201
|
Boyle K, Zhang JG, Nicholson SE, Trounson E, Babon JJ, McManus EJ, Nicola NA, Robb L. Deletion of the SOCS box of suppressor of cytokine signaling 3 (SOCS3) in embryonic stem cells reveals SOCS box-dependent regulation of JAK but not STAT phosphorylation. Cell Signal 2009; 21:394-404. [PMID: 19056487 PMCID: PMC3437335 DOI: 10.1016/j.cellsig.2008.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/06/2008] [Indexed: 11/30/2022]
Abstract
The mechanism by which Suppressor of Cytokine Signaling-3 (SOCS3) negatively regulates cytokine signaling has been widely investigated using over-expression studies in cell lines and is thought to involve interactions with both the gp130 receptor and JAK1. Here, we compare the endogenous JAK/STAT signaling pathway downstream of Leukemia Inhibitory Factor (LIF) signaling in wild type (WT) Embryonic Stem (ES) cells and in ES cells lacking either the entire Socs3 gene or bearing a truncated form of SOCS3 (SOCS3DeltaSB) lacking the C-terminal SOCS box motif (SOCS3(DeltaSB/DeltaSB)). In SOCS3(DeltaSB/DeltaSB) cells phosphorylated JAK1 accumulated at much higher levels than in WT cells or even cells lacking SOCS3 (SOCS3(-/-)). In contrast enhanced activation of STAT3 and SHP2 was seen in SOCS3(-/-) cells. Size exclusion chromatography of cell extracts showed that in unstimulated cells, JAK1 was exclusively associated with receptors but following cytokine stimulation hyperphosphorylated JAK1 (pJAK1) appeared to dissociate from the receptor complex in a manner independent of SOCS3. In WT and SOCS3(DeltaSB/DeltaSB) cells SOCS3 was associated with pJAK1. The data suggest that dissociation of activated JAK1 from the receptor results in separate targeting of JAK1 for proteasomal degradation through a mechanism dependent on the SOCS3 SOCS box thus preventing further activation of STAT3.
Collapse
Affiliation(s)
- Kristy Boyle
- The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| | - Jian Guo Zhang
- The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| | | | - Evelyn Trounson
- The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| | - Jeffery J. Babon
- The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| | - Edward J. McManus
- The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| | - Nicos A. Nicola
- The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| | - Lorraine Robb
- The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| |
Collapse
|
202
|
Borland G, Smith BO, Yarwood SJ. EPAC proteins transduce diverse cellular actions of cAMP. Br J Pharmacol 2009; 158:70-86. [PMID: 19210747 DOI: 10.1111/j.1476-5381.2008.00087.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has now been over 10 years since efforts to completely understand the signalling actions of cAMP (3'-5'-cyclic adenosine monophosphate) led to the discovery of exchange protein directly activated by cAMP (EPAC) proteins. In the current review we will highlight important advances in the understanding of EPAC structure and function and demonstrate that EPAC proteins mediate multiple actions of cAMP in cells, revealing future targets for pharmaceutical intervention. It has been known for some time that drugs that elevate intracellular cAMP levels have proven therapeutic benefit for diseases ranging from depression to inflammation. The challenge now is to determine which of these positive actions of cAMP involve activation of EPAC-regulated signal transduction pathways. EPACs are specific guanine nucleotide exchange factors for the Ras GTPase homologues, Rap1 and Rap2, which they activate independently of the classical routes for cAMP signalling, cyclic nucleotide-gated ion channels and protein kinase A. Rather, EPAC activation is triggered by internal conformational changes induced by direct interaction with cAMP. Leading from this has been the development of EPAC-specific agonists, which has helped to delineate numerous cellular actions of cAMP that rely on subsequent activation of EPAC. These include regulation of exocytosis and the control of cell adhesion, growth, division and differentiation. Recent work also implicates EPAC in the regulation of anti-inflammatory signalling in the vascular endothelium, namely negative regulation of pro-inflammatory cytokine signalling and positive support of barrier function. Further elucidation of these important signalling mechanisms will no doubt support the development of the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gillian Borland
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
203
|
Abstract
Cytokines are powerful mediators of the immune response that, following initial release by components of the innate system, drive effector functions as well as stimulate the additional arms of the response. Their individual functions are diverse, with stimulatory and inhibitory actions, with the resultant systemic immune response a summation of these actions. The frequently opposing effects of cytokines determine that the blockade of one results in the functional augmentation of the other. Thus, the differential regulation of cytokines profoundly influences the character of the immune response. The suppressor of cytokine signaling proteins are a family of molecules pivotal to this critical regulation. In this review, we will discuss their structural components and functions and our understanding of their impact on the systemic immune response.
Collapse
|
204
|
|
205
|
Trenerry MK, Carey KA, Ward AC, Farnfield MM, Cameron-Smith D. Exercise-induced activation of STAT3 signaling is increased with age. Rejuvenation Res 2008; 11:717-24. [PMID: 18729804 DOI: 10.1089/rej.2007.0643] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the transcription factor signal transducers and activators of transcription (STAT) 3 is common to many inflammatory cytokines and growth factors, with recent evidence of involvement in skeletal muscle regeneration. The purpose of this study was to determine whether STAT3 signaling activation is regulated differentially, at rest and following intense resistance exercise, in aged human skeletal muscle. Skeletal muscle biopsies were harvested from healthy younger (n = 11, 20.4 +/- 0.8 years) and older men (n = 10, 67.4 +/- 1.3 years) under resting conditions and 2 h after the completion of resistance exercise. No differences were evident at rest, whereas the phosphorylation of STAT3 was significantly increased in old (23-fold) compared to young (5-fold) subjects after exercise. This correlated with significantly higher induction of the STAT3 target genes including; interleukin-6 (IL-6), JUNB, c-MYC, and suppressor of cytokine signaling (SOCS) 3 mRNA in older subjects following exercise. Despite increased SOCS3 mRNA, cellular protein abundance was suppressed. SOCS3 protein is an important negative regulator of STAT3 activation and cytokine signaling. Thus, in aged human muscle, elevated responsiveness of the STAT3 signaling pathway and suppressed SOCS3 protein are evident following resistance exercise. These data suggest that enhanced STAT3 signaling responsiveness to proinflammatory factors may impact on mechanisms of muscle repair and regeneration.
Collapse
Affiliation(s)
- Marissa K Trenerry
- School of Exercise and Nutrition Science, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | | | | | | | | |
Collapse
|
206
|
Abstract
The suppressors of cytokine signalling (SOCS) box is a structural domain found at the C-terminus of over 70 human proteins. It is usually coupled to a protein interaction module such as an SH2 domain in case of SOCS proteins, a family of modulators of cytokine signaling. The SOCS box participates in the formation of E3 ligase complexes, marking activated cytokine receptor complexes for proteasomal degradation. A similar mechanism was recently uncovered for controlling SOCS activity itself, since SOCS2 was found to enhance the turnover of other SOCS proteins. The SOCS box can also add unique features to individual SOCS proteins: it can function as an adaptor domain as was demonstrated for SOCS3, or as a modulator of substrate binding in case of CIS. In this review we discuss these multiple roles of the SOCS box, which emerges as a versatile module controlling cytokine signaling via multiple mechanisms.
Collapse
|
207
|
Babon JJ, Sabo JK, Soetopo A, Yao S, Bailey MF, Zhang JG, Nicola NA, Norton RS. The SOCS box domain of SOCS3: structure and interaction with the elonginBC-cullin5 ubiquitin ligase. J Mol Biol 2008; 381:928-40. [PMID: 18590740 PMCID: PMC3652878 DOI: 10.1016/j.jmb.2008.06.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/27/2022]
Abstract
Suppressor of cytokine signalling 3 (SOCS3) is responsible for regulating the cellular response to a variety of cytokines, including interleukin 6 and leukaemia inhibitory factor. Identification of the SOCS box domain led to the hypothesis that SOCS3 can associate with functional E3 ubiquitin ligases and thereby induce the degradation of bound signalling proteins. This model relies upon an interaction between the SOCS box, elonginBC and a cullin protein that forms the E3 ligase scaffold. We have investigated this interaction in vitro using purified components and show that SOCS3 binds to elonginBC and cullin5 with high affinity. The SOCS3-elonginBC interaction was further characterised by determining the solution structure of the SOCS box-elonginBC ternary complex and by deletion and alanine scanning mutagenesis of the SOCS box. These studies revealed that conformational flexibility is a key feature of the SOCS-elonginBC interaction. In particular, the SOCS box is disordered in isolation and only becomes structured upon elonginBC association. The interaction depends upon the first 12 residues of the SOCS box domain and particularly on a deeply buried, conserved leucine. The SOCS box, when bound to elonginBC, binds tightly to cullin5 with 100 nM affinity. Domains upstream of the SOCS box are not required for elonginBC or cullin5 association, indicating that the SOCS box acts as an independent binding domain capable of recruiting elonginBC and cullin5 to promote E3 ligase formation.
Collapse
Affiliation(s)
- Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Robertson SA, Leinninger GM, Myers MG. Molecular and neural mediators of leptin action. Physiol Behav 2008; 94:637-42. [PMID: 18501391 PMCID: PMC2516921 DOI: 10.1016/j.physbeh.2008.04.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/02/2008] [Indexed: 01/17/2023]
Abstract
The adipose tissue-derived hormone, leptin, acts via its receptor (LepRb) in the brain to regulate energy balance and neuroendocrine function. Parsing the biology of leptin requires understanding LepRb signaling and the roles for specific signaling pathways in neural and physiological leptin action. Since the leptin acts via a broadly distributed network of LepRb-expressing neurons, understanding the function of each of these LepRb neural populations will also be crucial. Here, we review the status of knowledge regarding the molecular mediators of leptin action and the neural substrate via which leptin acts to regulate physiologic processes.
Collapse
Affiliation(s)
- Scott A. Robertson
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gina M. Leinninger
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin G. Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
209
|
Zeng B, Li H, Liu Y, Zhang Z, Zhang Y, Yang R. Tumor-induced suppressor of cytokine signaling 3 inhibits toll-like receptor 3 signaling in dendritic cells via binding to tyrosine kinase 2. Cancer Res 2008; 68:5397-404. [PMID: 18593942 DOI: 10.1158/0008-5472.can-07-6792] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The suppressor of cytokine signaling (SOCS) family of negative regulatory proteins is up-regulated in response to several cytokines and pathogen-associated molecular patterns (PAMP) and suppresses cellular signaling responses by binding receptor phosphotyrosine residues. Exposure of bone marrow-derived dendritic cells (BMDC) to 1D8 cells, a murine model of ovarian carcinoma, suppresses their ability to express CD40 and stimulate antigen-specific responses in response to PAMPs and, in particular, to polyinosinic acid:poly-CMP (polyI:C) with the up-regulated SOCS3 transcript and protein levels. The ectopic expression of SOCS3 in both the macrophage cell line RAW264.7 and BMDCs decreased signaling in response to both polyI:C and IFNalpha. Further, knockdown of SOCS3 transcripts significantly enhanced the responses of RAW264.7 and BMDCs to both polyI:C and IFNalpha. Immunoprecipitation and pull-down studies show that SOCS3 binds to the IFNalpha receptor tyrosine kinase 2 (TYK2). Because polyI:C triggers autocrine IFNalpha signaling, binding of SOCS3 to TYK2 may thereby suppress the activation of BMDCs by polyI:C and IFNalpha. Thus, elevated levels of SOCS3 in tumor-associated DCs may potentially resist the signals induced by Toll-like receptor 3 ligands and type I IFN to decrease DC activation via binding with IFNalpha receptor TYK2.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
210
|
Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol 2008; 19:414-22. [PMID: 18708154 PMCID: PMC2597703 DOI: 10.1016/j.semcdb.2008.07.010] [Citation(s) in RCA: 472] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/18/2008] [Accepted: 07/24/2008] [Indexed: 12/21/2022]
Abstract
The suppressor of cytokine signalling (SOCS) proteins were, as their name suggests, first described as inhibitors of cytokine signalling. While their actions clearly now extend to other intracellular pathways, they remain key negative regulators of cytokine and growth factor signalling. In this review we focus on the mechanics of SOCS action and the complexities of the mouse models that have underpinned our current understanding of SOCS biology.
Collapse
Affiliation(s)
- Ben A. Croker
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3050,Victoria, Australia
| | - Hiu Kiu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3050,Victoria, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3050,Victoria, Australia
| |
Collapse
|
211
|
Zhang S, Guo D, Jiang L, Zhang Q, Qiu X, Wang E. SOCS3 inhibiting migration of A549 cells correlates with PYK2 signaling in vitro. BMC Cancer 2008; 8:150. [PMID: 18507841 PMCID: PMC2429913 DOI: 10.1186/1471-2407-8-150] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 05/28/2008] [Indexed: 12/20/2022] Open
Abstract
Background Suppressor of cytokine signaling 3 (SOCS3) is considered to inhibit cytokine responses and play a negative role in migration of various cells. Proline-rich tyrosine kinase 2 (PYK2) is a non-receptor kinase and has been found crucial to cell motility. However, little is known about whether SOCS3 could regulate PYK2 pro-migratory function in lung cancer. Methods The methylation status of SOCS3 was investigated in HBE and A549 cell lines by methylation-specific PCR. A549 cells were either treated with a demethylation agent 5-aza-2'-deoxycytidine or transfected with three SOCS3 mutants with various functional domains deleted. Besides, cells were pretreated with a proteasome inhibitor β-lactacystin where indicated. The effects of SOCS3 up-regulation on PYK2 expression, PYK2 and ERK1/2 phosphorylations were assessed by western blot using indicated antibodies. RT-PCR was used to estimate PYK2 mRNA levels. Transwell experiments were performed to evaluate cell migration. Results SOCS3 expression was found impaired in A549 cells and higher PYK2 activity was correlated with enhanced cell migration. We identified that SOCS3 was aberrantly methylated in the exon 2, and 5-aza-2'-deoxycytidine restored SOCS3 expression. Reactivation of SOCS3 attenuated PYK2 expression and phosphorylation, cell migration was inhibited as well. Transfection studies indicated that exogenous SOCS3 interacted with PYK2, and both the Src homology 2 (SH2) and the kinase inhibitory region (KIR) domains of SOCS3 contributed to PYK2 binding. Furthermore, SOCS3 was found to inhibit PYK2-associated ERK1/2 activity in A549 cells. SOCS3 possibly promoted degradation of PYK2 in a SOCS-box-dependent manner and interfered with PYK2-related signaling events, such as cell migration. Conclusion These data indicate that SOCS3 negatively regulates cell motility and decreased SOCS3 induced by methylation may confer a migration advantage to A549 cells. These results also suggest a negative role of SOCS3 in PYK2 signaling, and a previously unidentified regulatory mechanism for PYK2 function.
Collapse
Affiliation(s)
- Siyang Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, PR China.
| | | | | | | | | | | |
Collapse
|
212
|
Prostaglandin E1 inhibits IL-6-induced MCP-1 expression by interfering specifically in IL-6-dependent ERK1/2, but not STAT3, activation. Biochem J 2008; 412:65-72. [PMID: 18271757 DOI: 10.1042/bj20071572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IL (interleukin)-6 exerts pro- as well as anti-inflammatory activities. Beside many other activities, IL-6 is the major inducer of acute phase proteins in the liver, acts as a differentiation factor for blood cells, as migration factor for T-cells and is a potent inducer of the chemokine MCP-1 (monocyte chemoattractant protein-1). Recent studies have focused on the negative regulation of IL-6 signal transduction through the IL-6-induced feedback inhibitors SOCS (suppressor of cytokine signalling) 1 and SOCS3 or the protein tyrosine phosphatases SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) and TcPTP (T-cell protein tyrosine phosphatase). Studies on the cross-talk between pro-inflammatory mediators (IL-1, tumour necrosis factor, lipopolysaccharide) and IL-6 elucidated further regulatory mechanisms. Less is known about the regulation of IL-6 signal transduction by hormone/cytokine signalling through G-protein-coupled receptors. This is particularly surprising since many of these hormones (such as prostaglandins and chemokines) play an important role in inflammatory processes. In the present study, we have investigated the inhibitory activity of PGE(1) (prostaglandin E(1)) on IL-6-induced MCP-1 expression and have elucidated the underlying molecular mechanism. Surprisingly, PGE(1) does not affect IL-6-induced STAT (signal transducer and activator of transcription) 3 activation, but does affect ERK (extracellular-signal-regulated kinase) 1/2 activation which is crucial for IL-6-dependent expression of MCP-1. In summary, we have discovered a specific cross-talk between the adenylate cyclase cascade and the IL-6-induced MAPK (mitogen-activated protein kinase) cascade and have investigated its impact on IL-6-dependent gene expression.
Collapse
|
213
|
Abstract
The adipose tissue-derived hormone leptin acts via its receptor (LRb) in the brain to regulate energy balance and neuroendocrine function. LRb signaling via STAT3 and a number of other pathways is required for the totality of leptin action. The failure of elevated leptin levels to suppress feeding and mediate weight loss in common forms of obesity defines a state of so-called leptin resistance. A number of mechanisms, including the leptin-stimulated phosphorylation of Tyr(985) on LRb and the suppressor of cytokine signaling 3, attenuate leptin signaling and promote a cellular leptin resistance in obesity. Several unique features of the arcuate nucleus of the hypothalamus may contribute to the severity of cellular leptin resistance in this region. Other mechanisms that govern feeding behavior and food reward may also underlie the inception of obesity.
Collapse
Affiliation(s)
- Martin G Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
214
|
Boyle K, Robb L. The role of SOCS3 in modulating leukaemia inhibitory factor signalling during murine placental development. J Reprod Immunol 2008; 77:1-6. [PMID: 17408753 PMCID: PMC2289801 DOI: 10.1016/j.jri.2007.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/08/2007] [Accepted: 02/16/2007] [Indexed: 11/20/2022]
Abstract
Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels. Suppressor of cytokine signalling (SOCS) proteins act in a negative feedback loop to inhibit signal transduction. Mice with a deletion of SOCS3 die at midgestion due to placental insufficiency. SOCS3-null placentae have increased numbers of mature trophoblast giant cells, disruption of the labyrinthine layer and a decrease in the spongiotrophoblast layer. Genetic crosses have revealed that the phenotype is due to dysregulation of signalling downstream of the leukaemia inhibitory factor (LIF) receptor alpha (LIFRalpha) and that the ligand responsible for this, LIF, is produced by embryonic tissues and acts in a paracrine fashion. These observations highlight the role of LIF as an extrinsic factor regulating trophoblast differentiation in vivo. The creation of mice with conditional deletion of SOCS3 in different tissues has also uncovered critical roles for SOCS3 in the regulation of IL-6, G-CSF and leptin signalling.
Collapse
Affiliation(s)
- Kristy Boyle
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
| | | |
Collapse
|
215
|
Zimmerer JM, Lesinski GB, Kondadasula SV, Karpa VI, Lehman A, Raychaudhury A, Becknell B, Carson WE. IFN-alpha-induced signal transduction, gene expression, and antitumor activity of immune effector cells are negatively regulated by suppressor of cytokine signaling proteins. THE JOURNAL OF IMMUNOLOGY 2007; 178:4832-45. [PMID: 17404264 DOI: 10.4049/jimmunol.178.8.4832] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteins belonging to the suppressors of cytokine signaling (SOCS) family have been shown to regulate cytokine signal transduction in various cell types but their role in modulating the response of immune cells to IFN-alpha has not been fully explored. We hypothesized that SOCS proteins would inhibit the antitumor activity of IFN-alpha-stimulated immune cells. Transcripts for SOCS1, SOCS2, SOCS3, and cytokine-inducible Src homology 2-containing protein were identified in total human PBMC (PBMCs, NK cells, and T cells) within 1-2 h of stimulation with IFN-alpha (10(3)-10(5) U/ml). Immunoblot analysis confirmed the expression of these factors at the protein level. Transcripts for SOCS proteins were rapidly but variably induced in PBMCs from patients with metastatic melanoma following the i.v. administration of IFN-alpha-2b (20 million units/m(2)). Overexpression of SOCS1 and SOCS3, but not SOCS2, in the Jurkat T cell line inhibited IFN-alpha-induced phosphorylated STAT1 and the transcription of IFN-stimulated genes. Conversely, small inhibitory RNA-mediated down-regulation of SOCS1 and SOCS3 in Jurkat cells and normal T cells enhanced the transcriptional response to IFN-alpha. Loss of SOCS1 or SOCS3 in murine immune effectors was associated with enhanced IFN-induced phosphorylated STAT1, transcription of IFN-stimulated genes, and antitumor activity. Of note, IFN-alpha treatment eliminated melanoma tumors in 70% of SOCS1-deficient mice, whereas IFN-treated SOCS-competent mice all died. The antitumor effects of IFN-alpha in tumor-bearing SOCS1-deficient mice were markedly inhibited following depletion of CD8(+) T cells. These results indicate that the antitumor response of immune effector cells to exogenous IFN-alpha is regulated by SOCS proteins.
Collapse
Affiliation(s)
- Jason M Zimmerer
- Integrated Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
Suppressor of cytokine signalling (SOCS) proteins are inhibitors of cytokine signalling pathways. Studies have shown that SOCS proteins are key physiological regulators of both innate and adaptive immunity. These molecules positively and negatively regulate macrophage and dendritic-cell activation and are essential for T-cell development and differentiation. Evidence is also emerging of the involvement of SOCS proteins in diseases of the immune system. In this Review we bring together data from recent studies on SOCS proteins and their role in immunity, and propose a cohesive model of how cytokine signalling regulates immune-cell function.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
217
|
Boyle K, Egan P, Rakar S, Willson TA, Wicks IP, Metcalf D, Hilton DJ, Nicola NA, Alexander WS, Roberts AW, Robb L. The SOCS box of suppressor of cytokine signaling-3 contributes to the control of G-CSF responsiveness in vivo. Blood 2007; 110:1466-74. [PMID: 17510322 PMCID: PMC1975836 DOI: 10.1182/blood-2007-03-079178] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of granulocyte-colony stimulating factor (G-CSF) signaling in vivo. SOCS proteins regulate cytokine signaling by binding, via their SH2 domains, to activated cytokine receptors or their associated Janus kinases. In addition, they bind to the elongin B/C ubiquitin ligase complex via the SOCS box. To ascertain the contribution of the SOCS box of SOCS3 to in vivo regulation of G-CSF signaling, we generated mice expressing a truncated SOCS3 protein lacking the C-terminal SOCS box (SOCS3(Delta SB/Delta SB)). SOCS3(Delta SB/Delta SB) mice were viable, had normal steady-state hematopoiesis, and did not develop inflammatory disease. Despite the mild phenotype, STAT3 activation in response to G-CSF signaling was prolonged in SOCS3(Delta SB/Delta SB) bone marrow. SOCS3(Delta SB/Delta SB) bone marrow contained increased numbers of colony-forming cells responsive to G-CSF and IL-6. Treatment of the mice with pharmacologic doses of G-CSF, which mimics emergency granulopoiesis and therapeutic use of G-CSF, revealed that SOCS3(Delta SB/Delta SB) mice were hyperresponsive to G-CSF. Compared with wild-type mice, SOCS3(Delta SB/Delta SB) mice developed a more florid arthritis when tested using an acute disease model. Overall, the results establish a role for the SOCS box of SOCS3 in the in vivo regulation of G-CSF signaling and the response to inflammatory stimuli.
Collapse
Affiliation(s)
- Kristy Boyle
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Ehlting C, Lai WS, Schaper F, Brenndörfer ED, Matthes RJ, Heinrich PC, Ludwig S, Blackshear PJ, Gaestel M, Häussinger D, Bode JG. Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-alpha involves activation of the MKK6/p38MAPK/MK2 cascade. THE JOURNAL OF IMMUNOLOGY 2007; 178:2813-26. [PMID: 17312125 DOI: 10.4049/jimmunol.178.5.2813] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential of some proinflammatory mediators to inhibit gp130-dependent STAT3 activation by enhancing suppressor of cytokine signaling (SOCS) 3 expression represents an important molecular mechanism admitting the modulation of the cellular response toward gp130-mediated signals. Thus, it is necessary to understand the mechanisms involved in the regulation of SOCS3 expression by proinflammatory mediators. In this study, we investigate SOCS3 expression initiated by the proinflammatory cytokine TNF-alpha. In contrast to IL-6, TNF-alpha increases SOCS3 expression by stabilizing SOCS3 mRNA. Activation of the MAPK kinase 6 (MKK6)/p38(MAPK)-cascade is required for TNF-alpha-mediated stabilization of SOCS3 mRNA and results in enhanced SOCS3 protein expression. In fibroblasts or macrophages deficient for MAPK-activated protein kinase 2 (MK2), a downstream target of the MKK6/p38(MAPK) cascade, basal SOCS3-expression is strongly reduced and TNF-alpha-induced SOCS3-mRNA stabilization is impaired, indicating that MK2 is crucial for the control of SOCS3 expression by p38(MAPK)-dependent signals. As a target for SOCS3 mRNA stability-regulating signals, a region containing three copies of a pentameric AUUUA motif in close proximity to a U-rich region located between positions 2422 and 2541 of the 3' untranslated region of SOCS3 is identified. One factor that could target this region is the zinc finger protein tristetraprolin (TTP), which is shown to be capable of destabilizing SOCS3 mRNA via this region. However, data from TTP-deficient cells suggest that TTP does not play an irreplaceable role in the regulation of SOCS3 mRNA stability by TNF-alpha. In summary, these data indicate that TNF-alpha regulates SOCS3 expression on the level of mRNA stability via activation of the MKK6/p38(MAPK) cascade and that the activation of MK2, a downstream target of p38(MAPK), is important for the regulation of SOCS3 expression.
Collapse
Affiliation(s)
- Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Moorenstrasse 5, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Numata K, Kubo M, Watanabe H, Takagi K, Mizuta H, Okada S, Kunkel SL, Ito T, Matsukawa A. Overexpression of suppressor of cytokine signaling-3 in T cells exacerbates acetaminophen-induced hepatotoxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3777-3785. [PMID: 17339476 DOI: 10.4049/jimmunol.178.6.3777] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines have been implicated in the progression of acetaminophen (APAP)-induced acute liver injury. Suppressors of cytokine signaling (SOCS) proteins are negative regulators of cytokine signaling by inhibiting the JAK-STAT pathway, but their role in APAP hepatotoxicity is unknown. In this present study, we attempted to explore the role of SOCS3 in T cells in APAP-induced liver injury. Mice with a cell-specific overexpression of SOCS3 in T cells (SOCS3Tg, in which Tg is transgenic) exhibited exaggerated hepatic injury after APAP challenge, as evidenced by increased serum alanine aminotransferase levels, augmented hepatic necrosis, and decreased survival relative to the wild-type mice. Adaptive transfer of SOCS3Tg-CD4(+) T cells into T and B cell-deficient RAG-2(-/-) mice resulted in an exacerbated liver injury relative to the control. In SOCS3Tg mice, hepatocyte apoptosis was enhanced with decreased expression of antiapoptotic protein bcl-2, whereas hepatocyte proliferation was reduced with altered cell cycle-regulatory proteins. Levels of IFN-gamma and TNF-alpha in the circulation were augmented in SOCS3Tg mice relative to the control. Studies using neutralizing Abs indicated that elevated IFN-gamma and TNF-alpha were responsible for the exacerbated hepatotoxicity in SOCS3Tg mice. Activation of STAT1 that is harmful in liver injury was augmented in SOCS3Tg hepatocytes. Alternatively, hepatoprotective STAT3 activation was decreased in SOCS3Tg hepatocytes, an event that was associated with augmented SOCS3 expression in the hepatocytes. Altogether, these results suggest that forced expression of SOCS3 in T cells is deleterious in APAP hepatotoxicity by increasing STAT1 activation while decreasing STAT3 activation in hepatocytes, possibly through elevated IFN-gamma and TNF-alpha.
Collapse
Affiliation(s)
- Kosuke Numata
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Orth JHC, Aktories K, Kubatzky KF. Modulation of host cell gene expression through activation of STAT transcription factors by Pasteurella multocida toxin. J Biol Chem 2006; 282:3050-7. [PMID: 17150962 DOI: 10.1074/jbc.m609018200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Pasteurella multocida toxin (PMT) is highly mitogenic and has potential carcinogenic properties. PMT causes porcine atrophic rhinitis that is characterized by bone resorption and loss of nasal turbinates, but experimental nasal infection also leads to excess proliferation of bladder epithelial cells. PMT acts intracellularly and activates phospholipase C-linked signals and MAPK pathways via the heterotrimeric Galpha(q) and Galpha(12/13) proteins. We found that PMT induces activation of STAT proteins, and we identified STAT1, STAT3, and STAT5 as new targets of PMT-induced Galpha(q) signaling. Inhibition of Janus kinases completely abolished STAT activation. PMT-dependent STAT phosphorylation remained constitutive for at least 18 h. PMT caused down-regulation of the expression of the suppressor of cytokine signaling-3, indicating a novel mechanism to maintain activation of STATs. Moreover, stimulation of Swiss 3T3 cells with PMT increased transcription of the cancer-associated STAT-dependent gene cyclooxygenase-2. Because constitutive activation of STATs has been found in a number of cancers, our findings offer a new mechanism for a carcinogenic role of PMT.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle and Klinische Pharmakologie and Toxikologie, Albert-Ludwigs-Universität, Albertstrasse 25, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
221
|
Lu Y, Fukuyama S, Yoshida R, Kobayashi T, Saeki K, Shiraishi H, Yoshimura A, Takaesu G. Loss of SOCS3 Gene Expression Converts STAT3 Function from Anti-apoptotic to Pro-apoptotic. J Biol Chem 2006; 281:36683-90. [PMID: 17028185 DOI: 10.1074/jbc.m607374200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor STAT3 is activated by interleukin-6-related cytokines and has been implicated as an oncogene; it promotes cell proliferation and is anti-apoptotic. However, in some cases, STAT3 has been shown to be pro-apoptotic, especially in mammary epithelial cells. In this report, we generated SOCS3-deficient murine embryonic fibroblasts (MEFs), in which STAT3 activation is extremely enhanced and prolonged. We found that LIF induces caspase-3 activation and apoptosis of SOCS3(-/-) MEFs. Exogenous expression of the dominant negative form of STAT3 but not STAT1 suppressed LIF-induced apoptosis of SOCS3(-/-) MEFs, indicating that STAT3 plays a critical role in apoptosis induction. As shown in mammary gland epithelial cells, expression of the phosphatidylinositol 3-kinase regulatory subunits p50alpha and p55alpha was induced in response to LIF in SOCS3(-/-) MEFs but not in wild-type MEFs, and Akt/protein kinase B activity was substantially reduced in SOCS3(-/-) MEFs. Furthermore, we found that some of the STAT3 target genes related to apoptosis and proliferation, such as Bcl-2 and cyclin D1, were repressed upon LIF treatment in SOCS3(-/-) cells. Not only the up-regulation of p50alpha and p55alpha but also the repression of cyclin D1 and Bcl-2 in SOCS3(-/-) MEFs was inhibited by dominant negative STAT3. These data suggest that prolonged activation of STAT3 could induce apoptosis/growth arrest rather than anti-apoptosis and proliferation in certain cases, and SOCS3 is a critical regulator of this balance.
Collapse
Affiliation(s)
- Yang Lu
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Growth hormone (GH) is a major regulatory factor for overall body growth as evidenced by the height extremes in people with abnormal circulating GH levels or GH receptor (GHR) disruptions. GH also affects metabolism, cardiac and immune function, mental agility and aging. Currently, GH is being used therapeutically for a variety of clinical conditions including promotion of growth in short statured children, treatment of adults with GH deficiency and HIV-associated wasting. To help reveal previous unrecognized functions of GH, better understand the known functions of GH, and avoid adverse consequences that are often associated with exogenous GH administration, careful delineation of the molecular mechanisms whereby GH induces its diverse effects is needed. GH is a peptide hormone that is secreted into the circulation by the anterior pituitary and acts upon various target tissues expressing GHR. GH binding of GHR activates the tyrosine kinase Janus kinase 2 (JAK2), thus initiating a multitude of signaling cascades that result in a variety of biological responses including cellular proliferation, differentiation and migration, prevention of apoptosis, cytoskeletal reorganization and regulation of metabolic pathways. A number of signaling proteins and pathways activated by GH have been identified, including JAKs, signal transducers and activators of transcription (Stats), the mitogen activated protein kinase (MAPK) pathway, and the phosphatidylinositol 3'-kinase (PI3K) pathway. Although these signal transduction pathways have been well characterized, the manner by which GH activates these pathways, the downstream signals induced by these pathways, and the cross-talk with other pathways are not completely understood. Recent findings have added vital information to our understanding of these downstream signals induced by GH and mechanisms that terminate GH signaling, and identified new GH signaling proteins and pathways. This review will highlight some of these findings, many of which are unexpected and some of which challenge previously held beliefs about the mechanisms of GH signaling.
Collapse
Affiliation(s)
- Nathan J Lanning
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109-0622, USA.
| | | |
Collapse
|
223
|
Uotani S, Abe T, Yamaguchi Y. Leptin activates AMP-activated protein kinase in hepatic cells via a JAK2-dependent pathway. Biochem Biophys Res Commun 2006; 351:171-5. [PMID: 17054914 DOI: 10.1016/j.bbrc.2006.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 10/05/2006] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (AMPK) plays a key role in the regulation of energy homeostasis within the individual cell. Recent reports have suggested that leptin, an adipocyte-secreted hormone, phosphorylates AMPK in skeletal muscle directly. However, little is known about the interaction between leptin signaling and AMPK activation. Here, we report that the leptin-induced phosphorylation of AMPK was detected in Huh7 cells expressing long form leptin receptor (OBRb) as well as short form leptin receptor (OBRa). In addition, we demonstrate that AMPK activation does not require the phosphorylation of either Tyr-985 or Tyr-1138 within the OBRb and may occur via a STAT3-independent signaling pathway. We also show that Huh7 cells expressing OBRb and SOCS3 (inhibitor of JAK2) resulted in a marked reduction of AMPK activation in response to leptin. These findings suggest that the activation of JAK2, but not STAT3, may play a critical role in leptin-induced AMPK activation in Huh7 cells.
Collapse
Affiliation(s)
- Shigeo Uotani
- Graduate School of Human Health Science, Siebold University of Nagasaki, 1-1-1 Manabino, Nagayo, Nagasaki 852-2195, Japan.
| | | | | |
Collapse
|
224
|
Sands WA, Woolson HD, Milne GR, Rutherford C, Palmer TM. Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells. Mol Cell Biol 2006; 26:6333-46. [PMID: 16914720 PMCID: PMC1592846 DOI: 10.1128/mcb.00207-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here, we demonstrate that elevation of intracellular cyclic AMP (cAMP) in vascular endothelial cells (ECs) by either a direct activator of adenylyl cyclase or endogenous cAMP-mobilizing G protein-coupled receptors inhibited the tyrosine phosphorylation of STAT proteins by an interleukin 6 (IL-6) receptor trans-signaling complex (soluble IL-6Ralpha/IL-6). This was associated with the induction of suppressor of cytokine signaling 3 (SOCS-3), a bona fide inhibitor in vivo of gp130, the signal-transducing component of the IL-6 receptor complex. Attenuation of SOCS-3 induction in either ECs or SOCS-3-null murine embryonic fibroblasts abolished the inhibitory effect of cAMP, whereas inhibition of SHP-2, another negative regulator of gp130, was without effect. Interestingly, the inhibition of STAT phosphorylation and SOCS-3 induction did not require cAMP-dependent protein kinase activity but could be recapitulated upon selective activation of the alternative cAMP sensor Epac, a guanine nucleotide exchange factor for Rap1. Consistent with this hypothesis, small interfering RNA-mediated knockdown of Epac1 was sufficient to attenuate both cAMP-mediated SOCS-3 induction and inhibition of STAT phosphorylation, suggesting that Epac activation is both necessary and sufficient to observe these effects. Together, these data argue for the existence of a novel cAMP/Epac/Rap1/SOCS-3 pathway for limiting IL-6 receptor signaling in ECs and illuminate a new mechanism by which cAMP may mediate its potent anti-inflammatory effects.
Collapse
Affiliation(s)
- William A Sands
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
225
|
Lin RJ, Chang BL, Yu HP, Liao CL, Lin YL. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 2006; 80:5908-18. [PMID: 16731929 PMCID: PMC1472572 DOI: 10.1128/jvi.02714-05] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes severe human disease, has been shown to block the interferon (IFN)-induced Janus kinase signal transducer and activation of transcription (Jak-Stat) signaling cascade by preventing Tyk2 tyrosine phosphorylation and Stat activation. In this study, we demonstrate that expression of the JEV nonstructural protein NS5 readily blocked IFN-stimulated Jak-Stat signaling events such as Stat1 nuclear translocation and tyrosine phosphorylation of Tyk2 and Stat1. The region of JEV NS5 responsible for Stat1 suppression was identified using various deletion clones. Deletion of 83 N-terminal residues of JEV NS5, but not the 143 C-terminal residues, abolished its ability to block IFN-stimulated Stat1 activation. The role of JEV NS5 as an IFN antagonist was further demonstrated by its ability to block the induction of interferon-stimulated genes and the antiviral effect of IFN-alpha against the IFN-sensitive encephalomyocarditis virus, which appears to replicate and kill cells that express NS5 even with alpha IFN treatment. Furthermore, the molecular mechanism responsible for IFN antagonism by NS5 probably involves protein tyrosine phosphatases (PTPs), as the IFN-blocking events in both JEV-infected and NS5-expressing cells were reversed by sodium orthovanadate, a broad-spectrum inhibitor of PTPs. We suggest that JEV NS5 is an IFN antagonist and that it may play a role in blocking IFN-stimulated Jak-Stat signaling via activation of PTPs during JEV infection.
Collapse
Affiliation(s)
- Ren-Jye Lin
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
226
|
Bergamin E, Wu J, Hubbard SR. Structural Basis for Phosphotyrosine Recognition by Suppressor of Cytokine Signaling-3. Structure 2006; 14:1285-92. [PMID: 16905102 DOI: 10.1016/j.str.2006.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 06/12/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are indispensable negative regulators of cytokine-stimulated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathways. SOCS proteins (SOCS1-7 and CIS) consist of a variable N-terminal region, a central Src homology-2 (SH2) domain, and a C-terminal SOCS box. The N-terminal region in SOCS1 and SOCS3 includes the so-called kinase inhibitory region that has been shown to inhibit the catalytic activity of JAK2. Here, we present a crystal structure at 2.0 A resolution of the N-terminally extended SH2 domain of SOCS3 in complex with its phosphopeptide target on the cytokine receptor gp130. The structure reveals that major insertions in the EF and BG loops of the SOCS3 SH2 domain are responsible for binding to gp130 with high affinity and specificity. In addition, the structure provides insights into the possible mechanisms by which SOCS3 and SOCS1 inhibit JAK2 kinase activity.
Collapse
Affiliation(s)
- Elisa Bergamin
- Structural Biology Program, Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
227
|
Ogata H, Kobayashi T, Chinen T, Takaki H, Sanada T, Minoda Y, Koga K, Takaesu G, Maehara Y, Iida M, Yoshimura A. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 2006; 131:179-93. [PMID: 16831601 DOI: 10.1053/j.gastro.2006.04.025] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 03/30/2006] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS A recent study has suggested that the methylation silencing of the suppressor of cytokine signaling-3 (SOCS3), a negative regulator of interleukin-6-related cytokines, could be involved in hepatocellular carcinoma (HCC). However, the roles of SOCS3 in hepatocellular carcinogenesis and hepatitis have not been established. We investigated the effect of deleting the SOCS3 gene on the development of hepatitis and HCC in hepatitis C virus-infected patients and mouse models. METHODS The expression of SOCS genes in HCC and non-HCC regions of patient samples was determined by real-time reverse-transcription polymerase chain reaction and immunoblotting. The conditional knockout approach in mice was used to determine the hepatocyte-specific roles of SOCS3. To generate a liver-specific deletion, floxed SOCS3 (SOCS3(fl/fl)) mice were crossed with albumin-Cre transgenic mice. Hepatitis and HCC were induced by administering concanavalin A and diethylnitrosamine, respectively. RESULTS SOCS3 expression was reduced in the HCC regions compared with the non-HCC regions. Carcinogen-induced hepatic tumor development was enhanced by deletion of the SOCS3 gene, which was associated with higher levels of the targets of signal transducers and activators of transcription (ie, B-cell lymphoma-XL, B-cell lymphoma-2, C-myelocytomatosis, cyclin D1, and vascular endothelial growth factor). In the concanavalin A-mediated hepatitis model, deletion of the SOCS3 gene in the hepatocytes protected against liver injury through suppression of interferon-gamma signaling and induction of the antiapoptotic protein Bcl-XL. CONCLUSIONS Deletion of the SOCS3 gene in hepatocytes promotes the activation of STAT3, resistance to apoptosis, and an acceleration of proliferation, resulting in enhanced hepatitis-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hisanobu Ogata
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Graduate School of Medical Science, Kyushu University, Higashiku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Frobøse H, Rønn SG, Heding PE, Mendoza H, Cohen P, Mandrup-Poulsen T, Billestrup N. Suppressor of cytokine Signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex. Mol Endocrinol 2006; 20:1587-96. [PMID: 16543409 DOI: 10.1210/me.2005-0301] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
IL-1 plays a major role in inflammation and autoimmunity through activation of nuclear factor kappa B (NFkappaB) and MAPKs. Although a great deal is known about the mechanism of activation of NFkappaB and MAPKs by IL-1, much less is known about the down-regulation of this pathway. Suppressor of cytokine signaling (SOCS)-3 was shown to inhibit IL-1-induced transcription and activation of NFkappaB and the MAPKs JNK and p38, but the mechanism is unknown. We show here that SOCS-3 inhibits NFkappaB-dependent transcription induced by overexpression of the upstream IL-1 signaling molecules MyD88, IL-1R-activated kinase 1, TNF receptor-associated factor (TRAF)6, and TGFbeta-activated kinase (TAK)1, but not when the MAP3K MAPK/ERK kinase kinase-1 is used instead of TAK1, indicating that the target for SOCS-3 is the TRAF6/TAK1 signaling complex. By coimmunoprecipitation, it was shown that SOCS-3 inhibited the association between TRAF6 and TAK1 and that SOCS-3 coimmunoprecipitated with TAK1 and TRAF6. Furthermore, SOCS-3 inhibited the IL-1-induced catalytic activity of TAK1. Because ubiquitination of TRAF6 is required for activation of TAK1, we analyzed the role of SOCS-3 on TRAF6 ubiquitination and found that SOCS-3 inhibited ubiquitin modification of TRAF6. These results indicate that SOCS-3 inhibits IL-1 signal transduction by inhibiting ubiquitination of TRAF6, thus preventing association and activation of TAK1.
Collapse
Affiliation(s)
- Helle Frobøse
- Steno Diabetes Center, Niels Steensens Vej 2, 2820 Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
229
|
Mazurkiewicz-Munoz AM, Argetsinger LS, Kouadio JLK, Stensballe A, Jensen ON, Cline JM, Carter-Su C. Phosphorylation of JAK2 at serine 523: a negative regulator of JAK2 that is stimulated by growth hormone and epidermal growth factor. Mol Cell Biol 2006; 26:4052-62. [PMID: 16705159 PMCID: PMC1489095 DOI: 10.1128/mcb.01591-05] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling for multiple receptor tyrosine kinases and several G-protein-coupled receptors. In this study, phosphopeptide affinity enrichment and mass spectrometry identified serine 523 (Ser523) in JAK2 as a site of phosphorylation. A phosphoserine 523 antibody revealed that Ser523 is rapidly but transiently phosphorylated in response to growth hormone (GH). MEK1 inhibitor UO126 suppresses GH-dependent phosphorylation of Ser523, suggesting that extracellular signal-regulated kinases (ERKs) 1 and/or 2 or another kinase downstream of MEK1 phosphorylate Ser523 in response to GH. Other ERK activators, phorbol 12-myristate 13-acetate and epidermal growth factor, also stimulate phosphorylation of Ser523. When Ser523 in JAK2 was mutated, JAK2 kinase activity as well as GH-dependent tyrosyl phosphorylation of JAK2 and Stat5 was enhanced, suggesting that phosphorylation of Ser523 inhibits JAK2 kinase activity. We hypothesize that phosphorylation of Ser523 in JAK2 by ERKs 1 and/or 2 or other as-yet-unidentified kinases acts in a negative feedback manner to dampen activation of JAK2 in response to GH and provides a mechanism by which prior exposure to environmental factors that regulate Ser523 phosphorylation might modulate the cell's response to GH.
Collapse
Affiliation(s)
- Anna M Mazurkiewicz-Munoz
- Graduate Program in Cellular and Molecular Biology, The University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | | | |
Collapse
|
230
|
Babon JJ, McManus EJ, Yao S, DeSouza DP, Mielke LA, Sprigg NS, Willson TA, Hilton DJ, Nicola NA, Baca M, Nicholson SE, Norton RS. The Structure of SOCS3 Reveals the Basis of the Extended SH2 Domain Function and Identifies an Unstructured Insertion That Regulates Stability. Mol Cell 2006; 22:205-16. [PMID: 16630890 DOI: 10.1016/j.molcel.2006.03.024] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 01/23/2006] [Accepted: 03/21/2006] [Indexed: 11/28/2022]
Abstract
SOCS3 is essential for regulating the extent, duration, and specificity of cellular responses to cytokines such as G-CSF and IL-6. Here we describe the solution structure of SOCS3, the first structure determined for any SOCS protein, in complex with a phosphotyrosine-containing peptide from the IL-6 receptor signaling subunit gp130. The structure of the complex shows that seven peptide residues form a predominantly hydrophobic binding motif. Regions outside the SOCS3 SH2 domain are important for ligand binding, in particular, a single 15 residue alpha helix immediately N-terminal to the SH2 domain makes direct contacts with the phosphotyrosine binding loop and, in part, determines its geometry. The SH2 domain itself is remarkable in that it contains a 35 residue unstructured PEST motif insertion that is not required for STAT inhibition. The PEST motif increases SOCS3 turnover and affects its degradation pathway, implying that it has an important regulatory role inside the cell.
Collapse
Affiliation(s)
- Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3050, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Qasimi P, Ming-Lum A, Ghanipour A, Ong CJ, Cox ME, Ihle J, Cacalano N, Yoshimura A, Mui ALF. Divergent Mechanisms Utilized by SOCS3 to Mediate Interleukin-10 Inhibition of Tumor Necrosis Factor α and Nitric Oxide Production by Macrophages. J Biol Chem 2006; 281:6316-24. [PMID: 16352613 DOI: 10.1074/jbc.m508608200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytokine interleukin-10 (IL-10) potently inhibits macrophage function through activation of the transcription factor STAT3. The expression of SOCS3 (suppressor of cytokine signaling-3) has been shown to be induced by IL-10 in a STAT3-dependent manner. However, the relevance of SOCS3 expression to the anti-inflammatory effect of IL-10 on macrophages has been controversial. Through kinetic analysis of the requirement for SOCS3 in IL-10 inhibition of lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNFalpha) transcription and translation, SOCS3 was found to be necessary for TNFalpha expression during the early phase, but not the late phase of IL-10 action. SOCS3 was essential for IL-10 inhibition of LPS-stimulated production of iNOS (inducible nitric-oxide synthase) protein and nitric oxide (NO). To determine the domains of SOCS3 protein important in mediating these effects, SOCS3-/- macrophages were reconstituted with SOCS3 mutated for the SH2, KIR, SOCS box domains, and tyrosines 204 (Tyr204) and 221 (Tyr221). The SH2 domain, SOCS box, and both Tyr204 and Tyr221 were required for IL-10 inhibition of TNFalpha mRNA and protein expression, but interestingly the KIR domain was necessary only for IL-10 inhibition of TNFalpha protein expression. In contrast, Tyr204 and Tyr221 were the only structural features of SOCS3 that were necessary in mediating IL-10 inhibition of iNOS protein expression and NO production. These data define SOCS3 as an important mediator of IL-10 inhibition of macrophage activation and that SOCS3 interferes with distinct LPS-stimulated signal transduction events through differing mechanisms.
Collapse
Affiliation(s)
- Pooran Qasimi
- Department of Surgery, University of British Columbia, Immunity and Infection Research Centre and Prostate Cancer Reseach Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia V6H 3Z6 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Stross C, Radtke S, Clahsen T, Gerlach C, Volkmer-Engert R, Schaper F, Heinrich PC, Hermanns HM. Oncostatin M receptor-mediated signal transduction is negatively regulated by SOCS3 through a receptor tyrosine-independent mechanism. J Biol Chem 2006; 281:8458-68. [PMID: 16459330 DOI: 10.1074/jbc.m511212200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Down-regulation of interleukin (IL)-6-type cytokine signaling has been shown to occur, among other mechanisms, via induction of the feedback inhibitor SOCS3 (suppressor of cytokine signaling 3). Binding of SOCS3 to the phosphorylated Tyr(759) in the cytoplasmic region of gp130, the common signal transducing receptor chain of all IL-6-type cytokines, is necessary for inhibition of Janus kinase-mediated signaling. In the present study, we analyzed the effect of SOCS3 on signal transduction by the proinflammatory cytokine oncostatin M (OSM), which signals through a receptor complex of gp130 and the OSM receptor (OSMR). OSM leads to a much stronger and prolonged induction of SOCS3 in HepG2 hepatoma cells and murine embryonal fibroblasts (MEF) compared with IL-6. A negative effect of SOCS3 on OSM signaling was confirmed using MEF cells lacking SOCS3. We can show that the OSMR-mediated signaling is inhibited by SOCS3 to a similar extent as previously described for gp130. However, the inhibition occurs independent of tyrosine motifs within the OSMR. Instead, SOCS3 interacts directly with JAK1 in a stimulation-dependent manner, a mechanism so far only known for SOCS1.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Carcinoma, Hepatocellular/pathology
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Transformation, Viral
- Cytokine Receptor gp130/genetics
- Cytokine Receptor gp130/metabolism
- Cytokines/pharmacology
- Fibroblasts/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Interleukin-6/metabolism
- Janus Kinase 1
- Leupeptins/pharmacology
- Liver Neoplasms/pathology
- Luciferases/metabolism
- Mice
- Oncostatin M
- Precipitin Tests
- Protein Binding
- Protein-Tyrosine Kinases/metabolism
- Receptors, Amino Acid/metabolism
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Oncostatin M
- Signal Transduction
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Claudia Stross
- Institut für Biochemie, Universitätsklinikum der RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Ben-Zvi T, Yayon A, Gertler A, Monsonego-Ornan E. Suppressors of cytokine signaling (SOCS) 1 and SOCS3 interact with and modulate fibroblast growth factor receptor signaling. J Cell Sci 2006; 119:380-7. [PMID: 16410555 DOI: 10.1242/jcs.02740] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) signaling is transduced by the mitogen-activated protein kinase (MAPK) cascade and the signal transducers and activators of transcription (STATs). Suppressors of cytokine signaling (SOCS) proteins are expressed in response to cytokine-inducible stimulation of STAT phosphorylation, acting in a negative-feedback mechanism to hinder the activities of these receptors. However, there are no data concerning the role of SOCS proteins in the regulation of fibroblast growth factor receptor (FGFR) signaling. In the present study, we show that activation of FGFR in chondrocytes induces the expression of SOCS1 and SOCS3 mRNA, and that these proteins are constitutively associated with FGFR3, as demonstrated by co-immunoprecipitation studies. Transfection of cells with FGFR3-GFP and SOCS1-CFP revealed their colocalization, clustered prominently in the perinuclear cytosolic part of the cell. The effect of the interaction between FGFR3 and SOCS1 on receptor activity was investigated in a chondrocytic cell line overexpressing SOCS1. In these cells, STAT1 phosphorylation is repressed, MAPK phosphorylation is elevated and prolonged, and FGFR3 downregulation is attenuated. Expression of osteopontin (OPN), which is directly upregulated by FGF in chondrocytes, was stimulated by lower levels of FGF in cells expressing SOCS1 compared with parental cells. Blocking of MAPK phosphorylation by PD98059 decreased OPN expression in both cell types, but this decrease was more marked in cells expressing SOCS1. The presented results suggest a novel interaction between the SOCS1 and SOCS3 proteins and the FGFR3 signaling pathway.
Collapse
Affiliation(s)
- Tal Ben-Zvi
- Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | |
Collapse
|
234
|
Shouda T, Hiraoka K, Komiya S, Hamada T, Zenmyo M, Iwasaki H, Isayama T, Fukushima N, Nagata K, Yoshimura A. Suppression of IL-6 production and proliferation by blocking STAT3 activation in malignant soft tissue tumor cells. Cancer Lett 2006; 231:176-84. [PMID: 16399222 DOI: 10.1016/j.canlet.2005.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/27/2005] [Accepted: 01/27/2005] [Indexed: 11/26/2022]
Abstract
There is no established optimum treatment for malignant fibrous histiocytoma (MFH) at present, and few MFH cell lines are established. In the present study, we established new MFH cell lines, KHZ-MFH and SFT85-03, and investigated the JAK/STAT (Janus kinase/signal transducer and activator of transcription) signaling pathway. We found that MFH cells secreted high levels of IL-6 and that STAT3 was constitutively activated in these cells. The JAK2 kinase inhibitor, tyrphostin AG490, suppressed the growth of MFH cells and inhibited the secretion of IL-6. Furthermore, blockade of activated STAT3 by forced expression of a cytokine signaling repressor, SOCS3 gene as well as a dominant-negative STAT3 in these cells significantly suppressed their growth. These results indicated that an autocrine mechanism of the JAK/STAT3 signaling pathway could promote the growth of MFH cells and that this pathway could be a therapeutic target of MFH.
Collapse
Affiliation(s)
- Takanori Shouda
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Frühbeck G. Intracellular signalling pathways activated by leptin. Biochem J 2006; 393:7-20. [PMID: 16336196 PMCID: PMC1383660 DOI: 10.1042/bj20051578] [Citation(s) in RCA: 600] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 12/15/2022]
Abstract
Leptin is a versatile 16 kDa peptide hormone, with a tertiary structure resembling that of members of the long-chain helical cytokine family. It is mainly produced by adipocytes in proportion to fat size stores, and was originally thought to act only as a satiety factor. However, the ubiquitous distribution of OB-R leptin receptors in almost all tissues underlies the pleiotropism of leptin. OB-Rs belong to the class I cytokine receptor family, which is known to act through JAKs (Janus kinases) and STATs (signal transducers and activators of transcription). The OB-R gene is alternatively spliced to produce at least five isoforms. The full-length isoform, OB-Rb, contains intracellular motifs required for activation of the JAK/STAT signal transduction pathway, and is considered to be the functional receptor. Considerable evidence for systemic effects of leptin on body mass control, reproduction, angiogenesis, immunity, wound healing, bone remodelling and cardiovascular function, as well as on specific metabolic pathways, indicates that leptin operates both directly and indirectly to orchestrate complex pathophysiological processes. Consistent with leptin's pleiotropic role, its participation in and crosstalk with some of the main signalling pathways, including those involving insulin receptor substrates, phosphoinositide 3-kinase, protein kinase B, protein kinase C, extracellular-signal-regulated kinase, mitogen-activated protein kinases, phosphodiesterase, phospholipase C and nitric oxide, has been observed. The impact of leptin on several equally relevant signalling pathways extends also to Rho family GTPases in relation to the actin cytoskeleton, production of reactive oxygen species, stimulation of prostaglandins, binding to diacylglycerol kinase and catecholamine secretion, among others.
Collapse
Key Words
- adipocyte
- cytokine
- janus kinase/signal transducer and activator of transcription pathway (jak/stat pathway)
- leptin receptor
- obesity
- signalling cascade
- acc, acetyl-coa carboxylase
- ampk, 5′-amp-activated protein kinase
- cntf, ciliary neurotrophic factor
- ct-1, cardiotrophin-1
- erk, extracellular-signal-regulated kinase
- hif-1α, hypoxia-inducible factor 1α
- il, interleukin
- irs, insulin receptor substrate
- jak, janus kinase
- jnk, c-jun n-terminal kinase
- lif, leukaemia inhibitory factor
- mapk, mitogen-activated protein kinase
- nf-κb, nuclear factor κb
- npy, neuropeptide y
- osm, oncostatin-m
- pde, phosphodiesterase
- pi3k, phosphoinositide 3-kinase
- pka, protein kinase a
- pkc, protein kinase c
- ptp1b, protein tyrosine phosphatase 1b
- sh2, src-like homology 2
- shp-2, sh2 domain-containing protein tyrosine phosphatase
- socs, suppressor of cytokine signalling
- stat, signal transducer and activator of transcription
- tnfα, tumour necrosis factor α
- tyk2, tyrosine kinase 2
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Gema Frühbeck
- Department of Endocrinology, Clínica Universitaria de Navarra and Metabolic Research Laboratory, University of Navarra, 36 Avda. Pío XII, 31008 Pamplona, Spain.
| |
Collapse
|
236
|
Fenner JE, Starr R, Cornish AL, Zhang JG, Metcalf D, Schreiber RD, Sheehan K, Hilton DJ, Alexander WS, Hertzog PJ. Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity. Nat Immunol 2005; 7:33-9. [PMID: 16311601 DOI: 10.1038/ni1287] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 10/04/2005] [Indexed: 01/03/2023]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a critical regulator of cytokine signaling and immune responses. SOCS1-deficient mice develop severe inflammatory disease, but are very resistant to viral infections. Using neutralizing antibody to type I interferon (IFN-alpha and IFN-beta) and mice deficient in interferon-gamma or type I interferon receptor components (IFNAR1 or IFNAR2), we demonstrate here that SOCS1 deficiency amplified type I interferon antiviral and proinflammatory actions independently of interferon-gamma. The mechanism of the suppression of type I interferon responses by SOCS1 was distinct from that of other cytokines. SOCS1 associated with and regulated IFNAR1- but not IFNAR2-specific signals, abrogating tyrosine phosphorylation of transcription factor STAT1 and reducing the duration of antiviral gene expression. Thus, SOCS1 is an important in vivo inhibitor of type I interferon signaling and contributes to balancing its beneficial antiviral versus detrimental proinflammatory effects on innate immunity.
Collapse
Affiliation(s)
- Jennifer E Fenner
- Centre for Functional Genomics and Human Disease, Monash Institute of Medical Research, Monash University, Clayton 3168, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Babon JJ, Yao S, DeSouza DP, Harrison CF, Fabri LJ, Liepinsh E, Scrofani SD, Baca M, Norton RS. Secondary structure assignment of mouse SOCS3 by NMR defines the domain boundaries and identifies an unstructured insertion in the SH2 domain. FEBS J 2005; 272:6120-30. [PMID: 16302975 DOI: 10.1111/j.1742-4658.2005.05010.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SOCS3 is a negative regulator of cytokine signalling that inhibits Janus kinase-signal transduction and activator of transcription (JAK-STAT) mediated signal tranduction by binding to phosphorylated tyrosine residues on intracellular subunits of various cytokine receptors, as well as possibly the JAK proteins. SOCS3 consists of a short N-terminal sequence followed by a kinase inhibitory region, an extended SH2 domain and a C-terminal suppressor of cytokine signalling (SOCS) box. SOCS3 and the related protein, cytokine-inducible SH2-containing protein, are unique among the SOCS family of proteins in containing a region of mostly low complexity sequence, between the SH2 domain and the C-terminal SOCS box. Using NMR, we assigned and determined the secondary structure of a murine SOCS3 construct. The SH2 domain, unusually, consists of 140 residues, including an unstructured insertion of 35 residues. This insertion fits the criteria for a PEST sequence and is not required for phosphotyrosine binding, as shown by isothermal titration calorimetry. Instead, we propose that the PEST sequence has a functional role unrelated to phosphotyrosine binding, possibly mediating efficient proteolytic degradation of the protein. The latter half of the kinase inhibitory region and the entire extended SH2 subdomain form a single alpha-helix. The mapping of the true SH2 domain, and the location of its C terminus more than 50 residues further downstream than predicted by sequence homology, explains a number of previously unexpected results that have shown the importance of residues close to the SOCS box for phosphotyrosine binding.
Collapse
Affiliation(s)
- Jeffrey J Babon
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Mujtaba MG, Flowers LO, Patel CB, Patel RA, Haider MI, Johnson HM. Treatment of Mice with the Suppressor of Cytokine Signaling-1 Mimetic Peptide, Tyrosine Kinase Inhibitor Peptide, Prevents Development of the Acute Form of Experimental Allergic Encephalomyelitis and Induces Stable Remission in the Chronic Relapsing/Remitting Form. THE JOURNAL OF IMMUNOLOGY 2005; 175:5077-86. [PMID: 16210611 DOI: 10.4049/jimmunol.175.8.5077] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously characterized a novel tyrosine kinase inhibitor peptide (Tkip) that is a mimetic of suppressor of cytokine signaling 1 (SOCS-1) and inhibits JAK2 phosphorylation of the transcription factor STAT1alpha. We show in this study that Tkip protects mice against experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis. Mice are immunized with myelin basic protein (MBP) for induction of disease. Tkip (63 mug) administered every other day suppressed the development of acute EAE in 75% of New Zealand White (NZW) mice. Furthermore, Tkip completely protected SJL/J mice, which where induced to get the relapsing/remitting form of EAE, against relapses compared with control groups in which >70% of the mice relapsed after primary incidence of disease. Protection of mice by Tkip was similar to that seen with the type I IFN, IFN-tau. Protection of mice correlated with lower MBP Ab titers in Tkip-treated groups as well as suppression of MBP-induced proliferation of splenocytes taken from EAE-afflicted mice. Cessation of Tkip and IFN-tau administration resulted in SJL/J mice relapsing back into disease. Prolonged treatment of mice with Tkip produced no evidence of cellular toxicity or weight loss. Consistent with its JAK2 inhibitory function, Tkip also inhibited the activity of the inflammatory cytokine TNF-alpha, which uses the STAT1alpha transcription factor. The data presented in this study show that Tkip, like the type I IFN, IFN-tau, inhibits both the autoreactive cellular and humoral responses in EAE and ameliorates both the acute and chronic relapsing/remitting forms of EAE.
Collapse
Affiliation(s)
- Mustafa G Mujtaba
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
239
|
SOCS2 can enhance interleukin-2 (IL-2) and IL-3 signaling by accelerating SOCS3 degradation. Mol Cell Biol 2005. [PMID: 16199887 DOI: 10.1128/mcb.25.20.9115‐9126.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.
Collapse
|
240
|
Ungureanu D, Silvennoinen O. SLIM trims STATs: ubiquitin E3 ligases provide insights for specificity in the regulation of cytokine signaling. Sci Signal 2005; 2005:pe49. [PMID: 16204702 DOI: 10.1126/stke.3042005pe49] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway has evolved to serve highly specialized functions in the regulation of hematopoiesis, cell metabolism, and immune responses. The duration, strength, and specificity of cytokine signaling are controlled by several mechanisms, including the ubiquitin-proteasome pathway, which modulates the turnover of cytokine receptors and activated JAKs. The specificity of the ubiquitin pathway is achieved through various E3 ligase complexes that recognize and interact with distinct target proteins, often in a phosphorylation-dependent manner. Intriguing new information about the ubiquitin pathway came with the identification of an E3 ubiquitin ligase, SLIM, that specifically interacts with activated STAT1 and STAT4 and induces their ubiquitination and degradation. These findings, together with the evidence from paramyxoviruses about the role of ubiquitination as a highly specific STAT inhibition mechanism, highlight the role of E3 ubiquitin ligases as specificity determinants in the regulation of STAT activation, and open the field for investigation of additional E3s that target other STAT proteins.
Collapse
Affiliation(s)
- Daniela Ungureanu
- Institute of Medical Technology, University of Tampere, 33014, Tampere, Finland
| | | |
Collapse
|
241
|
Tannahill GM, Elliott J, Barry AC, Hibbert L, Cacalano NA, Johnston JA. SOCS2 can enhance interleukin-2 (IL-2) and IL-3 signaling by accelerating SOCS3 degradation. Mol Cell Biol 2005; 25:9115-26. [PMID: 16199887 PMCID: PMC1265772 DOI: 10.1128/mcb.25.20.9115-9126.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/13/2005] [Accepted: 07/18/2005] [Indexed: 01/27/2023] Open
Abstract
Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.
Collapse
Affiliation(s)
- Gillian M Tannahill
- Infection and Immunity Group, Centre for Cancer Research and Cell Biology, Queens University, Belfast, UK
| | | | | | | | | | | |
Collapse
|
242
|
Fletcher J, Starr R. The role of suppressors of cytokine signalling in thymopoiesis and T cell activation. Int J Biochem Cell Biol 2005; 37:1774-86. [PMID: 15905116 DOI: 10.1016/j.biocel.2005.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/24/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
Cytokines play an essential role in mediating interactions between cells of the immune system. Suppressors of cytokine signalling proteins act to negatively regulate these cytokine signals, thereby exerting control over the expression of cytokine responsive genes. Various lines of experimental evidence suggest that two closely related members of the this family, suppressor of cytokine signalling 1 and 3, are important in the processes of T cell development, activation and homeostasis. This review outlines the principles underlying these processes and relates these to the potentially important roles played by suppressor of cytokine signalling 1 and 3.
Collapse
Affiliation(s)
- Joel Fletcher
- St. Vincent's Institute, Signal Transduction Laboratory, Fitzroy, Vic., Australia
| | | |
Collapse
|
243
|
Flores-Morales A, Greenhalgh CJ, Norstedt G, Rico-Bautista E. Negative regulation of growth hormone receptor signaling. Mol Endocrinol 2005; 20:241-53. [PMID: 16037128 DOI: 10.1210/me.2005-0170] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GH has been of significant scientific interest for decades because of its capacity to dramatically change physiological growth parameters. Furthermore, GH interacts with a range of other hormonal pathways and is an established pharmacological agent for which novel therapeutical applications can be foreseen. It is easy to see the requirement for a number of postreceptor mechanisms to regulate and control target tissue sensitivity to this versatile hormone. In recent years, some of the components that take part in the down-regulatory mechanism targeting the activated GH receptor (GHR) have been defined, and the physiological significance of some of these key components has begun to be characterized. Down-regulation of the GHR is achieved through a complex mechanism that involves rapid ubiquitin-dependent endocytosis of the receptor, the action of tyrosine phosphatases, and the degradation by the proteasome. The suppressors of cytokine signaling (SOCS) protein family, particularly SOCS2, plays an important role in regulating GH actions. The aim of this review is to summarize collected knowledge, including very recent findings, regarding the intracellular mechanisms responsible for the GHR signaling down-regulation. Insights into these mechanisms can be of relevance to several aspects of GH research. It can help to understand growth-related disease conditions, to explain GH resistance, and may be used to develop pharmaceuticals that enhance some the beneficial actions of endogenously secreted GH in a tissue-specific manner.
Collapse
|
244
|
Sommer U, Schmid C, Sobota RM, Lehmann U, Stevenson NJ, Johnston JA, Schaper F, Heinrich PC, Haan S. Mechanisms of SOCS3 phosphorylation upon interleukin-6 stimulation. Contributions of Src- and receptor-tyrosine kinases. J Biol Chem 2005; 280:31478-88. [PMID: 16000307 DOI: 10.1074/jbc.m506008200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine signal transduction. SOCS3 is a key negative regulator of interleuking-6 (IL-6) signal transduction. Furthermore, SOCS3 was shown to be phosphorylated upon treatment of cells with IL-2, and this has been reported to regulate its function and half-life. We set out to investigate whether SOCS3 phosphorylation may play a role in IL-6 signaling. Tyrosine-phosphorylated SOCS3 was detected upon treatment of mouse embryonic fibroblasts with IL-6. Interestingly, the observed SOCS3 phosphorylation does not require SOCS3 recruitment to phosphotyrosine (Tyr(P)) 759 of gp130, and the kinetics of SOCS3 phosphorylation do not match the activation kinetics of the Janus kinases. This suggests that other kinases may be involved in SOCS3 phosphorylation. Using Src and Janus kinase inhibitors as well as Src kinase-deficient mouse embryonic fibroblasts, we provide evidence that Src kinases, which we found to be constitutively active in these cells, are involved in the phosphorylation of IL-6-induced SOCS3. In addition, we found that receptor-tyrosine kinases such as platelet-derived growth factor receptor or epidermal growth factor receptor can very potently phosphorylate IL-6-induced SOCS3. Taken together, these results suggest that SOCS3 phosphorylation is not a JAK-mediated phenomenon but is dependent on the activity of other kinases such as Src kinases or receptor-tyrosine kinases, which can either be constitutively active or activated by an additional stimulus.
Collapse
Affiliation(s)
- Ulrike Sommer
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Chung AS, Guan YJ, Yuan ZL, Albina JE, Chin YE. Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol Cell Biol 2005; 25:4716-26. [PMID: 15899873 PMCID: PMC1140645 DOI: 10.1128/mcb.25.11.4716-4726.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 01/14/2005] [Accepted: 02/14/2005] [Indexed: 11/20/2022] Open
Abstract
Ankyrin repeat and SOCS box (ASB) family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence of variable repeats belonging to the SOCS superfamily. While SH2-domain-bearing SOCS proteins are mainly involved in the negative feedback regulation of the protein tyrosine kinase-STAT pathway in response to a variety of cytokines, the roles of ASB family members remain largely unknown. To investigate ASB functions, we screened for ASB3-interacting factors by using antibody array technology and identified tumor necrosis factor receptor II (TNF-R2) as an ASB3 binding target. ASB3 expression and activities are required for (i) TNF-R2 ubiquitination both in vivo and in vitro, (ii) TNF-R2 proteolysis via the proteasome pathway, and (iii) the inhibition of TNF-R2-mediated Jun N-terminal protein kinase (JNK) activation. While the ankyrin repeats of ASB3 interact with the C-terminal 37 amino acids of TNF-R2, the SOCS box of ASB3 is responsible for recruiting the E3 ubiquitin ligase adaptors Elongins-B/C, leading to TNF-R2 ubiquitination on multiple lysine residues within its C-terminal region. Downregulation of ASB3 expression by a small interfering RNA inhibited TNF-R2 degradation and potentiated TNF-R2-mediated cytotoxicity. The data presented here implicate ASB3 as a negative regulator of TNF-R2-mediated cellular responses to TNF-alpha by direct targeting of TNF-R2 for ubiquitination and proteasome-mediated degradation.
Collapse
Affiliation(s)
- Alicia S Chung
- Department of Molecular and Cell Biology and Biochemistry, Brown University School of Medicine and Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
246
|
Lehmann U, Sommer U, Smyczek T, Hörtner M, Frisch W, Volkmer-Engert R, Heinrich PC, Schaper F, Haan S. Determinants governing the potency of STAT3 activation via the individual STAT3-recruiting motifs of gp130. Cell Signal 2005; 18:40-9. [PMID: 15927449 DOI: 10.1016/j.cellsig.2005.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 03/11/2005] [Accepted: 03/15/2005] [Indexed: 11/24/2022]
Abstract
In recent years, the elucidation of the structures of many signalling molecules has allowed new insights into the molecular mechanisms that govern signal transduction events. In the field of cytokine signalling, the solved structures of cytokine/receptor complexes and of key components involved in signal transduction such as STAT factors or the tyrosine phosphatase SHP2 have broadened our understanding of the molecular basis of the signalling events and provided key information for the rational design of therapeutic approaches to modulate or block cytokine signal transduction. Unfortunately, no structural data on the intracellular parts of cytokine receptors are available. The exact molecular mechanism underlying one of the first steps in signal transduction, namely the recruitment of signalling components to the cytoplasmic parts of cytokine receptors, remains elusive. Here we investigated possible mechanisms underlying the different potency of the STAT3-activating motifs of gp130 after IL-6 stimulation. Our data indicate that the extent of STAT3 activation by the different receptor motifs is not influenced by structural features such as contacts between the two gp130 chains. In addition, the proximity of the negatively regulating motif around tyrosine Y759 to the different STAT3-recruiting motifs does not seem to be responsible for their differential capacity to activate STAT3. However, the potency of a specific motif to activate STAT3 directly reflects the affinity for the binding of STAT3 to this motif.
Collapse
Affiliation(s)
- Ute Lehmann
- Institut für Biochemie, Universitätsklinikum der RWTH-Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Clahsen T, Lehmann U, Stross C, Hermanns HM, Volkmer-Engert R, Schneider-Mergener J, Heinrich PC, Schaper F. The tyrosine 974 within the LIF-R-chain of the gp130/LIF-R heteromeric receptor complex mediates negative regulation of LIF signalling. Cell Signal 2005; 17:559-69. [PMID: 15683731 DOI: 10.1016/j.cellsig.2004.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 09/10/2004] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
Signalling of interleukin (IL)-6 and interleukin-11 through gp130 homodimeric receptor complexes has been analysed with respect to initiation and termination of signalling in great detail. Gp130 contains a crucial motif around tyrosine Y759, which mediates negative regulation through the feedback inhibitor SOCS3 and the protein tyrosine phosphatase SHP2. Signalling of leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1), CT-1-like factor (CLC) or oncostatin M (OSM) through gp130/LIF-R is believed to be similar due to the presence of the common signal transducer gp130 within the receptor complexes utilized, but the difference in the composition of gp130/gp130-homodimers and gp130/LIF-R-heterodimers is likely to be reflected in different signalling. Here, we analysed the contribution of the LIF-R within the gp130/LIF-R complex to negative regulation mediated by SHP2 and SOCS3. We show that SHP2 contributes to the negative regulation of signalling through gp130/LIF-R complexes. The inhibitory tyrosine motifs within the cytoplasmic parts of gp130 and the LIF-R act independently. Whereas SHP2 and SOCS3 bind directly to the inhibitory motif of gp130, only SHP2 was found to bind to the corresponding inhibitory sequence of the LIF-R. This observation was further corroborated by experiments indicating that mainly gp130 contributes to the inhibition of signalling by SOCS3.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Biochemistry, Medical School RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Ji KA, Yang MS, Jou I, Shong MH, Joe EH. Thrombin induces expression of cytokine-induced SH2 protein (CIS) in rat brain astrocytes: involvement of phospholipase A2, cyclooxygenase, and lipoxygenase. Glia 2005; 48:102-11. [PMID: 15378659 DOI: 10.1002/glia.20059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously we have reported that thrombin induces inflammatory mediators in brain glial cells (Ryu et al. 2000. J Biol Chem 275:29955). In the present study, we found that thrombin induced a negative regulator of a cytokine signaling molecule, cytokine-induced SH2 protein (CIS), in rat brain astrocytes. In response to thrombin, CIS expression was increased at both the mRNA and protein levels. Although STAT5 is known to regulate CIS expression, thrombin did not activate STAT5, and inhibitors of JAK2 (AG490) and JAK3 (WHI-P97 and WHI-P154) had little effect on thrombin-induced CIS expression. In contrast, cytosolic phospholipase A(2) (cPLA(2)), cyclooxygenase (COX), and lipoxygenase (LO) play a role in CIS expression, since inhibitors of cPLA(2), cyclooxygenase (COX), and LO significantly reduced CIS expression. Reactive oxygen species (ROS) scavengers (N-acetyl-cysteine [NAC] and trolox) reduced thrombin-induced CIS expression, and inhibitors of COX and LO reduced ROS produced by thrombin. Furthermore, prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)), products of COX and LO, respectively, potentiated thrombin-induced CIS expression, indicating that ROS, and PGE(2) and LTB(4) generated by COX and LO, mediate CIS expression. Since interferon-gamma (IFN-gamma)-induced GAS-luciferase activity and tyrosine phosphorylation of STAT1 and STAT3 were lower in CIS-transfected cells compared to control vector-transfected cells, CIS could have anti-inflammatory activity. These data suggest that thrombin-stimulation of ROS and prostaglandin and leukotriene production via the cPLA(2), COX and LO pathways results in CIS expression. More importantly, CIS expression may be a negative feedback mechanism that prevents prolonged inflammatory responses.
Collapse
Affiliation(s)
- Kyung-Ae Ji
- Neuroscience Graduate Program, Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | |
Collapse
|
249
|
Kamezaki K, Shimoda K, Numata A, Haro T, Kakumitsu H, Yoshie M, Yamamoto M, Takeda K, Matsuda T, Akira S, Ogawa K, Harada M. Roles of Stat3 and ERK in G-CSF Signaling. Stem Cells 2005; 23:252-63. [PMID: 15671148 DOI: 10.1634/stemcells.2004-0173a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-CSF specifically stimulates the proliferation and differentiation of cells that are committed to the neutrophil-granulocyte lineage. Although Stat3 was thought to be essential for the transduction of G-CSF-induced cell proliferation and differentiation signals, mice deficient for Stat3 in hematopoietic cells show neutrocytosis and infiltration of cells into the digestive tract. The number of progenitor cells in the neutrophil lineage is not changed, and G-CSF-induced proliferation of progenitor cells and prolonged neutrophil survival were observed in Stat3-deficient mice. In hematopoietic cells from Stat3-deficient mice, trace levels of SOCS3, a negative regulator of granulopoiesis, were observed, and SOCS3 expression was not induced by G-CSF stimulation. Stat3-null bone marrow cells displayed a significant activation of extra-cellular regulated kinase 1 (ERK1)/ERK2 under basal conditions, and the activation of ERK was enhanced and sustained by G-CSF stimulation. Furthermore, the augmented proliferation of Stat3-deficient bone marrow cells in response to G-CSF was dramatically decreased by addition of a MEK1 inhibitor. These results indicate that Stat3 functions as a negative regulator of G-CSF signaling by inducing SOCS3 expression and that ERK activation is the major factor responsible for inducing the proliferation of hematopoietic cells in response to G-CSF.
Collapse
Affiliation(s)
- Kenjirou Kamezaki
- The First Department of Internal Medicine, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Qing Y, Costa-Pereira AP, Watling D, Stark GR. Role of tyrosine 441 of interferon-gamma receptor subunit 1 in SOCS-1-mediated attenuation of STAT1 activation. J Biol Chem 2005; 280:1849-53. [PMID: 15522878 DOI: 10.1074/jbc.m409863200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS)-1, the key negative regulator of interferon (IFN)-gamma-dependent signaling, is induced in response to IFNgamma. SOCS-1 binds to and inhibits the IFNgamma receptor-associated kinase Janus-activated kinase (JAK) 2 and inhibits its function in vitro, but the mechanism by which SOCS-1 inhibits IFNgamma-dependent signaling in vivo is not clear. Upon stimulation, mouse IFNgamma receptor subunit 1 (IFNGR1) is phosphorylated on several cytoplasmic tyrosine residues, and Tyr(419) is required for signal transducer and activator of transcription (STAT) 1 activation in mouse embryo fibroblasts. However, the functions of the other three cytoplasmic tyrosine residues are not known. Here we show that Tyr(441) is required to attenuate STAT1 activation in response to IFNgamma. Several tyrosine to phenylalanine mutants of IFNGR1, expressed at normal levels in stable pools of IFNGR1-null cells, were analyzed for the phosphorylation of STAT1 during a 48-h period, and antiviral activity in response to IFNgamma was also measured. Stronger activation of STAT1 was observed in cells expressing all IFNGR1 variants mutated at Tyr(441), and, consistently, stronger antiviral activity was also observed in these cells. Furthermore, constitutive overexpression of SOCS-1 inhibited IFNgamma-dependent signaling only in cells expressing IFNGR1 variants that included the Tyr(441) mutation. Mutation of Tyr(441) also blocked the ability of SOCS-1 to bind to IFNGR1 and JAK2 in response to IFNgamma and the normal down-regulation of STAT1 activation and antiviral activity. These results, together with data from the literature, suggest a model in which, in response to IFNgamma, phosphorylation of Tyr(441) creates a docking site for SOCS-1, which then binds to JAK2 within the receptor-JAK complex to partially inhibit JAK2 phosphorylation. Furthermore, the virtually complete blockade of STAT1 phosphorylation by overexpressed SOCS-1 in this experiment suggests that the binding of SOCS-1 to Tyr(441) also blocks the access of STAT1 to Tyr(419) and that this effect may be the principal mechanism of inhibition of downstream signaling.
Collapse
Affiliation(s)
- Yulan Qing
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|