201
|
Onishi M, Ochiya T, Tanaka Y. MicroRNA and liver cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:385-400. [PMID: 35582451 PMCID: PMC8992476 DOI: 10.20517/cdr.2019.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide. HCC is characterized by a poor prognosis and an ever increasing number of scientific studies aim to find new diagnostic, prognostic, and therapeutic targets. MicroRNAs (miRNAs), small non-coding RNAs that regulate the gene expression in many processes, have been shown to play a crucial role in regulating hepatocellular carcinoma. miRNAs may act as oncogenic miRNAs and tumor suppressor miRNAs and regulate cancer cell proliferation, invasion, and metastasis by being differently upregulated or downregulated and targeting the genes related with carcinogenesis. miRNAs secreted from cancer cells are found circulating in the blood, presenting an opportunity for their use as disease-related biomarkers. Moreover, extracellular vesicle-derived miRNAs are known to reflect the cell of origin and function and may provide effective biomarkers for predicting diagnosis and prognosis and new therapeutic target in HCC. In this article, we describe the most recent findings regarding the molecular mechanisms and gene regulation of microRNA in HCC, as well as their application in diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Masaya Onishi
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
202
|
Wan B, Hu H, Wang R, Liu W, Chen D. Therapeutic Potential of Circular RNAs in Osteosarcoma. Front Oncol 2020; 10:370. [PMID: 32351876 PMCID: PMC7174900 DOI: 10.3389/fonc.2020.00370] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in children and adolescents. Multiagent chemotherapy, together with surgical removal of all detectable lesions, has improved the long-term survival rate to 65-70% in patients with localized osteosarcoma and to 25-30% in patients with metastatic osteosarcoma since the 1970s. However, the conventional strategy has not improved in recent decades. With accumulating knowledge of the natural circular RNA (circRNA) pathogenesis of osteosarcoma, the diagnostic and therapeutic potential of some circRNAs has been explored. Meanwhile, artificial circular RNAs have been designed as onco-microRNA inhibitors to exert antitumor functions. Therefore, natural and artificial circular RNAs, like other RNA counterparts, are attractive new classes of therapeutic molecules for the treatment of osteosarcoma. This review summarizes the latest progress in the relationship between circRNAs and the malignant phenotype of osteosarcoma and sheds light on the therapeutic potential of the two types of circular RNA in the clinic.
Collapse
Affiliation(s)
- Ben Wan
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
- Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
203
|
Xin H, Wang C, Chi Y, Liu Z. MicroRNA-196b-5p promotes malignant progression of colorectal cancer by targeting ING5. Cancer Cell Int 2020; 20:119. [PMID: 32308564 PMCID: PMC7149860 DOI: 10.1186/s12935-020-01200-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Background miR-196b-5p expression is deregulated in many malignant tumors. Although miR-196b-5p has been implicated in the malignant transformation of colorectal cancer, its role in this specific type of cancer has not been fully explored. Thus, the present study was aimed to examine the cellular function of miR-196b-5p and its role in malignant biological behavior in colorectal cancer. Methods miR-196b-5p expression was measured in colorectal cancer tissues and cell lines using quantitative real-time PCR. Cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect proliferation, migration, and invasion in cell lines, whereas flow cytometry was applied to study apoptosis. Western blot analysis was performed to measure the protein levels. Dual luciferase reporter assay was used to investigate the interaction between miR-196b-5p and ING5. Tumor formation was evaluated in mice. Results MiR-196b-5p was abundantly expressed in colorectal cancer tissues and cell lines, whereas ING5 was expressed at low levels. MiR-196b-5p was successfully overexpressed or knocked down in colorectal cancer cells. We found that miR-196b-5p overexpression significantly accelerated the proliferation, cell cycle, migration and invasion, while inhibited cell apoptosis in colorectal cancer cells. However, miR-196b-5p inhibitor showed the opposite effects. Moreover, ING5 overexpression or knockdown was successfully performed in colorectal cancer cells. ING5 overexpression suppressed proliferation, migration, invasion, the phosphorylation of PI3K, Akt as well as MEK, and promoted cell apoptosis, which could be reversed by ING5 knockdown. Additionally, ING5 was identified as a target of miR-196b-5p through bioinformatics analysis and a luciferase activity assay. Furthermore, ING5 knockdown could attenuate the decrease in proliferation, migration, invasion, and the protein levels of p-PI3K, p-Akt, and p-MEK, which were induced by miRNA-196b-5p inhibitor. Besides, miR-196b-5p knockdown inhibited tumor growth, whereas ING5 knockdown elevated it in vivo. Conclusions In conclusion, miR-196b-5p promotes cell proliferation, migration, invasion, and inhibits apoptosis in colorectal cancer by targeting ING5.
Collapse
Affiliation(s)
- He Xin
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004 People's Republic of China
| | - Chuanzhuo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004 People's Republic of China
| | - Yuan Chi
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004 People's Republic of China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004 People's Republic of China
| |
Collapse
|
204
|
Stachowicz-Stencel T, Synakiewicz A. Biomarkers for pediatric cancer detection: latest advances and future perspectives. Biomark Med 2020; 14:391-400. [PMID: 32270691 DOI: 10.2217/bmm-2019-0613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer is one of the major health problems of the modern world. With the development of novel biochemistry and analytical instrumentation, precancer diagnosis has become a major focus of clinical and preclinical research. Finding appropriate biomarkers is crucial to make an early diagnosis, before the disease fully develops. With the improvement of precancer studies, cancer biomarkers prove their usefulness in providing important data on the cancer type and the status of patients' progression at a very early stage of the disease. Due to the constant evolution of pediatric cancer diagnosis, which includes highly advanced molecular techniques, the authors have decided to focus on selected groups of neoplastic disease and these include brain tumors, neuroblastoma, osteosarcoma and Hodgkin lymphoma.
Collapse
Affiliation(s)
- Teresa Stachowicz-Stencel
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, Poland 7 Debinki Street, 80-952 Gdansk, Poland
| | - Anna Synakiewicz
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, Poland 7 Debinki Street, 80-952 Gdansk, Poland
| |
Collapse
|
205
|
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol 2020; 10:499. [PMID: 32318352 PMCID: PMC7154126 DOI: 10.3389/fonc.2020.00499] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Venetsana Kyriazopoulou
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Department of Life Sciences European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
206
|
Tang Q, Yin D, Wang Y, Du W, Qin Y, Ding A, Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr Pharm Des 2020; 26:1994-2008. [PMID: 32250222 DOI: 10.2174/1381612826666200406083756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.
Collapse
Affiliation(s)
- Qi Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yao Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenxuan Du
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuhan Qin
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Anni Ding
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
207
|
El-Garawani IM, El-Nabi SH, El-Shafey S, Elfiky M, Nafie E. Coffea arabica Bean Extracts and Vitamin C: A Novel Combination Unleashes MCF-7 Cell Death. Curr Pharm Biotechnol 2020; 21:23-36. [PMID: 31438827 DOI: 10.2174/1389201020666190822161337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vitamin C (VC) is believed to enhance immunity and is regularly integrated as a supplementary agent during several treatments. OBJECTIVE The green (GC) and roasted (RC) coffee (Coffea arabica) aqueous extracts (0, 125, 250 and 500 μg/ml) combined with VC (50 μg/ml) were examined on the cancerous MCF-7 cell line and normal human lymphocytes. METHODS Neutral red uptake assay, comet assay, immunocytochemical reactivity for protein expression and mRNA expression of apoptosis-related genes were performed. RESULTS A significant (P< 0.05) concentration-dependent increase of apoptotic features, such as morphological changes, and abundant nuclear condensation, altered the expression of p53 and caspase-3 mRNA, down-regulation of Bcl-2 protein as well as the acidic autophagosomal vacuolization in treated cells. The oxidative stress and DNA single-strand breaks were noticed too. CONCLUSION These results suggest that coffee in combination with VC undergoes apoptotic anticancer pathway. This supports the integration of coffee and VC as a valuable candidate for anticancer research and treatments.
Collapse
Affiliation(s)
- Islam M El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Sobhy H El-Nabi
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Samraa El-Shafey
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Mohamed Elfiky
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Ebtesam Nafie
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
208
|
Zhou J, Song Q, Liu X, Ye H, Wang Y, Zhang L, Peng S, Qin H. lncRNA Erbb4-IR is downregulated in prostate carcinoma and predicts prognosis. Oncol Lett 2020; 19:3425-3430. [PMID: 32269615 PMCID: PMC7115170 DOI: 10.3892/ol.2020.11464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/08/2019] [Indexed: 02/04/2023] Open
Abstract
Long non-coding (lnc) RNA Erbb4-IR has been associated with diabetic renal injury; however, its roles in other diseases remain unknown. Therefore, the present study investigated the involvement of Erbb4-IR in prostate carcinoma. Reverse transcription-quantitative PCR was used to analyze gene expression in tissue samples collected from patients with prostate carcinoma. Overexpression experiments via cell transfection were performed to determine the association between Erbb4-IR and microRNA (miR)-21. Furthermore, Cell Counting Kit-8 and cell apoptosis assays were performed to assess cell proliferation and apoptotic rate, respectively. The results revealed that Erbb4-IR was downregulated in prostate carcinoma tissues compared with adjacent non-cancerous tissues, and that low expression of Erbb4-IR in tumor tissues was closely associated with poor survival. Furthermore, miR-21 was upregulated in prostate carcinoma tissues compared with adjacent non-cancerous tissues and was inversely associated with Erbb4-IR expression in tumor tissues. In vitro cell experiments revealed that Erbb4-IR overexpression resulted in the downregulation of miR-21, while miR-21 overexpression did not significantly affect the expression of Erbb4-IR. Moreover, Erbb4-IR overexpression increased apoptosis and inhibited the proliferation of prostate carcinoma cells. miR-21 overexpression resulted in the opposite effect and attenuated the effects of Erbb4-IR overexpression. Therefore, the results of the present study suggested that lncRNA Erbb4-IR is downregulated in prostate carcinoma and may inhibit cancer development by downregulating miR-21.
Collapse
Affiliation(s)
- Jiuyun Zhou
- Department of Urology, The First Hospital of The Chinese People's Liberation Army, Lanzhou, Gansu 730000, P.R. China
| | - Quanbin Song
- Department of Urology, The First Hospital of The Chinese People's Liberation Army, Lanzhou, Gansu 730000, P.R. China
| | - Xijuan Liu
- Department of Orthopedics, Gansu People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hongli Ye
- Department of Urology, The First Hospital of The Chinese People's Liberation Army, Lanzhou, Gansu 730000, P.R. China
| | - Yusheng Wang
- Department of Urology, The First Hospital of The Chinese People's Liberation Army, Lanzhou, Gansu 730000, P.R. China
| | - Lan Zhang
- Department of Urology, The First Hospital of The Chinese People's Liberation Army, Lanzhou, Gansu 730000, P.R. China
| | - Shengjun Peng
- Department of Urology, The First Hospital of The Chinese People's Liberation Army, Lanzhou, Gansu 730000, P.R. China
| | - Hongping Qin
- Reproductive Medical Center, 940 Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
209
|
Wang S, Yang Y, Sun L, Qiao G, Song Y, Liu B. Exosomal MicroRNAs as Liquid Biopsy Biomarkers in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:2021-2030. [PMID: 32210570 PMCID: PMC7069575 DOI: 10.2147/ott.s232453] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) has a high incidence in China and exploring effective ways for early diagnosis is an important method to improve the prognosis of patients with HCC. Additional studies reported that. Some kinds of microRNA (miRNA) in plasma will change accordingly during HCC progress, and this change can be used to diagnose HCC, especially with miRNA-122, miRNA-21 and miRNA-96. We were aiming at investigating the values of the exosomal miRNAs in diagnosis and prognosis for HCC patients. Patients and Methods Blood samples from 50 patients with HCC and 50 patients with hepatic cirrhosis and 50 healthy volunteers were obtained. The diagnostic accuracy of the plasma and exosomal miRNAs and the comparisons among different groups were measured by the area under the curve (AUC) on receiver operating characteristic (ROC) curve analysis. Results Expression levels of miRNA-21 and miRNA-96 were significantly higher in patients with HCC and of miRNA-122 were significantly lower in HCC compared with cirrhotic patients in both exosomes and plasma. Among different groups, exosomal miRNA-122, miRNA-21 and miRNA-96 were significantly more accurate in diagnosing HCC than those miRNAs in plasma and the alpha-fetoprotein (AFP) level. The miRNA panel had high accuracy in discriminating HCC from the cirrhosis group (AUC 0.924; 95% CI; sensitivity 82%, specificity 92%) and healthy volunteers’ group. Exosomal miRNA-21 and miRNA-96 with low expression and miRNA-122 with high expression could be associated with a patient’s survival time. However, the miRNA panel could better predict the HCC patient’s survival time compared with each miRNA individually. Conclusion This study showed that the expression levels of miRNA-122, miRNA-21 and miRNA-96 in exosomes were more significantly changed than those miRNAs in plasma in patients with HCC compared with cirrhotic patients, and the exosomal miRNA panel containing miRNA-122, miRNA-21 and miRNA-96 could be defined as a diagnostic biomarker for patients with HCC. We also conclude that different expression of exosomal miRNAs, especially the miRNA panel, could predict the HCC patient’s prognosis.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medical Oncology, Beijing Shijitan Hospital, Beijing, People's Republic of China
| | - Yongxiang Yang
- Outpatient Department, PLA Rocket Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Lili Sun
- Department of Stomatology, Beijing Chuiyangliu Hospital, Beijing, People's Republic of China
| | - Guoliang Qiao
- Department of Medical Oncology, Beijing Shijitan Hospital, Beijing, People's Republic of China
| | - Yunlong Song
- Department of Pharmacy, PLA Rocket Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Bing Liu
- Department of Disease Control and Prevention, PLA Rocket Force Characteristic Medical Center, Beijing, People's Republic of China
| |
Collapse
|
210
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
211
|
Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Mol Cancer 2020; 19:29. [PMID: 32059676 PMCID: PMC7023699 DOI: 10.1186/s12943-020-1140-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.
Collapse
Affiliation(s)
- Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
212
|
Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene 2020; 738:144453. [PMID: 32035242 DOI: 10.1016/j.gene.2020.144453] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is the most common cancer among women that is responsible for the most of the cancer-related death in worldwide. Drug resistance is remaining as a significant clinical obstacle to treat BC patients effectively. Therefore, to help overcome this problem, it is necessary to understand the mechanisms of drug resistance. microRNAs classify as highly conserved non-coding RNAs (~22 nucleotides) and interact with mRNAs-coding genes for direct post-transcriptional repression. It has been reported that miR-21 is overexpressed and also acts as oncomiR in many human malignancies by targeting of several tumor suppressor genes-associated with apoptosis, proliferation and metastasis. Specifically, it has been reported that miR-21 is responsible for the drug resistance and its overexpression is related to the development of Multi Drug Resistance (MDR) in breast cancer. In this review, we discussed about the role of miR-21 on the drug resistance of breast cancer.
Collapse
|
213
|
Bhere D, Arghiani N, Lechtich ER, Yao Y, Alsaab S, Bei F, Matin MM, Shah K. Simultaneous downregulation of miR-21 and upregulation of miR-7 has anti-tumor efficacy. Sci Rep 2020; 10:1779. [PMID: 32019988 PMCID: PMC7000780 DOI: 10.1038/s41598-020-58072-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of miRNA expression has been implicated in cancer. Numerous strategies have been explored to modulate miR but sub-optimal delivery and inability to concurrently target multiple pathways involved in tumor progression have limited their efficacy. In this study, we explored the potential co-modulation of upregulated miR-21 and downregulated miR-7 to enhance therapeutic outcomes in heterogenic tumor types. We first engineered lentiviral (LV) and adeno-associated viral (AAV) vectors that preferentially express anti-sense miR against miR-21(miRzip-21) and show that modulating miR-21 via miRzip extensively targets tumor cell proliferation, migration and invasion in vitro in a broad spectrum of cancer types and has therapeutic efficacy in vivo. Next, we show a significantly increased expression of caspase-mediated apoptosis by simultaneously downregulating miR-21 and upregulating miR-7 in different tumor cells. In vivo co-treatment with AAV-miRzip-21 and AAV-miR-7 in mice bearing malignant brain tumors resulted in significantly decreased tumor burden with a corresponding increase in survival. To our knowledge, this is the first study that demonstrates the therapeutic efficacy of simultaneously upregulating miR-7 and downregulating miR-21 and establishes a roadmap towards clinical translation of modulating miRs for various cancer types.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nahid Arghiani
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Esther Revai Lechtich
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Alsaab
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Joint Center of Excellence in Biomedicine, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maryam M Matin
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
214
|
A double signal amplification electrochemical MicroRNA biosensor based on catalytic hairpin assembly and bisferrocene label. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
215
|
Varghese E, Liskova A, Kubatka P, Samuel SM, Büsselberg D. Anti-Angiogenic Effects of Phytochemicals on miRNA Regulating Breast Cancer Progression. Biomolecules 2020; 10:biom10020191. [PMID: 32012744 PMCID: PMC7072640 DOI: 10.3390/biom10020191] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/19/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
Abstract
Several phytochemicals have been identified for their role in modifying miRNA regulating tumor progression. miRNAs modulate the expression of several oncogenes and tumor suppressor genes including the genes that regulate tumor angiogenesis. Hypoxia inducible factor-1 alpha (HIF-1α) signaling is a central axis that activates oncogenic signaling and acts as a metabolic switch in endothelial cell (EC) driven tumor angiogenesis. Tumor angiogenesis driven by metabolic reprogramming of EC is crucial for tumor progression and metastasis in many different cancers, including breast cancers, and has been linked to aberrant miRNA expression profiles. In the current article, we identify different miRNAs that regulate tumor angiogenesis in the context of oncogenic signaling and metabolic reprogramming in ECs and review how selected phytochemicals could modulate miRNA levels to induce an anti-angiogenic action in breast cancer. Studies involving genistein, epigallocatechin gallate (EGCG) and resveratrol demonstrate the regulation of miRNA-21, miRNA-221/222 and miRNA-27, which are prognostic markers in triple negative breast cancers (TNBCs). Modulating the metabolic pathway is a novel strategy for controlling tumor angiogenesis and tumor growth. Cardamonin, curcumin and resveratrol exhibit their anti-angiogenic property by targeting the miRNAs that regulate EC metabolism. Here we suggest that using phytochemicals to target miRNAs, which in turn suppresses tumor angiogenesis, should have the potential to inhibit tumor growth, progression, invasion and metastasis and may be developed into an effective therapeutic strategy for the treatment of many different cancers where tumor angiogenesis plays a significant role in tumor growth and progression.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (E.V.); (S.M.S.)
- Correspondence: ; Tel.: +974-4492-8334; Fax: +974-4492-8333
| |
Collapse
|
216
|
Hironaka-Mitsuhashi A, Otsuka K, Gailhouste L, Sanchez Calle A, Kumazaki M, Yamamoto Y, Fujiwara Y, Ochiya T. MiR-1285-5p/TMEM194A axis affects cell proliferation in breast cancer. Cancer Sci 2020; 111:395-405. [PMID: 31854049 PMCID: PMC7004531 DOI: 10.1111/cas.14287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/03/2023] Open
Abstract
The onset of breast cancer among young patients is a major issue in cancer etiology. Our previous study has shown that poor prognosis in young women with breast cancer is associated with lower expression of the microRNA miR‐1285‐5p. In this study, we showed that the expression of miR‐1285‐5p is lower in tumor tissues than in normal tissues. Accumulating evidence suggests that miR‐1285‐5p plays critical roles in various types of cancers. However, the functional role of miR‐1285‐5p in breast cancer remains to be elucidated. Here, we showed the tumor‐suppressive role of miR‐1285‐5p and detailed its mechanism of action in breast cancer. Overexpression of miR‐1285‐5p significantly inhibited cell proliferation in breast cancer cells regardless of the tumor subtype. Among the target genes of miR‐1285‐5p, we found that transmembrane protein 194A (TMEM194A) was directly regulated by miR‐1285‐5p. Notably, separation of centrosomes from the nuclear envelope was observed upon knockdown of TMEM194A or overexpression of miR‐1285‐5p. In conclusion, our findings show that miR‐1285‐5p is a tumor suppressor via TMEM194A inhibition in breast cancer.
Collapse
Affiliation(s)
- Ai Hironaka-Mitsuhashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Kurataka Otsuka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,R&D Division, Kewpie Corporation Sengawa Kewport, Tokyo, Japan
| | - Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Anna Sanchez Calle
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Minami Kumazaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhiro Fujiwara
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
217
|
Pu X, Ding G, Wu M, Zhou S, Jia S, Cao L. Elevated expression of exosomal microRNA-21 as a potential biomarker for the early diagnosis of pancreatic cancer using a tethered cationic lipoplex nanoparticle biochip. Oncol Lett 2020; 19:2062-2070. [PMID: 32194703 PMCID: PMC7039151 DOI: 10.3892/ol.2020.11302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has a poor prognosis due to the lack of effective molecular biomarkers for early diagnosis. Recent studies have investigated the use of exosomal microRNAs (exmiRs) as diagnostic biomarkers in cancer. The present study examined exmiR-21, exmiR-10b and exmiR-212-3p expression in patients with PC and healthy individuals. The expression levels of exmiR-21, exmiR-10b and exmiR-212-3p were examined in the peripheral blood plasma of 36 patients with PC and 65 healthy controls, using tethered cationic lipoplex nanoparticle biochip. The levels of exmiR-21 in the plasma of 34 mice were also evaluated. The expression levels of exmiR-21 and exmiR-10b were significantly greater in patients with PC compared with the control group. The receiver operating characteristic (ROC) analysis indicated that exmiR-21 had better diagnostic performance (P=0.0003; AUC, 0.7171) compared with the other two exmiRs. The diagnostic value of exmiR-21 improved when combined with exmiR-10b (P<0.0001; AUC, 0.791). Furthermore, exmiR-21 was capable of distinguishing patients with early-stage PC from controls and advanced-stage PC (P<0.05, early stage vs. healthy; P<0.001, early stage vs. advanced stage). The results of the present study revealed that the plasma levels of exmiR-21 and exmiR-10b were upregulated in patients with PC. The ROC analyses indicated that exmiR-21 had the best diagnostic performance among the three exmiRs. Furthermore, exmiR-21 was capable of discriminating patients with early-stage PC from healthy controls. These findings indicate the potential of determining the expression of exmiR-21 from serum using a tethered cationic lipoplex nanoparticle biochip as a novel non-invasive strategy for the early diagnosis of PC.
Collapse
Affiliation(s)
- Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Mingjie Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Senhao Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
218
|
Si Y, Xu L, Wang N, Zheng J, Yang R, Li J. Target MicroRNA-Responsive DNA Hydrogel-Based Surface-Enhanced Raman Scattering Sensor Arrays for MicroRNA-Marked Cancer Screening. Anal Chem 2020; 92:2649-2655. [DOI: 10.1021/acs.analchem.9b04606] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanmei Si
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lan Xu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ningning Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
219
|
To KKW, Fong W, Tong CWS, Wu M, Yan W, Cho WCS. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments. Expert Opin Drug Discov 2020; 15:63-83. [PMID: 31739699 DOI: 10.1080/17460441.2020.1690449] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Introduction: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that repress the expression of their target genes by reducing mRNA stability and/or inhibiting translation. miRNAs are known to be aberrantly regulated in cancers. Modulators of miRNA (mimics and antagonists) have emerged as novel therapeutic tools for cancer treatment.Areas covered: This review summarizes the various strategies that have been applied to correct the dysregulated miRNA in cancer cells. The authors also discuss the recent advances in the technical development and preclinical/clinical evaluation of miRNA-based therapeutic agents.Expert opinion: Application of miRNA-based therapeutics for cancer treatment is appealing because they are able to modulate multiple dysregulated genes and/or signaling pathways in cancer cells. Major obstacles hindering their clinical development include drug delivery, off-target effects, efficacious dose determination, and safety. Tumor site-specific delivery of novel miRNA therapeutics may help to minimize off-target effects and toxicity. Combination of miRNA therapeutics with other anticancer treatment modalities could provide a synergistic effect, thus allowing the use of lower dose, minimizing off-target effects, and improving the overall safety profile in cancer patients. It is critical to identify individual miRNAs with cancer type-specific and context-specific regulation of oncogenes and tumor-suppressor genes in order to facilitate the precise use of miRNA anticancer therapeutics.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
220
|
Ye WQ, Wei YX, Zhang YZ, Yang CG, Xu ZR. Multiplexed detection of micro-RNAs based on microfluidic multi-color fluorescence droplets. Anal Bioanal Chem 2019; 412:647-655. [PMID: 31836924 DOI: 10.1007/s00216-019-02266-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/12/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022]
Abstract
In this work, simple, rapid, and low-cost multiplexed detection of tumor-related micro-RNAs (miRNAs) was achieved based on multi-color fluorescence on a microfluidic droplet chip, which simplified the complexity of light path to a half. A four-T-junction structure was fabricated to form uniform nano-volume droplet arrays with customized contents. Multi-color quantum dots (QDs) used as the fluorescence labels were encapsulated into droplets to develop the multi-path fluorescence detection module. We designed an integrated multiplex fluorescence resonance energy transfer system assisted by multiple QDs (four colors) and one quencher to detect four tumor-related miRNAs (miRNA-20a, miRNA-21, miRNA-155, and miRNA-221). The qualitative analysis of miRNAs was realized by the color identification of QDs, while the quantitative detection of miRNAs was achieved based on the linear relationship between the quenching efficiency of QDs and the concentration of miRNAs. The practicability of the multiplex detection device was further confirmed by detecting four tumor-related miRNAs in real human serum samples. The detection limits of four miRNAs ranged from 35 to 39 pmol/L was achieved without any target amplification. And the linear range was from 0.1 nmol/L to 1 μmol/L using 10 nL detection volume (one droplet) under the detection speed of 320 droplets per minute. The multiple detection system for miRNAs is simple, fast, and low-cost and will be a powerful platform for clinical diagnostic analysis. Graphical abstract.
Collapse
Affiliation(s)
- Wen-Qi Ye
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China
| | - Yi-Xuan Wei
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China
| | - Ying-Zhi Zhang
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China
| | - Chun-Guang Yang
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China.
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China
| |
Collapse
|
221
|
LincRNA Cox-2 Regulates Lipopolysaccharide-Induced Inflammatory Response of Human Peritoneal Mesothelial Cells via Modulating miR-21/NF- κB Axis. Mediators Inflamm 2019; 2019:8626703. [PMID: 31885500 PMCID: PMC6914883 DOI: 10.1155/2019/8626703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/08/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Postoperative peritoneal adhesion (PPA) is a common postoperative complication caused by any peritoneal inflammatory process. This study aimed to identify the biological function of large intergenic non-coding RNAs (lincRNAs) Cox-2 in the inflammation reaction of adhesion formation. The Cox-2 expression in peritoneal adhesion tissues and normal tissues was detected. The human peritoneal mesothelium cells (HPMCs) were treated with lipopolysaccharide (LPS) to induce inflammatory injury. The effect of Cox-2 suppression on cell viability, apoptosis and inflammatory factors of LPS induced HPMCs injury were explored. The regulatory correlation between Cox-2 and miR-21, as well as the targeted genes of miR-21 were identified. Meanwhile, the regulatory mechanism of Cox-2/miR-21 axis on NF-κB pathway was explored. It indicated that Cox-2 was highly expressed in peritoneal adhesion tissues compared with that in normal tissues. Suppression of Cox-2 ameliorated LPS induced HMPCs injury as cell viability was promoted, and cell apoptosis and the production of inflammatory factors were inhibited. And suppression of Cox-2 reversed the LPS induced HPMCs injury by regulation of miR-21 negatively. miR-21 was negatively correlated with TLR4, and TLR4 was predicted as target gene of miR-21. Furthermore, the suppression of miR-21 on LPS induced HPMCs injury was reversed by knockdown of TLR4, which could inhibited the activation of NF-κB pathway axis. It suggested that the effect of Cox-2 on LPS induced HPMCs injury was achieved by negatively regulation of miR-21 and targeted TLR4 through NF-κB pathway axis. The findings may provide a new insight into preventing postoperative peritoneal adhesion.
Collapse
|
222
|
Lin F, Yin HB, Li XY, Zhu GM, He WY, Gou X. Bladder cancer cell‑secreted exosomal miR‑21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int J Oncol 2019; 56:151-164. [PMID: 31814034 PMCID: PMC6910194 DOI: 10.3892/ijo.2019.4933] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Tumour-associated macrophages (TAMs) compose a major component of the tumour microenvironment and form in this microenvironment prior to cancer metastasis. However, the detailed mechanisms of TAM remodelling in the context of bladder cancer have not been clearly defined. The present study collected exosomes from the conditioned medium of human bladder T24 cancer cells. The effects of macrophages treated with exosomes derived from T24 cells on bladder cancer cell migration and invasion were analysed by Transwell assays. The expression levels of endogenous and exosomal microRNA-21 (miR-21) were examined by reverse transcription-quantitative PCR, while the expression level of the target protein was analysed by western blot analysis. Luciferase reporter plasmids and mutants were used to confirm direct targeting. The effects of miR-21 on bladder cancer cell migration and invasion were analysed by Transwell and Matrigel assays following miR-21 transfection. It was identified that exosomes derived from bladder cancer cells polarized THP-1 cell-derived macrophages into the M2 phenotype, and TAM-mediated pro-migratory and pro-invasive activity was determined. Moreover, it was found that miR-21 was highly expressed in exosomes derived from bladder cancer cells as well as in macrophages treated with exosomes. In addition, macrophages transfected with miR-21 exhibited M2 polarization and promoted T24 cell migratory and invasive ability. Mechanistically, exosomal miR-21 derived from bladder cancer cells inhibited phosphatase and tensin homolog activation of the PI3K/AKT signalling pathway in macrophages and enhanced STAT3 expression to promote M2 phenotypic polarization. The present results suggest that exosomal miR-21 can promote cancer progression by polarizing TAMs.
Collapse
Affiliation(s)
- Fan Lin
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hu-Bin Yin
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin-Yuan Li
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gong-Min Zhu
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei-Yang He
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
223
|
Nasser MZ, Zayed NA, Mohamed AM, Attia D, Esmat G, Khairy A. Circulating microRNAs (miR-21, miR-223, miR-885-5p) along the clinical spectrum of HCV-related chronic liver disease in Egyptian patients. Arab J Gastroenterol 2019; 20:198-204. [PMID: 31806407 DOI: 10.1016/j.ajg.2019.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND STUDY AIMS MicroRNAs (miRNAs), small single stranded RNAs, function in the post-transcriptional regulation of gene expression and incorporated in pathogenesis of HCV related chronic liver disease. This study was designed to evaluate the significance of serum miR-21, miR-223, and miR-885-5p as biomarkers in various clinicopathological stages of HCV related chronic liver disease. PATIENTS AND METHODS Serum miR-21, miR-223, and miR-885-5p were quantified by quantitative RT PCR in 60 patients with HCV-related liver disease (presumably genotype 4), in addition to 25 healthy controls. HCV patients were classified into: chronic non-cirrhotic HCV (n = 15), HCV related liver cirrhosis (n = 15), and hepatocellular carcinoma (HCC) (n = 30). RESULTS Serum levels of miR-885-5p in cirrhotic patients ± HCC (n = 45) were significantly higher than the non-cirrhotic patients (n = 15); p = 0.007 and healthy control; p = 0.001. However, no such significance was detected between HCC and non-HCC HCV patients; p = 0.12. Serum miRNA-885-5p was able to discriminate cirrhosis ± HCC from healthy controls using ROC analysis; AUC 0.85, 87% sensitivity and 80% specificity. On the other hand, HCC patients had significantly higher serum miR-2 1evels than non-HCC patients (non-cirrhotic and cirrhotic groups, n = 30); p = 0.048 and the control group; p = 0.002. ROC could differentiate HCC from control group; AUC 0.89, 80% sensitivity, 80% specificity. Both serum bilirubin and albumin showed significant weak correlation with miRNA-885-5p (r = 0.42, p = 0.001) and (r = -0.27, p = 0.04), respectively but no such correlation was observed with serum miRNA-21. In contrast, miRNA-223 showed no significant difference across the studied groups. CONCLUSION Along the spectrum of HCV-related chronic liver disease, miR-885-5p could be a potential marker for advanced liver damage while miR-21 could be a helpful diagnostic marker for HCC.
Collapse
Affiliation(s)
- Mona Zaky Nasser
- Clinical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Naglaa Ali Zayed
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Dina Attia
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Esmat
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Khairy
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
224
|
Wang HN, Crawford BM, Norton SJ, Vo-Dinh T. Direct and Label-Free Detection of MicroRNA Cancer Biomarkers using SERS-Based Plasmonic Coupling Interference (PCI) Nanoprobes. J Phys Chem B 2019; 123:10245-10251. [PMID: 31710234 DOI: 10.1021/acs.jpcb.9b06804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs), small noncoding endogenous RNA molecules, are emerging as promising biomarkers for early detection of various diseases and cancers. Practical screening tools and strategies to detect these small molecules are urgently needed to facilitate the translation of miRNA biomarkers into clinical practice. In this study, a label-free biosensing technique based on surface-enhanced Raman scattering (SERS), referred to as plasmonic coupling interference (PCI), was applied for the multiplex detection of miRNA biomarkers. The sensing mechanism of the PCI technique relies on the formation of a nanonetwork consisting of nanoparticles with Raman labels located between adjacent nanoparticles that are interconnected by DNA duplexes. Because of the plasmonic coupling effect of adjacent nanoparticles in the nanonetwork, the Raman labels exhibit intense SERS signals. Such effect can be modulated by the addition of miRNA targets of interest that act as inhibitors to interfere with the formation of this nanonetwork, resulting in a diminished SERS signal. In this study, the PCI technique is theoretically analyzed, and the multiplex capability for detection of multiple miRNA cancer biomarkers is demonstrated, establishing the great potential of PCI nanoprobes as a useful diagnostic tool for medical applications.
Collapse
|
225
|
Liu Y, Chen G, Liu H, Li Z, Yang Q, Gu X, Du Z, Zhang G, Wang J. Integrated bioinformatics analysis of miRNA expression in Ewing sarcoma and potential regulatory effects of miR-21 via targeting ALCAM/CD166. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2114-2122. [PMID: 31140328 DOI: 10.1080/21691401.2019.1620760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) play essential functions in pathogenesis of Ewing sarcoma (ES). However, the molecular mechanisms responsible for ES occurrence and development through the regulation of miRNAs remain largely unknown. This study is aimed to explore the differential expressed miRNAs and mRNAs that play vital roles in ES. GSE80201 miRNA and GSE68776 mRNA microarray dataset were selected to carry out a series of bioinformatics analysis such as GEO 2R, gene ontology, pathway enrichment analysis, Venn analysis and PPI network construction to predict hub genes. Furthermore, using quantitative real-time PCR, RNA interference and luciferase reporter assay we demonstrated that activated leukocyte cell adhesion molecule (ALCAM/CD166) is a direct target of miR-21-3p in human ES cell lines. Our results suggest that the miR-21/CD166 axis has the potential to serve as both diagnostic markers and therapeutic targets for ES.
Collapse
Affiliation(s)
- Yuzhe Liu
- a Department of Orthopaedics of the Second Hospital, Jilin University , Changchun , China.,b The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University , Changchun , China
| | - Gaoyang Chen
- a Department of Orthopaedics of the Second Hospital, Jilin University , Changchun , China.,b The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University , Changchun , China.,c Research Centre of the Second Hospital, Jilin University , Changchun , China
| | - He Liu
- a Department of Orthopaedics of the Second Hospital, Jilin University , Changchun , China.,b The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University , Changchun , China
| | - Zhaoyan Li
- a Department of Orthopaedics of the Second Hospital, Jilin University , Changchun , China.,b The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University , Changchun , China.,c Research Centre of the Second Hospital, Jilin University , Changchun , China
| | - Qiwei Yang
- a Department of Orthopaedics of the Second Hospital, Jilin University , Changchun , China.,c Research Centre of the Second Hospital, Jilin University , Changchun , China
| | - Xinming Gu
- d Department of Oral Implantology of School and Hospital of Stomatology, Jilin University , Changchun , China
| | - Zhenwu Du
- a Department of Orthopaedics of the Second Hospital, Jilin University , Changchun , China.,b The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University , Changchun , China.,c Research Centre of the Second Hospital, Jilin University , Changchun , China
| | - Guizhen Zhang
- a Department of Orthopaedics of the Second Hospital, Jilin University , Changchun , China.,b The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University , Changchun , China.,c Research Centre of the Second Hospital, Jilin University , Changchun , China
| | - Jincheng Wang
- a Department of Orthopaedics of the Second Hospital, Jilin University , Changchun , China.,b The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University , Changchun , China
| |
Collapse
|
226
|
Babaei K, Shams S, Keymoradzadeh A, Vahidi S, Hamami P, Khaksar R, Norollahi SE, Samadani AA. An insight of microRNAs performance in carcinogenesis and tumorigenesis; an overview of cancer therapy. Life Sci 2019; 240:117077. [PMID: 31751586 DOI: 10.1016/j.lfs.2019.117077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Importance of dysregulation and expression of microRNAs (miRNAs) has been confiemed in many disorders comprising cancer. In this way, different approaches to induce reprogramming from one cell type to another in oerder to control the cell normal mechanisem, comprising microRNAs, combinatorial small molecules, exosome-mediated reprogramming, embryonic microenvironment and also lineage-specific transcription agents, are involved in cell situation. Meaningly, besides the above factors, microRNAs are so special and have an impressive role in cell reprogramming. One of the main applications of cancer cell reprogramming is it's ability in therapeutic approach. Many insights in reprogramming mechanism have been recommended, and determining improvment has been aknolwged to develop reprogramming efficiency and possibility, permiting it to appear as practical therapy against all cancers. Conspiciously, the recent studies on the fluctuations and performance of microRNAs,small endogenous non-coding RNAs, as notable factors in carcinogenesis and tumorigenesis, therapy resistance and metastasis and as new non-invasive cancer biomarkers has a remarkable attention. This is due to their unique dysregulated signatures throughout tumor progression. Recognising miRNAs signatures capable of anticipating therapy response and metastatic onset in cancers might enhance diagnosis and therapy. According to the growing reports on miRNAs as novel non-invasive biomarkers in various cancers as a main regulators of cancers drug resistance or metastasis, the quest on whether some miRNAs have the ability to regulate both simultaneously is inevitable, yet understudied. The combination of genetic diagnosis using next generation sequencing and targeted therapy may contribute to the effective precision medicine for cancer therapy. Here, we want to review the practical application of microRNAs performance in carcinogenesis and tumorigenesis in cancer therapy.
Collapse
Affiliation(s)
- Kosar Babaei
- Department of Biology, Islamic Azad University of Tonekabon Branch, Tonekabon, Iran
| | - Shima Shams
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Hamami
- Clinical Development Research Unit of Ghaem Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Roya Khaksar
- Department of Biology, Islamic Azad University of Tehran Shargh Branch, Tehran, Iran.
| | - Seyedeh Elham Norollahi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ali Akbar Samadani
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
227
|
Regulation of MicroRNA-155 and Its Related Genes Expression by Inositol Hexaphosphate in Colon Cancer Cells. Molecules 2019; 24:molecules24224153. [PMID: 31744065 PMCID: PMC6891702 DOI: 10.3390/molecules24224153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Inositol hexaphosphate (IP6), a natural dietary component, has been found as an antitumor agent by stimulating apoptosis and inhibiting cancer cell proliferation, their migration, and metastasis in diverse cancers including colon cancer. However, molecular mechanisms of its action have not been well understood. In recent years, microRNAs (miRNAs) have been reported to play important roles in a broad range of biologic processes, such as cell growth, proliferation, apoptosis, or autophagy. These small noncoding molecules regulate post-transcriptional expression of targets genes via degradation of transcript or inhibition of protein synthesis. Aberrant expression and/or dysregulation of miRNAs have been characterized during tumor development and progression, thus, they are potential molecular targets for cancer prevention. The aim of this study was to investigate the effect of IP6 on the miRNAs expression profile in Caco-2 colon cancer cells. 84 miRNAs were analyzed in Caco-2 cells treated with 2.5 mM and 5 mM IP6 by the use of PCR (Polymerase Chain Reaction) array. The effect of 5 mM IP6 on selected potential miR-155 targets was determined by real-time (RT)-qPCR and ELISA (quantitative Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay )method. The results indicated alteration in the specific 10 miRNA expression in human colon cancer cells following their treatment with 5 mM IP6. It down-regulated 8 miRNAs (miR-155, miR-210, miR-144, miR-194, miR-26b, miR-126, miR-302c, and miR-29a) and up-regulated 2 miRNAs (miR-223 and miR-196b). In silico analysis revealed that FOXO3a, HIF-1α, and ELK3 mRNAs are those of predicted targets of miR-155. IP6 at the concentration of 5 mM markedly induced FOXO3a and HIF-1a genes’ expression at both mRNA and protein level and decreased the amount of ELK3 mRNA as well as protein concentration in comparison to the control. In conclusion, the present study indicates that one of the mechanisms of antitumor potential of IP6 is down-regulation of the miR-155 expression in human colon cancer cells. Moreover, the expression of genes that are targeted by miRNA are also modulated by IP6.
Collapse
|
228
|
Ediriweera MK, Cho SK. Targeting miRNAs by histone deacetylase inhibitors (HDACi): Rationalizing epigenetics-based therapies for breast cancer. Pharmacol Ther 2019; 206:107437. [PMID: 31715287 DOI: 10.1016/j.pharmthera.2019.107437] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) belong to a group of short RNA molecules of ~22 nucleotides that play a significant role in the regulation of gene expression through post-transcriptional regulatory mechanisms. They can directly interact with their target mRNA molecules and induce target gene silencing. Many investigations over the past decade have revealed the involvement of different miRNAs in essential biological events. The expression of a considerable number of miRNAs is tightly regulated through epigenetic events such as histone modifications and DNA methylation. Notably, irregularities in these epigenetic events are associated with aberrant expression of miRNAs in a range of diseases including cancer. Impaired epigenetic events associated with aberrant expression of miRNAs can be pharmacologically modified using chromatin modifying drugs. Numerous pre-clinical and clinical data demonstrate that histone deacetylase inhibitors (HDACi) can re-establish the expression of aberrantly expressed miRNAs in a range of cancer types, rationalizing miRNAs as potential drug targets. This review highlights evidence from investigations assessing the effects of different classes of HDACi on miRNA expression in breast cancer (BC).
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
229
|
Pakizehkar S, Ranji N, Sohi AN, Sadeghizadeh M. Polymersome‐assisted delivery of curcumin: A suitable approach to decrease cancer stemness markers and regulate miRNAs expression in HT29 colorectal cancer cells. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Safura Pakizehkar
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | | | - Majid Sadeghizadeh
- Department of Genetics, School of Biological SciencesTarbiat Modares University Tehran Iran
| |
Collapse
|
230
|
El-Garawani I, El Nabi SH, Nafie E, Almeldin S. Foeniculum Vulgare and Pelargonium Graveolens Essential Oil Mixture Triggers the Cell Cycle Arrest and Apoptosis in MCF-7 Cells. Anticancer Agents Med Chem 2019; 19:1103-1113. [DOI: 10.2174/1573399815666190326115116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/08/2018] [Accepted: 03/06/2019] [Indexed: 01/10/2023]
Abstract
Background:
Fennel (Foeniculum vulgare) and rose geranium (Pelargonium graveolens) oils are
known for their various biological effects including anticancer properties.
Objective:
This study aimed to evaluate the anticancer mechanism of fennel and geranium oils combined treatment
on MCF-7 cells.
Methods:
The GC-MS method for essential oil characterization as well as the in vitro cytotoxicity, morphological
changes, real-time PCR and immunocytochemical investigation for apoptosis-related markers, in addition, to
flow cytometric cell cycle distribution analysis were done.
Results:
The major constituents of both essential oils were anethole (55.33 %) and estragole (11.57 %) for fennel
essential oil. However, cintronellol (34.40 %) and geraniol (8.67 %) were identified in geranium oil. The
results revealed an IC50 of 220±5.7 and 60±2.1µg/ml for fennel and geranium oils, respectively. The mechanistic
anticancer properties were investigated throughout the 70, 50, and 25µg/ml of oils mixture. The marked apoptotic
morphology and the flow cytometric cell cycle distribution analysis in addition to the levels of apoptosisrelated
makers such as p53, caspase-3, mir-21, mir-92a, Bcl-2, and ki-67 confirmed that fennel and geranium
oils combination induced cell cycle arrest and apoptosis in MCF-7 cells. Moreover, the oils mixture did not
exert any significant (P<0.01) toxicity on normal human peripheral blood lymphocytes in vitro.
Conclusion:
The findings showed that the mixture of oils exerted selective cytotoxicity towards MCF-7 cells
through induction of cell cycle arrest and apoptosis which may be triggered by the synergistic effect between the
active ingredients of fennel and geranium oils.
Collapse
Affiliation(s)
- Islam El-Garawani
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Sobhy Hassab El Nabi
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Ebtesam Nafie
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Samar Almeldin
- Department of Biochemistry, Batterjee Medical College for Science and Technology, Jeddah, Saudi Arabia
| |
Collapse
|
231
|
Okumura S, Hirano Y, Komatsu Y. Inhibition of breast cancer cell proliferation with anti-microRNA oligonucleotides flanked by interstrand cross-linked duplexes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:225-235. [PMID: 31583946 DOI: 10.1080/15257770.2019.1671595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most frequent cancer affecting women worldwide. Traditional chemotherapy, hormone therapy, and targeted therapy are used for breast cancer treatment. However, breast cancer is a heterogeneous disease, and patients often develop drug resistance. Therefore, various new therapeutic strategies have been investigated, including microRNA regulation. Anti-microRNA oligonucleotides (AMOs) are one of the most potent agents in oligonucleotide therapy. The inhibition activity of an AMO can be increased by flanking its single-stranded antisense sequence (the widely used structure for AMOs) with interstrand cross-linked duplexes (CLDs). An extrastable CLD improves nuclease resistance and stabilizes hybridization with a target. This study investigated the effects of anti-microRNA-21 (miR-21) AMO modified with CLDs on breast cancer cells without using reporter assay. The CLD-modified AMO suppressed breast cancer cell proliferation for a long duration compared to other types of AMOs. In addition, it expectedly up-regulated the miR-21-controlled expression of tumor suppressor genes. Therefore, an AMO flanked by CLDs can be a promising strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Sho Okumura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Cosmo Bio Co., Ltd, Otaru, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yu Hirano
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yasuo Komatsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
232
|
Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. J Transl Med 2019; 99:1442-1453. [PMID: 31217510 DOI: 10.1038/s41374-019-0273-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are post-transcriptional regulators involved in the initiation and progression of many tumors. Recently, naturally occurring circular RNAs (circRNAs) have been described in eukaryotic cells:;they comprise a new class of gene regulators. Naturally occurring circular miR sponges, which induce miR loss-of-function, can prevent endogenous onco-miRs from binding to their cognate mRNA targets. These findings suggest that synthetic (artificial) circular RNAs could be constructed as therapeutic molecular sponges to suppress harmful onco-miRs. Using enzymatic ligation, we designed and constructed a circular RNA containing both miR-21 and miR-93 binding sites. The synthetic circular sponge was resistant to digestion with RNase R. Luciferase assays and functional experiments showed that the circular multi-miR sponge was more stable than its linear counterpart. Moreover, endogenous miR-21 and miR-93 were inhibited by the circular sponge. In addition, the synthetic sponge significantly suppressed cellular proliferation and migration while promoting apoptosis in esophageal carcinoma cells. Finally, in a murine xenograft model, the circular sponge significantly inhibited tumor growth in vivo. Taken together, these findings establish that the design and construction of efficient artificial miR sponges represent a novel strategy to achieve miR loss-of-function in molecular cancer therapeutics.
Collapse
|
233
|
Zhao M, Zhu N, Hao F, Song Y, Wang Z, Ni Y, Ding L. The Regulatory Role of Non-coding RNAs on Programmed Cell Death Four in Inflammation and Cancer. Front Oncol 2019; 9:919. [PMID: 31620370 PMCID: PMC6759660 DOI: 10.3389/fonc.2019.00919] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death 4 (PDCD4) is a tumor suppressor gene implicated in many cellular functions, including transcription, translation, apoptosis, and the modulation of different signal transduction pathways. The downstream mechanisms of PDCD4 have been well-discussed, but its upstream regulators have not been systematically summarized. Noncoding RNAs (ncRNAs) are gene transcripts with no protein-coding potential but play a pivotal role in the regulation of the pathogenesis of solid tumors, cardiac injury, and inflamed tissue. In recent studies, many ncRNAs, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were found to interact with PDCD4 to manipulate its expression through transcriptional regulation and function as oncogenes or tumor suppressors. For example, miR-21, as a classic oncogene, was identified as the key regulator of PDCD4 by targeting its 3′-untranslated region (UTR) to promote tumor proliferation, migration, and invasion in colon, breast, and bladder carcinoma. Therefore, we reviewed the recently emerging pleiotropic regulation of PDCD4 by ncRNAs in cancer and inflammatory disorders and aimed to shed light on the mechanisms of associated diseases, which could be conducive to the development of novel treatment strategies for PDCD4-induced diseases.
Collapse
Affiliation(s)
- Mengxiang Zhao
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Nisha Zhu
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fengyao Hao
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Nanjing, China
| | - Yanhong Ni
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
234
|
Ma W, Chen B, Zou S, Jia R, Cheng H, Huang J, Wang H, He X, Wang K. I-Motif-Based in Situ Bipedal Hybridization Chain Reaction for Specific Activatable Imaging and Enhanced Delivery of Antisense Oligonucleotides. Anal Chem 2019; 91:12538-12545. [PMID: 31476869 DOI: 10.1021/acs.analchem.9b03420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The efficient and precise delivery of antisense oligonucleotides (ASOs) to target cells is of great value in gene silencing. However, the specificity and packaging capacity of delivery system still remains challenging. Here, we designed an i-motif forming-initiated in situ bipedal hybridization chain reaction (pH-Apt-BiHCR) amplification strategy for specific target cells imaging and enhanced gene delivery of ASOs. As a proof of concept, an 8-nt ASO modified with locked nucleic acid (LNA) which is complementary to the seed region of microRNA21 (miR-21) was used for gene silencing studies. Benefiting from the design of hairpin-contained i-motif, the stimuli-responsive assembly of pH-Apt-BiHCR was successfully achieved on MCF-7 cells surface based on the specific recognition of aptamer. Using this strategy, the pH-Apt-BiHCR not only contains repeated fluorescence resonance energy transfer (FRET) units for activatable tumor imaging with high contrast but also arrays with plenty of LNA ASOs as interference molecules for cancer cells inhibition. An in vitro assay showed that this strategy presented an excellent response ability in buffer within a narrow pH range (6.0-7.0) with a transition midpoint (pHT) of 6.44 ± 0.06. Moreover, live cell studies revealed that it realized a specific activatable imaging of target cells, while the ASOs arrayed pH-Apt-BiHCR exhibited improved internalization via an endocytosis pathway and enhanced gene silencing to MCF-7 cells compared to single ASO alone. We believe that this design will inspire the development of novel probes for early diagnosis and therapy of cancer cells.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Shanzi Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
235
|
Long noncoding RNA X-inactive specific transcript promotes malignant melanoma progression and oxaliplatin resistance. Melanoma Res 2019; 29:254-262. [PMID: 30640294 DOI: 10.1097/cmr.0000000000000560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Long noncoding RNA X-inactive specific transcript (XIST) was confirmed to participate in the development of many cancers. However, the function of XIST in malignant melanoma (MM) remained largely unknown. In the current study, we found that the XIST expression level was upregulated in MM tissues and cell lines. In addition, the growth rate of MM cells transfected with silencing XIST was significantly decreased compared with that with silencing normal control. XIST knockdown inhibited proliferation and migration in MM cells and increased the oxaliplatin sensitivity of oxaliplatin-resistant MM cells. Bioinformatics analysis showed that XIST acts as a molecular sponge for miR-21 and miR-21 directly targets with 3'-UTR of PI3KR1. Furthermore, XIST knockdown inhibited PI3KRI and AKT expression, and promoted Bcl-2 and Bax expression. In short, the current study showed that XIST was a crucial regulator in progression and oxaliplatin resistance of MM, providing a novel insight into the pathogenesis and underlying therapeutic target for MM.
Collapse
|
236
|
Goudarzi A. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci 2019; 232:116592. [PMID: 31228515 DOI: 10.1016/j.lfs.2019.116592] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Acetoacetyl-CoA thiolase also known as acetyl-CoA acetyltransferase (ACAT) corresponds to two enzymes, one cytosolic (ACAT2) and one mitochondrial (ACAT1), which is thought to catalyse reversible formation of acetoacetyl-CoA from two molecules of acetyl-CoA during ketogenesis and ketolysis respectively. In addition to this activity, ACAT1 is also involved in isoleucine degradation pathway. Deficiency of ACAT1 is an inherited metabolic disorder, which results from a defect in mitochondrial acetoacetyl-CoA thiolase activity and is clinically characterized with patients presenting ketoacidosis. In this review I discuss the recent findings, which unexpectedly expand the known functions of ACAT1, indicating a role for ACAT1 well beyond its classical activity. Indeed ACAT1 has recently been shown to possess an acetyltransferase activity capable of specifically acetylating Pyruvate DeHydrogenase (PDH), an enzyme involved in producing acetyl-CoA. ACAT1-dependent acetylation of PDH was shown to negatively regulate this enzyme with a consequence in Warburg effect and tumor growth. Finally, the elevated ACAT1 enzyme activity in diverse human cancer cell lines was recently reported. These important novel findings on ACAT1's function and expression in cancer cell proliferation point to ACAT1 as a potential new anti-cancer target.
Collapse
Affiliation(s)
- Afsaneh Goudarzi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
237
|
Zhang F, Wang S, feng J, Zou R, Xiang L, Cai C. MoS2-loaded G-quadruplex molecular beacon probes for versatile detection of MicroRNA through hybridization chain reaction signal amplification. Talanta 2019; 202:342-348. [DOI: 10.1016/j.talanta.2019.05.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 01/31/2023]
|
238
|
Du X, Hong L, Sun L, Sang H, Qian A, Li W, Zhuang H, Liang H, Song D, Li C, Wang W, Li X. miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J Transl Med 2019; 17:270. [PMID: 31416448 PMCID: PMC6694687 DOI: 10.1186/s12967-019-2015-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deep venous thrombosis (DVT) of lower extremities is a common thrombotic disease, occurring either in isolation or as a complication of other diseases or procedures. MiR-21 is one of important microRNAs which play critical role in various cellular function. This study aim to determine the effect of miR-21 on endothelial progenitor cells (EPCs) and its role in predicting prognosis of DVT. METHODS EPCs was isolated from DVT models and control subjects. miR-21 expression was confirmed by RT-PCR. Potential target mRNA was predicted by bioinformatics analysis. EPCs biological functions were examined by CCK-8 and tube formation assay. Besides, miR-21 expression was determined in DVT patients to investigate the correlation between miR-21 expression and prognosis of DVT. Cox proportional hazard regression analyses were also performed to reveal the risk factors associated with prognosis. RESULTS Here, we found miR-21 was downregulated in EPCs of DVT model rats. Increased miR-21 expression promoted proliferation and angiogenesis of EPCs. Moreover, we demonstrated that FASLG was a target of miR-21 and revealed that FASLG knockdown inhibited function of EPCs. Upregulation of miR-21 led to thrombus resolution in a rat model of venous thrombosis. In addition, lower expression level of miR-21 in DVT patients was associated with an increase of recurrent DVT and post thrombotic syndrome (PTS). Furthermore, Cox proportional hazard regression analyses demonstrated miR-21 expression level as an independent predictor of recurrence of DVT. CONCLUSIONS Our data revealed a role of miR-21 in regulating biological function of EPCs and could be a predictor for recurrent DVT or PTS.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Lei Hong
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lili Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Hongfei Sang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Aiming Qian
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wendong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Hao Zhuang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Huoqi Liang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dandan Song
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
239
|
Najminejad H, Kalantar SM, Abdollahpour‐Alitappeh M, Karimi MH, Seifalian AM, Gholipourmalekabadi M, Sheikhha MH. Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB Life 2019; 71:1672-1684. [DOI: 10.1002/iub.2116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hamid Najminejad
- Department of Medical GeneticsShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| | | | | | - Alexander M. Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd)The London BioScience Innovation Centre London UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CentreIran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences Tehran Iran
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| |
Collapse
|
240
|
Wang D, Sun X, Wei Y, Liang H, Yuan M, Jin F, Chen X, Liu Y, Zhang CY, Li L, Zen K. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res 2019; 46:2012-2029. [PMID: 29253196 PMCID: PMC5829740 DOI: 10.1093/nar/gkx1254] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023] Open
Abstract
Hepatic miR-122 can serve as a pro-apoptotic factor to suppress tumorigenesis. The underlying mechanism, however, remains incompletely understood. Here we present the first evidence that miR-122 promotes hepatocellular carcinoma cell apoptosis through directly silencing the biogenesis of cell survival oncomiR miR-21 at posttranscriptional level. We find that miR-122 is strongly expressed in primary liver cell nucleus but its nuclear localization is markedly decreased in transformed cells particularly in chemoresistant tumor cells. MiRNA profiling and RT-qPCR confirm an inverse correlation between miR-122 and miR-21 in hepatocellular carcinoma tissues/cells, and increasing or decreasing nuclear level of miR-122 respectively reduces or increases miR-21 expression. Mechanistically, nuclear miR-122 suppresses miR-21 maturation via binding to a 19-nt UG-containing recognition element in the basal region of pri-miR-21 and preventing the Drosha-DGCR8 microprocessor's conversion of pri-miR-21 into pre-miR-21. Furthermore, both in vitro and in vivo studies demonstrate that nuclear miR-122 participates in the regulation of HCC cell apoptosis through modulating the miR-21-targeted programmed cell death 4 (PDCD4) signal pathway.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xinlei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Center of Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Program of Cellular Biology and Immunology of Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Min Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fangfang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Liu
- Center of Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Program of Cellular Biology and Immunology of Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Center of Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Program of Cellular Biology and Immunology of Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
241
|
Bertucci A, Kim KH, Kang J, Zuidema JM, Lee SH, Kwon EJ, Kim D, Howell SB, Ricci F, Ruoslahti E, Jang HJ, Sailor MJ. Tumor-Targeting, MicroRNA-Silencing Porous Silicon Nanoparticles for Ovarian Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23926-23937. [PMID: 31251556 DOI: 10.1021/acsami.9b07980] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silencing of aberrantly expressed microRNAs (miRNAs or miRs) has emerged as one of the strategies for molecular targeted cancer therapeutics. In particular, miR-21 is an oncogenic miRNA overexpressed in many tumors, including ovarian cancer. To achieve efficient administration of anti-miR therapeutics, delivery systems are needed that can ensure local accumulation in the tumor environment, low systemic toxicity, and reduced adverse side effects. In order to develop an improved anti-miR therapeutic agent for the treatment of ovarian cancer, a nanoformulation is engineered that leverages biodegradable porous silicon nanoparticles (pSiNPs) encapsulating an anti-miR-21 locked nucleic acid payload and displaying a tumor-homing peptide for targeted distribution. Targeting efficacy, miR-21 silencing, and anticancer activity are optimized in vitro on a panel of ovarian cancer cell lines, and a formulation of anti-miR-21 in a pSiNP displaying the targeting peptide CGKRK is identified for in vivo evaluation. When this nanoparticulate agent is delivered to mice bearing tumor xenografts, a substantial inhibition of tumor growth is achieved through silencing of miR-21. This study presents the first successful application of tumor-targeted anti-miR porous silicon nanoparticles for the treatment of ovarian cancer in a mouse xenograft model.
Collapse
Affiliation(s)
- Alessandro Bertucci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Rome , 00133 , Italy
| | | | | | | | | | | | | | | | - Francesco Ricci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Rome , 00133 , Italy
| | - Erkki Ruoslahti
- Cancer Center , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , California 92037 , United States
| | | | | |
Collapse
|
242
|
Chen Y, Wu N, Liu L, Dong H, Wu C. Correlation between microRNA-21, microRNA-206 and estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 in breast cancer. Clin Biochem 2019; 71:52-57. [PMID: 31276668 DOI: 10.1016/j.clinbiochem.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although the function of microRNA-21 and microRNA-206 in breast cancer cells have been investigated in vitro, their association with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are not reported. METHODS ER, PR, HER2, and Ki-67 staining pattern were utilized to classify 75 breast cancer patients recruited. The malignancy was predicted with tumor nodes metastases (TNM) classification. RT-qPCR was performed to detect the relative expression of ER, PR, and HER2 in tumor samples and microRNA-21 and microRNA-206 in the serum. Spearman's correlation analysis was used to determine the association between different molecules. According to the staining pattern, the breast cancer patients were classified into five types. RESULTS microRNA-21 was up-regulated in HER2 positive and Basal-like breast cancer types, while microRNA-206 was up-regulated in Luminal A and B types of breast cancer. microRNA-21 expression negatively correlated with the level of ER and PR but positively correlated with HER2 expression and tumor malignancy, while microRNA-206 showed the opposite trend. Neither microRNA-21 nor microRNA-206 showed any significant correlation with the age of the patients. CONCLUSION Both microRNA-21 and microRNA-206 closely correlate with ER, PR, and HER2 expression, which can be considered as clinical biomarkers.
Collapse
Affiliation(s)
- Yuanwen Chen
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing 400062, China.
| | - Nian Wu
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing 400062, China
| | - Lei Liu
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing 400062, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Haikou 570311, Hainan, China
| | - Chengyi Wu
- Department of General Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
243
|
Cheung KWE, Choi SYR, Lee LTC, Lee NLE, Tsang HF, Cheng YT, Cho WCS, Wong EYL, Wong SCC. The potential of circulating cell free RNA as a biomarker in cancer. Expert Rev Mol Diagn 2019; 19:579-590. [PMID: 31215265 DOI: 10.1080/14737159.2019.1633307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/14/2019] [Indexed: 01/15/2023]
Abstract
Introduction: It is now clear that circulating cell-free ribonucleic acids (ccfRNAs), including messenger RNA (mRNA) and miRNA, are potential cancer biomarkers. As ccfmiRNA is relatively more stable than ccfmRNA, research should concentrate on developing novel methods to preserve the stability of ccfmRNA and standardization of the protocol which includes extraction, detection, and multicenter validation. Areas covered: This literature review concentrates on the potential of ccfRNA being used as a biomarker in cancer, with special focus on mRNAs and microRNAs (miRNAs). Expert opinion: With the advancement of high-throughput technologies such as RNA sequencing, a panel of biomarkers will be used for the diagnosis, prognosis and therapeutic monitoring of cancer patients. In order to achieve this important target, bioinformatics education to pathologists, scientists, and technologists in molecular diagnostic laboratories is essential. Moreover, the panel of these new ccfRNAs biomarkers has to obtain approval or clearance from an authority such as the US Food and Drug Administration (FDA), and the standard of utilizing these new protocols has to be recognized via accreditation exercise. Therefore, there is still a long way to go before an extensively use of ccfRNA biomarkers in cancer patients can be realized.
Collapse
Affiliation(s)
- Ka Wan Emily Cheung
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Sin-Yu Rachel Choi
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Lok Ting Claire Lee
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Nga Lam Ella Lee
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Hin Fung Tsang
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Yin Tung Cheng
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - William Chi Shing Cho
- b Department of Clinical Oncology , Queen Elizabeth Hospital, Kowloon , Hong Kong Special Administrative Region , China
| | - Elaine Yue Ling Wong
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Sze Chuen Cesar Wong
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| |
Collapse
|
244
|
Javid H, Soltani A, Mohammadi F, Hashemy SI. Emerging roles of microRNAs in regulating the mTOR signaling pathway during tumorigenesis. J Cell Biochem 2019; 120:10874-10883. [PMID: 30719752 DOI: 10.1002/jcb.28401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
245
|
Zhai B, Zhang L, Wang C, Zhao Z, Zhang M, Li X. Identification of microRNA-21 target genes associated with hair follicle development in sheep. PeerJ 2019; 7:e7167. [PMID: 31293827 PMCID: PMC6599667 DOI: 10.7717/peerj.7167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/22/2019] [Indexed: 01/20/2023] Open
Abstract
Aim The target molecule regulatory function of microRNA-21 (miR-21) in multiple signalling pathways has become a main focus of genetic and pharmacological regulatory studies of various diseases. The identification of target genes for miRNA-21 in the development of hair follicles can provide new research pathways for the regulation of cell development. Methods In the present study, eight six-month-old ewes from Super Merino (SM) and Small Tailed Han (STH) sheep breeds were selected. Target prediction and dual-luciferase wild-type and mutant vectors were used to identify the target genes of miR-21. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and bioinformatics analysis were conducted to analyze the effects of miR-21. Results The results show that the expressions of CNKSR2, KLF3 and TNPO1 were downregulated by miRNA-21 at rates of 36%, 26% and 48%, respectively. Moreover, there was a significant negative correlation between the expression of miR-21 and the three target genes in sheep with two extreme phenotypes. The expression of microRNA-21in October was significantly lower than that in January and February; while the expression of CNKSR2, KLF3 and TNPO1 in October was higher than that in January and February. Conclusions: These results suggest that CNKSR2, KLF3 and TNPO1 are three newly discovered target genes of miR-21 and might be involved in the effects of miR-21 on hair follicle development.
Collapse
Affiliation(s)
- Bo Zhai
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Lichun Zhang
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Chunxin Wang
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Zhuo Zhao
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Mingxin Zhang
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Xu Li
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| |
Collapse
|
246
|
Bourguignon LYW. Matrix Hyaluronan-CD44 Interaction Activates MicroRNA and LncRNA Signaling Associated With Chemoresistance, Invasion, and Tumor Progression. Front Oncol 2019; 9:492. [PMID: 31293964 PMCID: PMC6598393 DOI: 10.3389/fonc.2019.00492] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor malignancies involve cancer cell growth, issue invasion, metastasis and often drug resistance. A great deal of effort has been placed on searching for unique molecule(s) overexpressed in cancer cells that correlate(s) with tumor cell-specific behaviors. Hyaluronan (HA), one of the major ECM (extracellular matrix) components have been identified as a physiological ligand for surface CD44 isoforms which are frequently overexpressed in malignant tumor cells during cancer progression. The binding interaction between HA and CD44 isoforms often stimulates aberrant cellular signaling processes and appears to be responsible for the induction of multiple oncogenic events required for cancer-specific phenotypes and behaviors. In recent years, both microRNAs (miRNAs) (with ~20–25 nucleotides) and long non-coding RNAs (lncRNAs) (with ~200 nucleotides) have been found to be abnormally expressed in cancer cells and actively participate in numerous oncogenic signaling events needed for tumor cell-specific functions. In this review, I plan to place a special emphasis on HA/CD44-induced signaling pathways and the presence of several novel miRNAs (e.g., miR-10b/miR-302/miR-21) and lncRNAs (e.g., UCA1) together with their target functions (e.g., tumor cell migration, invasion, and chemoresistance) during cancer development and progression. I believe that important information can be obtained from these studies on HA/CD44-activated miRNAs and lncRNA that may be very valuable for the future development of innovative therapeutic drugs for the treatment of matrix HA/CD44-mediated cancers.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
247
|
The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition. Eur J Pharmacol 2019; 857:172426. [PMID: 31150646 DOI: 10.1016/j.ejphar.2019.172426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022]
Abstract
EMT (Epithelial-Mesenchymal Transition) is a highly regulated process that results in cancer progression. MicroRNA plays a significant role in the regulation of EMT through tight control of the transcription factors. In this study, we focus on miR-200a/205 as a factor involved in the control of the EMT process in gastric cancer cells. In this sense, gastric adenocarcinoma cell lines were used to induce EMT process. For characterization of EMT process, the mRNA levels of E-cadherin, Vimentin, β-catenin, ZEB1 and Snail were measured by real time PCR. In addition, Western blot approach was adopted to determine the protein levels of these EMT markers. Transwell assay revealed migration and invasion property of gastric cancer cell after EMT induction. To analyze alteration amount of microRNAs, RT-PCR was applied. Our results confirmed the establishment of in vitro EMT model. In vitro study showed a significant negative correlation between the expression of miR-200a (P = 0.001) and expression level of EMT markers. Nevertheless, miR-205 did not show any significant results in correlation with EMT in AGS cell line. All in vitro results also were validated in gastric cancer tissue samples. Based on our findings from gastric cancer sample patients and in vitro results, miR-200a is down regulated. Therefore, in further investigation, miR-200a could be used as a candidate to prevent the invasive properties of gastric cancer through the EMT process.
Collapse
|
248
|
Zhu D, Zhou J, Liu Y, Du L, Zheng Z, Qian X. LncRNA TP73-AS1 is upregulated in non-small cell lung cancer and predicts poor survival. Gene 2019; 710:98-102. [PMID: 31129247 DOI: 10.1016/j.gene.2019.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
The present study was carried out to investigate the role of lncRNA TP73-AS1 in non-small cell lung cancer (NSCLC). We found that TP73-AS1 was upregulated in tumor tissues than in non-tumor tissues of NSCLC patients, and high expression levels of TP73-AS1 predicted poor survival. MiR-21 was also upregulated in tumor tissues and positively correlated with TP73-AS1. TP73-AS1 overexpression led to miR-21 upregulation, while miR-21 overexpression failed to affect TP73-AS1. TP73-AS1 and miR-21 overexpression caused the accelerated invasion and migration of NSCLC cells. However, TP73-AS1 overexpression failed to affect cell proliferation. Therefore, TP73-AS1 may upregulate miR-21 to promote NSCLC cell migration and invasion.
Collapse
Affiliation(s)
- Dapeng Zhu
- Endoscopic Center of Zhejiang Cancer Hospital, No. 1 Banshan Road, Gongshu District, Hangzhou City, Zhejiang Province 310022, PR China.
| | - Jiaming Zhou
- Endoscopic Center of Zhejiang Cancer Hospital, No. 1 Banshan Road, Gongshu District, Hangzhou City, Zhejiang Province 310022, PR China
| | - Yuanshun Liu
- Endoscopic Center of Zhejiang Cancer Hospital, No. 1 Banshan Road, Gongshu District, Hangzhou City, Zhejiang Province 310022, PR China
| | - Lingbin Du
- Zhejiang Cancer Center, Hangzhou City, Zhejiang Province 310022, PR China
| | - Zhiguo Zheng
- Institute of Cancer Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province 310022, PR China
| | - Xiang Qian
- Department of Oncology, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, PR China
| |
Collapse
|
249
|
Warthi G, Seligmann H. Transcripts with systematic nucleotide deletion of 1-12 nucleotide in human mitochondrion suggest potential non-canonical transcription. PLoS One 2019; 14:e0217356. [PMID: 31120958 PMCID: PMC6532905 DOI: 10.1371/journal.pone.0217356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
Raw transcriptomic data contain numerous RNA reads whose homology with template DNA doesn't match canonical transcription. Transcriptome analyses usually ignore such noncanonical RNA reads. Here, analyses search for noncanonical mitochondrial RNAs systematically deleting 1 to 12 nucleotides after each transcribed nucleotide triplet, producing deletion-RNAs (delRNAs). We detected delRNAs in the human whole cell and purified mitochondrial transcriptomes, and in Genbank's human EST database corresponding to systematic deletions of 1 to 12 nucleotides after each transcribed trinucleotide. DelRNAs detected in both transcriptomes mapped along with 55.63% of the EST delRNAs. A bias exists for delRNAs covering identical mitogenomic regions in both transcriptomic and EST datasets. Among 227 delRNAs detected in these 3 datasets, 81.1% and 8.4% of delRNAs were mapped on mitochondrial coding and hypervariable region 2 of dloop. Del-transcription analyses of GenBank's EST database confirm observations from whole cell and purified mitochondrial transcriptomes, eliminating the possibility that detected delRNAs are false positives matches, cytosolic DNA/RNA nuclear contamination or sequencing artefacts. These detected delRNAs are enriched in frameshift-inducing homopolymers and are poor in frameshift-preventing circular code codons (a set of 20 codons which regulate reading frame detection, over- and underrepresented in coding and other frames of genes, respectively) suggesting a motif-based regulation of non-canonical transcription. These findings show that rare non-canonical transcripts exist. Such non canonical del-transcription does increases mitochondrial coding potential and non-coding regulation of intracellular mechanisms, and could explain the dark DNA conundrum.
Collapse
Affiliation(s)
- Ganesh Warthi
- Aix-Marseille Université, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Hervé Seligmann
- Aix-Marseille Université, IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
250
|
Ramshani Z, Zhang C, Richards K, Chen L, Xu G, Stiles BL, Hill R, Senapati S, Go DB, Chang HC. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Commun Biol 2019; 2:189. [PMID: 31123713 PMCID: PMC6527557 DOI: 10.1038/s42003-019-0435-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV) containing microRNAs (miRNAs) have tremendous potential as biomarkers for the early detection of disease. Here, we present a simple and rapid PCR-free integrated microfluidics platform capable of absolute quantification (<10% uncertainty) of both free-floating miRNAs and EV-miRNAs in plasma with 1 pM detection sensitivity. The assay time is only 30 minutes as opposed to 13 h and requires only ~20 μL of sample as oppose to 1 mL for conventional RT-qPCR techniques. The platform integrates a surface acoustic wave (SAW) EV lysing microfluidic chip with a concentration and sensing microfluidic chip incorporating an electrokinetic membrane sensor that is based on non-equilibrium ionic currents. Unlike conventional RT-qPCR methods, this technology does not require EV extraction, RNA purification, reverse transcription, or amplification. This platform can be easily extended for other RNA and DNA targets of interest, thus providing a viable screening tool for early disease diagnosis, prognosis, and monitoring of therapeutic response.
Collapse
Affiliation(s)
- Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Katherine Richards
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Lulu Chen
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90211 USA
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632 Guangdong China
| | - Bangyan L. Stiles
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90211 USA
| | - Reginald Hill
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Beverly Hills, CA 90211 USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - David B. Go
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|