h per night). Differential gene expression analysis identified approximately 260 O(3) sensitive genes; approximately 80% of these were repressed and approximately 20% were induced in O(3)-exposed mice compared to the air-exposed controls. A 20-fold induction of serum amyloid A3 mRNA by O(3) suggested activation of NF-kappaB and CCAAT/enhancer binding protein-mediated pathways by inflammatory cytokines. Induction (up to 14-fold) of 12 genes that increase DNA synthesis and cell cycle progression, and increase (approximately 7-fold) in CD44 mRNA and macrophage metalloelastase suggested a state of O(3)-induced hyperplasia and lung remodeling. Several mRNAs encoding enzymes of xenobiotic metabolism and cytoskeletal functions were repressed and may suggest cytokine mediated suppression of cytochrome P450 expression and cachexia-like inflammatory state in ozone-exposed lungs. The expressions of approximately 30 genes of immune response were also repressed. Collectively this genome-wide analysis of lungs identified ozone-induced disruption of gene transcriptional profile indicative of increased cellular proliferation under suppressed immune surveillance and xenobiotic metabolism.
Collapse
Affiliation(s)
- Kishorchandra Gohil
- Center for Comparative Respiratory and Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
214
|
Nakajima T, Shimooka H, Weixa P, Segawa A, Motegi A, Jian Z, Masuda N, Ide M, Sano T, Oyama T, Tsukagoshi H, Hamanaka K, Maeda M. Immunohistochemical demonstration of 14-3-3 sigma protein in normal human tissues and lung cancers, and the preponderance of its strong expression in epithelial cells of squamous cell lineage. Pathol Int 2003; 53:353-60. [PMID: 12787309 DOI: 10.1046/j.1440-1827.2003.01481.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to confirm 14-3-3 sigma (sigma) protein distribution in human tissues, immunohistochemistry was performed using various paraffin-embedded human tissues. In normal human tissues, the strongest immunoreactivity for 14-3-3sigma protein was observed in squamous epithelia at various sites, followed by basal cells of the trachea, bronchus and basal or myoepithelial cells of various glands. Moderate to weak 14-3-3sigma immunoreactivity was seen in the epithelial cells of the alimentary tract, gall bladder, urinary tract and endometrium. In the lung, 14-3-3sigma immunoreactivity was also observed in hyperplastic type II alveolar cells and metaplastic squamous cells. Immunohistochemical study using non-small-cell lung cancers revealed that 14-3-3sigma immunoreactivity was stronger in squamous cell carcinomas than in adenocarcinomas. The present study revealed that 14-3-3sigma expression was exclusively present in various epithelial cells and had a tendency to be stronger in cells destined for squamous epithelium or differentiating toward squamous cells in human normal and neoplastic cells.
Collapse
Affiliation(s)
- Takashi Nakajima
- Second Department of Pathology and The First Department of Surgery, Gunma University School of Medicine, and Immuno-Biological Laboratories Co Ltd, Gunma, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Horie K, Urano T, Ikeda K, Inoue S. Estrogen-responsive RING finger protein controls breast cancer growth. J Steroid Biochem Mol Biol 2003; 85:101-4. [PMID: 12943693 DOI: 10.1016/s0960-0760(03)00209-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most of the breast cancers initially respond to endocrine therapy that reduces the levels of estrogens or competes with estrogen for binding to its receptor. Most of the patients, however, acquire resistance to endocrine therapy with tamoxifen and aromatase inhibitors later. We assumed that identification of estrogen-responsive genes those regulate the growth of breast cancer is indispensable to develop new strategies targeting the genes and overcome the resistance to current endocrine therapy. Estrogen-responsive finger protein (Efp) is one of the estrogen receptor (ER)-target genes we have cloned using genomic binding site cloning. Efp features a structure of the RING-finger B-box coiled-coil (RBCC) motif. We postulated that Efp is a critical factor in proliferation of breast tumors. In a model system using MCF7 cells grown in xenografts, we showed that inhibition of Efp expression by antisense oligonucleotide reduced the tumor growth. MCF7 cells overexpressing Efp formed tumors in xenografts even in estrogen deprivation environment. By yeast two-hybrid screen, we identified that Efp interacts with 14-3-3sigma, which is known as a cell cycle brake that causes G2 arrest and expressed in normal mammary glands. In vitro studies have revealed that Efp functions as a ubiquitin-protein ligase (E3) that targets 14-3-3sigma. These data suggest that Efp controls breast cancer growth through ubiquitin-dependent proteolysis of 14-3-3sigma. Future studies may provide a new therapy to block breast tumor proliferation by targeting Efp.
Collapse
Affiliation(s)
- Kuniko Horie
- Research Center for Genomic Medicine, Saitama Medical School, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | | | | | | |
Collapse
|
216
|
Abstract
Proteomics is now entering into the field of biomedicine with declared hopes for the identification of new pathological markers and therapeutic targets. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of low-abundant proteins. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration of related pathologies paved with various difficulties and pitfalls. The case of breast cancer illustrates the major challenge facing modern proteomics and more generally post-genomics: to tackle the complexity of life.
Collapse
Affiliation(s)
- Hubert Hondermarck
- UPRES-EA 1033, IFR-118 Proteomics, Post-translational Modifications, and Glycobiology, University of Sciences and Technologies, Lille, 59650 Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
217
|
Abstract
Hypermethylation of CpG islands, an epigenetic event that is not accompanied by changes in DNA sequence, represents an alternative mechanism to deletions or mutations to inactivate tumor suppressor genes. Recent evidence supports the notion that CpG island hypermethylation, by silencing key cancer-related genes, plays a major causal role in cancer. However, a long-standing issue in the field is the sequence of molecular events leading to epigenetic gene silencing. A new model has been proposed that chromatin remodeling, as a result of histone deacetylation and methylation, is the primary event in abrogating transcriptional initiation; subsequently, CpG island hypermethylation establishes a permanent state of gene silencing. Accumulating evidence indicates that CpG island hypermethylation is an early event in cancer development and, in some cases, may precede the neoplastic process. Because of their heritable nature, hypermethylated CpG islands leave 'molecular footprints' in evolving cancer cells and can be used as molecular markers to reconstruct epigenetic progression during tumorigenesis. Furthermore, hypermethylated CpG islands are proving to be useful for molecular classification of different cancer types.
Collapse
Affiliation(s)
- Kenneth P Nephew
- Medical Sciences, School of Medicine, Indiana University, Bloomington, IN 47405-4401, USA
| | | |
Collapse
|
218
|
An Q, Pacyna-Gengelbach M, Schlüns K, Deutschmann N, Guo S, Gao Y, Zhang J, Cheng S, Petersen I. Identification of differentially expressed genes in immortalized human bronchial epithelial cell line as a model for in vitro study of lung carcinogenesis. Int J Cancer 2003; 103:194-204. [PMID: 12455033 DOI: 10.1002/ijc.10807] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Suppression subtractive hybridization (SSH) was applied to identify differentially expressed genes in the SV40LT immortalized human bronchial epithelial cell line Y-BE, with normal human bronchial epithelial cells (HBEC) as a control. Two cDNA libraries of up- and downregulated genes were generated, comprising 218 known genes and 131 unknown genes in total. The expression of 22 clones from the 2 libraries was investigated by Northern blot analysis, and 86.4% (19/22) of them showed differential expression between Y-BE cells and HBEC. Although the Y-BE cells are nontumorigenic in nude mice, Comparative genomic hybridization (CGH) detected some DNA imbalances in Y-BE cells that were similar to lung cancer cells. Our data demonstrate that the studied cell line Y-BE and SSH is a reliable approach for identifying new genes that are associated with immortalization and early tumor development that may help to understand the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Qian An
- Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Affiliation(s)
- Kuniko Horie
- Research Center for Genomic Medicine, Saitama Medical School, Hidaka-shi, Saitama, Japan
| | | | | |
Collapse
|
220
|
Lofton-Day C, Lesche R. DNA methylation markers in patients with gastrointestinal cancers. Current understanding, potential applications for disease management and development of diagnostic tools. Dig Dis 2003; 21:299-308. [PMID: 14752219 DOI: 10.1159/000075352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA methylation, the modification of a cytosine nucleotide immediately preceding a guanine base in a stretch of DNA, is rapidly gaining strength in the diagnostic field as a powerful tool to be utilized for the discrimination of neoplastic tissue from its healthy counterpart. This epigenetic modification occurs often in the promoter region of genes and is associated with transcriptional silencing of tumor suppressors or other genes important for normal cellular function. These changes have been found to occur at very early stages in the progression of healthy to malignant phenotype in many cancer types. We are taking a targeted approach to finding methylation-based markers that can be used not only for the early detection of cancer but also for determining risk, monitoring patient response to therapy and even determining the degree of aggressiveness of a tumor. In this paper, we review the progress in our understanding of methylation in gastrointestinal tumors, the potential clinical applications of methylation-based markers and our process for the discovery and validation of highly specific and sensitive markers for the use in these applications.
Collapse
|
221
|
Yatabe Y, Osada H, Tatematsu Y, Mitsudomi T, Takahashi T. Decreased expression of 14-3-3sigma in neuroendocrine tumors is independent of origin and malignant potential. Oncogene 2002; 21:8310-9. [PMID: 12447694 DOI: 10.1038/sj.onc.1206014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 08/22/2002] [Accepted: 09/03/2002] [Indexed: 12/16/2022]
Abstract
We recently reported that 14-3-3sigma is frequently inactivated in small cell lung cancer (SCLC) and a part of large cell carcinomas. Subsequent studies revealed that the large cell carcinomas could be morphologically categorized as large cell neuroendocrine carcinomas (LCNEC). The present study therefore examines 14-3-3sigma expression in a spectrum of neuroendocrine lung tumors, which had varied p53 status, proliferative activity and clinical aggressiveness. The expression of 14-3-3sigma was decreased in all four categories of the spectrum, (5 out of 5 typical carcinoids, 2 out of 2 atypical carcinoids, 5 out of 7 LCNECs and 15 out of 18 SCLCs). In sharp contrast, the level of 14-3-3sigma expression in 75 non-small cell lung cancers (NSCLCs) was the same as that in normal lung tissue, with only one exception. The expression status of neuroendocrine tumors and NSCLCs was not affected by p53 status, but dense promoter hypermethylation of the 14-3-3sigma gene was specifically observed in neuroendocrine tumors, suggesting that methylation plays a regulatory role in 14-3-3sigma expression in vivo as well as in vitro. Furthermore, the expression was not only down-regulated in pulmonary neuroendocrine tumors, but also in neuroendocrine tumors arising from various other organs, through examination of 123 non-pulmonary tumors. Since various carcinogenic machineries are involved in the neuroendocrine tumors, a reduced expression of 14-3-3sigma might be required for the development of neuroendocrine tumors. Constitutive 14-3-3sigma expression was distributed exclusively in putative stem cells of the normal lung, namely the basal cells of the bronchus, and type II pneumocytes. Notably, 14-3-3sigma expression was up-regulated during the regeneration of type II pneumocytes, suggesting that 14-3-3sigma plays a biological role when a regenerative and/or differentiating drive is activated, facilitating exit from stem cells.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
222
|
Bharadwaj S, Prasad GL. Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Lett 2002; 183:205-13. [PMID: 12065096 DOI: 10.1016/s0304-3835(02)00119-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tropomyosins (TMs) are a family of microfilament binding proteins, which are suppressed in the transformed cells. We have investigated the mechanism of suppression of TMs, in particular that of tropomyosin-1 (TM1), in breast cancer cells. Inhibition of DNA methyl transferase with 5-aza-2'-deoxycytidine (AZA) alone did not induce TM1 expression. However, combined treatment of trichostatin A (TSA) and AZA resulted in readily detectable expression of TM1, but not that of other TM isoforms. Upregulation of TM1 expression paralleled with the reemergence of TM1 containing microfilaments, and in abolition of anchorage-independent growth. The synergistic action of AZA and TSA in reactivation of TM1 gene was also evident in ras-transformed fibroblasts. These data, for the first time, show that hypermethylation of TM1 gene and chromatin remodeling are the predominant mechanisms by which TM1 expression is downregulated in breast cancer cells.
Collapse
Affiliation(s)
- Shantaram Bharadwaj
- Department of General Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
223
|
Abstract
Knowledge about breast carcinogenesis has accumulated during the last decades but has barely been translated into strategies for early detection or prevention of this common disease. Changes in DNA methylation have been recognized as one of the most common molecular alterations in human neoplasia and hypermethylation of gene-promoter regions is being revealed as one of the most frequent mechanisms of loss of gene function. The heritability of methylation states and the secondary nature of the decision to attract or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory. According to Hanahan and Weinberg, there are six novel capabilities a cell has to acquire to become a cancer cell: limitless replicative potential, self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death, sustained angiogenesis and tissue invasion and metastasis. This review highlights how DNA-methylation contributes to these features and offers suggestions about how these changes could be prevented, reverted or used as a 'tag' for early detection of breast cancer or, preferably, for detection of premalignant changes.
Collapse
Affiliation(s)
- Martin Widschwendter
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, 1441 Eastlake Avenue, MS 8302L, Los Angeles, California, CA 90089-9181, USA.
| | | |
Collapse
|
224
|
Larson PS, de las Morenas A, Bennett SR, Cupples LA, Rosenberg CL. Loss of heterozygosity or allele imbalance in histologically normal breast epithelium is distinct from loss of heterozygosity or allele imbalance in co-existing carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:283-90. [PMID: 12107113 PMCID: PMC1850696 DOI: 10.1016/s0002-9440(10)64180-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To better understand early steps in human breast carcinogenesis, we examined allele imbalance or loss of heterozygosity (LOH), in co-existing normal-appearing breast epithelium and cancers. We microdissected a total of 173 histologically normal ducts or terminal ductolobular units (TDLUs) and malignant epithelial samples from 18 breast cancer cases, and examined their DNA for LOH at 21 microsatellite markers on 10 chromosome arms. Fourteen of 109 (13%) normal ducts/TDLUs, from 8 of 18 (44%) cases, contained LOH. The location of these 14 ducts/TDLUs appeared unrelated to distance from the cancer. LOH in normal-appearing epithelium involved only single markers, whereas LOH in cancers commonly encompassed all informative markers on a chromosome arm. In only 1 of 14 (7%) ducts/TDLUs with LOH, was the same LOH seen in the co-existing cancer. Global differences in LOH per arm in normal-appearing tissue were not demonstrated, but less LOH was seen at 11q and 17p than at 1q (P = 0.002), 16q (P = 0.01), and possibly 17q (P = 0.06). These results indicate that in a large fraction of women with breast cancer, histologically normal breast epithelium harbors occult aberrant clones. Individual clones rarely are precursors of co-existing cancers. However, they might constitute a reservoir from which proliferative lesions or second cancers develop once additional genetic abnormalities occur, they could contribute to intratumoral genetic heterogeneity, and they are consistent with a role for genetic instability early in tumorigenesis.
Collapse
Affiliation(s)
- Pamela S Larson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
225
|
Fukushima N, Sato N, Ueki T, Rosty C, Walter KM, Wilentz RE, Yeo CJ, Hruban RH, Goggins M. Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1573-81. [PMID: 12000709 PMCID: PMC1850889 DOI: 10.1016/s0002-9440(10)61104-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic intraductal neoplasia (PanIN) is thought to be the precursor to infiltrating pancreatic ductal adenocarcinoma. We have previously shown that the preproenkephalin (ppENK) and p16 genes are aberrantly methylated in pancreatic adenocarcinoma. In this study we define the methylation status of the ppENK and p16 genes in various grades of PanINs. One hundred seventy-four samples (28 nonneoplastic pancreatic epithelia, 7 reactive epithelia, 29 PanIN-1A, 48 PanIN-1B, 27 PanIN-2, 14 PanIN-3, 15 invasive ductal adenocarcinomas, and 6 miscellaneous pancreatic neoplasms) were microdissected from 29 formalin-fixed paraffin-embedded surgically resected pancreata, and were analyzed by methylation-specific polymerase chain reaction. Fourteen of 15 (93.3%) invasive pancreatic ductal adenocarcinomas showed methylation of the ppENK gene and 4 of 15 (26.7%) showed methylation of the p16 gene. Nonneoplastic pancreatic epithelia did not harbor methylation of either gene. The prevalence of methylation of the ppENK gene increased significantly with increasing PanIN grade. A similar nonsignificant trend was noted for p16 methylation. Aberrant methylation of the ppENK gene was found in 7.7% of PanIN-1A, 7.3% of PanIN-1B, 22.7% of PanIN-2, and 46.2% of PanIN-3. Aberrant methylation of the p16 gene was found in 12% of PanIN-1A, 2.6% of PanIN-1B, 4.5% of PanIN-2, and 21.4% of PanIN-3. All but one of the PanINs from the 14 pancreata without pancreatic carcinoma was unmethylated with respect to either the p16 or ppENK gene. Our results suggest that methylation-related inactivation of the ppENK and p16 genes is an intermediate or late event during pancreatic carcinogenesis. Because aberrant methylation of ppENK or p16 was more often detected in similar grade PanINs from patients with pancreatic carcinoma than in those with other pancreatic diseases, it may be a useful indicator of the potential malignancy of epithelial cells of the pancreas.
Collapse
Affiliation(s)
- Noriyoshi Fukushima
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Osada H, Tatematsu Y, Yatabe Y, Nakagawa T, Konishi H, Harano T, Tezel E, Takada M, Takahashi T. Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers. Oncogene 2002; 21:2418-24. [PMID: 11948426 DOI: 10.1038/sj.onc.1205303] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 01/03/2002] [Accepted: 01/08/2002] [Indexed: 11/09/2022]
Abstract
One isoform of the 14-3-3 family, 14-3-3sigma, plays a crucial role in the G2 checkpoint by sequestering Cdc2-cyclinB1 in the cytoplasm, and the expression of 14-3-3sigma is frequently lost in breast cancers. This loss of expression is thought to cause a G2 checkpoint defect, resulting in chromosomal aberrations. Since lung cancers frequently carry numerous chromosomal aberrations, we examined the DNA methylation status and expression level of the 14-3-3sigma gene in 37 lung cancer cell lines and 30 primary lung tumor specimens. We found that small cell lung cancer (SCLC) cell lines frequently showed DNA hypermethylation (9 of 13 lines, 69%), and subsequent silencing of the 14-3-3sigma gene. Among non-small cell lung cancers (NSCLC), large cell lung cancer cell lines showed frequent hypermethylation and silencing of 14-3-3sigma (4 or 7 lines, 57%). In contrast, in other NSCLC cell lines, hypermethylation occurred very rarely (1 of 17 lines, 6%). All eight primary SCLC specimens examined also showed a loss or significant reduction in 14-3-3sigma expression in vivo, while a loss or reduction of 14-3-3sigma expression was very rare in primary NSCLC specimens (1 of 22 tissues, 5%). This is the first description that indicates lung cancers frequently show significant inactivation of the 14-3-3sigma gene mainly due to DNA hypermethylation in SCLC, but rarely in NSCLC, suggesting involvement of the 14-3-3sigma gene in lung tumorigenesis in a histological type-specific manner.
Collapse
Affiliation(s)
- Hirotaka Osada
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Gasco M, Sullivan A, Repellin C, Brooks L, Farrell PJ, Tidy JA, Dunne B, Gusterson B, Evans DJ, Crook T. Coincident inactivation of 14-3-3sigma and p16INK4a is an early event in vulval squamous neoplasia. Oncogene 2002; 21:1876-81. [PMID: 11896620 DOI: 10.1038/sj.onc.1205256] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2001] [Revised: 11/15/2001] [Accepted: 12/14/2001] [Indexed: 01/29/2023]
Abstract
The structure and expression of 14-3-3 sigma(sigma) was analysed in squamous carcinomas (SCC) of the vulva and in the vulval pre-malignant lesion vulval intraepithelial neoplasia (VIN). Sequence analysis of the sigma coding region did not detect mutations in any case of SCC or VIN III and loss of heterozygosity (LOH) occurred in only 2 out of 27 informative cases. In contrast to the absence of genetic change, methylation-specific PCR (MSP) analysis revealed dense CpG methylation within the sigma gene in approximately 60% of cases of vulval SCC, but methylation was not detected in matched, normal epithelial tissue. Methylation was associated in all cases with reduced or absent expression of sigma mRNA. There was no correlation between sigma methylation and HPV or p53 status. Analysis of pre-malignant vulval intraepithelial neoplasia (VIN) revealed that sigma methylation was detectable early in neoplastic development. Co-incident methylation, accompanied by loss of expression, of sigma and p16INK4a was commonly detected in both SCC and VIN III, suggesting that epigenetic silencing of these two genes is an early and important event in vulval neoplasia.
Collapse
Affiliation(s)
- Milena Gasco
- UO Oncologia Medica, Azienda Ospedaliera S Croce e Carle, Via Coppino 26, 12100 Cuneo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
14-3-3 proteins were the first signaling molecules to be identified as discrete phosphoserine/threonine binding modules. This family of proteins, which includes seven isotypes in human cells and up to 15 in plants, plays critical roles in cell signaling events that control progress through the cell cycle, transcriptional alterations in response to environmental cues, and programmed cell death. Despite over 30 years of research, distinct roles for most isotypes remain unknown. Though 14-3-3 proteins perform different functions for different ligands, general mechanisms of 14-3-3 action include changes in activity of bound ligands, altered association of bound ligands with other cellular components, and changes in intracellular localization of 14-3-3-bound cargo. We present a speculative model where binding of 14-3-3 to multiple sites on some ligands results in global ligand conformational changes that mediate their biological effects. For these multi-site ligands, one binding site is likely to function as a 'gatekeeper' whose phosphorylation is necessary for 14-3-3 binding but may not always be sufficient for full biological activity. If correct, then 14-3-3 may prove to be a bona fide phosphodependent signaling chaperone.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research E18-580, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
229
|
Lehmann U, Länger F, Feist H, Glöckner S, Hasemeier B, Kreipe H. Quantitative assessment of promoter hypermethylation during breast cancer development. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:605-12. [PMID: 11839581 PMCID: PMC1850646 DOI: 10.1016/s0002-9440(10)64880-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aberrant methylation of cytosine residues in the promoter region of growth regulatory genes is now widely recognized as an additional mechanism for gene inactivation in cancer cells. In this study we analyzed the methylation status of four growth regulatory genes (p16, RASSF1A, cyclinD2, 14-3-3zeta) during breast cancer progression. For this purpose invasive and noninvasive tumor cell populations as well as hyperplastic cell proliferations were isolated from a series of archival breast tissue specimens (n = 57) using laser-assisted microdissection. A new real-time polymerase chain reaction-based assay was used for the sensitive and quantitative determination of the cell-specific methylation status. We found that aberrant promoter methylation was already prevalent in pure intraductal carcinoma with different frequencies and different methylation levels for the four genes analyzed. For RASSF1A and 14-3-3zeta promoter methylation was also demonstrated in epithelial hyperplasia and intraductal papillomas. By contrast, aberrant methylation of cyclinD2 and p16 was restricted to cancerous epithelium. Increased methylation of the cyclinD2 gene was significantly associated with a higher van Nuys grade. Furthermore, when intraductal and invasive tumor cells were compared, significant quantitative changes in the methylation level were detected primarily within the cyclinD2 gene. These results demonstrate that promoter methylation is an early and frequent event in breast cancer development, but displays great quantitative and gene-specific differences, and changes in a gene-specific manner during tumor progression.
Collapse
Affiliation(s)
- Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
230
|
Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast Cancer Res 2002; 4:70-6. [PMID: 11879567 PMCID: PMC138723 DOI: 10.1186/bcr426] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 01/28/2002] [Accepted: 01/29/2002] [Indexed: 01/07/2023] Open
Abstract
p53 mutation remains the most common genetic change identified in human neoplasia. In breast cancer, p53 mutation is associated with more aggressive disease and worse overall survival. The frequency of mutation in p53 is, however, lower in breast cancer than in other solid tumours. Changes, both genetic and epigenetic, have been identified in regulators of p53 activity and in some downstream transcriptional targets of p53 in breast cancers that express wild-type p53. Molecular pathological analysis of the structure and expression of constituents of the p53 pathway is likely to have value in diagnosis, in prognostic assessment and, ultimately, in treatment of breast cancer.
Collapse
Affiliation(s)
- Milena Gasco
- UO Oncologia Medica, Azienda Ospedaliera S Croce e Carle, Cuneo, Italy
| | - Shukri Shami
- Department of Surgery, Oldchurch Hospital, Romford, UK
| | - Tim Crook
- Department of Surgery, Oldchurch Hospital, Romford, UK
- Ludwig Institute for Cancer Research, Imperial College Faculty of Medicine, London, UK
| |
Collapse
|
231
|
Abstract
Despite recent improvements in the breast cancer mortality rate, breast cancer remains the most common cancer and the second leading cause of cancer-related deaths in US women. A decreasing trend in mortality rates is caused by advances in early detection and, to a lesser degree, in cancer therapies. With the increased utilization of mammography, one of the earliest detectable breast tumors, ductal carcinoma in situ, has become the most rapidly increasing subset of breast cancers. Contrary to the dramatic improvement in our ability to detect ductal carcinoma in situ, the pathophysiology of this disease is still poorly understood. Many molecular studies have been performed in ductal carcinoma in situ lesions with the aims of identifying genes involved in breast cancer initiation and progression, defining the relation between in situ and invasive carcinomas, and identifying clinically useful markers for breast cancer diagnosis, prognostication, prevention, and treatment.
Collapse
Affiliation(s)
- Kornelia Polyak
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
232
|
Abstract
Malignant transformation is now known to require a series of molecular alterations that disrupt a limited number of pathways including autocrine and paracrine responses to growth factors, cell-cycle control, senescence, motility, and invasion. Studies on hereditary cancers have established genetic changes as the primary driving force for these molecular alterations. Recently, however, it has been recognized that epigenetic changes, defined as clonal changes in gene expression without accompanying changes in primary DNA coding sequence, can also be a driving force in neoplastic transformation, for selected genes, and in specific tumors. DNA methylation within gene promoters and associated alterations in histone acetylation appear primary mediators of epigenetic inheritance in cancer cells. In the large intestine, aberrant DNA methylation arises very early, initially in normal-appearing mucosa, and may be part of the age-related field defect observed in sporadic colorectal neoplasia. Aberrant methylation also contributes to later stages of colon cancer formation and progression through a hypermethylator phenotype termed cytosine phosphoguanosine (CpG) island methylator phenotype (CIMP), which appears to be a defining event in approximately half of all sporadic tumors. In sporadic colon cancer, CIMP has distinct epidemiologic and clinical features and is responsible for most cases of microsatellite instability related to hMLH1 inactivation. The recognition of epigenetic changes as a driving force in colorectal neoplasia opens new areas of research in disease epidemiology, risk assessment, screening, and treatment.
Collapse
Affiliation(s)
- Lanlan Shen
- The University of Texas at MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|