201
|
Zhang Z, Dong Z, Wang Q, Carr MJ, Li J, Liu T, Li D, Shi W. Characterization of an inactivated whole-virus bivalent vaccine that induces balanced protective immunity against coxsackievirus A6 and A10 in mice. Vaccine 2018; 36:7095-7104. [PMID: 30316529 DOI: 10.1016/j.vaccine.2018.09.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 08/15/2018] [Accepted: 09/01/2018] [Indexed: 11/28/2022]
Abstract
Coxsackievirus A6 (CVA6) and CVA10 are two of the major pathogens associated with hand, foot and mouth disease (HFMD) in children. The majority of CVA6 and CVA10 infections result in mild, self-limiting episodes (fever and herpangina) in pediatric populations; however, in some cases, can proceed to severe neurological disease and death. Efforts to mitigate viral transmission to decrease the morbidity and mortality associated with infection would be greatly strengthened by the availability of an efficacious CVA6 and CVA10 bivalent vaccine. Here we report the immunogenicity and protective efficacy of a bivalent combination vaccine comprised of formaldehyde-inactivated, whole-virus CVA6 and CVA10. We demonstrate that subcutaneous delivery of the bivalent vaccine can induce antigen-specific systemic immune responses, particularly the induction of polyfunctional T cells, which elicit active immunization to achieve a protection rate of >80% in the infected neonatal mice. Furthermore, passive transfer of the antisera from vaccinated mice potently protected recipient mice against CVA6 and CVA10 challenge. Importantly, the bivalent vaccine could induce high levels of IgG and neutralizing antibodies in adult female mice and the maternal antibody transmitted to the recipient mice played an important role in controlling homotypic and heterotypic CVA6 and CVA10 infections and viral replication in vivo. Collectively, these findings indicate that there is no immunological interference between the two antigens with respect to their ability to induce virus-specific immune responses, and thus provides proof-of-concept for further development of multivalent vaccines for broad protection against HFMD.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Zhaopeng Dong
- The Center for Disease Control and Prevention, Jinshan 201599, Shanghai, China
| | - Qian Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan; National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, Central Hospital of Taian, Taian 271000, China
| | - Dong Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China; School of Public Health, Taishan Medical University, Taian 271016, China.
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China.
| |
Collapse
|
202
|
Chinese guidelines for the diagnosis and treatment of hand, foot and mouth disease (2018 edition). World J Pediatr 2018; 14:437-447. [PMID: 30280313 DOI: 10.1007/s12519-018-0189-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common infectious disease in childhood caused by an enterovirus (EV), and which is principally seen in children under 5 years of age. To promote diagnostic awareness and effective treatments, to further standardize and strengthen the clinical management and to reduce the mortality of HFMD, the guidelines for diagnosis and treatment have been developed. METHODS National Health Commission of China assembled an expert committee for a revision of the guidelines. The committee included 33 members who are specialized in diagnosis and treatment of HFMD. RESULTS Early recognition of severe cases is utmost important in diagnosis and treatment of patients with HFMD. The key to diagnosis and treatment of severe cases lies in the timely and accurate recognition of stages 2 and 3 of HFMD, in order to stop progression to stage 4. Clinicians should particularly pay attention to those EV-A71 cases in children aged less than 3 years, and those with disease duration less than 3 days. The following indicators should alert the clinician of possible deterioration and impending critical disease: (1) persistent hyperthermia; (2) involvement of nervous system; (3) worsening respiratory rate and rhythm; (4) circulatory dysfunction; (5) elevated peripheral WBC count; (6) elevated blood glucose and (7) elevated blood lactic acid. For treatment, most mild cases can be treated as outpatients. Patients should be isolated to avoid cross-infection. Intense treatment modalities should be given for those severe cases. CONCLUSION The guidelines can provide systematic guidance on the diagnosis and management of HFMD.
Collapse
|
203
|
Takahashi S, Metcalf CJE, Arima Y, Fujimoto T, Shimizu H, Rogier van Doorn H, Le Van T, Chan YF, Farrar JJ, Oishi K, Grenfell BT. Epidemic dynamics, interactions and predictability of enteroviruses associated with hand, foot and mouth disease in Japan. J R Soc Interface 2018; 15:rsif.2018.0507. [PMID: 30209044 PMCID: PMC6170776 DOI: 10.1098/rsif.2018.0507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
Outbreaks of hand, foot and mouth disease have been documented in Japan since 1963. This disease is primarily caused by the two closely related serotypes of Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16). Here, we analyse Japanese virologic and syndromic surveillance time-series data from 1982 to 2015. As in some other countries in the Asia Pacific region, EV-A71 in Japan has a 3 year cyclical component, whereas CV-A16 is predominantly annual. We observe empirical signatures of an inhibitory interaction between the serotypes; virologic lines of evidence suggest they may indeed interact immunologically. We fit the time series to mechanistic epidemiological models: as a first-order effect, we find the data consistent with single-serotype susceptible–infected–recovered dynamics. We then extend the modelling to incorporate an inhibitory interaction between serotypes. Our results suggest the existence of a transient cross-protection and possible asymmetry in its strength such that CV-A16 serves as a stronger forcing on EV-A71. Allowing for asymmetry yields accurate out-of-sample predictions and the directionality of this effect is consistent with the virologic literature. Confirmation of these hypothesized interactions would have important implications for understanding enterovirus epidemiology and informing vaccine development. Our results highlight the general implication that even subtle interactions could have qualitative impacts on epidemic dynamics and predictability.
Collapse
Affiliation(s)
- Saki Takahashi
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Yuzo Arima
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuguto Fujimoto
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, National Hospital for Tropical Diseases, Ha Noi, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tan Le Van
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, National Hospital for Tropical Diseases, Ha Noi, Viet Nam
| | - Yoke-Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jeremy J Farrar
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, National Hospital for Tropical Diseases, Ha Noi, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA .,Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
204
|
Ji T, Guo Y, Huang W, Shi Y, Xu Y, Tong W, Yao W, Tan Z, Zeng H, Ma J, Zhao H, Han T, Zhang Y, Yan D, Yang Q, Zhu S, Zhang Y, Xu W. The emerging sub-genotype C2 of CoxsackievirusA10 Associated with Hand, Foot and Mouth Disease extensively circulating in mainland of China. Sci Rep 2018; 8:13357. [PMID: 30190558 PMCID: PMC6127217 DOI: 10.1038/s41598-018-31616-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 11/11/2022] Open
Abstract
Coxsackievirus A10 (CV-A10) associated with Hand, foot, and mouth disease (HFMD) cases emerged increasingly in recent years. In this study, the samples from nation-wide HFMD surveillance, including 27 out of 31 provinces in China were investigated, and the continuous and extensive virological surveillance, covered 13 years, were conducted to provide a comprehensive molecular characterization analysis of CV-A10. 855 CV-A10 viruses (33 severe cases included), were isolated from HFMD children patients during 2009 to 2016 in China. 164 representative sequences from these viruses, together with 117 CV-A10 sequences downloaded from GenBank based on entire VP1 were recruited in this study. Two new genotypes (F and G) and two sub-genotypes (C1 and C2) were identified. Among 264 Chinese sequences, 9 of them were genotype B, 8 of them were C1, and the other (247) were C2, the predominant sub-genotype in China since 2012. Chinese C2 viruses showed obvious temporal characteristics and can be divided into 3 clusters (cluster 1~3). Cluster 3 viruses was circulating extensively during 2014 and 2016 with more severe cases. It is very necessary and important to continuously conduct the extensive virological surveillance for CV-A10, and further evolutionary studies will provide more evidence on its evolution and virulence.
Collapse
Affiliation(s)
- Tianjiao Ji
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yue Guo
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wei Huang
- Hunan Center for Disease Control and Prevention, Changsha, Hunan Province, People's Republic of China
| | - Yong Shi
- Jiangxi Center for Disease Control and Prevention, Nanchang, Jiangxi Province, People's Republic of China
| | - Yi Xu
- Shaanxi Center for Disease Control and Prevention, Xi'an, Shaanxi Province, People's Republic of China
| | - Wenbin Tong
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan Province, People's Republic of China
| | - Wenqing Yao
- Liaoning Center for Disease Control and Prevention, Shenyang, Liaoning Province, People's Republic of China
| | - Zhaolin Tan
- Tianjin municipal Center for Disease Control and Prevention, Tianjin municipal, People's Republic of China
| | - Hanri Zeng
- Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiangtao Ma
- Ningxia Center for Disease Control and Prevention, Yinchuan, Ningxia Province, People's Republic of China
| | - Hua Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing municipal, People's Republic of China
| | - Taoli Han
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yong Zhang
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qian Yang
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yan Zhang
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Wenbo Xu
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
205
|
Zhao Q, Xiong Y, Xu J, Chen S, Li P, Huang Y, Wang Y, Chen WX, Wang B. Host MicroRNA hsa-miR-494-3p Promotes EV71 Replication by Directly Targeting PTEN. Front Cell Infect Microbiol 2018; 8:278. [PMID: 30234021 PMCID: PMC6130220 DOI: 10.3389/fcimb.2018.00278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Many cellular processes are driven by spatially and temporally regulated microRNAs (miRNAs)-dependent signaling events. Substantial evidence collected over the years indicates that miRNAs are pivotal regulators that contribute to the initiation and development of EV71-related disorders. Importantly, so far, no clinical trial has been undertaken to address the effect of miRNAs on EV71-related diseases. In this study, we show that EV71 infection results in up-regulation of hsa-miR-494-3p levels, and that EV71-induced hsa-miR-494-3p impacts PI3K/Akt signaling pathway by targeting PTEN. However, very little is known about the relationship between hsa-miR-494-3p and EV71 infection. The overall goal of the study is to get a better insight into whether or not hsa-miR-494-3p is involved in the EV71 infection. We found that the EV71 infection induces cellular apoptosis, and that this process can be counteracted by the over-expression of hsa-miR-494-3p mimics. We also present evidence that cell lines deficient in hsa-miR-494-3p are more sensitive to EV71-induced cell death than the corresponding control cells. Collectively, these findings confirm and extend the pervious observation suggesting that disturbances in miRNAs expression can influence EV71 propagation. In addition, they lend strong support to the ideas that hsa-miR-494-3p-mediated signaling pathway plays an important role in the EV71 replication, and that this may have profound implications on our views on EV71-related diseases.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Xiong
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jingru Xu
- Institute of Microbiology, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Shuang Chen
- Institute of Microbiology, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunying Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Xian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
206
|
Jones E, Pillay TD, Liu F, Luo L, Bazo-Alvarez JC, Yuan C, Zhao S, Chen Q, Li Y, Liao Q, Yu H, Rogier van Doorn H, Sabanathan S. Outcomes following severe hand foot and mouth disease: A systematic review and meta-analysis. Eur J Paediatr Neurol 2018; 22:763-773. [PMID: 29778429 PMCID: PMC6148319 DOI: 10.1016/j.ejpn.2018.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/23/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hand, foot and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) is associated with acute neurological disease in children. This study aimed to estimate the burden of long-term sequelae and death following severe HFMD. METHODS This systematic review and meta-analysis pooled all reports from English and Chinese databases including MEDLINE and Wangfang on outbreaks of clinically diagnosed HFMD and/or laboratory-confirmed EV-A71 with at least 7 days' follow-up published between 1st January 1966 and 19th October 2015. Two independent reviewers assessed the literature. We used a random effects meta-analysis to estimate cumulative incidence of neurological sequelae or death. Studies were assessed for methodological and reporting quality. PROSPERO registration number: 10.15124/CRD42015021981. FINDINGS 43 studies were included in the review, and 599 children from 9 studies were included in the primary analysis. Estimated cumulative incidence of death or neurological sequelae at maximum follow up was 19.8% (95% CI:10.2%, 31.3%). Heterogeneity (Iˆ2) was 88.57%, partly accounted for by year of data collection and reporting quality of studies. Incidence by acute disease severity was 0.00% (0.00, 0.00) for grade IIa; 17.0% (7.9, 28.2) for grade IIb/III; 81.6% (65.1, 94.5) for grade IV (p = 0.00) disease. CONCLUSIONS HFMD with neurological involvement is associated with a substantial burden of long-term neurological sequelae. Grade of acute disease severity was a strong predictor of outcome. Strengths of this study include its bilingual approach and clinical applicability. Future prospective and interventional studies must use rigorous methodology to assess long-term outcomes in survivors. FUNDING There was no specific funding for this study. See below for researcher funding.
Collapse
Affiliation(s)
- Eben Jones
- University Hospital Lewisham, National Health Service, London, UK
| | - Timesh D Pillay
- University Hospital Lewisham, National Health Service, London, UK.
| | - Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Luo
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Carlos Bazo-Alvarez
- Methodology Research Group, Department of Primary Care and Population Health, University College London (UCL), London, UK
| | - Chen Yuan
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Shanlu Zhao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, China
| | - Qi Chen
- Hubei Provincial Center for Disease Control and Prevention, Changsha, Hunan, China
| | - Yu Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ha Noi, Viet Nam; Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Saraswathy Sabanathan
- Oxford University Clinical Research Unit, Ha Noi, Viet Nam; Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| |
Collapse
|
207
|
Fang CY, Liu CC. Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Rev Vaccines 2018; 17:819-831. [PMID: 30095317 DOI: 10.1080/14760584.2018.1510326] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a childhood illness commonly caused by enterovirus A. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the most commonly identified viruses associated with HFMD. Recently, outbreaks caused by different enterovirus A including CV-A6 and CV-A10 are increasing. Being available now to protect against EV-A71 infection, inactivated EV-A71 vaccines cannot prevent coxsackievirus infections, thus limiting their general application in controlling HFMD. Multivalent HFMD vaccines are suggested to have broad cross-neutralizing responses against these emerging enteroviruses. AREAS COVERED We discuss the recent development of enterovirus A vaccines including the inactivated whole-virion vaccine and virus-like particle vaccine candidates and review the information of neutralization epitopes of these viruses. EXPERT COMMENTARY Evaluation of the efficacy and safety of the coxsackievirus vaccine and the multivalent HFMD vaccine candidates in clinical trials is urgently required. Epitopic analysis showed that common immunodominant sites exist across these enteroviruses. However, variations of amino acid residues in these regions limit the induction of cross-neutralization antibodies, and therefore, a multivalent HFMD vaccine is required for broad protection against HFMD. With the inclusion of major circulating viruses in the development of multivalent HFMD vaccines, an increase in the success in HFMD control is anticipated.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- a Department of Pathology, Wan Fang Hospital , Taipei Medical University , Taipei , Taiwan
| | - Chia-Chyi Liu
- b National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| |
Collapse
|
208
|
Abstract
During the last years, it has become evident that miRNAs are important players in almost all physiological and pathological processes, including viral infections. Enterovirus infections range from mild to severe acute infections concerning several organ systems and are also associated with chronic diseases. In this review, we summarize the findings on the impact of acute and persistent enterovirus infection on the expression of cellular miRNAs. Furthermore, the currently available data on the regulation of cellular or viral targets by the dysregulated miRNAs are reviewed. Finally, a translational perspective, namely the use of miRNAs as biomarkers of enterovirus infection and as antiviral strategy is discussed.
Collapse
Affiliation(s)
- Ilka Engelmann
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Enagnon Kazali Alidjinou
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Antoine Bertin
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Famara Sane
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Didier Hober
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| |
Collapse
|
209
|
Fang LQ, Sun Y, Zhao GP, Liu LJ, Jiang ZJ, Fan ZW, Wang JX, Ji Y, Ma MJ, Teng J, Zhu Y, Yu P, Li K, Tian YJ, Cao WC. Travel-related infections in mainland China, 2014-16: an active surveillance study. Lancet Public Health 2018; 3:e385-e394. [PMID: 30033200 PMCID: PMC7164813 DOI: 10.1016/s2468-2667(18)30127-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Transmission of infection through international travel is a growing health issue, and the frequency of imported infection is increasing in China. We aimed to quantify the total number of infections imported into mainland China by arriving travellers. METHODS We actively surveyed arriving travellers at all 272 international entry-exit ports in mainland China. Suspected cases were detected through fever screening, medical inspection, self-declaration, and reporting by on-board staff. Participants completed a standardised questionnaire with questions about demographics, their travel itinerary (including detailed information about all countries or regions visited), and clinical manifestations. Nasopharyngeal swabs, sputum samples, faecal samples, vomitus, blood, and serum were collected as appropriate for diagnoses. Diagnosis was made by specific laboratory tests according to the national technical guidelines. Infections were classified as respiratory, gastrointestinal, vector-borne, blood-transmitted and sex-transmitted, or mucocutaneous. We divided arriving travellers into two groups: travellers coming from countries other than China, and travellers coming from Hong Kong, Macau, and Taiwan. We integrated surveillance data for 2014-16, calculated incidences of travel-related infections, and compared the frequency of infections among subgroups. FINDINGS Between Jan 1, 2014, and Dec 31, 2016, 22 797 cases were identified among 805 993 392 arriving travellers-an overall incidence of 28·3 per million. 45 pathogens were detected in participants: 18 respiratory (19 662 cases), ten gastrointestinal (189 cases), seven vector-borne (831 cases), seven blood-transmitted and sex-transmitted (1531 cases), and three mucocutaneous (584 cases). Both the overall number and incidence of infection were more than five times higher in 2016 than in 2014. Case numbers and incidences also varied substantially by province, autonomous region, and municipality. Overall, 17 643 (77%) infections were detected by fever screening, but 753 (49%) blood-transmitted and sex-transmitted infections were identified through medical inspection. 14 305 (73%) cases of respiratory infection and 96 (51%) of gastrointestinal infections were in tourists. Tuberculosis, hepatitis A virus, vector-borne, and blood-transmitted and sex-transmitted infections were common among Chinese labourers who worked abroad. Dengue and malaria were most commonly diagnosed in travellers arriving from Africa. 12 126 (93%) of the 12 985 cases arriving from Hong Kong, Macau, or Taiwan were respiratory infections. Hand, foot, and mouth disease accounted for 2·90% of infections in travellers from Hong Kong, Macau, or Taiwan and 0·31% of infections in international travellers. INTERPRETATION This report is the first to characterise the profile of travel-related infections among arriving travellers in mainland China. Our findings should increase public awareness of the potential risk of imported infections, and help health-care providers to make evidence-based health recommendations to travellers. FUNDING The Natural Science Foundation of China.
Collapse
Affiliation(s)
- Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Institute of EcoHealth, Shandong University, Jinan, China
| | - Yu Sun
- Institute of EcoHealth, Shandong University, Jinan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Ping Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The Logistics University of the Chinese People's Armed Police Force, Tianjin, China
| | - Li-Juan Liu
- Institute of Health Quarantine, The Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhe-Jun Jiang
- Institute of Health Services and Transfusion Medicine, Academy of Military Medical Science, Beijing, China
| | - Zheng-Wei Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jing-Xue Wang
- Institute of Health Services and Transfusion Medicine, Academy of Military Medical Science, Beijing, China
| | - Yang Ji
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Institute of EcoHealth, Shandong University, Jinan, China
| | - Juan Teng
- State Key Surveillance Laboratory of Vector-borne Infectious Diseases, Hainan Customs District, Haikou, China
| | - Yan Zhu
- International Travel Healthcare Center, Xining Customs District, Xining, China
| | - Ping Yu
- Xi'an Xian Yang Airport Customs House, Xian Yang, China
| | - Kai Li
- International Travel Healthcare Center, Ningxia Customs District, Yinchuan, China
| | - Ying-Jie Tian
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Institute of EcoHealth, Shandong University, Jinan, China.
| |
Collapse
|
210
|
Abstract
PURPOSE OF REVIEW The focus of this review is on enterovirus (EV)-associated acute flaccid paralysis (AFP) due to spinal cord anterior horn cell disease. Emphasis is placed on the epidemiology, pathogenesis, diagnosis, treatment, and outcome of AFP caused by polioviruses, vaccine-derived polioviruses, EV-D68, and EV-A71. RECENT FINDINGS Since the launch of The Global Polio Eradication Initiative in 1988, the worldwide incidence of polio has been reduced by 99.9%, with small numbers of poliomyelitis cases being reported only in Afghanistan, Pakistan, and Nigeria. With the planned phaseout of oral polio vaccine, vaccine-associated poliomyelitis is also expected to be eliminated. In their place, other EVs, chiefly EV-D68 and EV-A71, have emerged as the principal causes of AFP. There is evidence that the emergence of EV-D68 as a cause of severe respiratory disease and AFP was due to recent genetic virus evolution. Antiviral medications targeting EV-D68, EV-A71, and other EVs will likely be available in the near future. An effective EV-A71 vaccine has been developed, and preliminary investigations suggest an EV-D68 vaccine could be on the horizon. The eradication of poliomyelitis and vaccine-associated poliomyelitis is near, after which other EVs, presently EV-D68 and EV-A71, will be the principle viral causes of AFP. Moving forward, it is essential that EV outbreaks, in particular those associated with neurologic complications, be investigated carefully and the causal strains identified, so that treatment and prevention efforts can be rapidly developed and implemented.
Collapse
Affiliation(s)
- Ari Bitnun
- Division of Infectious Diseases, The Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| | - E Ann Yeh
- Division of Neurology, The Hospital for Sick Children and Department of Pediatrics, Division of Neurosciences and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
211
|
The Risk Factors of Acquiring Severe Hand, Foot, and Mouth Disease: A Meta-Analysis. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:2751457. [PMID: 30046361 PMCID: PMC6038695 DOI: 10.1155/2018/2751457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/22/2018] [Indexed: 11/30/2022]
Abstract
Objectives The incidence of severe hand, foot, and mouth disease (HFMD) is not low, especially in mainland China in almost every year recently. In this study, we conducted a meta-analysis to generate large-scale evidence on the risk factors of severe HFMD to provide suggestions on prevention and controlling. Methods PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang (Chinese) were searched to identify relevant articles. All analyses were performed using Stata 14.0. Results We conducted a meta-analysis of 11 separate studies. Fever (odds ratio (OR) 7.396, 95% confidence interval (CI) 3.565–15.342), fever for more than 3 days (OR 5.773, 95% CI 4.199–7.939), vomiting (OR 6.023, 95% CI 2.598–13.963), limb trembling (OR 42.348, 95% CI 11.765–152.437), dyspnea (OR 12.869, 95% CI 1.948–85.017), contact with HFMD children (OR 5.326, 95% CI 1.263–22.466), rashes on the hips (OR 1.650, 95% CI 1.303–2.090), pathologic reflexes (OR 3057.064, 95% CI 494.409–19000), Lethargy (OR 31.791, 95% CI 3.369–300.020), convulsions (OR 23.652, 95% CI 1.973–283.592), and EV71 infection (OR 9.056, 95% CI 4.102–19.996) were significantly related to the risk of severe HFMD. We did not find an association between female sex (OR 0.918, 95% CI 0.738–1.142), scatter-lived children (OR 1.347, 95% CI 0.245–7.397), floating population (OR 0.847, 95% CI 0.202–3.549), rash on the hands (OR 0.740, 95% CI 0.292–1.874), rash on the foot (OR 0.905, 95% CI 0.645–1.272), the level of the clinic visited first (below the country level) (OR 5.276, 95% CI 0.781–35.630), breast feeding (OR 0.523, 95% CI 0.167–1.643), and the risk of severe HFMD. Conclusions Fever, fever for more than 3 days, vomiting, limb trembling, dyspnea, contact with HFMD children, rashes on the hips, pathologic reflexes, lethargy, convulsions, and EV71 infection are risk factors for severe HFMD.
Collapse
|
212
|
Hu Y, Zeng G, Chu K, Zhang J, Han W, Zhang Y, Li J, Zhu F. Five-year immunity persistence following immunization with inactivated enterovirus 71 type (EV71) vaccine in healthy children: A further observation. Hum Vaccin Immunother 2018; 14:1517-1523. [PMID: 29482422 PMCID: PMC6037439 DOI: 10.1080/21645515.2018.1442997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
The longevity of antibodies induced by inactivated enterovirus 71 type (EV71) vaccine is not well studied. To estimate the immunity persistence following two-dose vaccination of EV71 vaccine, a five-year follow-up study was conducted as an extension of a Phase III clinical trial. In this study, a sub-cohort of volunteers who was eligible for enrollment and randomly administrated either 2 dose EV71 vaccine or placebo in the phase III clinical trial was selected, and then further observed 64 months post the 1st vaccination. 211 Subjects (106 vaccine subjects and 105 placebo subjects) who provided a full series of blood samples (at all the sampling points) were included in the final analyzed population. Seropositive rate (SR) and geometric mean titer (GMT) of the neutralizing antibodies (NAb) was calculated to detect the dynamic profiles of EV71 vaccine-induced immunogenicity. SR at the 5th year remained 94.34% in the vaccine subjects, with a GMT of 141.42. The SR was 71.43% in the placebo subjects, with a GMT of 71.83. Despite natural infection consistently promoted the NAb increase in the placebo subjects, the SR and GMT in vaccine subjects remained significantly higher than that in the placebo subjects at all the sampling points. The inactivated EV71 vaccine-induced immunity had a good persistence, within 5 years following the primary vaccination.
Collapse
Affiliation(s)
- Yuemei Hu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Gang Zeng
- Sinovac Biotech Co., LTD., Beijing, China
- Beijing Engineering Research Center, Beijing, China
| | - Kai Chu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Jing Zhang
- Sheyang County Center for Disease Control and Prevention, China
| | | | - Ying Zhang
- Sinovac Biotech Co., LTD., Beijing, China
| | - Jing Li
- Sinovac Biotech Co., LTD., Beijing, China
| | - Fengcai Zhu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
213
|
Li T, Wang H, Lu Y, Li Q, Chen C, Wang D, Li M, Li Y, Lu J, Chen Z, Ma Y, Liu W, Ma M, Wu D, Lu J, Yang Z. Willingness and influential factors of parents to vaccinate their children with novel inactivated enterovirus 71 vaccines in Guangzhou, China. Vaccine 2018; 36:3772-3778. [DOI: 10.1016/j.vaccine.2018.05.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
|
214
|
Yang B, Liu F, Liao Q, Wu P, Chang Z, Huang J, Long L, Luo L, Li Y, Leung GM, Cowling BJ, Yu H. Epidemiology of hand, foot and mouth disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine. ACTA ACUST UNITED AC 2018; 22. [PMID: 29258646 PMCID: PMC5743100 DOI: 10.2807/1560-7917.es.2017.22.50.16-00824] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hand, foot and mouth disease (HFMD) is usually caused by several serotypes from human enterovirus A species, including enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16). Two inactivated monovalent EV-A71 vaccines have been recently licensed in China and monovalent CV-A16 vaccine and bivalent EV-A71 and CV-A16 vaccine are under development. Methods: Using notifications from the national surveillance system, we describe the epidemiology and dynamics of HFMD in the country, before the introduction of EV-A71 vaccination, from 2008 through 2015. Results: Laboratory-identified serotype categories, i.e. CV-A16, EV-A71 and other enteroviruses, circulated annually. EV-A71 remained the most virulent serotype and was the major serotype for fatal cases (range: 88.5–95.4%) and severe cases (range: 50.7–82.3%) across years. Except for 2013 and 2015, when other enteroviruses were more frequently found in mild HFMD (48.8% and 52.5%), EV-A71 was more frequently detected from mild cases in the rest of the years covered by the study (range: 39.4–52.6%). The incidence rates and severity risks of HFMD associated with all serotype categories were the highest for children aged 1 year and younger, and decreased with increasing age. Discussion/conclusion: This study provides baseline epidemiology for evaluation of vaccine impact and potential serotype replacement.
Collapse
Affiliation(s)
- Bingyi Yang
- These authors contributed equally to this work.,WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China.,These authors contributed equally to this work
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China.,These authors contributed equally to this work
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhaorui Chang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Jiao Huang
- Department of Epidemiology and Statistics, Public Health School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Lu Long
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Li Luo
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yu Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- These authors are joint senior authors.,WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.,These authors are joint senior authors.,Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| |
Collapse
|
215
|
Qiao D, Liu L, Chen Y, Xue C, Gao Q, Mao HQ, Leong KW, Chen Y. Potency of a Scalable Nanoparticulate Subunit Vaccine. NANO LETTERS 2018; 18:3007-3016. [PMID: 29694053 DOI: 10.1021/acs.nanolett.8b00478] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticulate vaccines can potentiate immune responses by site-specific drainage to lymph nodes (LNs). This approach may benefit from a nanoparticle engineering method with fine control over size and codelivery of antigen and adjuvant. Here, we applied the flash nanocomplexation (FNC) method to prepare nanovaccines via polyelectrolyte complexation of chitosan and heparin to coencapsulate the VP1 protein antigen from enterovirus 71, which causes hand-foot-mouth disease (HFMD), with tumor necrosis factor α (TNF) or CpG as adjuvants. FNC allows for reduction of the nanovaccine size to range from 90 to 130 nm with relatively narrower size distribution and a high payload capacity. These nanovaccines reached both proximal and distal LNs via subcutaneous injection and subsequently exhibited prolonged retention in the LNs. The codelivery induced strong immune activation toward a Th1 response in addition to a potent Th2 response, and conferred effective protection against lethal virus challenge comparable to that of an approved inactivated viral vaccine in mouse models of both passive and active immunization setting. In addition, these nanovaccines also elicited strong IgA titers, which may offer unique advantages for mucosal protection. This study addresses the issues of size control, antigen bioactivity retention, and biomanufacturing to demonstrate the translational potential of a subunit nanovaccine design.
Collapse
Affiliation(s)
- Dongdong Qiao
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lixin Liu
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yi Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Chenbao Xue
- Sinovac Biotech Co. Ltd , No. 39 Shangdi Xi Road , Beijing 100085 , China
| | - Qiang Gao
- Sinovac Biotech Co. Ltd , No. 39 Shangdi Xi Road , Beijing 100085 , China
| | - Hai-Quan Mao
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
- Department of Materials Science and Engineering, and Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kam W Leong
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Yongming Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
216
|
Mao L, Fu X, Wu J, Shen L, Gu J, Yuan Z, Chen J, Zou X, Zhang C. The dynamics of the hand, foot and mouth disease epidemic from 2008 to 2016 in Zhenjiang city, China. Future Microbiol 2018; 13:1029-1040. [PMID: 29634358 DOI: 10.2217/fmb-2018-0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM To investigate the hand, foot and mouth disease (HFMD) epidemic in Zhenjiang, China from 2008 to 2016. MATERIALS & METHODS A total of 37,202 HFMD cases were investigated and 3707 nasopharyngeal swabs were detected for enterovirus RNA using RT-quantitative PCR. RESULTS We first reported a mixed pattern of HFMD seasonal epidemic with a combination of single-peak and two-peak patterns in alternate years, and the occurrence of sporadic and epidemic outbreaks of HFMD in kindergartens in Zhenjiang. Children younger than 4 years of age were highly vulnerable to HFMD, and home children and boys had higher risk to develop severe HFMD than nursery children and girls, respectively. Among tested samples, 1709 (46.1%) were detected as enterovirus RNA positive. CONCLUSION This study first presents the dynamic of the HFMD epidemic in Zhenjiang from 2008 to 2016.
Collapse
Affiliation(s)
- Lingxiang Mao
- Department of Clinical Laboratory, Affiliated People's Hospital, Jiangsu University, Zhenjiang, PR China
| | - Xuemin Fu
- Pathogen Discovery & Big Data Center, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Jing Wu
- School of Medical Science & Laboratory Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Li Shen
- Zhenjiang Center of Disease Control & Prevention, 9 Huangshan South Road, Zhenjiang, Jiangsu, PR China
| | - Jiaqi Gu
- School of Medical Science & Laboratory Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Zhaohu Yuan
- Zhenjiang Center of Disease Control & Prevention, 9 Huangshan South Road, Zhenjiang, Jiangsu, PR China
| | - Jianguo Chen
- Department of Clinical Laboratory, Affiliated People's Hospital, Jiangsu University, Zhenjiang, PR China
| | - Xinran Zou
- School of Medical Science & Laboratory Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Chiyu Zhang
- Pathogen Discovery & Big Data Center, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, PR China
| |
Collapse
|
217
|
Harvala H, Broberg E, Benschop K, Berginc N, Ladhani S, Susi P, Christiansen C, McKenna J, Allen D, Makiello P, McAllister G, Carmen M, Zakikhany K, Dyrdak R, Nielsen X, Madsen T, Paul J, Moore C, von Eije K, Piralla A, Carlier M, Vanoverschelde L, Poelman R, Anton A, López-Labrador FX, Pellegrinelli L, Keeren K, Maier M, Cassidy H, Derdas S, Savolainen-Kopra C, Diedrich S, Nordbø S, Buesa J, Bailly JL, Baldanti F, MacAdam A, Mirand A, Dudman S, Schuffenecker I, Kadambari S, Neyts J, Griffiths MJ, Richter J, Margaretto C, Govind S, Morley U, Adams O, Krokstad S, Dean J, Pons-Salort M, Prochazka B, Cabrerizo M, Majumdar M, Nebbia G, Wiewel M, Cottrell S, Coyle P, Martin J, Moore C, Midgley S, Horby P, Wolthers K, Simmonds P, Niesters H, Fischer TK. Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. J Clin Virol 2018; 101:11-17. [DOI: 10.1016/j.jcv.2018.01.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/18/2022]
|
218
|
Cooper G, Mao Q, Crawt L, Wang Y, Dougall T, Rigsby P, Liang Z, Xu M, Minor P, Wang J, Martin J. Establishment of the 1st WHO International Standard for anti-EV71 serum (Human). Biologicals 2018; 53:39-50. [PMID: 29572108 DOI: 10.1016/j.biologicals.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/02/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022] Open
Abstract
Enterovirus A71 (EV71) is the major causative agent of severe and fatal hand, foot and mouth disease. There is plenty of evidence that EV71 has circulated widely in the Western Pacific Region for the last twenty years. Vaccines against EV71 are already available or under development. A collaborative study to establish the 1st WHO International Standard for anti-EV71 serum (Human) was conducted to ensure that methods used to measure the serum neutralizing activity or antibody levels against EV71 are accurate, sensitive and reproducible. Two candidate samples as well as a third candidate reference containing low anti-EV71 antibody titre were produced from plasma samples donated by healthy individuals. All three serum samples exhibited good levels of neutralizing antibodies against a wide range of EV71 strains of various genotypes. The study showed that between laboratory variations in neutralization titres were significantly reduced when values were expressed relative to those of either of the two candidate sera. Sample 14/140 was established as the WHO 1st International Standard for anti-EV71 serum (human), 14/138 as its potential replacement and 13/238 as a WHO Reference Reagent, with assigned unitage of 1,000, 1090 and 300 International Units (IU) of anti-EV71 neutralizing antibodies per ampoule, respectively.
Collapse
Affiliation(s)
| | - Qunying Mao
- National Institute for Food and Drug Control (NIFDC), Beijing 100050, China
| | | | - Yiping Wang
- National Institute for Food and Drug Control (NIFDC), Beijing 100050, China
| | - Thomas Dougall
- Biostatistics, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Peter Rigsby
- Biostatistics, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Zhenglun Liang
- National Institute for Food and Drug Control (NIFDC), Beijing 100050, China
| | - Miao Xu
- National Institute for Food and Drug Control (NIFDC), Beijing 100050, China
| | | | | | - Junzhi Wang
- National Institute for Food and Drug Control (NIFDC), Beijing 100050, China.
| | | |
Collapse
|
219
|
Yao X, Mao Q, Li Y, Hao C, Bian L, Chen P, Gao F, Wu X, Lu W, Gao Q, Li X, Liang Z. Poorly neutralizing polyclonal antibody in vitro against coxsackievirus A16 circulating strains can prevent a lethal challenge in vivo. Hum Vaccin Immunother 2018; 14:1275-1282. [PMID: 29337652 DOI: 10.1080/21645515.2018.1426420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neutralizing antibodies (NTAbs) is a major criterion for evaluation the immunogenicity of many vaccines, for example, poliovirus and EV71 vaccine. Here, we firstly discovered that polyclonal antibodies induced by inactivated CVA16 vaccine and lived CVA16 virus have poor ability to neutralize circulating CVA16 strains in vitro. However, the passive transfer of poorly neutralizing polyclonal antibodies can protect suckling mice from lethally challenged with circulating strains in vivo. In addition, the obvious dose response was found between the titer of antibodies and the survival rate. Interestingly, poorly neutralizing polyclonal antibodies against circulating CVA16 strains, have good ability to neutralize prototype strain G10 in vitro. Between G10 and circulating CVA16 strains, there are total 47 variant sites in capsid, which are near the interface of VP1, VP2, and VP3, and close to 2-fold axis. Based on the structure of CVA16, the obvious structural changes were observed in residue 213 of VP1 GH loop, residue 139 of VP2 EF loop, and residues 59, 182 and 183 of VP3 GH loop. What we found may provide a new sight for the development of CVA16 vaccine.
Collapse
Affiliation(s)
- Xin Yao
- a Division Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing , PR China
| | - QunYing Mao
- a Division Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing , PR China
| | - Yajing Li
- b Division Research and Development, Sinovac Biotech Co. Ltd , Beijing , PR China
| | - Chunsheng Hao
- c Division 2, Beijing Vigoo Biological , Beijing , PR China
| | - LianLian Bian
- a Division Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing , PR China
| | - Pan Chen
- a Division Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing , PR China
| | - Fan Gao
- a Division Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing , PR China
| | - Xing Wu
- a Division Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing , PR China
| | - WeiWei Lu
- c Division 2, Beijing Vigoo Biological , Beijing , PR China
| | - Qiang Gao
- b Division Research and Development, Sinovac Biotech Co. Ltd , Beijing , PR China
| | - XiuLing Li
- c Division 2, Beijing Vigoo Biological , Beijing , PR China
| | - Zhenglun Liang
- a Division Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing , PR China
| |
Collapse
|
220
|
Hand, foot and mouth disease: current knowledge on clinical manifestations, epidemiology, aetiology and prevention. Eur J Clin Microbiol Infect Dis 2018; 37:391-398. [PMID: 29411190 DOI: 10.1007/s10096-018-3206-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
For a long time, hand, foot and mouth disease (HFMD) was seen as a mild viral infection characterized by typical clinical manifestations that spontaneously resolved in a few days without complications. In the past two decades, HFMD has received new attention because of evidence that this disease could have clinical, epidemiological and aetiological characteristics quite different from those initially thought. In contrast to previous beliefs, it has been clarified that HFMD can be associated with complications, leading to severe neurological sequelae and, rarely, to death. This finding has led to an enormous number of studies that have indicated that several viruses in addition to those known to be causes of HFMD could be associated with the development of disease. Moreover, it was found that if some viruses were more common in some geographic areas, frequent modification of the molecular epidemiology of the infecting strains could lead to outbreaks caused by infectious agents significantly different from those previously circulating. Vaccines able to confer protection against the most common aetiologic agents in a given country have been developed. However, simultaneous circulation of more than one causative virus and modification of the molecular epidemiology of infectious agents make preparations based on a single agent relatively inadequate. Vaccines with multiple components are a possible solution. However, several problems concerning their development must be solved before adequate prevention of severe cases of HFMD can be achieved.
Collapse
|
221
|
Zhang Q, Zhao B, Chen X, Song N, Wu J, Li G, Yu P, Han Y, Liu J, Qin C. GS-9620 inhibits enterovirus 71 replication mainly through the NF-κB and PI3K-AKT signaling pathways. Antiviral Res 2018; 153:39-48. [PMID: 29425831 DOI: 10.1016/j.antiviral.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/12/2018] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
Human enterovirus 71 (EV71) is the second most common cause of hand, foot, and mouth disease (HFMD), which can occur as a severe epidemic especially among children under 5-years old. New and improved treatment strategies to control EV71 infection are therefore urgently required. The heterocyclic compound GS-9620, a potent and selective agonist of Toll-like receptor 7 (TLR7), has been reported to activate plasmacytoid dendritic cells (pDCs), and suppress HBV as well as HIV replication. In this study, we indicated that GS-9620 also could inhibit EV71 replication in the mouse model of EV71 infection. With three-days treatment after EV71 infection, the levels of proinflammatory cytokines/chemokines, like IFN-α, IFN-γ and MCP-1, were sharply reduced in serum compared to those without treatment. Furthermore, GS-9620 activated TLR7 in the limb muscle cells, which stimulated the NF-κB and PI3K/AKT signaling pathways. When NF-κB or PI3K/AKT inhibitors were used, the antiviral effect of the GS-9620 was impacted. Overall, our data implied GS-9620 probably activates NF-κB and PI3K/AKT signaling pathways to clear the virus.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China
| | - Binbin Zhao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China
| | - Xin Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China
| | - Nan Song
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China
| | - Jing Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China
| | - Guangchao Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China
| | - Pin Yu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China
| | - Yunlin Han
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China
| | - Jiangning Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China.
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC) & Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Key Laboratory of Human Disease Comparative Medicine Ministry of Health, Beijing, PR China.
| |
Collapse
|
222
|
Gu W, Zeng G, Hu YM, Hu YS, Zhang Y, Hu YL, Wang Y, Li JX, Zhu FC. A comparative analysis of immunogenicity and safety of an enterovirus 71 vaccine between children aged 3-5 years and infants aged 6-35 months. Expert Rev Vaccines 2018; 17:257-262. [DOI: 10.1080/14760584.2018.1430572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wei Gu
- School of Public Health, Nanjing Medical University, Nanjing, PR China
| | | | - Yue-mei Hu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | | | | | | | - Yang Wang
- School of Public Health, Southeast University, Nanjing, PR China
| | - Jing-Xin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Feng-Cai Zhu
- School of Public Health, Nanjing Medical University, Nanjing, PR China
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| |
Collapse
|
223
|
Koh WM, Badaruddin H, La H, Chen MIC, Cook AR. Severity and burden of hand, foot and mouth disease in Asia: a modelling study. BMJ Glob Health 2018; 3:e000442. [PMID: 29564154 PMCID: PMC5859810 DOI: 10.1136/bmjgh-2017-000442] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 11/04/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) affects millions of children across Asia annually, leading to an increase in implemented control policies such as surveillance, isolation and social distancing in affected jurisdictions. However, limited knowledge of disease burden and severity causes difficulty in policy optimisation as the associated economic cost cannot be easily estimated. We use a data synthesis approach to provide a comprehensive picture of HFMD disease burden, estimating infection risk, symptomatic rates, the risk of complications and death, and overall disability-adjusted life-year (DALY) losses, along with associated uncertainties. Methods Complementary data from a variety of sources were synthesised with mathematical models to obtain estimates of severity of HFMD. This includes serological and other data extracted through a systematic review of HFMD epidemiology previously published by the authors, and laboratory investigations and sentinel reports from Singapore's surveillance system. Results HFMD is estimated to cause 96 900 (95% CI 40 600 to 259 000) age-weighted DALYs per annum in eight high-burden countries in East and Southeast Asia, with the majority of DALYs attributed to years of life lost. The symptomatic case hospitalisation rate of HFMD is 6% (2.8%-14.9%), of which 18.7% (6.7%-31.5%) are expected to develop complications. 5% (2.9%-7.4%) of such cases are fatal, bringing the overall case fatality ratio to be 52.3 (24.4-92.7) per 100 000 symptomatic infections. In contrast, the EV-A71 case fatality ratio is estimated to be at least 229.7 (75.4-672.1) per 100 000 symptomatic cases. Asymptomatic rate for EV-A71 is 71.4% (68.3%-74.3%) for ages 1-4, the years of greatest incidence. Conclusion Despite the high incidence rate of HFMD, total DALY due to HFMD is limited in comparison to other endemic diseases in the region, such as dengue and upper respiratory tract infection. With the majority of DALY caused by years of life lost, it is possible to mitigate most with increased EV-A71 vaccine coverage.
Collapse
Affiliation(s)
- Wee Ming Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Hanh La
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
224
|
Mirand A, le Sage FV, Pereira B, Cohen R, Levy C, Archimbaud C, Peigue-Lafeuille H, Bailly JL, Henquell C. Ambulatory Pediatric Surveillance of Hand, Foot and Mouth Disease as Signal of an Outbreak of Coxsackievirus A6 Infections, France, 2014-2015. Emerg Infect Dis 2018; 22:1884-1893. [PMID: 27767012 PMCID: PMC5088007 DOI: 10.3201/eid2211.160590] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Outbreaks can be detected by syndromic surveillance, rapid enterovirus testing, and genotyping. The clinical impact of enteroviruses associated with hand, foot and mouth disease (HFMD) is unknown outside Asia, and the prevalence of enterovirus A71 (EV-A71) in particular might be underestimated. To investigate the prevalence of enterovirus serotypes and the clinical presentations associated with HFMD in France, we conducted prospective ambulatory clinic–based surveillance of children during April 2014–March 2015. Throat or buccal swabs were collected from children with HFMD and tested for the enterovirus genome. Physical examinations were recorded on a standardized form. An enterovirus infection was detected in 523 (79.3%) of 659 children tested. Two epidemic waves occurred, dominated by coxsackievirus (CV) A6, which was detected in 53.9% of enterovirus-infected children. CV-A6 was more frequently related to atypical HFMD manifestations (eruptions extended to limbs and face). Early awareness and documentation of HFMD outbreaks can be achieved by syndromic surveillance of HFMD by ambulatory pediatricians and rapid enterovirus testing and genotyping.
Collapse
MESH Headings
- Adolescent
- Age Factors
- Child
- Child, Preschool
- Disease Outbreaks
- Enterovirus A, Human/classification
- Enterovirus A, Human/genetics
- Female
- France/epidemiology
- Hand, Foot and Mouth Disease/diagnosis
- Hand, Foot and Mouth Disease/epidemiology
- Hand, Foot and Mouth Disease/history
- Hand, Foot and Mouth Disease/virology
- History, 21st Century
- Humans
- Infant
- Infant, Newborn
- Male
- Molecular Typing
- Phylogeny
- Population Surveillance
- Prospective Studies
- RNA, Viral
- Serogroup
- Symptom Assessment
Collapse
|
225
|
Yee PTI, Poh CL. T Cell Immunity To Enterovirus 71 Infection In Humans And Implications For Vaccine Development. Int J Med Sci 2018; 15:1143-1152. [PMID: 30123051 PMCID: PMC6097258 DOI: 10.7150/ijms.26450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/05/2018] [Indexed: 01/23/2023] Open
Abstract
Enterovirus 71 (EV-A71) is one of the major pathogens causing hand, foot and mouth disease (HFMD). Some strains can lead to neurological disease and fatality in children. Up to date, there is no FDA-approved vaccine to prevent severe HFMD and mortality. Although the inactivated vaccine has advanced to production in China, lack of long-term protection and the requirement of multiple boosters have necessitated the development of other types of vaccines. Recent studies indicate that cellular and not humoral immunity determines the clinical outcome of EV-A71 infections. High levels of cytokines such as IL-1β, IL-6, IL-10 and IFN-γ tend to correlate with clinical severity in patients with pulmonary edema and encephalitis. The live attenuated vaccine may serve as the preferred choice as it can induce excellent humoral and cellular immunity as well as live-long immunity. Expression of certain HLA alleles such as TNF-α promoter type II (-308 allele), HLA-A33 and HLA-DR17 responses have been linked to severe HFMD. However, the high variability of MHC genes could restrict T cell recognition and be a major obstacle in the design of peptide vaccines. Hence, the development of a T cell universal vaccine (incorporating both CD4+ and CD8+ T cell epitopes) that induces broad, multifunctional and cross-reactive CD8+ T cell responses maybe desirable.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| |
Collapse
|
226
|
Yue Y, Li Z, Li P, Song N, Li B, Lin W, Liu S. Antiviral activity of a polysaccharide from Laminaria japonica against enterovirus 71. Biomed Pharmacother 2017; 96:256-262. [PMID: 28987950 DOI: 10.1016/j.biopha.2017.09.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/10/2017] [Accepted: 09/23/2017] [Indexed: 01/28/2023] Open
Abstract
This in vitro study investigated the antiviral activity of an acidic polysaccharide from Laminaria japonica against enterovirus 71 (EV71) as well as its mechanism of action. The LJ04 polysaccharide was purified from Laminaria japonica by affinity chromatography. To investigate its antiviral activity, an MTT assay, q-PCR, immunofluorescent staining and western-blot analysis were performed. To define its mechanism of action, ELISA, q-PCR and flow cytometry were conducted. LJ04 had a low EC50, high CC50 and high SI. LJ04 inhibited not only JN200804, but also JN200803 in RD cells, and viral proliferation was strongly inhibited, whereas LJ04 suppressed viral-induced apoptosis as detected by flow cytometry. In conclusion, LJ04 was found to have robust antiviral activity by inhibiting apoptosis and inducing IFN-β expression. Our findings indicate that LJ04 is a good candidate for the treatment of EV71.
Collapse
Affiliation(s)
- Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhihui Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China; Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Peng Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Lin
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Shuntao Liu
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China.
| |
Collapse
|
227
|
Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. Front Microbiol 2017; 8:2249. [PMID: 29238324 PMCID: PMC5713468 DOI: 10.3389/fmicb.2017.02249] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
Collapse
Affiliation(s)
- Jonathan A. Cox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Samarahan, Malaysia
- Department of Paediatrics, Sarawak General Hospital, Kuching, Malaysia
| | - Lisa F. P. Ng
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| |
Collapse
|
228
|
Yang T, Li H, Yue L, Song X, Xie T, Ma S, Meng H, Zhang Y, He X, Long R, Yang R, Luo F, Xie Z, Li Q. A comparative study of multiple clinical enterovirus 71 isolates and evaluation of cross protection of inactivated vaccine strain FY-23 K-B in vitro. Virol J 2017; 14:206. [PMID: 29073897 PMCID: PMC5659012 DOI: 10.1186/s12985-017-0872-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022] Open
Abstract
Background Enterovirus 71 (EV71) is one of the causative agents of hand, foot and mouth disease, which mostly affects infants and children and leads to severe neurological diseases. Vaccination offers the best option for disease control. We have screened the virus strain FY-23 K-B, which is used as an inactivated vaccine strain. An important issue in the development of vaccines is whether they provide cross protection against all other strains. Methods We collected and identified 19 clinical EV71 isolates from mainland China, which all belong to the C4 genotype. We established growth curves of the strains in Vero cells, performed genetic analysis, and evaluated the cross protection efficacy through neutralizing assays using antisera from a rabbit, monkey and adult human immunized with the FY-23 K-B vaccine strain. Results The antisera showed broad cross protection among the C4 subgroup strains and homotype strain. Neutralizing indexes (NIs) among the isolates and homotype strain of antisera varied between 56.2–1995.3 for rabbit, 17.8–42,169.7 for monkey and 31.6–17,782.8 for human, whereas NIs against Coxsackievirus A16 or other enteroviruses were below 10. Conclusions These results suggested that FY-23 K-B used as an antigen could elicit broad spectrum neutralizing antibodies with cross protective efficacy among C4 genotype strains.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Xia Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Tianhong Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Huaqing Meng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Ye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Xin He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Runxiang Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Rong Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Fangyu Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Zhongping Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
229
|
Local Versus Global Enterovirus (EV) Surveillance: A Discussion for the Need for Active Surveillance to Guide EV-A71 Vaccines. J Infect Dis 2017; 216:1337-1339. [DOI: 10.1093/infdis/jix493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/26/2023] Open
|
230
|
Mirand A, Peigue-Lafeuille H. [Clinical characteristics and course of hand, foot, and mouth disease]. Arch Pediatr 2017; 24:1036-1046. [PMID: 28893485 DOI: 10.1016/j.arcped.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022]
Abstract
Hand, foot and mouth disease (HFMD) and herpangina (HA) are common childhood diseases mostly associated with human enteroviruses (EV). Although usually benign illnesses, neurological complications may be observed during large epidemics when enterovirus A71 (EV-A71) is involved, as observed in the Asia Pacific Region and in China since the late 1990s. The occurrence of these complications warrants reinforcing the surveillance of the emergence of EV-A71 infections in France and Europe. Monitoring EV infections associated with HFMD can be considered as an effective tool to detect an upsurge of EV-A71 infections in a timely manner. In 2014, a national sentinel surveillance system for HFMD/HA was set up in France through a network of volunteer pediatricians and coordinated by the National Reference Center for Enteroviruses and Parechoviruses. Although classical manifestations of HFMD/HA can be easily recognized, there are several atypical presentations of the disease that can be confused with other skin conditions. Delayed cutaneous manifestations, such as onychomadesis and acral desquamation, may also occur and should prompt consideration of HFMD in the preceding weeks. Severe complications following HFMD include neurological manifestations (mainly rhombencephalitis) or less frequently cardiopulmonary failure and can sometimes be fatal. In China, the case severity rate has been estimated at 1%, with a case fatality rate at 0.03%. EV-A71 was involved in more than 90% of the fatal cases. Diagnosis of EV infections associated with severe neurological manifestations is based on the molecular detection of the EV genome in vesicles, cerebrospinal fluid (CSF), throat and stool given that EV-A71 is rarely recovered from the CSF. Positive EV genome detection should be followed by EV genotyping to identify the type of the EV. In temperate-climate countries, outbreaks of HFMD occur mostly but not exclusively during summer and autumn months. Adults may also present with HFMD. In 2016, an upsurge of severe neurological manifestations was reported in France; EV-A71 accounted for 50% of the cases. No specific treatment is available, but two inactivated EV-A71 vaccines are currently available in China.
Collapse
Affiliation(s)
- A Mirand
- CHU Clermont-Ferrand, laboratoire de virologie, Centre national de référence des entérovirus et des parechovirus, laboratoire associé, 63003 Clermont-Ferrand cedex, France; Université Clermont-Auvergne, LMGE UMR CNRS 6023, équipe EPIE, épidémiologie et physiopathologie des infections à entérovirus, 63000 Clermont-Ferrand, France
| | - H Peigue-Lafeuille
- CHU Clermont-Ferrand, laboratoire de virologie, Centre national de référence des entérovirus et des parechovirus, laboratoire associé, 63003 Clermont-Ferrand cedex, France; Université Clermont-Auvergne, LMGE UMR CNRS 6023, équipe EPIE, épidémiologie et physiopathologie des infections à entérovirus, 63000 Clermont-Ferrand, France.
| |
Collapse
|
231
|
Xu L, Zheng Q, Li S, He M, Wu Y, Li Y, Zhu R, Yu H, Hong Q, Jiang J, Li Z, Li S, Zhao H, Yang L, Hou W, Wang W, Ye X, Zhang J, Baker TS, Cheng T, Zhou ZH, Yan X, Xia N. Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody. Nat Commun 2017; 8:505. [PMID: 28894095 PMCID: PMC5593947 DOI: 10.1038/s41467-017-00477-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/02/2017] [Indexed: 12/31/2022] Open
Abstract
Coxsackievirus A6 (CVA6) has recently emerged as a major cause of hand, foot and mouth disease in children worldwide but no vaccine is available against CVA6 infections. Here, we demonstrate the isolation of two forms of stable CVA6 particles-procapsid and A-particle-with excellent biochemical stability and natural antigenicity to serve as vaccine candidates. Despite the presence (in A-particle) or absence (in procapsid) of capsid-RNA interactions, the two CVA6 particles have essentially identical atomic capsid structures resembling the uncoating intermediates of other enteroviruses. Our near-atomic resolution structure of CVA6 A-particle complexed with a neutralizing antibody maps an immune-dominant neutralizing epitope to the surface loops of VP1. The structure-guided cell-based inhibition studies further demonstrate that these loops could serve as excellent targets for designing anti-CVA6 vaccines.Coxsackievirus A6 (CVA6) causes hand, foot and mouth disease in children. Here the authors present the CVA6 procapsid and A-particle cryo-EM structures and identify an immune-dominant neutralizing epitope, which can be exploited for vaccine development.
Collapse
Affiliation(s)
- Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yongchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Qiyang Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Jie Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Zizhen Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Lisheng Yang
- Department of Research & Development Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, 102206, PR China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Xiangzhong Ye
- Department of Research & Development Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, 102206, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Timothy S Baker
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA, 92093-0378, USA
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Z Hong Zhou
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, California, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, 90095, USA
| | - Xiaodong Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA, 92093-0378, USA.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
232
|
Wang W, Song J, Wang J, Li Y, Deng H, Li M, Gao N, Zhai S, Dang S, Zhang X, Jia X. Cost-effectiveness of a national enterovirus 71 vaccination program in China. PLoS Negl Trop Dis 2017; 11:e0005899. [PMID: 28892475 PMCID: PMC5608421 DOI: 10.1371/journal.pntd.0005899] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/21/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Enterovirus 71 (EV71) has caused great morbidity, mortality, and use of health service in children younger than five years in China. Vaccines against EV71 have been proved effective and safe by recent phase 3 trials and are now available in China. The purpose of this study was to evaluate the health impact and cost-effectiveness of a national EV71 vaccination program in China. METHODS Using Microsoft Excel, a decision model was built to calculate the net clinical and economic outcomes of EV71 vaccination compared with no EV71 vaccination in a birth cohort of 1,000,000 Chinese children followed for five years. Model parameters came from published epidemiology, clinical and cost data. RESULTS In the base-case, vaccination would annually avert 37,872 cases of hand, foot and mouth disease (HFMD), 2,629 herpangina cases, 72,900 outpatient visits, 6,363 admissions to hospital, 29 deaths, and 945 disability adjusted life years. The break-even price of the vaccine was $5.2/dose. When the price was less than $8.3 or $14.6/dose, the vaccination program would be highly cost-effective or cost-effective, respectively (incremental cost-effectiveness ratio less than or between one to three times China GDP per capita, respectively). In one-way sensitivity analyses, the HFMD incidence was the only influential parameter at the price of $5/dose. CONCLUSIONS Within the price range of current routine vaccines paid by the government, a national EV71 vaccination program would be cost-saving or highly cost-effective to prevent EV71 related morbidity, mortality, and use of health service among children younger than five years in China. Policy makers should consider including EV71 vaccination as part of China's routine childhood immunization schedule.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianwen Song
- Department of Dermatology, Xi’an Children’s Hospital, Xi’an, China
| | - Jingjing Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huiling Deng
- The Second Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Mei Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ning Gao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Song Zhai
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| | - Xin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
233
|
Epidemiological characteristics of hand, foot, and mouth disease in Shandong, China, 2009-2016. Sci Rep 2017; 7:8900. [PMID: 28827733 PMCID: PMC5567189 DOI: 10.1038/s41598-017-09196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/21/2017] [Indexed: 11/09/2022] Open
Abstract
In the past decade, hand, foot, and mouth disease (HFMD) has posed a serious threat to childhood health in China; however, no epidemiological data from large HFMD epidemics have been described since 2013. In the present study, we described the epidemiological patterns of HFMD in Shandong province during 2009–2016 from a large number of symptomatic cases (n = 839,483), including >370,000 HFMD cases since 2013. Our results revealed that HFMD activity has remained at a high level and continued to cause annual epidemics in Shandong province from 2013 onwards. Although the incidence rate was significantly higher in urban areas than in rural areas, no significantly higher case-severity and case-fatality rates were found in urban areas. Furthermore, the seventeen cities of Shandong province could be classified into three distinct epidemiological groups according to the different peak times from southwest (inland) to northeast (coastal) regions. Notably, a replacement of the predominant HFMD circulating agent was seen and non-EVA71/Coxsackievirus A16 enteroviruses became dominant in 2013 and 2015, causing approximately 30% of the severe cases. Our study sheds light on the latest epidemiological characteristics of HFMD in Shandong province and should prove helpful for the prevention and control of the disease in Shandong and elsewhere.
Collapse
|
234
|
Sun Z, Zhang G, Guo P, Liu J, Gao Q, Xu X, Gong L. Epidemiological characterizations, pathogen spectrum and molecular characteristics of Coxsackievirus A16 from patients with HFMD in Yantai, Shandong, China between 2011 and 2015. Hum Vaccin Immunother 2017; 13:1831-1838. [PMID: 28537484 PMCID: PMC5557242 DOI: 10.1080/21645515.2017.1318233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022] Open
Abstract
This study aimed to investigate the epidemiological characterizations and pathogen spectrum of hand, foot, and mouth disease (HFMD) in Yantai City, Shandong Province, China, during 2011-2015, and to study the nucleotide evolution and amino acid variation of coxsackievirus A16 (CV-A16) epidemic strains that caused HFMD. The HFMD epidemic began to rise in March, and became prevalent from May to August, reached its peak in June, and then declined in September every year, children aged one to 5 years-old had the highest incidence rate whereas the incidence in children under 6 months was very low, and there were more males than females. Enterovirus nucleic acid detection using real-time reverse transcription polymerase chain reaction was performed on 2130 clinical specimens collected from patients with HFMD between 2011 and 2015, and 2012 enterovirus positive samples were detected, including 678 CV-A16, 639 EV-A71, and 695 other enteroviruses. In total, 60 CV-A16 isolates were randomly selected each year for virus isolation, of which 33 CV-A16 strains were randomly selected for further characterization because CV-A16 is the predominant serotype that caused HFMD in Yantai City, and a phylogenetic tree based on the VP1 region was constructed. All 33 CV-A16 strains belonged to the Bla and B1b genotypes, with a nucleotide similarity of 87.9-100% and deduced amino acid similarity of 98.6-100%. Compared with the reference strain Tainan/5079/98 (AF177911), amino acid mutations were identified at positions 11, 23, 25, 31, 99, 145, and 289, where differences were observed among 33 strains, indicating a unique mutation map of CV-A16 in Yantai City. Our findings demonstrate the etiologic characteristics of HFMD, provide supporting evidence for the prevention and control of HFMD, and open a promising avenue for vaccine development against HFMD, by targeting CV-A16.
Collapse
Affiliation(s)
- Zhenlu Sun
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Guifang Zhang
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Peijun Guo
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Juan Liu
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Qiao Gao
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Xiaowen Xu
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Lianfeng Gong
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| |
Collapse
|
235
|
Persistent circulation of Coxsackievirus A6 of genotype D3 in mainland of China between 2008 and 2015. Sci Rep 2017; 7:5491. [PMID: 28710474 PMCID: PMC5511160 DOI: 10.1038/s41598-017-05618-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
A total of 807 entire VP1 sequences of Coxsackievirus A6 (CV-A6) from mainland of China from 1992 to 2015, including 520 in this study and 287 from the GenBank database, were analysed to provide a basic framework of molecular epidemiological characteristics of CV-A6 in China. Sixty-five VP1 sequences including 46 representative CV-A6 isolates from 807 Chinese strains and 19 international strains from GenBank were used for describing the genotypes and sub-genotypes. The results revealed that CV-A6 strains can be categorised into 4 genotypes designated as A, B, C, and D according to previous data and can be further subdivided into B1–B2, C1–C2, and D1–D3 sub-genotypes. D3 is the predominant sub-genotype that circulated in recent years in mainland of China and represents 734 of 807 Chinese isolates. Sixty-six strains belong to D2, whereas B1 and C1 comprise a single strain each, and five AFP strains formed B2. Sub-genotype D3 first circulated in 2008 and has become the predominant sub-genotype since 2009 and then reached a peak in 2013, while D2 was mostly undetectable in the past years. These data revealed different transmission stages of CV-A6 in mainland of China and that sub-genotype D3 may have stronger transmission ability.
Collapse
|
236
|
Wu Q, Fu X, Jiang L, Yang R, Cun J, Zhou X, Zhou Y, Xiang Y, Gu W, Fan J, Li H, Xu W. Prevalence of enteroviruses in healthy populations and excretion of pathogens in patients with hand, foot, and mouth disease in a highly endemic area of southwest China. PLoS One 2017; 12:e0181234. [PMID: 28704524 PMCID: PMC5509318 DOI: 10.1371/journal.pone.0181234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Etiological carriers and the excretion of the pathogens causing hand, foot, and mouth disease (HFMD) in healthy persons, patients, and asymptomatic persons infected with HFMD as ongoing infection sources may play an important role in perpetuating and spreading epidemics of HFMD. The aims of this study were to determine the carrier status of EV-A71 and CV-A16 in healthy populations, as well as the duration of EV-A71 and CV-A16 shedding in the stools of HFMD patients in an epidemic area of southwest China. A cross-sectional study and a follow-up study were conducted in three HFMD endemic counties of Yunnan Province. Six hundred sixty-seven healthy subjects were recruited to participate in the cross-sectional study, and two stool specimens were collected from each subject. Among the healthy subjects, 90 (13.5%) tested positive for viral isolation, but neither EV-A71 nor CV-A16 was detected in healthy individuals. Of the 150 patients with probable HFMD, 55.3% (83/150) tested positive for viral isolation with presented serotypes such as EV-A71 (51.81%, 43/83), CV-A16 (32.53%, 27/83), other EVs (13.25%, 11/83), and mixed EV-A71 and CV-A16 (2.41%, 2/83). The longest duration of EV-A71 and CV-A16 shedding in stool specimens from patients with HFMD was >46 days after onset. The positive rate of EV-A71 in the stool specimens of confirmed patients dropped to 50% by the end of the third week, and the same occurred with CV-A16 by the end of approximately the seventh week after onset. Although carriers of major causative agents of HFMD in healthy populations are fewer in number, the prolonged shedding of pathogens in patients with HFMD may serve as an important factor in perpetuating and spreading HFMD epidemics.
Collapse
Affiliation(s)
- Qiang Wu
- Yuxi City Center for Disease Control and Prevention, Hongta District, Yuxi City, Yunnan, People’s Republic of China
| | - Xiaoqing Fu
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| | - Lili Jiang
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| | - Rusong Yang
- Yuxi City Center for Disease Control and Prevention, Hongta District, Yuxi City, Yunnan, People’s Republic of China
| | - Jianping Cun
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| | - Xiaofang Zhou
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| | - Yongming Zhou
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| | - Yibing Xiang
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| | - Wenpeng Gu
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| | - Jianhua Fan
- Xishuang Banna Autonomous Prefecture Centers for Disease Control and Prevention, Jinghong City, Yunnan, People’s Republic of China
| | - Hong Li
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| | - Wen Xu
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
237
|
Fu C, Shen J, Lu L, Li Y, Cao Y, Wang M, Pei S, Yang Z, Guo Q, Shaman J. Pre-vaccination evolution of antibodies among infants 0, 3 and 6months of age: A longitudinal analysis of measles, enterovirus 71 and coxsackievirus 16. Vaccine 2017; 35:3817-3822. [PMID: 28610823 DOI: 10.1016/j.vaccine.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Due to waning levels of maternal antibodies (measles; enterovirus 71, EV71; and coxsackievirus A16, CoxA16), some infants may lose protection against infection prior to vaccination. Using a longitudinal design, we examine how maternal antibody levels evolve over time in infants prior to vaccination. METHODS In 2013-2014, we collected sera at ages 0, 3 and 6months from infants. We assayed for levels of measles IgG antibody (717, 233 and 75 sample sera tested at months 0, 3 and 6, respectively), and neutralizing antibodies for EV71 and CoxA16 (225, 217, and 72). Demographic and health information were collected, and a linear mixed model (LMM) was used to describe antibody levels over time. RESULTS Pre-vaccination monotonic antibody decreases were observed for measles (1410, 195 and 22mIU/ml, p<0.001), EV71 (1:19.9, 6.3 and 4.5, p<0.001) and CoxA16 (1:16.3, 5.9, and 4.5, p<0.001). At 6months of age, only 2.7% (95%CI, 0.6-8.3), 6.8% (95%CI, 2.7-14.4) and 5.6% (95%CI, 1.9-12.7) of infants were antibody positive for measles, EV71 and CoxA16, respectively. LMM findings indicated that infants with higher antibody titers at birth experienced a greater loss of antibody level. An infection rate of 1.3% (95%CI, 0.1-6.1) was reported for both EV71 and CoxA16. CONCLUSIONS Further modifications of vaccination strategies for measles, earlier vaccination for EV71 infection, and deployment of a CoxA16 vaccine need to be considered to limit infection among the very young.
Collapse
Affiliation(s)
- Chuanxi Fu
- Zhejiang Chinese Medical University, Hangzhou, China; Guangzhou Center for Disease Control and Prevention, Guangzhou, China.
| | - Jichuan Shen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Long Lu
- Liwan District Maternal and Child Health Hospital, Guangzhou, China
| | - Yajing Li
- Sinovac Biotech Co., Ltd, Beijing, China
| | - Yimin Cao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Guo
- Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
238
|
Wu Y, Zhu R, Xu L, Li Y, Li S, Yu H, Li S, Zhu H, Cheng T, Xia N. A novel combined vaccine based on monochimeric VLP co-displaying multiple conserved epitopes against enterovirus 71 and varicella-zoster virus. Vaccine 2017; 35:2728-2735. [PMID: 28408118 DOI: 10.1016/j.vaccine.2017.03.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/14/2022]
Abstract
Chicken pox and hand, foot and mouth disease (HFMD) are two major infectious diseases that mainly affect infants and children, causing significant morbidity annually. Varicella-zoster virus (VZV) and enterovirus 71 (EV71), respectively, are the principal epidemic pathogens causing these two diseases. To investigate the possibility of developing a novel combined vaccine to prevent chicken pox and HFMD, we constructed three chimeric virus-like particles (VLPs) (termed HBc-V/1/2, HBc-2/V/1 and HBc-1/2/V) based on the hepatitis B core antigen (HBc) carrier that display epitopes derived from VZV-gE, EV71-VP1, and EV71-VP2 in a varied tandem manner. The chimeric HBc can self-assemble into VLPs with these three epitopes displayed on the surface of particles. Epitope-specific antibody characterization suggested that HBc-V/1/2 elicits a balanced antibody response toward these three epitopes, and no immune interference was observed between the three epitopes. Importantly, the anti-HBc-V/1/2 sera could simultaneously neutralize VZV and EV71 and cross-neutralize coxsackievirus A16 (CVA16), another major pathogen causing HFMD. Moreover, the anti-HBc-V/1/2 sera protected neonatal mice from lethal challenge of EV71 and CVA16. Collectively, our study not only demonstrated that HBc-V/1/2 is a promising candidate combined vaccine for HFMD and Chicken pox but also provides a novel strategy for the design of combined vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Chickenpox/prevention & control
- Drug Carriers
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Epitopes/genetics
- Epitopes/immunology
- Female
- Hand, Foot and Mouth Disease/prevention & control
- Hepatitis B Core Antigens/genetics
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/immunology
- Mice, Inbred BALB C
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/genetics
- Vaccines, Combined/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yongchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, USA
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
239
|
Yee PTI, Laa Poh C. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus- A71 vaccine development. Virology 2017; 506:121-129. [PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
240
|
Li B, Yue Y, Zhang Y, Yuan Z, Li P, Song N, Lin W, Liu Y, Gu L, Meng H. A Novel Enterovirus 71 (EV71) Virulence Determinant: The 69th Residue of 3C Protease Modulates Pathogenicity. Front Cell Infect Microbiol 2017; 7:26. [PMID: 28217559 PMCID: PMC5290453 DOI: 10.3389/fcimb.2017.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
Human enterovirus type 71 (EV71), the major causative agent of hand-foot-and-mouth disease, has been known to cause fatal neurological complications. Unfortunately, the reason for neurological complications that have been seen in fatal cases of the disease and the relationship between EV71 virulence and viral genetic sequences remains largely undefined. The 3C protease (3Cpro) of EV71 plays an irreplaceable role in segmenting the precursor polyprotein during viral replication, and intervening with host life activity during viral infection. In this study, for the first time, the 69th residue of 3C protease has been identified as a novel virulence determinant of EV71. The recombinant virus with single point variation, in the 69th of 3Cpro, exhibited obvious decline in replication, and virulence. We further determined the crystal structure of 3C N69D at 1.39 Ǻ resolution and found that conformation of 3C N69D demonstrated significant changes compared with a normal 3C protein, in the substrate-binding site and catalytic active site. Strikingly, one of the switch loops, essential in fixing substrates, adopts an open conformation in the 3C N69D-rupintrivir complex. Consistent with this apparent structural disruption, the catalytic activity of 3C N69D decreased sharply for host derived and viral derived substrates, detected for both in vitro and in vivo. Interestingly, in addition to EV71, Asp69 was also found in 3C proteases of other virus strains, such as CAV16, and was conserved in nearly all C type human rhinovirus. Overall, we identified a natural virulence determinant of 3C protease and revealed the mechanism of attenuated virulence is mediated by N69D substitution. Our data provides new insight into the enzymatic mechanism of a subdued 3C protease and suggests a theoretical basis for virulence determinantion of picornaviridae.
Collapse
Affiliation(s)
- Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Yajie Zhang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong UniversityJinan, China
| | - Peng Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Wei Lin
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Yan Liu
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong UniversityJinan, China
| | - Hong Meng
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| |
Collapse
|
241
|
Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res 2017; 6:4-14. [PMID: 28168168 PMCID: PMC5292356 DOI: 10.7774/cevr.2017.6.1.4] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 01/15/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a highly contagious viral infection affecting young children during the spring to fall seasons. Recently, serious outbreaks of HFMD were reported frequently in the Asia-Pacific region, including China and Korea. The symptoms of HFMD are usually mild, comprising fever, loss of appetite, and a rash with blisters, which do not need specific treatment. However, there are uncommon neurological or cardiac complications such as meningitis and acute flaccid paralysis that can be fatal. HFMD is most commonly caused by infection with coxsackievirus A16, and secondly by enterovirus 71 (EV71). Many other strains of coxsackievirus and enterovirus can also cause HFMD. Importantly, HFMD caused by EV71 tends to be associated with fatal complications. Therefore, there is an urgent need to protect against EV71 infection. Development of vaccines against EV71 would be the most effective approach to prevent EV71 outbreaks. Here, we summarize EV71 infection and development of vaccines, focusing on current scientific and clinical progress.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Yun-Ju Shin
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Jeong-Hwan Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Tae-Gyun Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea.; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Korea
| |
Collapse
|
242
|
Wang M, Dong Q, Wang H, He Y, Chen Y, Zhang H, Wu R, Chen X, Zhou B, He J, Kung HF, Huang C, Wei Y, Huang JD, Xu H, He ML. Oblongifolin M, an active compound isolated from a Chinese medical herb Garcinia oblongifolia, potently inhibits enterovirus 71 reproduction through downregulation of ERp57. Oncotarget 2017; 7:8797-808. [PMID: 26848777 PMCID: PMC4891005 DOI: 10.18632/oncotarget.7122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
There is no effective drug to treat EV71 infection yet. Traditional Chinese herbs are great resources for novel antiviral compounds. Here we showed that Oblongifolin M (OM), an active compound isolated from Garcinia oblongifolia, potently inhibited EV71 infection in a dose dependent manner. To identify its potential effectors in the host cells, we successfully identified 18 proteins from 52 differentially expressed spots by comparative proteomics studies. Further studies showed that knockdown of ERp57 inhibited viral replication through downregulating viral IRES (internal ribosome entry site) activities, whereas ectopic expression of ERp57 increased IRES activity and partly rescued the inhibitory effects of OM on viral replication. We demonstrated that OM is an effective antiviral agent; and that ERp57 is one of its cellular effectors against EV71 infection.
Collapse
Affiliation(s)
- Mengjie Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Qi Dong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hua Wang
- Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention (Shenzhen CDC), Shenzhen, China
| | - Ying Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinchun Chen
- Institute of Infectious Diseases, The 3rd Peoples' Hospital of Shenzhen, Shenzhen, China
| | - Boping Zhou
- Institute of Infectious Diseases, The 3rd Peoples' Hospital of Shenzhen, Shenzhen, China
| | - Jason He
- College of Letter and Sciences, University of California at Berkeley, Berkeley, CA, USA
| | - Hsiang-Fu Kung
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
243
|
Romero JR. Human Enteroviruses. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
244
|
Li Y, Lin Z, Xu T, Wang C, Zhao M, Xiao M, Wang H, Deng N, Zhu B. Delivery of VP1 siRNA to inhibit the EV71 virus using functionalized silver nanoparticles through ROS-mediated signaling pathways. RSC Adv 2017. [DOI: 10.1039/c6ra26472g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enterovirus 71 (EV71) is the primary causative agent of hand, foot, and mouth disease (HFMD).
Collapse
Affiliation(s)
- Yinghua Li
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- China
| | - Zhengfang Lin
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- China
| | - Tiantian Xu
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- China
| | - Changbing Wang
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- China
| | - Mingqi Zhao
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- China
| | - Misi Xiao
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- China
| | - Hanzhong Wang
- State Key Laboratory of Virology
- Wuhan Institute of Virology
- Chinese Academy of Sciences
- China
| | - Ning Deng
- Guangdong Province
- Key Laboratory of Molecular Immunology and Antibody Engineering
- Jinan University
- Guangzhou
- China
| | - Bing Zhu
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- China
| |
Collapse
|
245
|
Wang Z, Lv H, Zhu W, Mo Z, Mao G, Wang X, Lou X, Chen Y. Epidemiologic Features of Enterovirus 71-Associated Hand-Foot-and-Mouth Disease from 2009 to 2013 in Zhejiang, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 14:ijerph14010033. [PMID: 28042848 PMCID: PMC5295284 DOI: 10.3390/ijerph14010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/20/2016] [Accepted: 12/25/2016] [Indexed: 11/16/2022]
Abstract
Enterovirus 71 (EV71) usually causes hand-foot-and-mouth disease (HFMD) with severe clinical symptoms and even deaths in China. There is no efficient antiviral drug to protect against severe EV71-associated HFMD, making the development of EV71 vaccines therefore a priority. However, the potential target subject population(s) to be immunized with EV71 vaccine are not well understood. In this study, we characterized the epidemiology regarding EV71-associated HFMD on the basis of provincial-level surveillance. We extracted data on EV71-associated HFMD from the National Notifiable Disease Reporting System in Zhejiang Province, China between 1 January 2009 and 31 December 2013 (n = 7650). The higher incidence rate of EV71 cases occurred in those children aged 12-23 months, with boys being predominant. Interestingly, different peaks activities of EV71 infection was observed in different calendar year, with one peak in 2009 and 2013 and two peaks in 2010-2012. However, EV71 infection seemed to predominately occur in warm season and a distinguished cyclic peak that seemed to be of about 12 months. Children aged 12-23 months are thus identified as an important target population for public health intervention, for example, it is recommended that these key subjects immunized with EV71 vaccine. In addition, an enhanced surveillance system for EV71-associated with HFMD needs to focus on generic and phylogenetic analysis.
Collapse
Affiliation(s)
- Zhifang Wang
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
- Key Medical Research Center, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| | - Huakun Lv
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| | - Wenming Zhu
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| | - Zhe Mo
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| | - Guangming Mao
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| | - Xiaoming Lou
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| | - Yongdi Chen
- Department of Science and Technology Information, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| |
Collapse
|
246
|
Stuurman AL, Verstraeten T, De Schryver A. Rapid assessment of the reactogenicity of a 2016-2017 seasonal influenza vaccine: results from a feasibility study. Expert Rev Vaccines 2016; 16:187-191. [DOI: 10.1080/14760584.2017.1264272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anke L. Stuurman
- P95 Epidemiology and Pharmacovigilance Consulting and Services, Leuven, Belgium
| | - Thomas Verstraeten
- P95 Epidemiology and Pharmacovigilance Consulting and Services, Leuven, Belgium
| | | |
Collapse
|
247
|
Zhu Z, Ye X, Ku Z, Liu Q, Shen C, Luo H, Luan H, Zhang C, Tian S, Lim C, Huang Z, Wang H. Transcutaneous immunization via rapidly dissolvable microneedles protects against hand-foot-and-mouth disease caused by enterovirus 71. J Control Release 2016; 243:291-302. [DOI: 10.1016/j.jconrel.2016.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 02/07/2023]
|
248
|
Zhao J, Jiang F, Zhong L, Sun J, Ding J. Age patterns and transmission characteristics of hand, foot and mouth disease in China. BMC Infect Dis 2016; 16:691. [PMID: 27871252 PMCID: PMC5117511 DOI: 10.1186/s12879-016-2008-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 11/01/2016] [Indexed: 11/27/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) has circulated in China and caused yearly outbreak. To understand the transmission of the disease and to assess the spatial variation in cases reported, we examined age-specific transmission characteristics and reporting rates of HFMD for 31 provinces in mainland China. Methods We first analyzed incidence spatial patterns and age-specific incidence patterns using dataset from 2008 to 2012. Transmission characteristics were estimated based on catalytic model. Reporting rates were estimated using a simple mass action model from “Time Series Susceptible Infectious Recovered” (TSIR) modeling. Results We found age-specific spatial incidence patterns: age-specific proportions of HFMD cases varied geographically in China; larger case percentage was among children of 3–5 years old in the northern part of China and was among children of 0–2 years old in the southern part of China. Our analysis results revealed that: 1) reporting rates and transmission characteristics including the average age at infection, the force of infection and the basic reproduction number varied geographically in China; 2) patterns of the age-specific force of infection for 30 provinces were similar to that of childhood infections in developed countries; the age group that had the highest infection risk was 3–5 years old in 30 provinces, and 10–14 years old in Tibet; 3) a large difference in HFMD transmission existed between northwest region and southeast region; 4) transmission characteristics determined incidence patterns: the higher the disease transmission in a province, the earlier the annual seasonality started and the more case percentage was among children 0–2 years old and less among 3–5 years old. Conclusion Because HFMD has higher transmission than most childhood infections reported, high effective vaccine coverage is needed to substantially reduce HFMD incidence. Control measures before the vaccine implementation should focus on 2–6 years old children in 30 provinces and 10–14 years old children in Tibet. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-2008-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jijun Zhao
- Complexity Science Institute, Qingdao University, Qingdao, Shandong, China.
| | - Fachun Jiang
- Qingdao Center for Disease Prevention and Control, Qingdao, Shandong, China
| | - Lianfa Zhong
- Complexity Science Institute, Qingdao University, Qingdao, Shandong, China
| | - Jianping Sun
- Qingdao Center for Disease Prevention and Control, Qingdao, Shandong, China
| | - Junhang Ding
- College of Automation and Electrical Engineering, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
249
|
Wang J, Zhang Y, Zhang X, Hu Y, Dong C, Liu L, Yang E, Che Y, Pu J, Wang X, Song J, Liao Y, Feng M, Liang Y, Zhao T, Jiang L, He Z, Lu S, Wang L, Li Y, Fan S, Guo L, Li Q. Pathologic and immunologic characteristics of coxsackievirus A16 infection in rhesus macaques. Virology 2016; 500:198-208. [PMID: 27829175 DOI: 10.1016/j.virol.2016.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/02/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Coxsackievirus A16 (CV-A16) causes human hand, foot and mouth disease, but its pathogenesis is unclear. In rhesus macaques, CV-A16 infection causes characteristic vesicles in the oral mucosa and limbs as well as viremia and positive viral loads in the tissues, suggesting that these animals reflect the pathologic process of the infection. An immunologic analysis indicated a defective immune response, which included undetectable neutralizing antibodies and IFN-γ-specific memory T-cells in macaques infected with CV-A16. Furthermore, existing neutralizing antibodies in macaques immunized with the inactivated vaccine were surprisingly unable to protect against a viral challenge despite the presence of a positive T-cell memory response against viral antigens. The virus was capable of infecting pre-conventional dendritic cells and replicating within them, which may correlate with the immunological characteristics observed in the animals.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xiaolong Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yajie Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Chenghong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Erxia Yang
- Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu, China
| | - Yanchun Che
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Jing Pu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yan Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Ting Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Li Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China; Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China.
| |
Collapse
|
250
|
Stoyanova A, Nikolova I, Pürstinger G, Dobrikov G, Dimitrov V, Philipov S, Galabov AS. Anti-enteroviral triple combination of viral replication inhibitors: activity against coxsackievirus B1 neuroinfection in mice. Antivir Chem Chemother 2016; 24:136-147. [PMID: 27815331 DOI: 10.1177/2040206616671571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Chemotherapy is an important tool for controlling enterovirus infections, but clinically effective anti-enterovirus drugs do not currently exist, mainly due to the development of drug resistance. We investigated the combination effects of enterovirus replication inhibitors in order to limit this process. In previous studies, we showed the efficacy of consecutive alternating administration of the triple combinations disoxaril/guanidine/oxoglaucine and pleconaril/guanidine/oxoglaucine against coxsackievirus B1 infection in newborn mice. Drug sensitivity tests of the viral brain isolates showed that these drug combinations prevented the development of drug resistance. METHODS In the current study, we replaced guanidine-HCl with enteroviral RNA synthesis inhibitor MDL-860 to test the effect of a new triple combination-pleconaril/MDL-860/oxoglaucine-applied via consecutive alternating administration in newborn mice infected subcutaneously with 20 MLD50 of coxsackievirus B1. RESULTS The pleconaril/MDL-860/oxoglaucine combination via consecutive alternating administration showed high activity at the 75 mg/kg MDL-860 dose: a protective effect of 50% and a pronounced suppression of brain virus titers. Moreover, along with prevention of drug resistance, a phenomenon of increased drug sensitivity was established. MDL-860 sensitivity in pleconaril/MDL-860/oxoglaucine increased 8.2 times vs. placebo (29 times vs. monotherapy) on day 7 and oxoglaucine sensitivity-4.9 times vs. placebo (by 6.8 times vs. monotherapy) on day 13. As concerns pleconaril, a demonstrable prevention of drug resistance was registered without increase of drug sensitivity. Daily, simultaneous administration of pleconaril/MDL-860/oxoglaucine showed no protective effects and led to a rapid development of drug resistance. CONCLUSIONS These results add new support for using consecutive alternating administration treatment courses to achieve clinically effective chemotherapy of enterovirus infections.
Collapse
Affiliation(s)
- Adelina Stoyanova
- 1 Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivanka Nikolova
- 1 Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Georgi Dobrikov
- 3 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vladimir Dimitrov
- 3 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefan Philipov
- 3 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Angel S Galabov
- 1 Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|