201
|
Olfr603, an orphan olfactory receptor, is expressed in multiple specific embryonic tissues. Gene Expr Patterns 2015; 19:30-5. [PMID: 26116001 DOI: 10.1016/j.gep.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/10/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Olfactory receptors were initially believed to be expressed specifically within the olfactory neurons. However, accumulating genome-scale data has recently demonstrated more extensive expression. There are hundreds of olfactory receptor family members and the realisation of their widespread expression provides an opportunity to reveal new biology. However, existing data is predominantly based on RT-PCR, microarray and RNA-seq approaches and the details of tissue and cell-type specific expression are lacking. RESULTS As a proof of principle, we selected Olfr603 for expression analysis. We generated an antibody against a non-conserved epitope of Olfr603 and characterised its expression in E8.5-E12.5 mouse embryos using immunohistochemistry. This analysis demonstrated a dynamic pattern of expression in diverse cell types within the developing embryo unrelated to the olfactory system. Expression was detected in migrating neural crest, endothelial precursors and vascular endothelium, endocardial cells, smooth muscle, neuroepithelium and within the ocular tissues. This complex distribution does not conform to any apparent germ layer or tissue origin. CONCLUSIONS This initial characterisation of Olfr603 expression highlights the potential for a broad role for this receptor in the development of many tissues.
Collapse
|
202
|
Kim BH, Kim HN, Roh SJ, Lee MK, Yang S, Lee SK, Sung YA, Chung HW, Cho NH, Shin C, Sung J, Kim HL. GWA meta-analysis of personality in Korean cohorts. J Hum Genet 2015; 60:455-60. [PMID: 25994864 DOI: 10.1038/jhg.2015.52] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Abstract
Personality is a determinant of behavior and lifestyle that is associated with health and human diseases. Despite the heritability of personality traits is well established, the understanding of the genetic contribution to personality trait variation is extremely limited. To identify genetic variants associated with each of the five dimensions of personality, we performed a genome-wide association (GWA) meta-analysis of three cohorts, followed by comparison of a family cohort. Personality traits were measured with the Revised NEO Personality Inventory for the five-factor model (FFM) of personality. We investigated the top five single-nucleotide polymorphisms (SNPs) for each trait, and revealed the most highly association with neuroticism and TACC2 (rs1010657, P=8.79 × 10(-7)), extraversion and PTPN12 (rs12537271, P=1.47 × 10(-7)), openness and IMPAD1 (rs16921695, P=5 × 10(-8)), agreeableness and RPS29 (rs8015351, P=1.27 × 10(-6)) and conscientiousness and LMO4 (rs912765, P=2.91 × 10(-6)). It had no SNP reached the GWA study threshold (P<5 × 10(-8)). When expanded the SNPs up to top 100, the correlation of PTPRD (rs1029089) and agreeableness was confirmed in Healthy Twin cohort with other 13 SNPs. This GWA meta-analysis on FFM personality traits is meaningful as it was the first on a non-Caucasian population targeted to FFM of personality traits.
Collapse
Affiliation(s)
- Bo-Hye Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han-Na Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seung-Ju Roh
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Mi Kyeong Lee
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sarah Yang
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Seung Ku Lee
- Institute of Human Genomic Study, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yeon-Ah Sung
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Won Chung
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Nam H Cho
- Department of Preventive Medicine, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chol Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Hospital, Ansan, Republic of Korea
| | - Joohon Sung
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
203
|
Mariman ECM, Szklarczyk R, Bouwman FG, Aller EEJG, van Baak MA, Wang P. Olfactory receptor genes cooperate with protocadherin genes in human extreme obesity. GENES AND NUTRITION 2015; 10:465. [PMID: 25943692 PMCID: PMC4420755 DOI: 10.1007/s12263-015-0465-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/21/2015] [Indexed: 01/28/2023]
Abstract
Worldwide, the incidence of obesity has increased dramatically over the past decades. More knowledge about the complex etiology of obesity is needed in order to find additional approaches for treatment and prevention. Investigating the exome sequencing data of 30 extremely obese subjects (BMI 45-65 kg/m(2)) shows that predicted damaging missense variants in olfactory receptor genes on chromosome 1q and rare predicted damaging variants in the protocadherin (PCDH) beta-cluster genes on chromosome 5q31, reported in our previous work, co-localize in subjects with extreme obesity. This implies a synergistic effect between genetic variation in these gene clusters in the predisposition to extreme obesity. Evidence for a general involvement of the olfactory transduction pathway on itself could not be found. Bioinformatic analysis indicates a specific involvement of the PCDH beta-cluster genes in controlling tissue development. Further mechanistic insight needs to await the identification of the ligands of the 1q olfactory receptors. Eventually, this may provide the possibility to manipulate food flavor in a way to reduce the risk of overeating and of extreme obesity in genetically predisposed subjects.
Collapse
Affiliation(s)
- Edwin C M Mariman
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands,
| | | | | | | | | | | |
Collapse
|
204
|
Yuan K, Liang W, Zhang J. A comprehensive analysis of differentially expressed genes and pathways in abdominal aortic aneurysm. Mol Med Rep 2015; 12:2707-14. [PMID: 25936411 DOI: 10.3892/mmr.2015.3709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/03/2015] [Indexed: 11/05/2022] Open
Abstract
The current study aimed to investigate the molecular mechanism underlying abdominal aortic aneurysm (AAA) via various bioinformatics techniques. Gene expression profiling analysis of differentially expressed genes (DEGs) between AAA samples and normal controls was conducted. The Database for Annotation, Visualization and Integrated Discovery tool was utilized to perform Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses for DEGs and clusters from the protein-protein interaction (PPI) network, which was constructed using the Search Tool for the Retrieval of Interacting Genes. In addition, important transcription factors (TFs) that regulated DEGs were investigated. A total of 346 DEGs were identified between AAA samples and healthy controls. Additionally, four clusters were identified from the PPI network. Cluster 1 was associated with sensory perception of smell and the olfactory transduction subpathway. The most significant GO function terms for cluster 2 and 3 were response to virus and defense response, respectively. Cluster 4 was associated with mitochondria-associated functions and the oxidative phosphorylation subpathway. Early growth response-1 (EGR-1), Myc, activating transcription factor 5 (ATF5) and specificity protein (SP) 1:SP3 were identified to be critical TFs in this disease. The present study suggested that the olfactory transduction subpathway, mitochondria and oxidative phosphorylation pathways were involved in AAA, and TFs, such as EGR-1, Myc, ATF5 and SP1:SP3, may be potential candidate molecular targets for this disease.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Vascular Surgery, Renji Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Wei Liang
- Department of Vascular Surgery, Renji Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jiwei Zhang
- Department of Vascular Surgery, Renji Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
205
|
Azzouzi N, Barloy-Hubler F, Galibert F. Identification and characterization of cichlid TAAR genes and comparison with other teleost TAAR repertoires. BMC Genomics 2015; 16:335. [PMID: 25900688 PMCID: PMC4415300 DOI: 10.1186/s12864-015-1478-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TAARs (trace amine-associated receptors) are among the principal receptors expressed by the olfactory epithelium. We used the recent BROAD Institute release of the genome sequences of five representative fishes of the cichlid family to establish the complete TAAR repertoires of these species and to compare them with five other fish TAAR repertoires. RESULTS The genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were analyzed by exhaustive TBLASTN searches with a set of published TAAR gene sequences used as positive bait. A second TBLASTN analysis was then performed on the candidate genes, with a set of non-TAAR class A GPCR (G protein-coupled receptors) used as negative bait. The resulting cichlid repertoire contained 44 complete TAAR genes from O. niloticus, 18 from P. nyererei, 23 from H. burtoni, 12 from N. brichardi and 20 from M. zebra, plus a number of pseudogenes, edge genes and fragments. A large proportion of these sequences (80%) consisted of two coding exons, separated in all but two cases by an intron in the interloop 1 coding sequence. We constructed phylogenetic trees. These trees indicated that TAARs constitute a distinct clade, well separated from ORs (olfactory receptors) and other class A GPCRs. Also these repertoires consist of several families and subfamilies, a number of which are common to fugu, tetraodon, stickleback and medaka. Like all other TAARs identified to date, cichlid TAARs have a characteristic two-dimensional structure and contain a number of amino-acid motifs or amino acids, such cysteine, in particular conserved positions. CONCLUSIONS Little is known about the functions of TAARs: in most cases their ligands have yet to be identified, partly because appropriate methods for such investigations have not been developed. Sequences analyses and comparisons of TAARs in several animal species, here fishes living in the same environment, should help reveal their roles and whether they are complementary to that of ORs.
Collapse
Affiliation(s)
- Naoual Azzouzi
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| | - Frederique Barloy-Hubler
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| | - Francis Galibert
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| |
Collapse
|
206
|
Jiang Y, Li YR, Tian H, Ma M, Matsunami H. Muscarinic acetylcholine receptor M3 modulates odorant receptor activity via inhibition of β-arrestin-2 recruitment. Nat Commun 2015; 6:6448. [PMID: 25800153 PMCID: PMC4372811 DOI: 10.1038/ncomms7448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/29/2015] [Indexed: 01/12/2023] Open
Abstract
The olfactory system in rodents serves a critical function in social, reproductive, and survival behaviors. Processing of chemosensory signals in the brain is dynamically regulated in part by an animal's physiological state. We previously reported that type 3 muscarinic acetylcholine receptors (M3-Rs) physically interact with odorant receptors (ORs) to promote odor-induced responses in a heterologous expression system. However, it is not known how M3-Rs affect the ability of olfactory sensory neurons (OSNs) to respond to odors. Here, we show that an M3-R antagonist attenuates odor-induced responses in OSNs from wild-type, but not M3-R-null mice. Using a novel molecular assay, we demonstrate that the activation of M3-Rs inhibits the recruitment of β-arrestin-2 to ORs, resulting in a potentiation of odor-induced response in OSNs. These results suggest a role for acetylcholine in modulating olfactory processing at the initial stages of signal transduction in the olfactory system.
Collapse
Affiliation(s)
- Yue Jiang
- 1] Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] University Program of Genetics and Genomics, Duke University, Duke, North Carolina 27710, USA
| | - Yun Rose Li
- 1] Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA [2] Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Huikai Tian
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Minghong Ma
- 1] Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA [2] Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Hiroaki Matsunami
- 1] Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
207
|
Ma X, Guan L, Wu W, Zhang Y, Zheng W, Gao YT, Long J, Wu N, Wu L, Xiang Y, Xu B, Shen M, Chen Y, Wang Y, Yin Y, Li Y, Xu H, Xu X, Li Y. Whole-exome sequencing identifies OR2W3 mutation as a cause of autosomal dominant retinitis pigmentosa. Sci Rep 2015; 5:9236. [PMID: 25783483 PMCID: PMC4363838 DOI: 10.1038/srep09236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/24/2015] [Indexed: 11/09/2022] Open
Abstract
Retinitis pigmentosa (RP), a heterogeneous group of inherited ocular diseases, is a genetic condition that causes retinal degeneration and eventual vision loss. Though some genes have been identified to be associated with RP, still a large part of the clinical cases could not be explained. Here we reported a four-generation Chinese family with RP, during which 6 from 9 members of the second generation affected the disease. To identify the genetic defect in this family, whole-exome sequencing together with validation analysis by Sanger sequencing were performed to find possible pathogenic mutations. After a pipeline of database filtering, including public databases and in-house databases, a novel missense mutation, c. 424 C > T transition (p.R142W) in OR2W3 gene, was identified as a potentially causative mutation for autosomal dominant RP. The mutation co-segregated with the disease phenotype over four generations. This mutation was validated in another independent three-generation family. RT-PCR analysis also identified that OR2W3 gene was expressed in HESC-RPE cell line. The results will not only enhance our current understanding of the genetic basis of RP, but also provide helpful clues for designing future studies to further investigate genetic factors for familial RP.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Liping Guan
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Wei Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, People's Republic of China
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Bin Xu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | | | - Yanhua Chen
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Yuewen Wang
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Yingrui Li
- 1] BGI-Shenzhen, Shenzhen, People's Republic of China [2] BGI-Tech, Shenzhen, People's Republic of China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
208
|
Gonzalez-Kristeller DC, do Nascimento JBP, Galante PAF, Malnic B. Identification of agonists for a group of human odorant receptors. Front Pharmacol 2015; 6:35. [PMID: 25784876 PMCID: PMC4347425 DOI: 10.3389/fphar.2015.00035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/11/2015] [Indexed: 11/13/2022] Open
Abstract
Olfaction plays a critical role in several aspects of the human life. Odorants are detected by hundreds of odorant receptors (ORs) which belong to the superfamily of G protein-coupled receptors. These receptors are expressed in the olfactory sensory neurons of the nose. The information provided by the activation of different combinations of ORs in the nose is transmitted to the brain, leading to odorant perception and emotional and behavioral responses. There are ~400 intact human ORs, and to date only a small percentage of these receptors (~10%) have known agonists. The determination of the specificity of the human ORs will contribute to a better understanding of how odorants are discriminated by the olfactory system. In this work, we aimed to identify human specific ORs, that is, ORs that are present in humans but absent from other species, and their corresponding agonists. To do this, we first selected 22 OR gene sequences from the human genome with no counterparts in the mouse, rat or dog genomes. Then we used a heterologous expression system to screen a subset of these human ORs against a panel of odorants of biological relevance, including foodborne aroma volatiles. We found that different types of odorants are able to activate some of these previously uncharacterized human ORs.
Collapse
Affiliation(s)
| | - João B P do Nascimento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Institute of Chemistry, University of São Paulo São Paulo, Brazil
| |
Collapse
|
209
|
Jobling MA. On the nose: genetic and evolutionary aspects of smell. INVESTIGATIVE GENETICS 2015; 6:2. [PMID: 25691952 PMCID: PMC4331135 DOI: 10.1186/s13323-015-0021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Mark A Jobling
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH UK
| |
Collapse
|
210
|
Jiang Y, Matsunami H. Mammalian odorant receptors: functional evolution and variation. Curr Opin Neurobiol 2015; 34:54-60. [PMID: 25660959 DOI: 10.1016/j.conb.2015.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
Abstract
In mammals, the perception of smell starts with the activation of odorant receptors (ORs) by volatile molecules in the environment. The mammalian OR repertoire has been subject to rapid evolution, and is highly diverse within the human population. Recent advances in the functional expression and ligand identification of ORs allow for functional analysis of OR evolution, and reveal that changes in OR protein sequences translate into high degrees of functional variations. Moreover, in several cases the functional variation of a single OR affects the perception of its cognate odor ligand, providing clues as to how an odor is coded at the receptor level.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; University Program of Genetics and Genomics, Duke University, NC 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
211
|
Oei GTML, Heger M, van Golen RF, Alles LK, Flick M, van der Wal AC, van Gulik TM, Hollmann MW, Preckel B, Weber NC. Reduction of cardiac cell death after helium postconditioning in rats: transcriptional analysis of cell death and survival pathways. Mol Med 2015; 20:516-26. [PMID: 25171109 DOI: 10.2119/molmed.2014.00057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022] Open
Abstract
Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways.
Collapse
Affiliation(s)
- Gezina T M L Oei
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - Rowan F van Golen
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - Lindy K Alles
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - Moritz Flick
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam, The Netherlands
| | - Allard C van der Wal
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, University of Amsterdam, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
212
|
Abstract
The mammalian olfactory system detects a plethora of environmental chemicals that are perceived as odors or stimulate instinctive behaviors. Studies using odorant receptor (OR) genes have provided insight into the molecular and organizational strategies underlying olfaction in mice. One important unanswered question, however, is whether these strategies are conserved in primates. To explore this question, we examined the macaque, a higher primate phylogenetically close to humans. Here we report that the organization of sensory inputs in the macaque nose resembles that in mouse in some respects, but not others. As in mouse, neurons with different ORs are interspersed in the macaque nose, and there are spatial zones that differ in their complement of ORs and extend axons to different domains in the olfactory bulb of the brain. However, whereas the mouse has multiple discrete band-like zones, the macaque appears to have only two broad zones. It is unclear whether the organization of OR inputs in a rodent/primate common ancestor degenerated in primates or, alternatively became more sophisticated in rodents. The mouse nose has an additional small family of chemosensory receptors, called trace amine-associated receptors (TAARs), which may detect social cues. Here we find that TAARs are also expressed in the macaque nose, suggesting that TAARs may also play a role in human olfactory perception. We further find that one human TAAR responds to rotten fish, suggesting a possible role as a sentinel to discourage ingestion of food harboring pathogenic microorganisms.
Collapse
|
213
|
Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia. J Psychiatr Res 2015; 60:109-16. [PMID: 25282281 DOI: 10.1016/j.jpsychires.2014.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023]
Abstract
We have recently identified up- or down-regulation of the olfactory (OR) and taste (TASR) chemoreceptors in the human cortex in several neurodegenerative diseases, raising the possibility of a general deregulation of these genes in neuropsychiatric disorders. In this study, we explore the possible deregulation of OR and TASR gene expression in the dorsolateral prefrontal cortex in schizophrenia. We used quantitative polymerase chain reaction on extracts from postmortem dorsolateral prefrontal cortex of subjects with chronic schizophrenia (n = 15) compared to control individuals (n = 14). Negative symptoms were evaluated premortem by the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia Scales. We report that ORs and TASRs are deregulated in the dorsolateral prefrontal cortex in schizophrenia. Seven out of eleven ORs and four out of six TASRs were down-regulated in schizophrenia, the most prominent changes of which were found in genes from the 11p15.4 locus. The expression did not associate with negative symptom clinical scores or the duration of the illness. However, most ORs and all TASRs inversely associated with the daily chlorpromazine dose. This study identifies for the first time a decrease in brain ORs and TASRs in schizophrenia, a neuropsychiatric disease not linked to abnormal protein aggregates, suggesting that the deregulation of these receptors is associated with altered cognition of these disorders. In addition, the influence of antipsychotics on the expression of ORs and TASRs in schizophrenia suggests that these receptors could be involved in the mechanism of action or side effects of antipsychotics.
Collapse
|
214
|
Persuy MA, Sanz G, Tromelin A, Thomas-Danguin T, Gibrat JF, Pajot-Augy E. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 130:1-36. [PMID: 25623335 DOI: 10.1016/bs.pmbts.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.
Collapse
Affiliation(s)
- Marie-Annick Persuy
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France
| | - Guenhaël Sanz
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France
| | - Anne Tromelin
- INRA UMR 1129 Flaveur, Vision et Comportement du Consommateur, Dijon, France
| | | | - Jean-François Gibrat
- INRA UR1077 Mathématique Informatique et Génome, Domaine de Vilvert, Jouy-en-Josas, France
| | - Edith Pajot-Augy
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France.
| |
Collapse
|
215
|
Analysis of indel variations in the human disease-associated genes CDKN2AIP, WDR66, USP20 and OR7C2 in a Korean population. J Genet 2014. [DOI: 10.1007/s12041-012-0129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
216
|
Pluznick JL, Caplan MJ. Chemical and Physical Sensors in the Regulation of Renal Function. Clin J Am Soc Nephrol 2014; 10:1626-35. [PMID: 25280495 DOI: 10.2215/cjn.00730114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In order to assess the status of the volume and composition of the body fluid compartment, the kidney monitors a wide variety of chemical and physical parameters. It has recently become clear that the kidney's sensory capacity extends well beyond its ability to sense ion concentrations in the forming urine. The kidney also keeps track of organic metabolites derived from a surprising variety of sources and uses a complex interplay of physical and chemical sensing mechanisms to measure the rate of fluid flow in the nephron. Recent research has provided new insights into the nature of these sensory mechanisms and their relevance to renal function.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
217
|
Topin J, de March CA, Charlier L, Ronin C, Antonczak S, Golebiowski J. Discrimination between olfactory receptor agonists and non-agonists. Chemistry 2014; 20:10227-30. [PMID: 25043138 DOI: 10.1002/chem.201402486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 01/27/2023]
Abstract
A joint approach combining free-energy calculations and calcium-imaging assays on the broadly tuned human 1G1 olfactory receptor is reported. The free energy of binding of ten odorants was computed by means of molecular-dynamics simulations. This state function allows separating the experimentally determined eight agonists from the two non-agonists. This study constitutes a proof-of-principle for the computational deorphanization of olfactory receptors.
Collapse
Affiliation(s)
- Jérémie Topin
- Université de Nice - Sophia Antipolis, Institut de Chimie de Nice UMR 7272, Parc Valrose 28, Avenue Valrose 06108, Nice, Cedex 2 (France)
| | | | | | | | | | | |
Collapse
|
218
|
Azzouzi N, Barloy-Hubler F, Galibert F. Inventory of the cichlid olfactory receptor gene repertoires: identification of olfactory genes with more than one coding exon. BMC Genomics 2014; 15:586. [PMID: 25015101 PMCID: PMC4122780 DOI: 10.1186/1471-2164-15-586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes. RESULTS We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many "edge genes" corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥ 99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families. CONCLUSIONS Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.
Collapse
Affiliation(s)
| | | | - Francis Galibert
- Institut Génétique et Développement (UMR 6290) CNRS/Université de Rennes 1, Rennes, France.
| |
Collapse
|
219
|
Tiirikka T, Siermala M, Vihinen M. Clustering of gene ontology terms in genomes. Gene 2014; 550:155-64. [PMID: 24995610 DOI: 10.1016/j.gene.2014.06.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/08/2023]
Abstract
Although protein coding genes occupy only a small fraction of genomes in higher species, they are not randomly distributed within or between chromosomes. Clustering of genes with related function(s) and/or characteristics has been evident at several different levels. To study how common the clustering of functionally related genes is and what kind of functions the end products of these genes are involved, we collected gene ontology (GO) terms for complete genomes and developed a method to detect previously undefined gene clustering. Exhaustive analysis was performed for seven widely studied species ranging from human to Escherichia coli. To overcome problems related to varying gene lengths and densities, a novel method was developed and a fixed number of genes were analyzed irrespective of the genome span covered. Statistically very significant GO term clustering was apparent in all the investigated genomes. The analysis window, which ranged from 5 to 50 consecutive genes, revealed extensive GO term clusters for genes with widely varying functions. Here, the most interesting and significant results are discussed and the complete dataset for each analyzed species is available at the GOme database at http://bioinf.uta.fi/GOme. The results indicated that clusters of genes with related functions are very common, not only in bacteria, in which operons are frequent, but also in all the studied species irrespective of how complex they are. There are some differences between species but in all of them GO term clusters are common and of widely differing sizes. The presented method can be applied to analyze any genome or part of a genome for which descriptive features are available, and thus is not restricted to ontology terms. This method can also be applied to investigate gene and protein expression patterns. The results pave a way for further studies of mechanisms that shape genome structure and evolutionary forces related to them.
Collapse
Affiliation(s)
- Timo Tiirikka
- Institute of Biomedical Technology, University of Tampere, Finland and BioMediTech, FI-33014 Tampere, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Finland.
| | - Markku Siermala
- Institute of Biomedical Technology, University of Tampere, Finland and BioMediTech, FI-33014 Tampere, Finland.
| | - Mauno Vihinen
- Institute of Biomedical Technology, University of Tampere, Finland and BioMediTech, FI-33014 Tampere, Finland; Department of Experimental Medical Science, Lund University, SE-22 184 Lund, Sweden.
| |
Collapse
|
220
|
Ebert G, Steininger A, Weißmann R, Boldt V, Lind-Thomsen A, Grune J, Badelt S, Heßler M, Peiser M, Hitzler M, Jensen LR, Müller I, Hu H, Arndt PF, Kuss AW, Tebel K, Ullmann R. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7. BMC Genomics 2014; 15:537. [PMID: 24973960 PMCID: PMC4092221 DOI: 10.1186/1471-2164-15-537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome. Despite these adverse effects, SDs have become fixed in the human genome. Focusing on chromosome 7, which is particularly rich in interstitial SDs, we have investigated the distribution of SDs in the context of evolution and the three dimensional organisation of the chromosome in order to gain insights into the mutual relationship of SDs and chromatin topology. RESULTS Intrachromosomal SDs preferentially accumulate in those segments of chromosome 7 that are homologous to marmoset chromosome 2. Although this formerly compact segment has been re-distributed to three different sites during primate evolution, we can show by means of public data on long distance chromatin interactions that these three intervals, and consequently the paralogous SDs mapping to them, have retained their spatial proximity in the nucleus. Focusing on SD clusters implicated in the aetiology of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation. CONCLUSIONS Our study suggests a link of nuclear architecture and the propagation of SDs across chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome.
Collapse
Affiliation(s)
- Grit Ebert
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Anne Steininger
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Robert Weißmann
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Vivien Boldt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Allan Lind-Thomsen
- />Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Jana Grune
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Stefan Badelt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Institute for Theoretical Chemistry, University of Vienna, Waehringer Straße 17, A-1090 Vienna, Austria
| | - Melanie Heßler
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Matthias Peiser
- />Unit Experimental Research, Department of Product Safety, Federal Institute for Bundeswehr Institute of Radiobiology affiliated, the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Manuel Hitzler
- />Unit Experimental Research, Department of Product Safety, Federal Institute for Bundeswehr Institute of Radiobiology affiliated, the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Lars R Jensen
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Ines Müller
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Hao Hu
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Peter F Arndt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Andreas W Kuss
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Katrin Tebel
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Reinhard Ullmann
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| |
Collapse
|
221
|
A computational microscope focused on the sense of smell. Biochimie 2014; 107 Pt A:3-10. [PMID: 24952349 DOI: 10.1016/j.biochi.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/07/2014] [Indexed: 11/24/2022]
Abstract
In this article, we review studies of the protagonists of the perception of smell focusing on Odorant-Binding Proteins and Olfactory Receptors. We notably put forward studies performed by means of molecular modeling, generally combined with experimental data. Those works clearly emphasize that computational approaches are now a force to reckon with. In the future, they will certainly be more and more used, notably in the framework of a computational microscope meant to observe how the laws of physics govern the biomolecular systems originating our sense of smell.
Collapse
|
222
|
Bailey JNC, Palmer ND, Ng MC, Bonomo JA, Hicks PJ, Hester JM, Langefeld CD, Freedman BI, Bowden DW. Analysis of coding variants identified from exome sequencing resources for association with diabetic and non-diabetic nephropathy in African Americans. Hum Genet 2014; 133:769-779. [PMID: 24385048 PMCID: PMC4024071 DOI: 10.1007/s00439-013-1415-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/24/2013] [Indexed: 01/22/2023]
Abstract
Prior studies have identified common genetic variants influencing diabetic and non-diabetic nephropathy, diseases which disproportionately affect African Americans. Recently, exome sequencing techniques have facilitated identification of coding variants on a genome-wide basis in large samples. Exonic variants in known or suspected end-stage kidney disease (ESKD) or nephropathy genes can be tested for their ability to identify association either singly or in combination with known associated common variants. Coding variants in genes with prior evidence for association with ESKD or nephropathy were identified in the NHLBI-ESP GO database and genotyped in 5,045 African Americans (3,324 cases with type 2 diabetes associated nephropathy [T2D-ESKD] or non-T2D ESKD, and 1,721 controls) and 1,465 European Americans (568 T2D-ESKD cases and 897 controls). Logistic regression analyses were performed to assess association, with admixture and APOL1 risk status incorporated as covariates. Ten of 31 SNPs were associated in African Americans; four replicated in European Americans. In African Americans, SNPs in OR2L8, OR2AK2, C6orf167 (MMS22L), LIMK2, APOL3, APOL2, and APOL1 were nominally associated (P = 1.8 × 10(-4)-0.044). Haplotype analysis of common and coding variants increased evidence of association at the OR2L13 and APOL1 loci (P = 6.2 × 10(-5) and 4.6 × 10(-5), respectively). SNPs replicating in European Americans were in OR2AK2, LIMK2, and APOL2 (P = 0.0010-0.037). Meta-analyses highlighted four SNPs associated in T2D-ESKD and all-cause ESKD. Results from this study suggest a role for coding variants in the development of diabetic, non-diabetic, and/or all-cause ESKD in African Americans and/or European Americans.
Collapse
MESH Headings
- Adult
- Black or African American
- Aged
- Apolipoprotein L1
- Apolipoproteins/genetics
- Databases, Genetic
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/ethnology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/ethnology
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/pathology
- Exome
- Female
- Genome-Wide Association Study
- Haplotypes
- Humans
- Kidney Failure, Chronic/ethnology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/pathology
- Lipoproteins, HDL/genetics
- Male
- Middle Aged
- Open Reading Frames
- Polymorphism, Single Nucleotide
- Sequence Analysis, DNA
- United States
- White People
Collapse
Affiliation(s)
- Jessica N. Cooke Bailey
- Program in Molecular Medicine and Translational Science, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Diabetes Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| | - Nicholette D. Palmer
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Diabetes Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| | - Maggie C.Y. Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Diabetes Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| | - Jason A. Bonomo
- Program in Molecular Medicine and Translational Science, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Diabetes Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| | - Pamela J. Hicks
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Diabetes Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| | - Jessica M. Hester
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Diabetes Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| | - Carl D. Langefeld
- Department of Biostatistical Sciences - Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Department of Internal Medicine - Section on Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Center for Diabetes Research, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
- Department of Internal Medicine - Section on Endocrinology; Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157
| |
Collapse
|
223
|
Stathopoulos S, Bishop JM, O’Ryan C. Genetic signatures for enhanced olfaction in the African mole-rats. PLoS One 2014; 9:e93336. [PMID: 24699281 PMCID: PMC3974769 DOI: 10.1371/journal.pone.0093336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/03/2014] [Indexed: 01/06/2023] Open
Abstract
The Olfactory Receptor (OR) superfamily, the largest in the vertebrate genome, is responsible for vertebrate olfaction and is traditionally subdivided into 17 OR families. Recent studies characterising whole-OR subgenomes revealed a 'birth and death' model of evolution for a range of species, however little is known about fine-scale evolutionary dynamics within single-OR families. This study reports the first assessment of fine-scale OR evolution and variation in African mole-rats (Bathyergidae), a family of subterranean rodents endemic to sub-Saharan Africa. Because of the selective pressures of life underground, enhanced olfaction is proposed to be fundamental to the evolutionary success of the Bathyergidae, resulting in a highly diversified OR gene-repertoire. Using a PCR-sequencing approach, we analysed variation in the OR7 family across 14 extant bathyergid species, which revealed enhanced levels of functional polymorphisms concentrated across the receptors' ligand-binding region. We propose that mole-rats are able to recognise a broad range of odorants and that this diversity is reflected throughout their OR7 gene repertoire. Using both classic tests and tree-based methods to test for signals of selection, we investigate evolutionary forces across the mole-rat OR7 gene tree. Four well-supported clades emerged in the OR phylogeny, with varying signals of selection; from neutrality to positive and purifying selection. Bathyergid life-history traits and environmental niche-specialisation are explored as possible drivers of adaptive OR evolution, emerging as non-exclusive contributors to the positive selection observed at OR7 genes. Our results reveal unexpected complexity of evolutionary mechanisms acting within a single OR family, providing insightful perspectives into OR evolutionary dynamics.
Collapse
Affiliation(s)
- Sofia Stathopoulos
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Western Cape, South Africa
- * E-mail:
| | - Jacqueline M. Bishop
- Department of Biological Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Colleen O’Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
224
|
Ignatieva EV, Levitsky VG, Yudin NS, Moshkin MP, Kolchanov NA. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset. Front Psychol 2014; 5:247. [PMID: 24715883 PMCID: PMC3970011 DOI: 10.3389/fpsyg.2014.00247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100–1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia ; Department of Natural Science, Novosibirsk State University Novosibirsk, Russia
| | - Victor G Levitsky
- Department of Natural Science, Novosibirsk State University Novosibirsk, Russia ; Laboratory of Molecular-Genetic Systems, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia
| | - Nikolay S Yudin
- Department of Natural Science, Novosibirsk State University Novosibirsk, Russia ; Laboratory of Human Molecular Genetics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia
| | - Mikhail P Moshkin
- Department of Natural Science, Novosibirsk State University Novosibirsk, Russia ; Laboratory of Mammalian Ecological Genetics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Department of Natural Science, Novosibirsk State University Novosibirsk, Russia ; Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia ; National Research centre "Kurchatov Institute" Moscow, Russia
| |
Collapse
|
225
|
Lim JH, Park J, Oh EH, Ko HJ, Hong S, Park TH. Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv Healthc Mater 2014; 3:360-6. [PMID: 23868879 DOI: 10.1002/adhm.201300174] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Indexed: 11/11/2022]
Abstract
A human nose-mimetic diagnosis system that can distinguish the odor of a lung cancer biomarker, heptanal, from human blood is presented. Selective recognition of the biomarker is mimicked in the human olfactory system. A specific olfactory receptor recognizing the chemical biomarker is first selected through screening a library of human olfactory receptors (hORs). The selected hOR is expressed on the membrane of human embryonic kidney (HEK)-293 cells. Nanovesicles containing the hOR on the membrane are produced from these cells, and are then used for the functionalization of single-walled carbon nanotubes. This strategy allows the development of a sensitive and selective nanovesicle-based bioelectronic nose (NvBN). The NvBN is able to selectively detect heptanal at a concentration as low as 1 × 10(-14) m, a sufficient level to distinguish the blood of a lung cancer patient from the blood of a healthy person. In actual experiments, NvBN could detect an extremely small increase in the amount of heptanal from human blood plasma without any pretreatment processes. This result offers a rapid and easy method to analyze chemical biomarkers from human blood in real-time and to diagnose lung cancer.
Collapse
Affiliation(s)
- Jong Hyun Lim
- School of Chemical and Biological Engineering; Bio-MAX Institute, Seoul National University; Seoul 151-742 Korea
| | - Juhun Park
- Department of Physics and Astronomy; Seoul National University; Seoul 151-742 Korea
| | - Eun Hae Oh
- School of Chemical and Biological Engineering; Bio-MAX Institute, Seoul National University; Seoul 151-742 Korea
| | - Hwi Jin Ko
- School of Chemical and Biological Engineering; Bio-MAX Institute, Seoul National University; Seoul 151-742 Korea
| | - Seunghun Hong
- Department of Physics and Astronomy; Seoul National University; Seoul 151-742 Korea
- Department of Biophysics and Chemical Biology; Seoul National University; Seoul 151-742 Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering; Bio-MAX Institute, Seoul National University; Seoul 151-742 Korea
| |
Collapse
|
226
|
Copy number variation distribution in six monozygotic twin pairs discordant for schizophrenia. Twin Res Hum Genet 2014; 17:108-20. [PMID: 24556202 DOI: 10.1017/thg.2014.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have evaluated copy number variants (CNVs) in six monozygotic twin pairs discordant for schizophrenia. The data from Affymetrix® Human SNP 6.0 arrays™ were analyzed using Affymetrix® Genotyping Console™, Partek® Genomics Suite™, PennCNV, and Golden Helix SVS™. This yielded both program-specific and overlapping results. Only CNVs called by Affymetrix Genotyping Console, Partek Genomics Suite, and PennCNV were used in further analysis. This analysis included an assessment of calls in each of the six twin pairs towards identification of unique CNVs in affected and unaffected co-twins. Real time polymerase chain reaction (PCR) experiments confirmed one CNV loss at 7q11.21 that was found in the affected patient but not in the unaffected twin. The results identified CNVs and genes that were previously implicated in mental abnormalities in four of the six twin pairs. It included PYY (twin pairs 1 and 5), EPHA3 (twin pair 3), KIAA1211L (twin pair 4), and GPR139 (twin pair 5). They represent likely candidate genes and CNVs for the discordance of four of the six monozygotic twin pairs for this heterogeneous neurodevelopmental disorder. An explanation for these differences is ontogenetic de novo events that differentiate in the monozygotic twins during development.
Collapse
|
227
|
Hassan SS, Choudhury PP, Goswami A. Underlying mathematics in diversification of human olfactory receptors in different loci. Interdiscip Sci 2014; 5:270-3. [PMID: 24402819 DOI: 10.1007/s12539-013-0176-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 03/13/2012] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
Abstract
As per conservative estimate, approximately 51-105 Olfactory Receptors (ORs) loci are present in human genome occurring in clusters. These clusters are apparently unevenly spread as mosaics over 21 pairs of human chromosomes. Olfactory Receptor (OR) gene families which are thought to have expanded for the need to provide recognition capability for a huge number of pure and complex odorants, form the largest known multigene family in the human genome. Recent studies have shown that 388 full length and 414 OR pseudo-genes are present in these OR genomic clusters. In this paper, the authors report a classification method for all human ORs based on their sequential quantitative information like presence of poly strings of nucleotides bases, long range correlation and so on. An L-System generated sequence has been taken as an input into a star-model of specific subfamily members and resultant sequence has been mapped to a specific OR based on the classification scheme using fractal parameters like Hurst exponent and fractal dimensions.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Applied Statistics Unit, Indian Statistical Institute, Kolkata, 700108, India,
| | | | | |
Collapse
|
228
|
da Silva JS, Wowk PF, Poerner F, Santos PSC, Bicalho MDG. Absence of strong linkage disequilibrium between odorant receptor alleles and the major histocompatibility complex. Hum Immunol 2013; 74:1619-23. [DOI: 10.1016/j.humimm.2013.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/22/2013] [Accepted: 08/10/2013] [Indexed: 01/03/2023]
|
229
|
Sarrafchi A, Odhammer AME, Hernandez Salazar LT, Laska M. Olfactory sensitivity for six predator odorants in CD-1 mice, human subjects, and spider monkeys. PLoS One 2013; 8:e80621. [PMID: 24278296 PMCID: PMC3835330 DOI: 10.1371/journal.pone.0080621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/03/2013] [Indexed: 02/05/2023] Open
Abstract
Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species' olfactory sensitivity. Analysis of odor structure-activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity.
Collapse
Affiliation(s)
- Amir Sarrafchi
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Anna M. E. Odhammer
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | - Matthias Laska
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
230
|
Lee K, Nguyen DT, Choi M, Cha SY, Kim JH, Dadi H, Seo HG, Seo K, Chun T, Park C. Analysis of cattle olfactory subgenome: the first detail study on the characteristics of the complete olfactory receptor repertoire of a ruminant. BMC Genomics 2013; 14:596. [PMID: 24004971 PMCID: PMC3766653 DOI: 10.1186/1471-2164-14-596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/24/2013] [Indexed: 11/21/2022] Open
Abstract
Background Mammalian olfactory receptors (ORs) are encoded by the largest mammalian multigene family. Understanding the OR gene repertoire in the cattle genome could lead to link the effects of genetic differences in these genes to variations in olfaction in cattle. Results We report here a whole genome analysis of the olfactory receptor genes of Bos taurus using conserved OR gene-specific motifs and known OR protein sequences from diverse species. Our analysis, using the current cattle genome assembly UMD 3.1 covering 99.9% of the cattle genome, shows that the cattle genome contains 1,071 OR-related sequences including 881 functional, 190 pseudo, and 352 partial OR sequences. The OR genes are located in 49 clusters on 26 cattle chromosomes. We classified them into 18 families consisting of 4 Class I and 14 Class II families and these were further grouped into 272 subfamilies. Comparative analyses of the OR genes of cattle, pigs, humans, mice, and dogs showed that 6.0% (n = 53) of functional OR cattle genes were species-specific. We also showed that significant copy number variations are present in the OR repertoire of the cattle from the analysis of 10 selected OR genes. Conclusion Our analysis revealed the almost complete OR gene repertoire from an individual cattle genome. Though the number of OR genes were lower than in pigs, the analysis of the genetic system of cattle ORs showed close similarities to that of the pig.
Collapse
Affiliation(s)
- Kyooyeol Lee
- Department of Animal Biotechnology, Konkuk University, 263 Achasan-ro, Gwangjin-gu, Seoul 143-701, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
|
232
|
Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J Neuropathol Exp Neurol 2013; 72:524-39. [PMID: 23656994 DOI: 10.1097/nen.0b013e318294fd76] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Parkinson disease (PD) is no longer considered a complex motor disorder but rather a systemic disease with variable nonmotor deficits that may include impaired olfaction, depression, mood and sleep disorders, and altered cortical function. Increasing evidence indicates that multiple metabolic defects occur in regions outside the substantia nigra, including the cerebral cortex, even at premotor stages of the disease. We investigated changes in gene expression in the frontal cortex in PD patient brains using a transcriptomics approach. Functional genomics analysis indicated that cortical olfactory receptors (ORs) and taste receptors (TASRs) are altered in PD patients. Olfactory receptors OR2L13, OR1E1, OR2J3, OR52L1, and OR11H1 and taste receptors TAS2R5 and TAS2R50 were downregulated, but TAS2R10 and TAS2R13 were upregulated at premotor and parkinsonian stages in the frontal cortex area 8 in PD patient brains. Furthermore, we present novel evidence that, in addition to the ORs, obligate downstream components of OR function adenylyl cyclase 3 and olfactory G protein (Gαolf), OR transporters, receptor transporter proteins 1 and 2 and receptor expression enhancing protein 1, and OR xenobiotic removing UDP-glucuronosyltransferase 1 family polypeptide A6 are widely expressed in neurons of the cerebral cortex and other regions of the adult human brain. Together, these findings support the concept that ORs and TASRs in the cerebral cortex may have novel physiologic functions that are affected in PD patients.
Collapse
|
233
|
Brites D, Brena C, Ebert D, Du Pasquier L. More than one way to produce protein diversity: duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods. Evolution 2013; 67:2999-3011. [PMID: 24094349 DOI: 10.1111/evo.12179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/27/2013] [Indexed: 01/12/2023]
Abstract
Exon duplication and alternative splicing evolved multiple times in metazoa and are of overall importance in shaping genomes and allowing organisms to produce many fold more proteins than there are genes in the genome. No other example is as striking as the one of the Down syndrome cell adhesion molecule (Dscam) of insects and crustaceans (pancrustaceans) involved in the nervous system differentiation and in the immune system. To elucidate the evolutionary history of this extraordinary gene, we investigated Dscam homologs in two basal arthropods, the myriapod Strigamia maritima and the chelicerate Ixodes scapularis. In both, Dscam diversified extensively by whole gene duplications resulting in multigene expansions. Within some of the S. maritima genes, exons coding for one of the immunoglobulin domains (Ig7) duplicated and are mutually exclusively alternatively spliced. Our results suggest that Dscam diversification was selected independently in chelicerates, myriapods, and pancrustaceans and that the usage of Dscam diversity by immune cells evolved for the first time in basal arthropods. We propose an evolutionary scenario for the appearance of the highly variable Dscam gene of pancrustaceans, adding to the understanding of how alternative splicing, exon, and gene duplication contribute to create molecular diversity associated with potentially new cellular functions.
Collapse
Affiliation(s)
- Daniela Brites
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland; Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box 4002, Basel.
| | | | | | | |
Collapse
|
234
|
Veerappa AM, Vishweswaraiah S, Lingaiah K, Murthy M, Manjegowda DS, Nayaka R, Ramachandra NB. Unravelling the complexity of human olfactory receptor repertoire by copy number analysis across population using high resolution arrays. PLoS One 2013; 8:e66843. [PMID: 23843967 PMCID: PMC3700933 DOI: 10.1371/journal.pone.0066843] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/05/2013] [Indexed: 11/19/2022] Open
Abstract
Olfactory receptors (OR), responsible for detection of odor molecules, belong to the largest family of genes and are highly polymorphic in nature having distinct polymorphisms associated with specific regions around the globe. Since there are no reports on the presence of copy number variations in OR repertoire of Indian population, the present investigation in 43 Indians along with 270 HapMap and 31 Tibetan samples was undertaken to study genome variability and evolution. Analysis was performed using Affymetrix Genome-Wide Human SNP Array 6.0 chip, Affymterix CytoScan® High-Density array, HD-CNV, and MAFFT program. We observed a total of 1527 OR genes in 503 CNV events from 81.3% of the study group, which includes 67.6% duplications and 32.4% deletions encompassing more of genes than pseudogenes. We report human genotypic variation in functional OR repertoire size across populations and it was found that the combinatorial effect of both “orthologous obtained from closely related species” and “paralogous derived sequences” provide the complexity to the continuously occurring OR CNVs.
Collapse
Affiliation(s)
- Avinash M. Veerappa
- Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, India
| | - Sangeetha Vishweswaraiah
- Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, India
| | - Kusuma Lingaiah
- Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, India
| | - Megha Murthy
- Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, India
| | - Dinesh S. Manjegowda
- Department of Anatomy, Yenepoya Medical College, Yenepoya University, Mangalore, India
| | - Radhika Nayaka
- Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, India
| | - Nallur B. Ramachandra
- Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, India
- * E-mail:
| |
Collapse
|
235
|
A cleavable N-terminal signal peptide promotes widespread olfactory receptor surface expression in HEK293T cells. PLoS One 2013; 8:e68758. [PMID: 23840901 PMCID: PMC3698168 DOI: 10.1371/journal.pone.0068758] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies.
Collapse
|
236
|
Iwasaki S, Suzuki S, Pelekanos M, Clark H, Ono R, Shaw G, Renfree MB, Kaneko-Ishino T, Ishino F. Identification of a novel PNMA-MS1 gene in marsupials suggests the LTR retrotransposon-derived PNMA genes evolved differently in marsupials and eutherians. DNA Res 2013; 20:425-36. [PMID: 23704700 PMCID: PMC3789554 DOI: 10.1093/dnares/dst020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two major gene families derived from Ty3/Gypsy long terminal repeat (LTR) retrotransposons were recently identified in mammals. The sushi-ichi retrotransposon homologue (SIRH) family comprises 12 genes: 11 in eutherians including Peg10 and Peg11/Rtl1 that have essential roles in the eutherian placenta and 1 that is marsupial specific. Fifteen and 12 genes were reported in the second gene family, para-neoplastic antigen MA (PNMA), in humans and mice, respectively, although their biological functions and evolutionary history remain largely unknown. Here, we identified two novel candidate PNMA genes, PNMA-MS1 and -MS2 in marsupials. Like all eutherian-specific PNMA genes, they exhibit the highest homology to a Gypsy12_DR (DR, Danio rerio) Gag protein. PNMA-MS1 is conserved in both Australian and South American marsupial species, the tammar wallaby and grey short-tailed opossum. However, no PNMA-MS1 orthologue was found in eutherians, monotremes or non-mammalian vertebrates. PNMA-MS1 was expressed in the ovary, mammary gland and brain during development and growth in the tammar, suggesting that PNMA-MS1 may have acquired a marsupial-specific function. However, PNMA-MS2 seems to be a pseudogene. The absence of marsupial orthologues of eutherian PNMA genes suggests that the retrotransposition events of the Gypsy12_DR-related retrotransposons that gave rise to the PNMA family occurred after the divergence of marsupials and eutherians.
Collapse
Affiliation(s)
- Sawa Iwasaki
- 1Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Hughes GM, Gang L, Murphy WJ, Higgins DG, Teeling EC. Using Illumina next generation sequencing technologies to sequence multigene families in de novo species. Mol Ecol Resour 2013; 13:510-21. [PMID: 23480365 DOI: 10.1111/1755-0998.12087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/27/2013] [Accepted: 01/29/2013] [Indexed: 11/27/2022]
Abstract
The advent of Next Generation Sequencing Technology (NGST) has revolutionized molecular biology research, allowing for rapid gene/genome sequencing from a multitude of diverse species. As high throughput sequencing becomes more accessible, more efficient workflows must be developed to deal with the amounts of data produced and better assemble the genomes of de novo lineages. We combine traditional laboratory methods with Illumina NGST to amplify and sequence the largest mammalian multigene family, the Olfactory Receptor gene family, for species with and without a reference genome. We develop novel assembly methods to annotate and filter these data, which can be utilized for any gene family or any species. We find no significant difference between the ratio of genes within their respective gene families of our data compared with available genomic data. Using simulated data we explore the limitations of short-read sequence data and our assembly in recovering this gene family. We highlight the benefits and shortcomings of these methods. Compared with data generated from traditional polymerase chain reaction, cloning and Sanger sequencing methodologies, sequence data generated using our pipeline increases yield and sequencing efficiency without reducing the number of unique genes amplified. A cloning step is not required, therefore shortening data generation time. The novel downstream methodologies and workflows described provide a tool to be utilized by many fields of biology, to access and analyze the vast quantities of data generated. By combining laboratory and in silico methods, we provide a means of extracting genomic information for multigene families without complete genome sequencing.
Collapse
Affiliation(s)
- Graham M Hughes
- UCD School of Biological and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
238
|
Tart JK, Johnson RK, Bundy JW, Ferdinand NN, McKnite AM, Wood JR, Miller PS, Rothschild MF, Spangler ML, Garrick DJ, Kachman SD, Ciobanu DC. Genome-wide prediction of age at puberty and reproductive longevity in sows. Anim Genet 2013; 44:387-97. [PMID: 23437861 DOI: 10.1111/age.12028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2013] [Indexed: 11/27/2022]
Abstract
Traditional selection for sow reproductive longevity is ineffective due to low heritability and late expression of the trait. Incorporation of DNA markers into selection programs is potentially a more practical approach for improving sow lifetime productivity. Using a resource population of crossbred gilts, we explored pleiotropic sources of variation that influence age at puberty and reproductive longevity. Of the traits recorded before breeding, only age at puberty significantly affected the probability that females would produce a first parity litter. The genetic variance explained by 1-Mb windows of the sow genome, compared across traits, uncovered regions that influence both age at puberty and lifetime number of parities. Allelic variants of SNPs located on SSC5 (27-28 Mb), SSC8 (36-37 Mb) and SSC12 (1.2-2 Mb) exhibited additive effects and were associated with both early expression of puberty and a greater than average number of lifetime parities. Combined analysis of these SNPs showed that an increase in the number of favorable alleles had positive impact on reproductive longevity, increasing number of parities by up to 1.36. The region located on SSC5 harbors non-synonymous alleles in the arginine vasopressin receptor 1A (AVPR1A) gene, a G-protein-coupled receptor associated with social and reproductive behaviors in voles and humans and a candidate for the observed effects. This region is characterized by high levels of linkage disequilibrium in different lines and could be exploited in marker-assisted selection programs across populations to increase sow reproductive longevity.
Collapse
Affiliation(s)
- J K Tart
- Animal Science Department, University of Nebraska, Lincoln, NE, 68583, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Stevenson RJ. Olfactory perception, cognition, and dysfunction in humans. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:273-284. [PMID: 26304205 DOI: 10.1002/wcs.1224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The main functions of olfaction relate to finding food, avoiding predators and disease, and social communication. Its role in detecting food has resulted in a unique dual mode sensory system. Environmental odorants are 'smelled' via the external nostrils, while volatile chemicals in food-detected by the same receptors-arrive via the nasopharynx, contributing to flavor. This arrangement allows the brain to link the consequences of eating with a food's odor, and then later to use this information in the search for food. Recognizing an odorant-a food, mate, or predator-requires the detection of complex chemical blends against a noisy chemical background. The brain solves this problem in two ways. First, by rapid adaptation to background odorants so that new odorants stand out. Second, by pattern matching the neural representation of an odorant to prior olfactory experiences. This account is consistent with olfactory sensory physiology, anatomy, and psychology. Odor perception, and its products, may be subject to further processing-olfactory cognition. While olfactory cognition has features in common with visual or auditory cognition, several aspects are unique, and even those that are common may be instantiated in different ways. These differences can be productively used to evaluate the generality of models of cognition and consciousness. Finally, the olfactory system can breakdown, and this may be predictive of the onset of neurodegenerative conditions such as Alzheimer's, as well as having prognostic value in other disorders such as schizophrenia. WIREs Cogn Sci 2013, 4:273-284. doi: 10.1002/wcs.1224 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J Stevenson
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
240
|
Kaeppler K, Mueller F. Odor Classification: A Review of Factors Influencing Perception-Based Odor Arrangements. Chem Senses 2013; 38:189-209. [DOI: 10.1093/chemse/bjs141] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
241
|
Abstract
Olfactory receptors (OR) represent one of the largest gene families in the human genome. In spite of a significant progress in deciphering the physiological functions of olfactory receptors, how the majority of these G-protein-coupled receptors are activated is still mostly a mystery. Consequently, for the majority of OR genes there are currently no assigned physiological or behavioral functions. Deciphering ligand specificities and physiological significance of human ORs is important for understanding how the human olfactory genome encodes odors, and how such odors drive human behavior in health and disease. Although OR genes were originally thought to be restricted to the olfactory epithelium, several recent studies indicated that some members of the OR family might be acting outside the canonical chemosensory system. In a recent study, we have shown that the human airway epithelial cells can also act as chemosensory cells by directly sensing the inhalation of noxious bitter compounds, which can lead to increased mucociliary clearance, and hence may serve as a protective mechanism against inhaled toxins and microorganisms. Whether the airway epithelium can detect chemicals via other sensory pathways has not been reported to date. As a step in this direction, we describe methods for studying the cellular and subcellular localization of olfactory receptor proteins and mRNAs in human airways in both primary in vitro cultures and tissue sections.
Collapse
Affiliation(s)
- Xiaoling Gu
- Department of Biology, Washington University, St. Louis, MO, USA
| | | |
Collapse
|
242
|
Krautwurst D, Kotthoff M. A hit map-based statistical method to predict best ligands for orphan olfactory receptors: natural key odorants versus "lock picks". Methods Mol Biol 2013; 1003:85-97. [PMID: 23585035 DOI: 10.1007/978-1-62703-377-0_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smell is a multidimensional chemical sense. It creates a perception of our odorous environment by integrating the information of a plethora of volatile chemicals with other sensory inputs, emotions and memories. We are almost always exposed to odorant mixtures, not just single chemicals. Olfactory processing of complex odorant mixtures, such as coffee or wine, first is decoded at the site of perception by the hundreds of different olfactory receptor types, each residing in the cilia of their olfactory sensory neurons in the nose. Often, only a few odorants from many are essential to determine complex olfactory perception. But merely using the chemical structure of odorants is insufficient to identify and predict characteristic odor qualities and low odor thresholds. An understanding of odorant coding critically depends on knowledge about the interaction of key odorants of biologically relevant odor bouquets with their best cognate receptors. Here, we describe a hit map-based method of correlating the information content of all bioassay-tested odorants with their cognate odorant-receptor frequency in four phylogenetic subsets of human olfactory/chemosensory receptors.
Collapse
Affiliation(s)
- Dietmar Krautwurst
- German Research Center for Food Chemistry, Leibniz Institute, Freising, Germany
| | | |
Collapse
|
243
|
Characterization of three new deletions in the β-globin gene cluster during a screening survey in two French urban areas. Clin Chim Acta 2013; 415:35-40. [DOI: 10.1016/j.cca.2012.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 11/24/2022]
|
244
|
Matarazzo V, Ronin C. Human olfactory receptors: recombinant expression in the baculovirus/Sf9 insect cell system, functional characterization, and odorant identification. Methods Mol Biol 2013; 1003:109-122. [PMID: 23585037 DOI: 10.1007/978-1-62703-377-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cell surface expression of recombinant olfactory receptors (ORs) is a major limitation in characterizing their functional nature. We have shown that the recombinant expression of a human OR, OR 17-210, in the baculovirus/Sf9 insect cell system allows this protein to be expressed at the cell surface. We used Ca(2+) imaging to demonstrate that recombinant OR 17-210 produces cellular activities upon odorant stimulation with ketones. Furthermore, this expression and functional system has been used to show that the preincubation of Human Odorant Binding Protein 2A decrease the calcium response of OR 17-210 following stimulation by acetophenone and beta ionone.
Collapse
Affiliation(s)
- Valéry Matarazzo
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, CRN2M, CNRS UMR6231, Université Paul Cézanne, Marseille, France
| | | |
Collapse
|
245
|
Jahromi MM. Haplotype specific alteration of diabetes MHC risk by olfactory receptor gene polymorphism. Autoimmun Rev 2012; 12:270-4. [DOI: 10.1016/j.autrev.2012.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022]
|
246
|
Nguyen DT, Lee K, Choi H, Choi MK, Le MT, Song N, Kim JH, Seo HG, Oh JW, Lee K, Kim TH, Park C. The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genomics 2012; 13:584. [PMID: 23153364 PMCID: PMC3499278 DOI: 10.1186/1471-2164-13-584] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background Insects and animals can recognize surrounding environments by detecting thousands of chemical odorants. Olfaction is a complicated process that begins in the olfactory epithelium with the specific binding of volatile odorant molecules to dedicated olfactory receptors (ORs). OR proteins are encoded by the largest gene superfamily in the mammalian genome. Results We report here the whole genome analysis of the olfactory receptor genes of S. scrofa using conserved OR gene specific motifs and known OR protein sequences from diverse species. We identified 1,301 OR related sequences from the S. scrofa genome assembly, Sscrofa10.2, including 1,113 functional OR genes and 188 pseudogenes. OR genes were located in 46 different regions on 16 pig chromosomes. We classified the ORs into 17 families, three Class I and 14 Class II families, and further grouped them into 349 subfamilies. We also identified inter- and intra-chromosomal duplications of OR genes residing on 11 chromosomes. A significant number of pig OR genes (n = 212) showed less than 60% amino acid sequence similarity to known OR genes of other species. Conclusion As the genome assembly Sscrofa10.2 covers 99.9% of the pig genome, our analysis represents an almost complete OR gene repertoire from an individual pig genome. We show that S. scrofa has one of the largest OR repertoires, suggesting an expansion of OR genes in the swine genome. A significant number of unique OR genes in the pig genome may suggest the presence of swine specific olfactory stimulation.
Collapse
Affiliation(s)
- Dinh Truong Nguyen
- Department of Animal Biotechnology, Konkuk University, 263 Achasan-ro, Gwangjin-gu, Seoul 143-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Mitsui K, Sakihama T, Takahashi K, Masuda K, Fukuda R, Hamana H, Sato T, Hamakubo T. Functional reconstitution of olfactory receptor complex on baculovirus. Chem Senses 2012; 37:837-47. [PMID: 22952299 DOI: 10.1093/chemse/bjs067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite that recent progress in genomics has elucidated the genomic structure of the olfactory receptors (ORs), most of them are still orphan receptors. The low expression level of ORs in heterologous cells has hampered many attempts to establish cell biological OR assay systems. Recently, we demonstrated that certain G protein-coupled receptors, such as the leukotriene B4 receptor or the dopamine D1 receptor, were efficiently reconstituted on baculovirus budding from infected Sf9 cells. The budded virus (BV) was shown to be mostly free of exogenous proteins other than those related to viral infection, resulting in low-noise assay conditions. Taking advantage of these conditions, we attempted to reconstitute OR complexes on BV. Sf9 cells were coinfected with recombinant baculoviruses harboring the cDNAs encoding adenylyl cyclase, trimeric G-protein, and the receptor: mOR-EG or S6. The coexpression of these proteins was detected by western blot, and the agonist- or antagonist-dependent receptor response was confirmed using ligand-dependent cyclic AMP production. These results demonstrated the successful reconstitution of functional OR complex on BV. Additionally, the expression of OR8B3 on BV, one of human orphan ORs, was also confirmed. This BV expression system is expected to be a highly effective tool for screening unknown ligands for ORs.
Collapse
Affiliation(s)
- Kenichi Mitsui
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Lapid H, Hummel T. Recording odor-evoked response potentials at the human olfactory epithelium. Chem Senses 2012; 38:3-17. [PMID: 22944611 DOI: 10.1093/chemse/bjs073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electro-olfactogram (EOG) represents the sum of generator potentials of olfactory receptor neurons in response to an olfactory stimulus. Although this measurement technique has been used extensively in animal research, its use in human olfaction research has been relatively limited. To understand the promises and limitations of this technique, this review provides an overview of the olfactory epithelium structure and function, and summarizes EOG characteristics and conventions. It describes methodological pitfalls and their possible solutions, artifacts, and questions of debate in the field. In summary, EOG measurements provide a rare opportunity of recording neuronal input from the peripheral olfactory system, while simultaneously obtaining psychophysical responses in awake humans.
Collapse
Affiliation(s)
- Hadas Lapid
- Department of Neurobiology, Hebrew University of Jerusalem, Israel.
| | | |
Collapse
|
249
|
Kennedy RB, Ovsyannikova IG, Pankratz VS, Haralambieva IH, Vierkant RA, Jacobson RM, Poland GA. Genome-wide genetic associations with IFNγ response to smallpox vaccine. Hum Genet 2012; 131:1433-51. [PMID: 22661280 DOI: 10.1007/s00439-012-1179-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 05/08/2012] [Indexed: 11/26/2022]
Abstract
Smallpox is a deadly and debilitating disease that killed hundreds of millions of people in the past century alone. The use of Vaccinia virus-based smallpox vaccines led to the eradication of smallpox. These vaccines are remarkably effective, inducing the characteristic pustule or "take" at the vaccine site in >97 % of recipients, and inducing a wide spectrum of long-lasting humoral and cellular immune responses. The mechanisms behind inter-individual vaccine-response variability are likely to involve host genetic variation, but have not been fully characterized. We report here the first smallpox vaccine response genome-wide association study of over 1,000 recent recipients of Dryvax(®). The data presented here focus on cellular immune responses as measured by both production of secreted IFNγ and quantitation of IFNγ secreting cells by ELISPOT assay. We identified multiple significant SNP associations in genes (RASA1, ADRA1D, TCF7L1, FAS) that are critical components of signaling pathways that directly control lymphocyte IFNγ production or cytotoxic T cell function. Similarly, we found many associations with SNPs located in genes integral to nerve cell function; findings that, given the complex interplay between the nervous and immune systems, deserve closer examination in follow-up studies.
Collapse
Affiliation(s)
- Richard B Kennedy
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Mauer L, El-Sohemy A. Prevalence of cilantro (Coriandrum sativum) disliking among different ethnocultural groups. ACTA ACUST UNITED AC 2012. [DOI: 10.1186/2044-7248-1-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|