201
|
Hirani K, Sharma AN, Jain NS, Ugale RR, Chopde CT. Evaluation of GABAergic neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one as a neurobiological substrate for the anti-anxiety effect of ethanol in rats. Psychopharmacology (Berl) 2005; 180:267-78. [PMID: 15719223 DOI: 10.1007/s00213-005-2169-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Accepted: 12/29/2004] [Indexed: 11/29/2022]
Abstract
RATIONALE Acute systemic ethanol administration is known to elevate plasma and cerebral levels of neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one (3alpha, 5alpha-THP; allopregnanolone) to a concentration sufficient to potentiate GABA(A) receptors. We have earlier demonstrated that 3alpha, 5alpha-THP mediates the antidepressant-like effect of ethanol in Porsolt forced swim test. OBJECTIVE The aim of the present study is to explain the relationship between endogenous GABAergic neurosteroids and anxiolytic effect of ethanol in Sprague-Dawley rats. METHOD The mediation of 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol was assessed by pharmacological interactions of ethanol with various endogenous neurosteroidal modulators and using simulated physiological conditions of altered neurosteroid content in elevated plus maze (EPM) test. RESULTS Pretreatment of 3alpha, 5alpha-THP (0.5-2.5 mug/rat, i.c.v.) or neurosteroidogenic agents such as 3alpha, 5alpha-THP precursor progesterone (5 or 10 mg/kg, i.p.), 11-beta hydroxylase inhibitor metyrapone (50 or 100 mg/kg, i.p.) or the GABA(A) receptor agonist muscimol (25 ng/rat, i.c.v.) significantly potentiated the anti-anxiety effect of ethanol (1 g/kg, i.p.). On the other hand, the GABAergic antagonistic neurosteroid dehydroepiandrosterone sulphate (DHEAS) (1 mg/kg, i.p.), the GABA(A) receptor blocker bicuculline (1 mg/kg, i.p.), the 5alpha-reductase inhibitor finasteride (50 x 2 mg/kg, s.c.) or the mitochondrial diazepam binding inhibitory receptor antagonist PK11195 (1 mg/kg, i.p.) reduced ethanol-induced preference of time spent and number of entries into open arms. Anti-anxiety effect of ethanol was abolished in adrenalectomized (ADX) rats as compared to sham-operated control. This ADX-induced blockade was restored by prior systemic injection of progesterone, signifying the contribution of peripheral steroidogenesis in ethanol anxiolysis. Socially isolated animals known to exhibit decreased brain 3alpha, 5alpha-THP and GABA(A) receptor functions displayed reduced sensitivity to the effects of ethanol and 3alpha, 5alpha-THP in EPM test. CONCLUSIONS Our results demonstrated the contributory role of neuroactive steroid 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol. It is speculated that ethanol-induced modulation of endogenous GABAergic neurosteroids, especially 3alpha, 5alpha-THP, might be crucial pertinent to the etiology of 'trait' anxiety (tension reduction) and ethanol abuse.
Collapse
Affiliation(s)
- Khemraj Hirani
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur, 440 033, Maharashtra, India
| | | | | | | | | |
Collapse
|
202
|
Abstract
GABA(A) (gamma-aminobutyric acid type A) receptors mediate most of the 'fast' synaptic inhibition in the mammalian brain and are targeted by many clinically important drugs. Certain naturally occurring pregnane steroids can potently and specifically enhance GABA(A) receptor function in a nongenomic (direct) manner, and consequently have anxiolytic, analgesic, anticonvulsant, sedative, hypnotic and anaesthetic properties. These steroids not only act as remote endocrine messengers, but also can be synthesized in the brain, where they modify neuronal activity locally by modulating GABA(A) receptor function. Such 'neurosteroids' can influence mood and behaviour in various physiological and pathophysiological situations, and might contribute to the behavioural effects of psychoactive drugs.
Collapse
Affiliation(s)
- Delia Belelli
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee University, Dundee DD19SY, UK
| | | |
Collapse
|
203
|
He XY, Wegiel J, Yang SY. Intracellular oxidation of allopregnanolone by human brain type 10 17beta-hydroxysteroid dehydrogenase. Brain Res 2005; 1040:29-35. [PMID: 15804423 DOI: 10.1016/j.brainres.2005.01.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/30/2004] [Accepted: 01/04/2005] [Indexed: 11/17/2022]
Abstract
Allopregnanolone is a positive allosteric modulator of GABAA receptors, generated by the reduction of 5alpha-dihydroprogesterone (5alpha-DHP) in astrocytes. This neuroactive steroid can be inactivated by its 3alpha-oxidation to yield 5alpha-DHP. It was found that 5alpha-DHP levels in HEK293 cells expressing type 10 17beta-hydroxysteroid dehydrogenase (17beta-HSD10), but not its catalytic inactive mutant, increased significantly as allopregnanolone was added to culture media. The results demonstrate that mitochondrial 17beta-HSD10 effectively catalyzes the intracellular oxidation of allopregnanolone. Moreover, brain astrocytes contain a moderate level of 17beta-HSD10, which is elevated in activated astrocytes of brains with Alzheimer type pathology, including sporadic Alzheimer's disease (AD) and Down's syndrome with AD. The distribution of 17beta-HSD10 was found not to parallel that of 3alpha-HSD3. Cerebral cortex has the lowest level of 17beta-HSD10; whereas the hippocampus, hypothalamus, and amygdala possess relatively higher levels of this enzyme. The catalysis of 17beta-HSD10 appears to be essential for maintaining normal functions of GABAergic neurons. The elevated level of 17beta-HSD10 in activated astrocytes is a new feature found in brains of people with AD, and it may have important impact on AD pathogenesis.
Collapse
Affiliation(s)
- Xue-Ying He
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | |
Collapse
|
204
|
Matsumoto K, Pinna G, Puia G, Guidotti A, Costa E. Social isolation stress-induced aggression in mice: a model to study the pharmacology of neurosteroidogenesis. Stress 2005; 8:85-93. [PMID: 16019600 DOI: 10.1080/10253890500159022] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Long-term social isolation of laboratory animals is a model to study the behavioral and neurochemical consequences of the absence of social interaction in rodents. Many of the symptoms induced by isolation resemble depression and anxiety disorder symptomatology. Our studies have revealed that male mice socially isolated for more than 4 weeks, exhibit increased aggressiveness, a reduced responsiveness to GABA(A) receptor acting drugs, and a downregulation of brain levels of 3alpha,5alpha-tetrahydroprogesterone (allopregnanolone: 3alpha,5alpha-THP), a neurosteroid endowed with potent positive allosteric modulatory activity of the action of GABA at various GABA(A) receptor subtypes. This downregulation of 3alpha,5alpha-THP appeared to be associated with the reduction of brain type I 5alpha-reductase mRNA and protein expression. Systemic administration of the selective serotonin reuptake inhibitor fluoxetine and its metabolite norfluoxetine normalized brain 3alpha,5alpha-THP content and reduced responsiveness to GABA(A) mimetic drugs in a stereospecific manner. These drugs in nanomolar doses also reduced social isolation-induced aggressiveness with the same stereospecificity as detected in their action on 3alpha,5alpha-THP brain content, while their ex vivo inhibition of serotonin reuptake occurred at high micromolar doses and lacked stereospecificity. From these results we infer that the brain 3alpha,5alpha-THP content physiologically upregulates GABA(A) receptor responsiveness to GABA and that social isolation induces a reduction of brain 3alpha,5alpha-THP content that is probably causally related to the onset of aggression.
Collapse
Affiliation(s)
- Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630, Sugitani, Toyama, 930-0194, Japan.
| | | | | | | | | |
Collapse
|
205
|
Abstract
Human 17beta-hydroxysteroid dehydrogenase type 10 (17beta-HSD10) is a mitochondrial enzyme encoded by the SCHAD gene, which escapes chromosome X inactivation. 17Beta-HSD10/SCHAD mutations cause a spectrum of clinical conditions, from mild mental retardation to progressive infantile neurodegeneration. 17Beta-HSD10/SCHAD is essential for the metabolism of isoleucine and branched-chain fatty acids. It can inactivate 17beta-estradiol and steroid modulators of GABA(A) receptors, and convert 5alpha-androstanediol into 5alpha-dihydrotestosterone (DHT). Certain malignant prostatic epithelial cells contain high levels of 17beta-HSD10, generating 5alpha-DHT in the absence of testosterone. 17Beta-HSD10 has an affinity for amyloid-beta peptide, and might be linked to the mitochondrial dysfunction seen in Alzheimer's disease. This versatile enzyme might provide a new drug target for neuronal excitability control and for intervention in Alzheimer's disease and certain cancers.
Collapse
Affiliation(s)
- Song-Yu Yang
- Department of Pharmacology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | | | |
Collapse
|
206
|
Reddy DS, O'Malley BW, Rogawski MA. Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology 2005; 48:14-24. [PMID: 15617723 DOI: 10.1016/j.neuropharm.2004.09.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/13/2004] [Accepted: 09/02/2004] [Indexed: 11/18/2022]
Abstract
Progesterone is an anxiolytic steroid that could play a role in the regulation of anxiety in women. However, the mechanism by which progesterone decreases anxiety is incompletely understood. Progesterone affects the function of the brain by two distinct mechanisms. Progesterone regulates reproductive behavior by activating intracellular progesterone receptors (PRs). In addition, progesterone is believed to influence neuronal activity through its conversion to allopregnanolone, a neurosteroid that acts as a positive allosteric modulator of GABAA receptors. The extent to which the anxiolytic action of progesterone requires PRs is uncertain. In this study, we utilized PR knockout (PRKO) mice bearing a targeted null mutation of the PR gene that abrogates the function of both PR-A and PR-B subtypes to determine the requirement for PRs in the anxiolytic actions of progesterone. The absence of PR receptor protein expression in PRKO brain was confirmed by immunocytochemistry. In PRKO mice and their isogenic wild-type (WT) littermates, progesterone administration was associated with a dose-dependent rise in plasma allopregnanolone concentrations and corresponding anxiolytic effects in the elevated plus maze test. PRKO mice exhibited a greater anxiolytic response than WT animals although the allopregnanolone levels were similar in the two genotypes. Allopregnanolone also exhibited anxiolytic effects, but the magnitude of the response was similar in both genotypes. Pretreatment of PRKO mice with finasteride, a 5alpha-reductase inhibitor that blocks the conversion of progesterone to allopregnanolone, completely prevented the anxiolytic activity of progesterone, but had no effect on the response to allopregnanolone, demonstrating that allopregnanolone (or other 5alpha-reduced metabolites of progesterone) accounts for the response to the parent steroid hormone. These results provide direct evidence that the anxiolytic action of progesterone does not require PRs. However, PR activation by progesterone may influence the anxiolytic response since PRKO mice were more sensitive to progesterone.
Collapse
Affiliation(s)
- Doodipala S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | |
Collapse
|
207
|
Robichaud M, Debonnel G. Oestrogen and testosterone modulate the firing activity of dorsal raphe nucleus serotonergic neurones in both male and female rats. J Neuroendocrinol 2005; 17:179-85. [PMID: 15796770 DOI: 10.1111/j.1365-2826.2005.01292.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Women are twice as likely to suffer from mood disorders than men. Moreover, a growing body of evidence suggests a reciprocal modulation between sex steroids and the serotonin (5-HT) system. A previous study from our laboratory has shown that the progesterone metabolites 5beta-pregnane-3,20-dione (5beta-DHP) and 5alpha-pregnan-3alpha-ol,20-one (3alpha,5alpha-THP), as well as dehydroepiandrosterone (DHEA), increase the firing activity of dorsal raphe nucleus (DRN) 5-HT neurones in female rats. The present study was undertaken to assess the effects of these steroids in male rats, as well as the effects of testosterone and 17beta-oestradiol (17beta-E) in both sexes, and finally to evaluate gender differences in the modulation of the 5-HT neuronal firing activity by these different neuroactive steroids. Male rats were treated i.c.v., for 7 days, with a dose of 50 microg/kg/day of one of the following steroids: progesterone, 5beta-DHP, 3alpha,5alpha-THP, DHEA, testosterone, 17beta-hydroxy-5alpha-androstan-3-one (5alpha-DHT) and 17beta-E. Some rats also received a 3-day administration of testosterone (50 microg/kg/day, i.c.v). Females were treated in the same fashion with testosterone and 17beta-E. Extracellular unitary recordings of 5-HT neurones, obtained in vivo in the DRN of these rats, revealed that testosterone and 17beta-E increased the firing activity of 5-HT neurones in both males and females. In males, the effect of testosterone could already be seen after 3 days of treatment. Neither castration nor any treatment with other steroids significantly modified the firing rate of male 5-HT neurones. Taken together with previous findings, the results of the present study indicate both similarities and differences between sexes in the modulation of 5-HT neurones by some steroids. This could prove important in understanding gender differences in mood disorders.
Collapse
Affiliation(s)
- M Robichaud
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
208
|
Pinna G, Costa E, Guidotti A. Changes in brain testosterone and allopregnanolone biosynthesis elicit aggressive behavior. Proc Natl Acad Sci U S A 2005; 102:2135-40. [PMID: 15677716 PMCID: PMC548579 DOI: 10.1073/pnas.0409643102] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to an action on metabolism, anabolic/androgenic steroids also increase sex drive and mental acuity. If abused, such steroids can cause irritability, impulsive aggression, and signs of major depression [Pearson, H. (2004) Nature 431, 500-501], but the mechanisms that produce these symptoms are unknown. The present study investigates behavioral and neurochemical alterations occurring in association with protracted (3-week) administration of testosterone propionate (TP) to socially isolated (SI) and group-housed male and female mice. Male but not female SI mice exhibit aggression that correlates with the down-regulation of brain neurosteroid biosynthesis. However, in female mice, long-term TP administration induces aggression associated with a decrease of brain allopregnanolone (Allo) content and a decrease (approximately 40%) of 5alpha-reductase type I mRNA expression. In spayed mice treated with TP, restitution experiments with progesterone and estrogen normalize brain Allo content and prevent aggression. Submicromolar doses of S-norfluoxetine (S-NFLX) that are insufficient to inhibit serotonin reuptake selectively increase brain Allo content and abolish TP-induced aggression. Our results support the view that TP-induced aggressive behavior is the result of a TP-mediated neurosteroid biosynthesis down-regulation that can be reversed by the S-NFLX-induced increase of brain Allo content.
Collapse
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
209
|
Higashi T, Takido N, Shimada K. Studies on neurosteroids XVII. Analysis of stress-induced changes in neurosteroid levels in rat brains using liquid chromatography-electron capture atmospheric pressure chemical ionization-mass spectrometry. Steroids 2005; 70:1-11. [PMID: 15610891 DOI: 10.1016/j.steroids.2004.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 07/27/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
The analysis of stress-induced changes in the brain neurosteroid levels by liquid chromatography (LC)-electron capture atmospheric pressure chemical ionization-mass spectrometry (ECAPCI-MS) is described. In the present method, neurosteroids were derivatized with a highly electron-affinitive reagent, 2-nitro-4-trifluoromethylphenylhydrazine (NFPH), to convert them to the corresponding hydrazones. The derivatized steroids showed over a 20-fold higher sensitivity in ECAPCI-MS than intact steroids measured by positive atmospheric pressure chemical ionization (APCI)-MS. Application of this method to the analysis of rat brain samples confirmed the significant increase in the levels of pregnenolone (PREG), progesterone (PROG), 5alpha-dihydroprogesterone (DHPROG), allopregnanolone (3alpha-hydroxy-5alpha-pregn-20-one; AP), and epiallopregnanolone (3beta-hydroxy-5alpha-pregn-20-one; EpiAP) in the fixated rats. The din stress, which we examined as a new short-term mental stress model, also elevated the brain neurosteroid levels. It is known that various types of stress lower the gamma-aminobutyric acid type A (GABA(A)) receptor function and induce the neuronal overexcitation. The increase in the brain level of AP, a potent positive modulator of GABA(A) receptors, may be the defensive response against acute stress. The increase in the brain concentration of its precursors, PREG, PROG, and DHPROG, may be associated with the acceleration of the AP synthesis. Thus, the present studies suggest that changes in the brain levels of neurosteroids may play an important role in the homeostatic mechanisms that counteract the inhibitory effect of stress on the GABA(A) receptor function.
Collapse
Affiliation(s)
- Tatsuya Higashi
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | |
Collapse
|
210
|
Huong NTT, Murakami Y, Tohda M, Watanabe H, Matsumoto K. Social Isolation Stress-Induced Oxidative Damage in Mouse Brain and Its Modulation by Majonoside-R2, a Vietnamese Ginseng Saponin. Biol Pharm Bull 2005; 28:1389-93. [PMID: 16079480 DOI: 10.1248/bpb.28.1389] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stressors with a physical factor such as immobilization, electric foot shock, cold swim, etc., have been shown to produce oxidative damage to membrane lipids in the brain. In this study, we investigated the effect of protracted social isolation stress on lipid peroxidation activity in the mouse brain and elucidated the protective effect of majonoside-R2, a major saponin component of Vietnamese ginseng, in mice exposed to social isolation stress. Thiobarbituric acid reactive substance levels, one of the end products of lipid peroxidation reaction, were increased in the brains of mice subjected to 6-8 weeks of social isolation stress. Measurements of nitric oxide (NO) metabolites (NO(x)(-)) also revealed a significant increase of NO production in the brains of socially isolated mice. Moreover, the depletion of brain glutathione content, an endogenous antioxidant, in socially isolated animals occurred in association with the rise in lipid peroxidation. The intraperitoneal administration of majonoside-R2 (10-50 mg/kg) had no effect on thiobarbituric acid reactive substances (TBARS), NO, or glutathione levels in the brains of group-housed control mice but it significantly suppressed the increase in TBARS and NO levels and the decrease in glutathione levels caused by social isolation stress. These results suggest that mice subjected to 6-8 weeks of social isolation stress produces oxidative damage in the brain partly via enhancement of NO production, and that majonoside-R2 exerts a protective effect by modulating NO and glutathione systems in the brain.
Collapse
Affiliation(s)
- Nguyen Thi Thu Huong
- Division of Medicinal Pharmacology, Institute of Natural Medicines, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
211
|
Kiyokage E, Toida K, Suzuki-Yamamoto T, Ishimura K. Localization of 5α-reductase in the rat main olfactory bulb. J Comp Neurol 2005; 493:381-95. [PMID: 16261538 DOI: 10.1002/cne.20760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The enzyme steroid 5alpha-reductase catalyzes the production of dihydroprogesterone and dihydrotestosterone, which were recently recognized as neurosteroids in the brain with variably potential neuroactivity. The present study reports for the first time detailed localization of 5alpha-reductase type 1 in the rat main olfactory bulb. The occurrence of 5alpha-reductase in the olfactory bulb was detected by reverse transcription-polymerase chain reaction and Western blotting analyses. In addition, the enzyme activity was also detected by thin layer chromatography. Immunocytochemistry showed that 5alpha-reductase immunoreactive cells of variable intensity were present in all layers of the olfactory bulb. Multiple immunolabeling revealed that 5alpha-reductase was mainly localized in glial cells, namely, in S-100beta- and glial fibrillary acidic protein-immunoreactive astrocytes, 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-immunoreactive oligodendrocytes, and in S-100beta- and neuropeptide-Y-immunoreactive olfactory ensheathing cells, whereas the bulbar neurons exhibited little immunoreactivity. Quantitative analysis revealed that the number of 5alpha-reductase-immunoreactive cells was greatest in the olfactory nerve layer. The most intense 5alpha-reductase-immunoreactivity was found in the olfactory ensheathing cells, and next in the CNPase-immunoreactive cells. The 5alpha-reductase in the olfactory bulb was expressed constantly throughout different ages and sexes and in neutered and hypophysectomized rats. Thus, 5alpha-reductase may contribute via 5alpha-reduced metabolites to the formation and maintenance of olfactory inputs and outputs, which were closely associated with the olfactory ensheathing cells and the oligodendrocytes, respectively.
Collapse
Affiliation(s)
- Emi Kiyokage
- Department of Anatomy and Cell Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Japan
| | | | | | | |
Collapse
|
212
|
Ugale RR, Hirani K, Morelli M, Chopde CT. Role of neuroactive steroid allopregnanolone in antipsychotic-like action of olanzapine in rodents. Neuropsychopharmacology 2004; 29:1597-609. [PMID: 15100702 DOI: 10.1038/sj.npp.1300460] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Olanzapine increases brain allopregnanolone (ALLO) levels sufficiently to modulate neuronal activity by allosterically regulating GABAA receptors. Recently, we reported the antipsychotic-like profile of ALLO in rodents. The present study examined the hypothesis that olanzapine-induced elevation of endogenous neurosteroid ALLO is vital for its neuroleptic-like action. The conditioned avoidance response (CAR) and apomorphine-induced climbing behavioral paradigms were used in rodents. Administration of ALLO (1 microg, intracerebroventricular (i.c.v.)) or neurosteroidogenic agents such as the mitochondrial diazepam binding inhibitor receptor agonist, FGIN 1-27 (0.5 microg, i.c.v.) or the ALLO precursor, progesterone (10 mg/kg, i.p.) significantly potentiated olanzapine-induced blockade of CAR and apomorphine-induced climbing. In contrast, these agents failed to alter the antipsychotic-like effect of risperidone and haloperidol. On the other hand, inhibition of the endogenous biosynthesis of neurosteroids by the 3beta-hydroxysteroid dehydrogenase inhibitor, trilostane (30 mg/kg, i.p.), the 3alpha-hydroxysteroid oxidoreductase inhibitor, indomethacin (5 mg/kg, i.p.), or the GABAA receptor antagonist bicuculline (1 mg/kg, i.p.) and dehydroepiandrosterone sulfate (DHEAS) (1 mg/kg, i.p.) blocked the effect of olanzapine, but not of risperidone and haloperidol. Socially isolated animals, known to exhibit decreased brain ALLO and GABAA receptor functions, displayed a shortening in the muscimol-induced loss of righting reflex and an increased susceptibility to apomorphine-induced climbing. Administration of olanzapine, but not of haloperidol and risperidone, normalized the duration of muscimol-elicited loss of righting reflex. Although all three antipsychotics proved capable of antagonizing the apomorphine-induced climbing, a dose almost five times higher of olanzapine was required in socially isolated animals. The data obtained suggest that enhancement of the GABAergic tone plays a key role in the antipsychotic-like effect exerted by olanzapine in rodents, likely as a consequence of augmented levels of neuroactive steroids, in particular ALLO, in the brain. The present findings provide the first specific behavioral evidence in support of the hypothesis that neuroactive steroid ALLO- mediated GABAergic modulation is essential for the antipsychotic-like action of olanzapine.
Collapse
Affiliation(s)
- Rajesh R Ugale
- University Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur, Maharashtra, India
| | | | | | | |
Collapse
|
213
|
Cagetti E, Pinna G, Guidotti A, Baicy K, Olsen RW. Chronic intermittent ethanol (CIE) administration in rats decreases levels of neurosteroids in hippocampus, accompanied by altered behavioral responses to neurosteroids and memory function. Neuropharmacology 2004; 46:570-9. [PMID: 14975681 DOI: 10.1016/j.neuropharm.2003.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 09/24/2003] [Accepted: 10/02/2003] [Indexed: 11/21/2022]
Abstract
The administration of ethanol on a chronic intermittent regimen (CIE) involving multiple withdrawal episodes is a model for ethanol dependence. After CIE, rats exhibited reduced seizure threshold, increased anxiety, tolerance to GABAergic sedative-hypnotic drugs, and changes in GABA(A) receptor function and subunit composition in hippocampus. Previous studies have shown that acute and chronic ethanol may induce changes in the levels of the neurosteroid 3alpha-hydroxysteroid-5alpha-pregnan-20-one (3alpha, 5alpha-THP) in the brain. Therefore, the current study analyses the correlation between chronic intermittent ethanol effects on the level of 3alpha, 5alpha-THP in hippocampus of CIE rats and the behavioral changes in sensitivity to neurosteroids. After CIE, the levels for 3alpha, 5alpha-THP were significantly reduced in hippocampus of rats. The mRNA levels for the enzymes 5alpha-reductase and 3alpha-HSD in hippocampus were also reduced. In vivo, (in contrast to a tolerance to the hypnotic effect of steroids), CIE rats showed increased sensitivity to the anticonvulsant and to the anxiolytic effect of the steroid alphaxalone. Perhaps, this is a response to lowered levels of endogenous neuroactive steroids. CIE rats also showed impairment of hippocampus-dependent memory function. These results suggest that changes in neurosteroids level and in vivo sensitivity to these compounds are involved in the development of ethanol dependence in the CIE model.
Collapse
Affiliation(s)
- Elisabetta Cagetti
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, University of California, Room CHS 23-120, 650 Young Drive South, Los Angeles, CA 90095-1735, USA
| | | | | | | | | |
Collapse
|
214
|
Ordyan NE, Pivina SG. Anxiety levels and neurosteroid synthesis in the brains of prenatally stressed male rats. ACTA ACUST UNITED AC 2004; 33:899-903. [PMID: 14969429 DOI: 10.1023/a:1025952906715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This report presents studies of the effects of immobilization stress applied to pregnant female rats during the last third of pregnancy on anxiety levels and neurosteroid synthesis in brain structures of adult offspring. Neurosteroid synthesis was assessed in terms of changes in the activity of 5alpha-reductase, the enzyme which converts progesterone into active metabolites. Prenatal stress results in a significant decrease in the level of anxiety and an increase in movement activity among adult males. Stressed rats showed increases in progesterone-5alpha-reductase activity in the hypothalamus, hippocampus, and frontal cortex. These results provide evidence that changes in the behavior of adult male rats due to stress in the prenatal period of development may be due to the formation of active progesterone metabolites in the brain.
Collapse
Affiliation(s)
- N E Ordyan
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034 St. Petersburg, Russia
| | | |
Collapse
|
215
|
Pinna G, Costa E, Guidotti A. Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Natl Acad Sci U S A 2004; 101:6222-5. [PMID: 15069199 PMCID: PMC395950 DOI: 10.1073/pnas.0401479101] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice housed in social isolation exhibit a decreased response to gamma-aminobutyric acid-mimetic drugs [i.e., pentobarbital (PTB)] associated with a down-regulation of telencephalic allopregnanolone (Allo) levels. In these mice, the PTB-induced loss of righting reflex is greatly reduced. Fluoxetine (FLX) and norfluoxetine (NFLX) stereospecifically reverse the effect of social isolation on the PTB-induced loss of righting reflex and on the decrease of telencephalic Allo content. The S-isomers of FLX and NFLX are 2- and 7-fold more potent, respectively, than their respective R-isomers. The EC(50)s of FLX and NFLX required to normalize brain Allo content and PTB action are 10-50 times lower than the IC(50)s required for selective serotonin reuptake inhibitor activity. We conclude that normalization of PTB action elicited by the S-isomers of FLX and NFLX is related to the reversal of the down-regulation of brain Allo content and is independent of selective serotonin reuptake inhibitor activity.
Collapse
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | |
Collapse
|
216
|
Reddy DS. Testosterone modulation of seizure susceptibility is mediated by neurosteroids 3α-androstanediol and 17β-estradiol. Neuroscience 2004; 129:195-207. [PMID: 15489042 DOI: 10.1016/j.neuroscience.2004.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2004] [Indexed: 11/18/2022]
Abstract
Testosterone modulates seizure susceptibility in animals and humans, but the underlying mechanisms are obscure. Here, testosterone modulation of seizure susceptibility is hypothesized to occur through its conversion to neurosteroids with "anticonvulsant" and "proconvulsant" actions, and hence the net effect of testosterone on neural excitability and seizure activity depends on the levels of distinct testosterone metabolites. Testosterone undergoes metabolism to neurosteroids via two distinct pathways. Aromatization of the A-ring converts testosterone into 17beta-estradiol. Reduction of testosterone by 5alpha-reductase generates 5alpha-dihydrotestosterone (DHT), which is then converted to 3alpha-androstanediol (3alpha-Diol), a powerful GABA(A) receptor-modulating neurosteroid with anticonvulsant properties. Systemic doses of testosterone decreased seizure threshold in rats and increased the incidence and severity of pentylenetetrazol (PTZ)-induced seizures in mice. These proconvulsant effects of testosterone were associated with increases in plasma 17beta-estradiol and 3alpha-Diol concentrations. Pretreatment with letrozole, an aromatase inhibitor that blocks the conversion of testosterone to 17beta-estradiol, significantly inhibited testosterone-induced exacerbation of seizures. The 5alpha-reductase inhibitor finasteride significantly reduced 3alpha-Diol levels and also blocked letrozole's ability to inhibit the proconvulsant effects of testosterone. The 5alpha-reduced metabolites of testosterone, DHT and 3alpha-Diol, had powerful anticonvulsant activity in the PTZ test. Letrozole or finasteride had no effect on seizure protection by DHT and 3alpha-Diol, but indomethacin partially reversed DHT actions. 3alpha-Diol but not 3beta-androstanediol, a GABA(A) receptor-inactive stereoisomer, suppressed 4-aminopyridine-induced spontaneous epileptiform bursting in rat hippocampal slices. Thus, testosterone-derived neurosteroids 3alpha-Diol and 17beta-estradiol could contribute to the net cellular actions of testosterone on neural excitability and seizure susceptibility.
Collapse
Affiliation(s)
- D S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
217
|
Ishikura S, Usami N, Nakajima S, Kameyama A, Shiraishi H, Carbone V, El-Kabbani O, Hara A. Characterization of Two Isoforms of Mouse 3(17).ALPHA.-Hydroxysteroid Dehydrogenases of the Aldo-Keto Reductase Family. Biol Pharm Bull 2004; 27:1939-45. [PMID: 15577209 DOI: 10.1248/bpb.27.1939] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse kidney contains two 3(17)alpha-hydroxysteroid dehydrogenases (HSDs) that show essentially the same properties except for their isoelectric points. However, the structural differences and physiological roles of the two enzymes remain unknown. In this study, we have isolated cDNAs for the two 3(17)alpha-HSDs from a total RNA sample of mouse kidney by reverse transcription-PCR. The identity of the cDNAs was confirmed by characterization of the recombinant enzymes that showed the same molecular weights, pI values, pH optima, substrate specificity and inhibitor sensitivity as those of the enzymes from mouse kidney. We also found that the recombinant enzymes reduce precursors of neuroactive progesterone derivatives, 5alpha-dihydrotestoserone, deoxycorticosterone, dehydroepiandrosterone, dehydroepiandrosterone sulfate and estrone at low Km values of 0.3-2 microM. The two enzymes belonged to the aldo-keto reductase (AKR) family, and their 323-amino acid sequences differed only by five amino acids. The sequences of the two isoforms are identical to those of proteins that are predicted to be encoded in a gene for AKR1C21 in the database of the mouse genome. However, the mRNAs for the two isoforms were expressed in mouse kidney and other tissues, in which their expression levels were different. The results indicate an important role of 3(17)alpha-HSD in controlling the concentrations of various steroid hormones in the mouse tissues, and suggest the existence of two genes for the two isoforms of the enzyme.
Collapse
Affiliation(s)
- Syuhei Ishikura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
218
|
The contraceptive agent Provera enhances GABA(A) receptor-mediated inhibitory neurotransmission in the rat hippocampus: evidence for endogenous neurosteroids? J Neurosci 2003. [PMID: 14602815 DOI: 10.1523/jneurosci.23-31-10013.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurosteroids typified by 5alpha-pregnan-3alpha-ol-20-one (5alpha3alpha) have emerged as the most potent endogenous positive modulators of the GABAA receptor, the principal mediator of fast inhibitory transmission within the CNS. Neurosteroids can be synthesized de novo in the brain in levels sufficient to modulate GABA(A) receptor function and, thus, might play an important physiological-pathophysiological role. Indirect support for this proposal comes from the observation that neurosteroid action is region and neuron selective. However, the mechanism(s) that imparts specificity of action remains primarily elusive. Although neurosteroids are relatively promiscuous toward different GABA(A) receptor isoforms, the contribution of local neurosteroid metabolism has been relatively unexplored. Here, we investigate the role of neurosteroid metabolism by using electrophysiological techniques to compare the actions of 5alpha3alpha and its metabolically stable synthetic analog ganaxolone on inhibitory neurotransmission in CA1 and dentate gyrus neurons. Furthermore, we evaluate the contribution of a key enzyme in neurosteroid metabolism [i.e., 3alpha-hydroxysteroidoxidoreductase (3alpha-HSOR)] to the inactivation of endogenous, or exogenously applied 5alpha3alpha. We show that low concentrations of ganaxolone, but not of 5alpha3alpha, enhance inhibitory transmission in dentate gyrus, whereas both steroids are similarly effective in CA1 neurons. Furthermore, inhibition of 3alpha-HSOR by the contraceptive agent Provera results in enhanced synaptic and extrasynaptic GABA(A) receptor-mediated inhibition in the dentate gyrus but not in the CA1 region. Collectively, these findings advocate a crucial role for local steroid metabolism in shaping GABA(A) receptor-mediated inhibition in a regionally dependent manner and suggest a novel action by the contraceptive agent on inhibitory centers in the CNS.
Collapse
|
219
|
Belelli D, Herd MB. The contraceptive agent Provera enhances GABA(A) receptor-mediated inhibitory neurotransmission in the rat hippocampus: evidence for endogenous neurosteroids? J Neurosci 2003; 23:10013-20. [PMID: 14602815 PMCID: PMC6740859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Neurosteroids typified by 5alpha-pregnan-3alpha-ol-20-one (5alpha3alpha) have emerged as the most potent endogenous positive modulators of the GABAA receptor, the principal mediator of fast inhibitory transmission within the CNS. Neurosteroids can be synthesized de novo in the brain in levels sufficient to modulate GABA(A) receptor function and, thus, might play an important physiological-pathophysiological role. Indirect support for this proposal comes from the observation that neurosteroid action is region and neuron selective. However, the mechanism(s) that imparts specificity of action remains primarily elusive. Although neurosteroids are relatively promiscuous toward different GABA(A) receptor isoforms, the contribution of local neurosteroid metabolism has been relatively unexplored. Here, we investigate the role of neurosteroid metabolism by using electrophysiological techniques to compare the actions of 5alpha3alpha and its metabolically stable synthetic analog ganaxolone on inhibitory neurotransmission in CA1 and dentate gyrus neurons. Furthermore, we evaluate the contribution of a key enzyme in neurosteroid metabolism [i.e., 3alpha-hydroxysteroidoxidoreductase (3alpha-HSOR)] to the inactivation of endogenous, or exogenously applied 5alpha3alpha. We show that low concentrations of ganaxolone, but not of 5alpha3alpha, enhance inhibitory transmission in dentate gyrus, whereas both steroids are similarly effective in CA1 neurons. Furthermore, inhibition of 3alpha-HSOR by the contraceptive agent Provera results in enhanced synaptic and extrasynaptic GABA(A) receptor-mediated inhibition in the dentate gyrus but not in the CA1 region. Collectively, these findings advocate a crucial role for local steroid metabolism in shaping GABA(A) receptor-mediated inhibition in a regionally dependent manner and suggest a novel action by the contraceptive agent on inhibitory centers in the CNS.
Collapse
Affiliation(s)
- Delia Belelli
- Department of Pharmacology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY United Kingdom.
| | | |
Collapse
|
220
|
Frye C, Seliga A. Effects of olanzapine infusions to the ventral tegmental area on lordosis and midbrain 3alpha,5alpha-THP concentrations in rats. Psychopharmacology (Berl) 2003; 170:132-9. [PMID: 12845413 DOI: 10.1007/s00213-003-1523-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Accepted: 04/08/2003] [Indexed: 10/26/2022]
Abstract
RATIONALE The progesterone metabolite and neurosteroid 5alpha-pregnane-3alpha-ol-20-one (3alpha,5alpha-THP) facilitates sexual behavior of estradiol-primed rodents through its actions in the ventral tegmental area (VTA). Olanzapine, an atypical antipsychotic, may exert some of its actions by increasing 3alpha,5alpha-THP levels. OBJECTIVE If olanzapine has effects by increasing 3alpha,5alpha-THP levels, then olanzapine administration to the VTA should facilitate feminine sexual behavior of estradiol-primed rodents concomitant with increasing midbrain levels of 3alpha,5alpha-THP. METHODS. In experiment 1, ovariectomized rats with bilateral cannulae to the VTA were primed with estradiol at 0 h, infused with olanzapine (10 or 20 microg) or vehicle at 47 h, and tested for sexual behavior at 47.5 h. In experiment 2, estradiol-primed ovariectomized rats were infused with olanzapine (10 microg) or vehicle, tested for sexual behavior, then tissues were collected for measurement of midbrain progesterone and 3alpha,5alpha-THP, and plasma corticosterone, progesterone, and 3alpha,5alpha-THP. In experiment 3, estradiol-primed, ovariectomized rats were administered progesterone (500 microg, SC), tested for sexual behavior, then tissues were collected for midbrain and plasma progesterone and 3alpha,5alpha-THP levels. RESULTS Infusions of 10 or 20 microg olanzapine to the VTA significantly increased the incidence and intensity of lordosis, and the occurrence of proceptive and aggressive behaviors. Rats infused with olanzapine to the VTA had significantly greater levels of midbrain 3alpha,5alpha-THP than did vehicle-administered rats. Olanzapine did not increase progesterone or corticosterone levels. CONCLUSIONS Olanzapine increases lordosis and midbrain 3alpha,5alpha-THP when infused to the VTA which suggest that olanzapine's behavioral effects may result, in part, through actions of 3alpha,5alpha-THP, independent of progesterone or corticosterone.
Collapse
Affiliation(s)
- Cheryl Frye
- Department of Psychology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
221
|
Nechmad A, Maayan R, Spivak B, Ramadan E, Poyurovsky M, Weizman A. Brain neurosteroid changes after paroxetine administration in mice. Eur Neuropsychopharmacol 2003; 13:327-32. [PMID: 12957330 DOI: 10.1016/s0924-977x(03)00015-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although it is known that selective serotonin reuptake inhibitors (SSRIs), as other antidepressants, elevate mood only after 3-4 weeks of treatment, the mechanism responsible for this delay is not understood. SSRIs have been demonstrated to alter the levels of neurosteroids such as allopregnanolone (THP) which possess anxiolytic and mood-elevating properties. We compared the effect of 9 and 21 days i.p. administration of paroxetine, a potent SSRI, on the synthesis of THP and its precursor, 5alpha-dihydroprogesterone (DHP), in the mouse cortex, hypothalamus and olfactory bulb. Cortex, olfactory bulb and hypothalamus synthesized levels of DHP were significantly raised after 9 days of paroxetine administration, whereas a significant rise in the THP synthesized level was observed only after 21 days of treatment. Peripheral synthesis of DHP, measured by the level in serum, significantly increased after 9 days, but reverted to normal values after 21 days. No increase was detected in serum THP levels either after 9 or 21 days treatment. Differences in peripheral and brain synthesis indicates independence in brain synthesis. The data indicate that paroxetine administration differentially increases [3H]DHP and [3H]THP content, depending on the duration of the treatment. Our results suggest that brain THP may be involved in the antidepressive and anxiolytic activity of paroxetine.
Collapse
Affiliation(s)
- Allon Nechmad
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel
| | | | | | | | | | | |
Collapse
|
222
|
Matsumoto K, Nomura H, Murakami Y, Taki K, Takahata H, Watanabe H. Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems. Pharmacol Biochem Behav 2003; 75:831-5. [PMID: 12957225 DOI: 10.1016/s0091-3057(03)00169-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allopregnanolone (ALLO, 3alpha,5alpha-tetrahydroprogesterone), a positive allosteric modulator of actions of gamma-aminobutyric acid GABA) at GABA(A) receptors, is synthesized in the brain from progesterone by the sequential action of two enzymes: a type I 5alpha-reductase and a 3alpha-hydroxysteroid oxidoreductase. We previously demonstrated that long-term social isolation of mice caused a significant decrease in brain ALLO content via suppression of type I 5alpha-reductase and its mRNA expression. In this study, to clarify a physiological role of endogenous brain ALLO, we investigated changes in seizure susceptibility of mice following protracted social isolation and compared with those of mice treated with SKF105111 (SKF), an inhibitor of types I and II 5alpha-reductase. Social isolation of mice for 7 weeks prior to the experiments caused a significant increase of seizure susceptibility to the GABA(A) receptor antagonist picrotoxin but not to the glycine receptor antagonist strychnine or the glutamate receptor agonist kainic acid. The change in the seizure susceptibility was completely reversed by 2.5 mg/kg ip ALLO, a dose that per se had no effect on picrotoxin-induced seizure. Treatment of mice with SKF (20 mg/kg ip) also reduced a threshold dose of picrotoxin, but not that of strychnine or kainic acid, which was required to elicit seizure in group-housed mice. The effect of SKF was attenuated by ALLO (2.5 mg/kg ip). In contrast, SKF treatment had no effect on picrotoxin-induced seizure in socially isolated mice. These findings suggest that endogenous brain ALLO plays a suppressive role in seizure susceptibility via a positive modulation of GABA(A) receptor function and that social isolation enhances seizure susceptibility in mice via reduction of GABA(A) receptor function caused by a decrease of endogenous ALLO.
Collapse
Affiliation(s)
- Kinzo Matsumoto
- Department of Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
223
|
Reddy DS. Is there a physiological role for the neurosteroid THDOC in stress-sensitive conditions? Trends Pharmacol Sci 2003; 24:103-6. [PMID: 12628349 DOI: 10.1016/s0165-6147(03)00023-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endogenous neurosteroids affect brain excitability during physiological states such as pregnancy and the menstrual cycle, and during conditions of acute and chronic stress. The neurosteroid allotetrahydrodeoxycorticosterone (THDOC) is an allosteric modulator of the GABA(A) receptor. Although the role of THDOC within the brain is undefined, recent studies indicate that stress induces THDOC to levels that can activate GABA(A) receptors. These results might have significant implications for human stress-sensitive conditions such as epilepsy, post-traumatic stress disorder and depression.
Collapse
Affiliation(s)
- Doodipala S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
224
|
Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A. In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci U S A 2003; 100:2035-40. [PMID: 12571361 PMCID: PMC149954 DOI: 10.1073/pnas.0337642100] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Social isolation (SI) of male mice lasting >4 weeks is associated with aggression toward intruders and a down-regulation of brain allopregnanolone (Allo) content. SI of female mice fails to down-regulate brain Allo content or to induce aggressiveness. Fluoxetine (Prozac in clinical use) is an S- and R-fluoxetine (FLX) mixture, which in mammals is metabolized into S- and R-norfluoxetine (NFLX). The S isomers of FLX and NFLX are more active than their respective R isomers in normalizing brain Allo down-regulation and in reducing the aggressiveness induced by SI. Thus, FLX stereospecifically reduces brain Allo down-regulation and the aggressiveness induced by SI, whereas serotonin (5-HT) uptake inhibition lacks stereospecificity. The doses of S-FLX and S-NFLX that reduce aggressiveness and Allo brain content down-regulation induced by SI are at least one order of magnitude lower than the doses that block 5-HT reuptake. Doses of imipramine that inhibit 5-HT uptake neither reduce aggressiveness nor normalize brain Allo down-regulation. We conclude that Allo brain content normalization is a better candidate than 5-HT reuptake inhibition to explain the reduction of aggressiveness elicited by S-FLX and S-NFLX.
Collapse
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
225
|
Abstract
Steroids influence neuronal function through binding to cognate intracellular receptors which may act as transcription factors in the regulation of gene expression. In addition, certain so-called neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially distinct 3alpha-reduced metabolites of progesterone and deoxycorticosterone are potent positive allosteric modulators of gamma-aminobutyric acid type A (GABA(A)) receptors. However, also classical steroid hormones such as 17beta-estradiol, testosterone and progesterone are neuroactive steroids because they may act as functional antagonists at the 5-hydroxytryptamine type 3 (5-HT(3)) receptor, a ligand-gated ion channel or distinct glutamate receptors. A structure-activity relationship for the actions of a variety of steroids at the 5-HT(3) receptor was elaborated that differed considerably from that known for GABA(A) receptors. Although a bindings site for steroids at GABA(A) receptors is still a matter of debate, meanwhile there is also evidence that steroids interact allosterically with ligand-gated ion channels at the receptor membrane interface. On the other hand, also 3alpha-reduced neuroactive steroids may regulate gene expression via the progesterone receptor after intracellular oxidation into 5alpha-pregnane steroids. Animal studies showed that progesterone is converted rapidly into GABAergic neuroactive steroids in vivo. Progesterone reduces locomotor activity in a dose-dependent fashion in male Wistar rats. Moreover, progesterone and 3alpha-reduced neuroactive steroids produce a benzodiazepine-like sleep EEG profile in rats and humans. During major depression, there is a disequilibrium of such 3alpha-reduced neuroactive steroids which is corrected by successful treatment with antidepressant drugs. Neuroactive steroids may further be involved in the treatment of depression and anxiety with antidepressants in patients during ethanol withdrawal. Studies in patients with panic disorder suggest that neuroactive steroids may also play a role in modulating human anxiety. Both the genomic and non-genomic effects of steroids in the brain may contribute to the pathophysiology of psychiatric disorders and the mechanisms of action of antidepressants. Neuroactive steroids affect a broad spectrum of behavioral functions through their unique molecular properties and may represent a new treatment strategy for neuropsychiatric disorders.
Collapse
Affiliation(s)
- R Rupprecht
- Department of Psychiatry, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
226
|
Puia G, Mienville JM, Matsumoto K, Takahata H, Watanabe H, Costa E, Guidotti A. On the putative physiological role of allopregnanolone on GABA(A) receptor function. Neuropharmacology 2003; 44:49-55. [PMID: 12559121 DOI: 10.1016/s0028-3908(02)00341-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To obtain definitive evidence for a physiological allosteric modulatory role for endogenous brain ALLO on GABA(A) receptor function, we studied GABA(A) receptor activity under conditions in which the concentration of endogenous brain ALLO was decreased by about 80% for longer than 5 h following the administration of SKF 105111- 17beta-17-[bis (1methylethyl) amino carbonyl] androstane-3,5-diene-3-carboxylic acid (SKF), a potent inhibitor of 5alpha-reductases Type I and II. We used the in situ patch-clamp technique to record GABA-evoked currents and spontaneous inhibitory postsynaptic currents (sIPSCs) from pyramidal neurons in neocortical slices of vehicle- or SKF-treated mice. The potency, but not the efficacy, of exogenously applied GABA was decreased in slices from mice treated with SKF. When neocortical slices were treated in vitro for 3 h with 10 microM SKF, ALLO was also reduced (25-30%) and in addition, the GABA dose-response curve was shifted to the right; however this shift was not as marked as the shift in the slices obtained from mice treated with SKF, in keeping with the smaller decrease of the ALLO content in these slices. Furthermore, direct application of ALLO to these slices shifted the dose-response curve of GABA back toward a non-SKF treated profile. We then analyzed GABAergic sIPSCs in neocortical slices obtained from vehicle or SKF-treated mice. Mean decay time and charge transfer were significantly reduced by SKF treatment. The decay of sIPSCs was best fitted by two exponentials, but only the fast component was decreased in the SKF group. Direct application of ALLO (100 nM) normalizes the sIPSC kinetics in slices from ALLO depleted mice. No changes were detected in the amplitude or frequency of sIPSCs. These data demonstrate that endogenous ALLO physiologically regulates spontaneously induced Cl(-) current by acting on a specific recognition site, which is probably located on GABA(A) receptors (a receptor on a receptor), thereby prolonging inhibitory currents by facilitating conformational transition of the GABA-gated Cl(-) channel to an open state.
Collapse
Affiliation(s)
- G Puia
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St. MC912, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
227
|
Gulinello M, Gong QH, Smith SS. Progesterone withdrawal increases the alpha4 subunit of the GABA(A) receptor in male rats in association with anxiety and altered pharmacology - a comparison with female rats. Neuropharmacology 2002; 43:701-14. [PMID: 12367616 PMCID: PMC2887344 DOI: 10.1016/s0028-3908(02)00171-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Withdrawal from the neurosteroid 3alpha,5alpha-allopregnanolone after chronic administration of progesterone increases anxiety in female rats and up-regulates the alpha4 subunit of the GABA(A) receptor (GABA(A)-R) in the hippocampus. We investigated if these phenomena would also occur in male rats. Progesterone withdrawal (PWD) induced higher alpha4 subunit expression in the hippocampus of both male and female rats, in association with increased anxiety (assessed in the elevated plus maze) comparable to effects previously reported. Because alpha4-containing GABA(A)-R are insensitive to the benzodiazepine (BDZ) lorazepam (LZM), and are positively modulated by flumazenil (FLU, a BDZ antagonist), we therefore tested the effects of these compounds following PWD. Using whole-cell patch clamp techniques, LZM-potentiation of GABA ((EC20))-gated current was markedly reduced in CA1 pyramidal cells of male rats undergoing PWD compared to controls, whereas FLU had no effect on GABA-gated current in control animals but increased it in PWD animals. Behaviorally, both male and female rats were significantly less sensitive to the anxiolytic effects of LZM. In contrast, FLU demonstrated significant anxiolytic effects following PWD. These data suggest that neurosteroid regulation of the alpha4 GABA(A)-R subunit may be a relevant mechanism underlying anxiety disorders, and that this phenomenon is not sex-specific.
Collapse
Affiliation(s)
- M. Gulinello
- SUNY Downstate Medical Center, Dept. of Physiology and Pharmacology, 450 Clarkson Avenue, 11203-2098 Brooklyn, NY USA
| | - Q. H. Gong
- SUNY Downstate Medical Center, Dept. of Physiology and Pharmacology, 450 Clarkson Avenue, 11203-2098 Brooklyn, NY USA
| | - S. S. Smith
- SUNY Downstate Medical Center, Dept. of Physiology and Pharmacology, 450 Clarkson Avenue, 11203-2098 Brooklyn, NY USA
| |
Collapse
|
228
|
Gomez C, Saldivar-Gonzalez A, Delgado G, Rodriguez R. Rapid anxiolytic activity of progesterone and pregnanolone in male rats. Pharmacol Biochem Behav 2002; 72:543-50. [PMID: 12175450 DOI: 10.1016/s0091-3057(02)00722-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of different doses of progesterone (1.0, 3.0, 10.0, 30.0, and 100.0 mg/kg) and pregnanolone (1.0, 3.0, 10.0, and 30.0 mg/kg) upon burying defensive and elevated plus-maze (EPM) tests was investigated in adult male rats and compared with the effects of diazepam (0.25. 0.50, 1.0, and 2.0 mg/kg). All drugs were suspended in a 0.2% methylcellulose solution and administered intraperitoneally 30 min prior to testing. Progesterone and pregnanolone were found to produce anxiolytic-like effects similar to those of diazepam. Thus, at certain doses, both drugs significantly increased the latency for burying and decreased the cumulative burying behavior, without modifying the number of shocks, and increased the time spent in the open arms of the maze, without affecting the spontaneous locomotor activity. These data clearly demonstrate that the defensive burying paradigm is useful to detect the anxiolytic-like properties of pregnanolone. An important finding was that progesterone produces significant behavioral effects 30 min after its administration. This finding suggests a rapid bioconversion of progesterone to its active ring-A reduced metabolites; however, the possibility remains that rapid behavioral effects of progesterone are due to a direct interaction with specific steroid receptors located on the plasma membrane, independently from the gamma-aminobutyric acid(A) (GABA(A)) receptor complex modulation.
Collapse
Affiliation(s)
- Claudia Gomez
- Department of Pharmacology, Faculty of Medicine, National University of Mexico, P.O. Box 70-297, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
229
|
Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E. The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5alpha-dihydroprogesterone in psychiatric disorders. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:110-5. [PMID: 11744079 DOI: 10.1016/s0165-0173(01)00129-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Allopregnanolone (3alpha,5alpha-TH PROG) and 5alpha-dihydroprogesterone (5alpha-DH PROG), the two most important neuroactive steroids synthesized in the brain, potently modulate neuronal activity by allosterically regulating GABA action at GABA(A) receptors or by changing specific GABA(A) receptor subunit gene expression, respectively. We recently reported [Proc. Natl. Acad. Sci. USA 95 (1998) 3239] that in patients with severe depression there is a decrease in the CSF levels of 3alpha,5alpha-TH PROG, which is normalized by treatment with drugs (i.e. fluoxetine) that improve psychopathology. The mechanism by which fluoxetine and other selective serotonin reuptake inhibitors normalize 3alpha,5alpha-TH PROG CSF levels appears to involve a direct stimulation of 3alpha-hydroxysteroidoxidoreductase (3alpha-HSD), an enzyme that catalyses the reduction of 5alpha-DH PROG into 3alpha,5alpha-TH PROG. Here, we propose the use of socially-isolated mice that have a downregulation of 3alpha,5alpha-TH PROG and of 5alpha-DH PROG expression to establish a model to study the behavioral consequences of this deficiency. After 4-6 weeks of isolation, these mice exhibit increased anxiety and aggressive behavior and also a decreased response to the administration of GABA-mimetic drugs. In these mice, the decrease in 3alpha,5alpha-TH PROG is selectively normalized by the use of fluoxetine in doses that reduce behavioral abnormalities. In addition, the expression of 5alpha-reductase Type I mRNA and protein was lower in socially-isolated mice than that in group-housed mice whereas 3alpha-HSD mRNA expression remained unchanged. The results of these studies may enable us to design drugs that specifically affect neurosteroidogenic enzymatic activities and may provide an efficacious treatment for the psychopathologies associated with psychiatric disorders.
Collapse
Affiliation(s)
- A Guidotti
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., MC 912, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
230
|
Palter SF, Tavares AB, Hourvitz A, Veldhuis JD, Adashi EY. Are estrogens of import to primate/human ovarian folliculogenesis? Endocr Rev 2001; 22:389-424. [PMID: 11399749 DOI: 10.1210/edrv.22.3.0433] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The notion that estrogens play a meaningful role in ovarian folliculogenesis stems from a large body of in vitro and in vivo experiments carried out in certain rodent models, (e.g., rats) wherein the stimulatory role of estrogen on granulosa cell growth and differentiation is undisputed. However, evidence derived from these polyovulatory species may not be readily generalizable to the monoovulatory subhuman primates, let alone the human. Only recently, significant observations on the ovarian role(s) of estrogen have been reported for the primate/human. It is thus the objective of this communication to review the evidence for and against a role for estrogens in primate/human ovarian follicular development with an emphasis toward the application of the concepts so developed to contemporary reproductive physiology and to the practice of reproductive medicine. The role(s) of estrogens will be examined not only by analyzing the physiological evidence to the effect that these hormones control ovarian function and follicular growth, but also by summarizing the molecular evidence for the existence and distribution of the cognate receptors.
Collapse
Affiliation(s)
- S F Palter
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|