201
|
James LC. Intracellular antibody immunity and the cytosolic Fc receptor TRIM21. Curr Top Microbiol Immunol 2014; 382:51-66. [PMID: 25116095 DOI: 10.1007/978-3-319-07911-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Until recently, it was thought that antibody effector mechanisms were mediated purely by Fc receptors expressed on professional cells, following capture of immune complexes in the extracellular space. Recently a new Fc receptor, TRIM21, was discovered that is expressed by cells of all histogenetic lineages and which mediates immune responses intracellularly. This new receptor possesses many unique structural and functional properties. TRIM21 binds both IgG and IgM, interacts primarily with the CH3 rather than CH2 domain and engages two heavy chains simultaneously. This latter property allows TRIM21 to bind antibodies with a higher affinity than any other Fc receptor. TRIM21 is cytosolic, has both effector and signalling functions and is exquisitely conserved in mammals. The discovery of this missing part of humoral immunity has important implications for where and how antibodies work.
Collapse
Affiliation(s)
- Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, UK,
| |
Collapse
|
202
|
Rajsbaum R, García-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 2013; 426:1265-84. [PMID: 24333484 DOI: 10.1016/j.jmb.2013.12.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/24/2022]
Abstract
Tripartite motif (TRIM) proteins have been implicated in multiple cellular functions, including antiviral activity. Research efforts so far indicate that the antiviral activity of TRIMs relies, for the most part, on their function as E3-ubiquitin ligases. A substantial number of the TRIM family members have been demonstrated to mediate innate immune cell signal transduction and subsequent cytokine induction. In addition, a subset of TRIMs has been shown to restrict viral replication by directly targeting viral proteins. Although the body of work on the cellular roles of TRIM E3-ubiquitin ligases has rapidly grown over the last years, many aspects of their molecular workings and multi-functionality remain unclear. The antiviral function of many TRIMs seems to be conferred by specific isoforms, by sub-cellular localization and in cell-type-specific contexts. Here we review recent findings on TRIM antiviral functions, current limitations and an outlook for future research.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Gijs A Versteeg
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
203
|
Kim PY, Rahmanto AS, Tan O, Norris MD, Haber M, Marshall GM, Cheung BB. TRIM16 overexpression induces apoptosis through activation of caspase-2 in cancer cells. Apoptosis 2013; 18:639-51. [PMID: 23404198 PMCID: PMC3618413 DOI: 10.1007/s10495-013-0813-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TRIM16 exhibits tumour suppressor functions by interacting with cytoplasmic vimentin and nuclear E2F1 proteins in neuroblastoma and squamous cell carcinoma cells, reducing cell migration and replication. Reduced TRIM16 expression in a range of human primary malignant tissues correlates with increased malignant potential. TRIM16 also induces apoptosis in breast and lung cancer cells, by unknown mechanisms. Here we show that overexpression of TRIM16 induces apoptosis in human breast cancer (MCF7) and neuroblastoma (BE(2)-C) cells, but not in non-malignant HEK293 cells. TRIM16 increased procaspase-2 protein levels in MCF7 and induced caspase-2 activity in both MCF7 and BE(2)-C cells. We show that TRIM16 and caspase-2 proteins directly interact in both MCF7 and BE(2)-C cells and co-localise in MCF7 cells. Most importantly, the induction of caspase-2 activity is required for TRIM16 to initiate apoptosis. Our data suggest a novel mechanism by which TRIM16 can promote apoptosis by directly modulating caspase-2 activity.
Collapse
Affiliation(s)
- Patrick Y Kim
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW 2031, Australia
| | | | | | | | | | | | | |
Collapse
|
204
|
Davies AM, Rispens T, Ooijevaar-de Heer P, Gould HJ, Jefferis R, Aalberse RC, Sutton BJ. Structural determinants of unique properties of human IgG4-Fc. J Mol Biol 2013; 426:630-44. [PMID: 24211234 PMCID: PMC3905167 DOI: 10.1016/j.jmb.2013.10.039] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/24/2022]
Abstract
Human IgG4, normally the least abundant of the four subclasses of IgG in serum, displays a number of unique biological properties. It can undergo heavy-chain exchange, also known as Fab-arm exchange, leading to the formation of monovalent but bispecific antibodies, and it interacts poorly with FcγRII and FcγRIII, and complement. These properties render IgG4 relatively “non-inflammatory” and have made it a suitable format for therapeutic monoclonal antibody production. However, IgG4 is also known to undergo Fc-mediated aggregation and has been implicated in auto-immune disease pathology. We report here the high-resolution crystal structures, at 1.9 and 2.35 Å, respectively, of human recombinant and serum-derived IgG4-Fc. These structures reveal conformational variability at the CH3–CH3 interface that may promote Fab-arm exchange, and a unique conformation for the FG loop in the CH2 domain that would explain the poor FcγRII, FcγRIII and C1q binding properties of IgG4 compared with IgG1 and -3. In contrast to other IgG subclasses, this unique conformation folds the FG loop away from the CH2 domain, precluding any interaction with the lower hinge region, which may further facilitate Fab-arm exchange by destabilisation of the hinge. The crystals of IgG4-Fc also display Fc–Fc packing contacts with very extensive interaction surfaces, involving both a consensus binding site in IgG-Fc at the CH2–CH3 interface and known hydrophobic aggregation motifs. These Fc–Fc interactions are compatible with intact IgG4 molecules and may provide a model for the formation of aggregates of IgG4 that can cause disease pathology in the absence of antigen. The first high-resolution crystal structures of IgG4-Fc have been solved. Arg409 adopts two conformations, each with a different effect on the CH3–CH3 interface. Crystal packing analysis reveals a novel Fc–Fc interface. The CH2 domain FG loop adopts a unique conformation, affecting FcγR and C1q binding. The IgG4-Fc crystal structures explain unique biological properties of IgG4.
Collapse
Affiliation(s)
- Anna M Davies
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 9RT, United Kingdom.
| | - Theo Rispens
- Sanquin Research, Amsterdam 1066 CX, The Netherlands; Academic Medical Centre Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research, Amsterdam 1066 CX, The Netherlands; Academic Medical Centre Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Hannah J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 9RT, United Kingdom
| | - Roy Jefferis
- College of Medical and Dental Sciences, School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rob C Aalberse
- Sanquin Research, Amsterdam 1066 CX, The Netherlands; Academic Medical Centre Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 9RT, United Kingdom.
| |
Collapse
|
205
|
Bichel K, Price AJ, Schaller T, Towers GJ, Freund SMV, James LC. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology 2013; 10:81. [PMID: 23902822 PMCID: PMC3750474 DOI: 10.1186/1742-4690-10-81] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/12/2013] [Indexed: 11/21/2022] Open
Abstract
Background Lentiviruses such as HIV-1 can be distinguished from other retroviruses by the cyclophilin A-binding loop in their capsid and their ability to infect non-dividing cells. Infection of non-dividing cells requires transport through the nuclear pore but how this is mediated is unknown. Results Here we present the crystal structure of the N-terminal capsid domain of HIV-1 in complex with the cyclophilin domain of nuclear pore protein NUP358. The structure reveals that HIV-1 is positioned to allow single-bond resonance stabilisation of exposed capsid residue P90. NMR exchange experiments demonstrate that NUP358 is an active isomerase, which efficiently catalyzes cis-trans isomerization of the HIV-1 capsid. In contrast, the distantly related feline lentivirus FIV can bind NUP358 but is neither isomerized by it nor requires it for infection. Conclusion Isomerization by NUP358 may be preserved by HIV-1 to target the nuclear pore and synchronize nuclear entry with capsid uncoating.
Collapse
Affiliation(s)
- Katsiaryna Bichel
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
206
|
Biris N, Tomashevski A, Bhattacharya A, Diaz-Griffero F, Ivanov DN. Rhesus monkey TRIM5α SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. J Mol Biol 2013; 425:5032-44. [PMID: 23886867 DOI: 10.1016/j.jmb.2013.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/06/2023]
Abstract
The restriction factor TRIM5α binds to the capsid protein of the retroviral core and blocks retroviral replication. The affinity of TRIM5α for the capsid is a major host tropism determinant of HIV and other primate immunodeficiency viruses, but the molecular interface involved in this host-pathogen interaction remains poorly characterized. Here we use NMR spectroscopy to investigate binding of the rhesus TRIM5α SPRY domain to a selection of HIV capsid constructs. The data are consistent with a model in which one SPRY domain interacts with more than one capsid monomer within the assembled retroviral core. The highly mobile SPRY v1 loop appears to span the gap between neighboring capsid hexamers making interhexamer contacts critical for restriction. The interaction interface is extensive, involves mobile loops and multiple epitopes, and lacks interaction hot spots. These properties, which may enhance resistance of TRIM5α to capsid mutations, result in relatively low affinity of the individual SPRY domains for the capsid, and the TRIM5α-mediated restriction depends on the avidity effect arising from the oligomerization of TRIM5α.
Collapse
Affiliation(s)
- Nikolaos Biris
- Department of Biochemistry and Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
207
|
Horton RE, Vidarsson G. Antibodies and their receptors: different potential roles in mucosal defense. Front Immunol 2013; 4:200. [PMID: 23882268 PMCID: PMC3712224 DOI: 10.3389/fimmu.2013.00200] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023] Open
Abstract
Over recent years it has become increasingly apparent that mucosal antibodies are not only restricted to the IgM and IgA isotypes, but that also other isotypes and particularly IgG can be found in significant quantities at some mucosal surfaces, such as in the genital tract. Their role is more complex than traditionally believed with, among other things, the discovery of novel function of mucosal immunoglobulin receptors. A thorough knowledge in the source and function and mucosal immunoglobulins is particularly important in development of vaccines providing mucosal immunity, and also in the current climate of microbicide development, to combat major world health issues such as HIV. We present here a comprehensive review of human antibody mediated mucosal immunity.
Collapse
Affiliation(s)
- Rachel E Horton
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | | |
Collapse
|
208
|
Intracellular antibody receptor TRIM21 prevents fatal viral infection. Proc Natl Acad Sci U S A 2013; 110:12397-401. [PMID: 23840060 DOI: 10.1073/pnas.1301918110] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Host species have evolved mechanisms that can inhibit pathogen replication even after a cell has been successfully invaded. Here we show that tripartite-motif protein 21 (TRIM21), a ubiquitously expressed E3 ubiquitin ligase that targets viruses inside the cytosol, protects mice against fatal viral infection. Upon infection with mouse adenovirus-1, naive mice lacking TRIM21 succumb to encephalomyelitis within 7 d. In contrast, wild-type mice rapidly up-regulate TRIM21 and control viremia. Trim21 heterozygous mice have a haploinsufficiency phenotype in which reduced TRIM21 expression leads to a viral load that is higher than wild types but lower than knockouts. TRIM21 is a high-affinity antibody receptor that allows antibodies to operate inside an infected cell. In passive transfer experiments at high viral dose, antisera that fully protects wild-type mice fails to protect most Trim21 knockout animals. These results demonstrate that TRIM21 provides potent antiviral protection and forms an important part of the humoral immune response.
Collapse
|
209
|
Wang H, Henry O, Distefano MD, Wang YC, Räikkönen J, Mönkkönen J, Tanaka Y, Morita CT. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1029-42. [PMID: 23833237 DOI: 10.4049/jimmunol.1300658] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most human γδ T cells express Vγ2Vδ2 TCRs and play important roles in microbial and tumor immunity. Vγ2Vδ2 T cells are stimulated by self- and foreign prenyl pyrophosphate intermediates in isoprenoid synthesis. However, little is known about the molecular basis for this stimulation. We find that a mAb specific for butyrophilin 3 (BTN3)/CD277 Ig superfamily proteins mimics prenyl pyrophosphates. The 20.1 mAb stimulated Vγ2Vδ2 T cell clones regardless of their functional phenotype or developmental origin and selectively expanded blood Vγ2Vδ2 T cells. The γδ TCR mediates 20.1 mAb stimulation because IL-2 is released by β(-) Jurkat cells transfected with Vγ2Vδ2 TCRs. 20.1 stimulation was not due to isopentenyl pyrophosphate (IPP) accumulation because 20.1 treatment of APC did not increase IPP levels. In addition, stimulation was not inhibited by statin treatment, which blocks IPP production. Importantly, small interfering RNA knockdown of BTN3A1 abolished stimulation by IPP that could be restored by re-expression of BTN3A1 but not by BTN3A2 or BTN3A3. Rhesus monkey and baboon APC presented HMBPP and 20.1 to human Vγ2Vδ2 T cells despite amino acid differences in BTN3A1 that localize to its outer surface. This suggests that the conserved inner and/or top surfaces of BTN3A1 interact with its counterreceptor. Although no binding site exists on the BTN3A1 extracellular domains, a model of the intracellular B30.2 domain predicts a basic pocket on its binding surface. However, BTN3A1 did not preferentially bind a photoaffinity prenyl pyrophosphate. Thus, BTN3A1 is required for stimulation by prenyl pyrophosphates but does not bind the intermediates with high affinity.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Randow F, MacMicking JD, James LC. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 2013; 340:701-6. [PMID: 23661752 DOI: 10.1126/science.1233028] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our prevailing view of vertebrate host defense is strongly shaped by the notion of a specialized set of immune cells as sole guardians of antimicrobial resistance. Yet this view greatly underestimates a capacity for most cell lineages-the majority of which fall outside the traditional province of the immune system-to defend themselves against infection. This ancient and ubiquitous form of host protection is termed cell-autonomous immunity and operates across all three domains of life. Here, we discuss the organizing principles that govern cellular self-defense and how intracellular compartmentalization has shaped its activities to provide effective protection against a wide variety of microbial pathogens.
Collapse
Affiliation(s)
- Felix Randow
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, UK.
| | | | | |
Collapse
|
211
|
Abstract
Tripartite motif-containing 21 (TRIM21) is a cytosolic immunoglobulin receptor that mediates antibody-dependent intracellular neutralization (ADIN). Here we show that TRIM21 potently inhibits the spreading infection of a replicating cytopathic virus and activates innate immunity. We used a quantitative PCR (qPCR)-based assay to measure in vitro replication of mouse adenovirus type 1 (MAV-1), a virus that causes dose-dependent hemorrhagic encephalitis in mice. Using this assay, we show that genetic ablation of TRIM21 or chemical inhibition of either the AAA ATPase p97/valosin-containing protein (VCP) or the proteasome results in a >1,000-fold increase in the relative level of infection in the presence of immune serum. Moreover, the TRIM21-mediated ability of antisera to block replication was a consistent feature of the humoral immune response in immunized mice. In the presence of immune sera and upon infection, TRIM21 also activates a proinflammatory response, resulting in secretion of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). These results demonstrate that TRIM21 provides a potent block to spreading infection and induces an antiviral state.
Collapse
|
212
|
McEwan WA, Tam JCH, Watkinson RE, Bidgood SR, Mallery DL, James LC. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol 2013; 14:327-36. [PMID: 23455675 PMCID: PMC3672961 DOI: 10.1038/ni.2548] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022]
Abstract
Antibodies can be carried into the cell during pathogen infection where they are detected by the ubiquitously expressed cytosolic antibody receptor TRIM21. Here we show that TRIM21 recognition of intracellular antibodies activates immune signaling. TRIM21 catalyses K63-ubiquitin chain formation, stimulating transcription factor pathways NF-κB, AP-1 and IRF3, IRF5, IRF7. Activation results in proinflammatory cytokine production, modulation of natural killer (NK) stress ligands and the induction of an antiviral state. Intracellular antibody signaling is abrogated by genetic deletion of TRIM21 and is recovered by ectopic TRIM21 expression. Antibody sensing by TRIM21 can be stimulated upon infection by DNA or RNA non-enveloped viruses or intracellular bacteria. The antibody-TRIM21 detection system provides potent, comprehensive innate immune activation, independent of known pattern recognition receptors.
Collapse
Affiliation(s)
- William A McEwan
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
213
|
Fletcher AJ, Towers GJ. Inhibition of retroviral replication by members of the TRIM protein family. Curr Top Microbiol Immunol 2013; 371:29-66. [PMID: 23686231 DOI: 10.1007/978-3-642-37765-5_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM protein family is emerging as a central component of mammalian antiviral innate immunity. Beginning with the identification of TRIM5α as a mammalian post-entry restriction factor against retroviruses, to the repeated observation that many TRIMs ubiquitinate and regulate signaling pathways, the past decade has witnessed an intense research effort to understand how TRIM proteins influence immunity. The list of viral families targeted directly or indirectly by TRIM proteins has grown to include adenoviruses, hepadnaviruses, picornaviruses, flaviviruses, orthomyxoviruses, paramyxoviruses, herpesviruses, rhabdoviruses and arenaviruses. We have come to appreciate how, through intense bouts of positive selection, some TRIM genes have been honed into species-specific restriction factors. Similarly, in the case of TRIMCyp, we are beginning to understand how viruses too have mutated to evade restriction, suggesting that TRIM and viruses have coevolved for millions of years of primate evolution. Recently, TRIM5α returned to the limelight when it was shown to trigger the expression of antiviral genes upon recognition of an incoming virus, a paradigm shift that demonstrated that restriction factors make excellent pathogen sensors. However, it remains unclear how many of ~100 human TRIM genes are antiviral, despite the expression of many of these genes being upregulated by interferon and upon viral infection. TRIM proteins do not conform to one type of antiviral mechanism, reflecting the diversity of viruses they target. Moreover, the cofactors of restriction remain largely enigmatic. The control of retroviral replication remains an important medical subject and provides a useful backdrop for reviewing how TRIM proteins act to repress viral replication.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Centre for Medical Molecular Virology, University College, London, UK.
| | | |
Collapse
|
214
|
Exploring the diversity of SPRY/B30.2-mediated interactions. Trends Biochem Sci 2012; 38:38-46. [PMID: 23164942 DOI: 10.1016/j.tibs.2012.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
The SPla/Ryanodine receptor (SPRY)/B30.2 domain is one of the most common folds in higher eukaryotes. The human genome encodes 103 SPRY/B30.2 domains, several of which are involved in the immune response. Approximately 45% of human SPRY/B30.2-containing proteins are E3 ligases. The role and function of the majority of SPRY/B30.2 domains are still poorly understood, however, in several cases mutations in this domain have been linked to congenital disorders. The recent characterization of SPRY/B30.2-mediated protein interactions has provided evidence for a role of this domain as an adaptor module to assemble macromolecular complexes, analogous to Src homology (SH)2, SH3, and WW domains. However, functional and structural evidence suggests that SPRY/B30.2 is a more versatile fold, allowing a wide range of binding modes.
Collapse
|
215
|
|
216
|
AAA ATPase p97/VCP is essential for TRIM21-mediated virus neutralization. Proc Natl Acad Sci U S A 2012; 109:19733-8. [PMID: 23091005 DOI: 10.1073/pnas.1210659109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tripartite motif-containing 21 (TRIM21) is a cytosolic IgG receptor that mediates intracellular virus neutralization by antibody. TRIM21 targets virions for destruction in the proteasome, but it is unclear how a substrate as large as a viral capsid is degraded. Here, we identify the ATPase p97/valosin-containing protein (VCP), an enzyme with segregase and unfoldase activity, as a key player in this process. Depletion or catalytic inhibition of VCP prevents capsid degradation and reduces neutralization. VCP is required concurrently with the proteasome, as addition of inhibitor after proteasomal degradation has no effect. Moreover, our results suggest that it is the challenging nature of virus as a substrate that necessitates involvement of VCP, since intracellularly expressed IgG Fc is degraded in a VCP-independent manner. These results implicate VCP as an important host factor in antiviral immunity.
Collapse
|
217
|
Khatamianfar V, Valiyeva F, Rennie PS, Lu WY, Yang BB, Bauman GS, Moussa M, Xuan JW. TRIM59, a novel multiple cancer biomarker for immunohistochemical detection of tumorigenesis. BMJ Open 2012; 2:e001410. [PMID: 23048060 PMCID: PMC3488719 DOI: 10.1136/bmjopen-2012-001410] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/20/2012] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES AND DESIGN We identified a novel TRIM59 gene, as an early signal transducer in two (SV40Tag and Ras) oncogene pathways in murine prostate cancer (CaP) models. We explore its clinical applications as a multitumour marker detecting early tumorigenesis by immunohistochemistry (IHC). SETTING AND PARTICIPANTS 88 CaP patients were from a tissue microarray (TMA) of radical prostatectomy specimen, 42 patients from a 35 multiple tumour TMA, 75 patients with renal cell carcinoma (RCC) and 92 patients from eight different tumour groups (breast, lung, parotid, gastrointestinal, female genital tract, bladder, kidney and prostate cancer). RESULTS TRIM59 upregulation specifically in tumour area was determined by IHC in 291 cases of 37 tumour types. To demonstrate that TRIM59 upregulation is 'tumour-specific', we characterised a significant correlation of TRIM59 IHC signals with tumorigenesis and progression, while in control and normal area, TRIM59 IHC signal was all negative or significantly low. TRIM59 protein upregulation in prostate and kidney cancers was detectable in both intensity and extent in early tumorigenesis of prostate intraepithelial neoplasia (p<0.05) and grade 1 of RCC (p<0.05), and stopped until high grades cancer. The results of the correlation in these two large cohorts of tumour types confirmed and repeated murine CaP model studies. Enhanced TRIM59 expression was identified in most of the 37 different tumours, while the highest intensities were in lung, breast, liver, skin, tongue and mouth (squamous cell cancer) and endometrial cancers. Multiple tumour upregulation was further confirmed by comparing relative scores of TRIM59 IHC signals in eight tumours with a larger patient population; and by a mouse whole-mount embryo (14.5 days post conception) test on the origin of TRIM59 upregulation in epithelial cells. CONCLUSIONS TRIM59 may be used a novel multiple tumour marker for immunohistochemical detecting early tumorigenesis and could direct a novel strategy for molecular-targeted diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Vida Khatamianfar
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Fatma Valiyeva
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Paul S Rennie
- Department of Surgery, University of British Columbia, Vancovour, British Columbia, Canada
| | - Wei-yang Lu
- Department of Physiology, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Burton B Yang
- Department of Laboratory Medicine and Pathbiology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Glenn S Bauman
- London Regional Cancer Program, Western University, London, Ontario, Canada
| | - Madeleine Moussa
- Department of Pathology, Western University, London, Ontario, Canada
| | - Jim W Xuan
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
218
|
Jáuregui P, Crespo H, Glaria I, Luján L, Contreras A, Rosati S, de Andrés D, Amorena B, Towers GJ, Reina R. Ovine TRIM5α can restrict visna/maedi virus. J Virol 2012; 86:9504-9. [PMID: 22696640 PMCID: PMC3416128 DOI: 10.1128/jvi.00440-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022] Open
Abstract
The restrictive properties of tripartite motif-containing 5 alpha (TRIM5α) from small ruminant species have not been explored. Here, we identify highly similar TRIM5α sequences in sheep and goats. Cells transduced with ovine TRIM5α effectively restricted the lentivirus visna/maedi virus DNA synthesis. Proteasome inhibition in cells transduced with ovine TRIM5α restored restricted viral DNA synthesis, suggesting a conserved mechanism of restriction. Identification of TRIM5α active molecular species may open new prophylactic strategies against lentiviral infections.
Collapse
Affiliation(s)
- P. Jáuregui
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - H. Crespo
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - I. Glaria
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - L. Luján
- Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - A. Contreras
- Departamento de Epidemiología y Enfermedades Infecciosas, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - S. Rosati
- Dipartimento di Produzione Animali, Epidemiologia ed Ecologia, Università degli Studi di Torino, Turin, Italy
| | - D. de Andrés
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - B. Amorena
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - G. J. Towers
- MRC Centre for Medical Molecular Virology, Infection and Immunity, University College London, London, United Kingdom
| | - R. Reina
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| |
Collapse
|
219
|
Arentz G, Thurgood LA, Lindop R, Chataway TK, Gordon TP. Secreted human Ro52 autoantibody proteomes express a restricted set of public clonotypes. J Autoimmun 2012; 39:466-70. [PMID: 22871259 DOI: 10.1016/j.jaut.2012.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/26/2022]
Abstract
Long-lived secreted autoantibody responses in systemic autoimmunity are generally regarded to be polyclonal and to express a diverse B-cell repertoire. Here, we have used a proteomic approach based on de novo sequencing to determine the clonality and V region structures of human autoantibodies directed against a prototypic systemic autoantigen, Ro52 (TRIM21). Remarkably, anti-Ro52 autoantibodies from patients with primary Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis or polymyositis were restricted to two IgG1 kappa clonotypes that migrated as a single species on isoelectric focusing; shared a common light chain paired with one of two closely-related heavy chains; and were public in unrelated patients. Targeted mass spectrometry using these uniquely mutated V region peptides as surrogates detected anti-Ro52 autoantibodies in human sera with high sensitivity and specificity compared with traditional ELISA. Mass spectrometry-based detection of specific autoantibody motifs provides a powerful new tool for analysis of humoral autoimmunity.
Collapse
Affiliation(s)
- Georgia Arentz
- Department of Immunology, Flinders Medical Centre and Flinders University, SA Pathology, Flinders Drive, Bedford Park, 5042 South Australia, Australia
| | | | | | | | | |
Collapse
|
220
|
Structure of the rhesus monkey TRIM5α PRYSPRY domain, the HIV capsid recognition module. Proc Natl Acad Sci U S A 2012; 109:13278-83. [PMID: 22847415 DOI: 10.1073/pnas.1203536109] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tripartite motif protein TRIM5α blocks retroviral replication after cell entry, and species-specific differences in its activity are determined by sequence variations within the C-terminal B30.2/PRYSPRY domain. Here we report a high-resolution structure of a TRIM5α PRYSPRY domain, the PRYSPRY of the rhesus monkey TRIM5α that potently restricts HIV infection, and identify features involved in its interaction with the HIV capsid. The extensive capsid-binding interface maps on the structurally divergent face of the protein formed by hypervariable loop segments, confirming that TRIM5α evolution is largely determined by its binding specificity. Interactions with the capsid are mediated by flexible variable loops via a mechanism that parallels antigen recognition by IgM antibodies, a similarity that may help explain some of the unusual functional properties of TRIM5α. Distinctive features of this pathogen-recognition interface, such as structural plasticity conferred by the mobile v1 segment and interaction with multiple epitopes, may allow restriction of divergent retroviruses and increase resistance to capsid mutations.
Collapse
|
221
|
Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 2012; 120:2269-79. [PMID: 22767497 DOI: 10.1182/blood-2012-05-430470] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human peripheral Vγ9Vδ2 T cells are activated by phosphorylated metabolites (phosphoagonists [PAg]) of the mammalian mevalonate or the microbial desoxyxylulose-phosphate pathways accumulated by infected or metabolically distressed cells. The underlying mechanisms are unknown. We show that treatment of nonsusceptible target cells with antibody 20.1 against CD277, a member of the extended B7 superfamily related to butyrophilin, mimics PAg-induced Vγ9Vδ2 T-cell activation and that the Vγ9Vδ2 T-cell receptor is implicated in this effect. Vγ9Vδ2 T-cell activation can be abrogated by exposing susceptible cells (tumor and mycobacteria-infected cells, or aminobisphosphonate-treated cells with up-regulated PAg levels) to antibody 103.2 against CD277. CD277 knockdown and domain-shuffling approaches confirm the key implication of the CD277 isoform BTN3A1 in PAg sensing by Vγ9Vδ2 T cells. Fluorescence recovery after photobleaching (FRAP) experiments support a causal link between intracellular PAg accumulation, decreased BTN3A1 membrane mobility, and ensuing Vγ9Vδ2 T-cell activation. This study demonstrates a novel role played by B7-like molecules in human γδ T-cell antigenic activation and paves the way for new strategies to improve the efficiency of immunotherapies using Vγ9Vδ2 T cells.
Collapse
|
222
|
Le Page C, Marineau A, Bonza PK, Rahimi K, Cyr L, Labouba I, Madore J, Delvoye N, Mes-Masson AM, Provencher DM, Cailhier JF. BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis. PLoS One 2012. [PMID: 22685580 DOI: 10.1371/journal.pone.0038541] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BTN3A2/BT3.2 butyrophilin mRNA expression by tumoral cells was previously identified as a prognostic factor in a small cohort of high grade serous epithelial ovarian cancer (HG-EOC). Here, we evaluated the prognostic value of BT3.2 at the protein level in specimen from 199 HG-EOC patients. As the only known role of butyrophilin proteins is in immune regulation, we evaluated the association between BT3.2 expression and intratumoral infiltration of immune cells by immunohistochemistry with specific antibodies against BT3.2, CD3, CD4, CD8, CD20, CD68 and CD206. Epithelial BT3.2 expression was significantly associated with longer overall survival and lower risk of disease progression (HR=0.651, p=0.006 and HR=0.642, p=0.002, respectively) and significantly associated with a higher density of infiltrating T cells, particularly CD4+ cells (0.272, p<0.001). We also observed a strong association between the relative density of CD206+ cells, as evaluated by the ratio of intratumoral CD206+/CD68+ expression, and risk of disease progression (HR=1.355 p=0.044, respectively). In conclusion, BT3.2 protein is a potential prognostic biomarker for the identification of HG-EOC patients with better outcome. In contrast, high CD206+/CD68+ expression is associated with high risk of disease progression. While the role of BT3.2 is still unknown, our result suggest that BT3.2 expression by epithelial cells may modulates the intratumoral infiltration of immune cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Blotting, Western
- Butyrophilins
- Cell Line, Tumor
- Cohort Studies
- Female
- Humans
- Immunohistochemistry/statistics & numerical data
- Kaplan-Meier Estimate
- Lectins, C-Type/metabolism
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Multivariate Analysis
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Prognosis
- Proportional Hazards Models
- Protein Isoforms/metabolism
- Receptors, Cell Surface/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Tissue Array Analysis/statistics & numerical data
- Transfection
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Le Page C, Marineau A, Bonza PK, Rahimi K, Cyr L, Labouba I, Madore J, Delvoye N, Mes-Masson AM, Provencher DM, Cailhier JF. BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis. PLoS One 2012; 7:e38541. [PMID: 22685580 PMCID: PMC3369854 DOI: 10.1371/journal.pone.0038541] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/07/2012] [Indexed: 11/30/2022] Open
Abstract
BTN3A2/BT3.2 butyrophilin mRNA expression by tumoral cells was previously identified as a prognostic factor in a small cohort of high grade serous epithelial ovarian cancer (HG-EOC). Here, we evaluated the prognostic value of BT3.2 at the protein level in specimen from 199 HG-EOC patients. As the only known role of butyrophilin proteins is in immune regulation, we evaluated the association between BT3.2 expression and intratumoral infiltration of immune cells by immunohistochemistry with specific antibodies against BT3.2, CD3, CD4, CD8, CD20, CD68 and CD206. Epithelial BT3.2 expression was significantly associated with longer overall survival and lower risk of disease progression (HR = 0.651, p = 0.006 and HR = 0.642, p = 0.002, respectively) and significantly associated with a higher density of infiltrating T cells, particularly CD4+ cells (0.272, p<0.001). We also observed a strong association between the relative density of CD206+ cells, as evaluated by the ratio of intratumoral CD206+/CD68+ expression, and risk of disease progression (HR = 1.355 p = 0.044, respectively). In conclusion, BT3.2 protein is a potential prognostic biomarker for the identification of HG-EOC patients with better outcome. In contrast, high CD206+/CD68+ expression is associated with high risk of disease progression. While the role of BT3.2 is still unknown, our result suggest that BT3.2 expression by epithelial cells may modulates the intratumoral infiltration of immune cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Blotting, Western
- Butyrophilins
- Cell Line, Tumor
- Cohort Studies
- Female
- Humans
- Immunohistochemistry/statistics & numerical data
- Kaplan-Meier Estimate
- Lectins, C-Type/metabolism
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Multivariate Analysis
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Prognosis
- Proportional Hazards Models
- Protein Isoforms/metabolism
- Receptors, Cell Surface/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Tissue Array Analysis/statistics & numerical data
- Transfection
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Alexandre Marineau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Patrick K. Bonza
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Kurosh Rahimi
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Louis Cyr
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Ingrid Labouba
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Jason Madore
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Nathalie Delvoye
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Diane M. Provencher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
- Division of Gynecologic-Oncology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Jean-François Cailhier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institut du Cancer de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Division of Nephrology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
224
|
The role of tripartite motif family members in mediating susceptibility to HIV-1 infection. Curr Opin HIV AIDS 2012; 7:180-6. [PMID: 22258502 DOI: 10.1097/coh.0b013e32835048e1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review highlights new roles of the large family of tripartite motif (TRIM) proteins in antiviral defense. RECENT FINDINGS Recent research explores the participation of several TRIM family members in regulating the innate immune response. A large number of TRIM genes are upregulated upon treatment by interferon and are directly involved in signaling (TRIM5, 13, 16, 20, 21, 22, 23, 25, 27, 30, 32 and 38). Notably, TRIM5α has been identified as a 'pattern recognition receptor' triggering a cascade of signals upon viral recognition, and contributing to the establishment of the antiviral state. SUMMARY The identification of new roles for TRIM5α and other family members contributes to an emerging paradigm of host antiretroviral factors as mediators of the innate immune response and of the antiviral state. This leads both to direct therapeutic applications, such as gene therapy, and to the possibility of immune modulation.
Collapse
|
225
|
Autoantigen TRIM21/Ro52 as a Possible Target for Treatment of Systemic Lupus Erythematosus. Int J Rheumatol 2012; 2012:718237. [PMID: 22701487 PMCID: PMC3373075 DOI: 10.1155/2012/718237] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic, and autoimmune disease, whose etiology is still unknown. Although there has been progress in the treatment of SLE through the use of glucocorticoid and immunosuppressive drugs, these drugs have limited efficacy and pose significant risks of toxicity. Moreover, prognosis of patients with SLE has remained difficult to assess. TRIM21/Ro52/SS-A1, a 52-kDa protein, is an autoantigen recognized by antibodies in sera of patients with SLE and Sjögren's syndrome (SS), another systemic autoimmune disease, and anti-TRIM21 antibodies have been used as a diagnostic marker for decades. TRIM21 belongs to the tripartite motif-containing (TRIM) super family, which has been found to play important roles in innate and acquired immunity. Recently, TRIM21 has been shown to be involved in both physiological immune responses and pathological autoimmune processes. For example, TRIM21 ubiquitylates proteins of the interferon-regulatory factor (IRF) family and regulates type I interferon and proinflammatory cytokines. In this paper, we summarize molecular features of TRIM21 revealed so far and discuss its potential as an attractive therapeutic target for SLE.
Collapse
|
226
|
Abstract
Despite a central role in immunity, antibody neutralization of virus infection is poorly understood. Here we show how the neutralization and persistence of adenovirus type 5, a prevalent nonenveloped human virus, are dependent upon the intracellular antibody receptor TRIM21. Cells with insufficient amounts of TRIM21 are readily infected, even at saturating concentrations of neutralizing antibody. Conversely, high TRIM21 expression levels decrease the persistent fraction of the infecting virus and allows neutralization by as few as 1.6 antibody molecules per virus. The direct interaction between TRIM21 and neutralizing antibody is essential, as single-point mutations within the TRIM21-binding site in the Fc region of a potently neutralizing antibody impair neutralization. However, infection at high multiplicity can saturate TRIM21 and overcome neutralization. These results provide insight into the mechanism and importance of a newly discovered, effector-driven process of antibody neutralization of nonenveloped viruses.
Collapse
|
227
|
Grütter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol 2012; 2:142-50. [PMID: 22482711 PMCID: PMC3322363 DOI: 10.1016/j.coviro.2012.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/01/2012] [Accepted: 02/11/2012] [Indexed: 12/19/2022]
Abstract
TRIM5 is a restriction factor that blocks retrovirus infection soon after the virion core enters the cell cytoplasm. Restriction activity is targeted to the virion core via recognition of the capsid protein lattice that encases the viral genomic RNA. In common with all of the many TRIM family members, TRIM5 has RING, B-box, and coiled-coil domains. As an E3 ubiquitin ligase TRIM5 cooperates with the heterodimeric E2, UBC13/UEV1A, to activate the TAK1 (MAP3K7) kinase, NF-κB and AP-1 signaling, and the transcription of inflammatory cytokines and chemokines. TAK1, UBC13, and UEV1A all contribute to TRIM5-mediated retrovirus restriction activity. Interaction of the carboxy-terminal PRYSPRY or cyclophilin domains of TRIM5 with the retroviral capsid lattice stimulates the formation of a complementary lattice by TRIM5, with greatly increased TRIM5 E3 activity, and host cell signal transduction. Structural and biochemical studies on TRIM5 have opened a much needed window on how the innate immune system detects the distinct molecular features of HIV-1 and other retroviruses.
Collapse
Affiliation(s)
- Markus G Grütter
- Department of Biochemistry, University of Zurich, Zurich CH-8057, Switzerland
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
228
|
Stacey KB, Breen E, Jefferies CA. Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity. PLoS One 2012; 7:e34041. [PMID: 22479513 PMCID: PMC3316593 DOI: 10.1371/journal.pone.0034041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/21/2012] [Indexed: 11/19/2022] Open
Abstract
Patients suffering from Systemic Lupus Erythematous (SLE) have elevated type I interferon (IFN) levels which correlate with disease activity and severity. TRIM21, an autoantigen associated with SLE, has been identified as an ubiquitin E3 ligase that targets the transcription factor IRF3 in order to turn off and limit type I IFN production following detection of viral and bacterial infection by Toll Like Receptors (TLRs). However, how the activity of TRIM21 is regulated downstream of TLRs is unknown. In this study we demonstrate that TRIM21 is tyrosine phosphorylated following TLR3 and TLR4 stimulation, suggesting that its activity is potentially regulated by tyrosine phosphorylation. Using Netphos, we have identified three key tyrosines that are strongly predicted to be phosphorylated, two of which are conserved between the human and murine forms of TRIM21, at residues 343, 388, and 393, all of which have been mutated from tyrosine to phenylalanine (Y343F, Y388F, and Y393F). We have observed that tyrosine phosphorylation of TRIM21 only occurs in the substrate binding PRY/SPRY domain, and that Y393, and to a lesser extent, Y388 are required for TRIM21 to function as a negative regulator of IFN-β promoter activity. Further studies revealed that mutating Y393 to phenylalanine inhibits the ability of TRIM21 to interact with its substrate, IRF3, thus providing a molecular explanation for the lack of activity of Y393 on the IFN-β promoter. Our data demonstrates a novel role for tyrosine phosphorylation in regulating the activity of TRIM21 downstream of TLR3 and TLR4. Given the pathogenic role of TRIM21 in systemic autoimmunity, these findings have important implications for the development of novel therapeutics.
Collapse
Affiliation(s)
- Kevin B. Stacey
- Department Molecular and Cellular Therapeutics, Royal College Surgeons in Ireland Research Institute, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eamon Breen
- Department Molecular and Cellular Therapeutics, Royal College Surgeons in Ireland Research Institute, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centenary Institute and Arthur William (AW) Morrow Gastroenterology and Liver Centre, Camperdown, Australia,
| | - Caroline A. Jefferies
- Department Molecular and Cellular Therapeutics, Royal College Surgeons in Ireland Research Institute, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
229
|
Wines BD, Trist HM, Farrugia W, Ngo C, Trowsdale J, Areschoug T, Lindahl G, Fraser JD, Ramsland PA. A conserved host and pathogen recognition site on immunoglobulins: structural and functional aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:87-112. [PMID: 21948364 DOI: 10.1007/978-1-4614-0106-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A common site in the constant region (Fc) of immunoglobulins is recognized by host receptors and is a frequent target of proteins expressed by pathogens. This site is located at the junction of two constant domains in the antibody heavy chains and produces a large shallow cavity formed by loops of the CH2 and CH3 domains in IgG and IgA (CH3 and CH4 domains in IgM). Crystal structures have been determined for complexes of IgG-Fc and IgA-Fc with a structurally diverse set of host, pathogen and in vitro selected ligands. While pathogen proteins may directly block interactions with the immunoglobulins thereby evading host immunity, it is likely that the same pathogen molecules also interact with other host factors to carry out their primary biological function. Herein we review the structural and functional aspects of host and pathogen molecular recognition of the common site on the Fc of immunoglobulins. We also propose that some pathogen proteins may promote virulence by affecting the bridging between innate and adaptive immunity.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Immunology, Burnet Institute, Melbourne, VIC 3004, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Han K, Lou DI, Sawyer SL. Identification of a genomic reservoir for new TRIM genes in primate genomes. PLoS Genet 2011; 7:e1002388. [PMID: 22144910 PMCID: PMC3228819 DOI: 10.1371/journal.pgen.1002388] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/29/2011] [Indexed: 11/19/2022] Open
Abstract
Tripartite Motif (TRIM) ubiquitin ligases act in the innate immune response against viruses. One of the best characterized members of this family, TRIM5α, serves as a potent retroviral restriction factor with activity against HIV. Here, we characterize what are likely to be the youngest TRIM genes in the human genome. For instance, we have identified 11 TRIM genes that are specific to humans and African apes (chimpanzees, bonobos, and gorillas) and another 7 that are human-specific. Many of these young genes have never been described, and their identification brings the total number of known human TRIM genes to approximately 100. These genes were acquired through segmental duplications, most of which originated from a single locus on chromosome 11. Another polymorphic duplication of this locus has resulted in these genes being copy number variable within the human population, with a Han Chinese woman identified as having 12 additional copies of these TRIM genes compared to other individuals screened in this study. Recently, this locus was annotated as one of 34 "hotspot" regions that are also copy number variable in the genomes of chimpanzees and rhesus macaques. Most of the young TRIM genes originating from this locus are expressed, spliced, and contain signatures of positive natural selection in regions known to determine virus recognition in TRIM5α. However, we find that they do not restrict the same retroviruses as TRIM5α, consistent with the high degree of divergence observed in the regions that control target specificity. We propose that this recombinationally volatile locus serves as a reservoir from which new TRIM genes arise through segmental duplication, allowing primates to continually acquire new antiviral genes that can be selected to target new and evolving pathogens.
Collapse
Affiliation(s)
- Kyudong Han
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Dianne I. Lou
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Sara L. Sawyer
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
231
|
McEwan WA, Mallery DL, Rhodes DA, Trowsdale J, James LC. Intracellular antibody-mediated immunity and the role of TRIM21. Bioessays 2011; 33:803-9. [PMID: 22006823 DOI: 10.1002/bies.201100093] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protection against bacterial and viral pathogens by antibodies has always been thought to end at the cell surface. Once inside the cell, a pathogen was understood to be safe from humoral immunity. However, it has now been found that antibodies can routinely enter cells attached to viral particles and mediate an intracellular immune response. Antibody-coated virions are detected inside the cell by means of an intracellular antibody receptor, TRIM21, which directs their degradation by recruitment of the ubiquitin-proteasome system. In this article we assess how this discovery alters our view of the way in which antibodies neutralise viral infection. We also consider the antiviral function of TRIM21 in the context of its other reported roles in immune signalling and autoimmunity. Finally, we discuss the conceptual implications of intracellular antibody immunity and how it alters our view of the discrete separation of extracellular and intracellular environments.
Collapse
Affiliation(s)
- William A McEwan
- MRC Laboratory of Molecular Biology, PNAC Division, Cambridge, UK
| | | | | | | | | |
Collapse
|
232
|
de Matos AL, van der Loo W, Areal H, Lanning DK, Esteves PJ. Study of Sylvilagus rabbit TRIM5α species-specific domain: how ancient endoviruses could have shaped the antiviral repertoire in Lagomorpha. BMC Evol Biol 2011; 11:294. [PMID: 21982459 PMCID: PMC3208668 DOI: 10.1186/1471-2148-11-294] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/08/2011] [Indexed: 12/02/2022] Open
Abstract
Background Since the first report of the antiretroviral restriction factor TRIM5α in primates, several orthologs in other mammals have been described. Recent studies suggest that leporid retroviruses like RELIK, the first reported endogenous lentivirus ever, may have imposed positive selection in TRIM5α orthologs of the European rabbit and European brown hare. Considering that RELIK must already have been present in a common ancestor of the leporid genera Lepus, Sylvilagus and Oryctolagus, we extended the study of evolutionary patterns of TRIM5α to other members of the Leporidae family, particularly to the genus Sylvilagus. Therefore, we obtained the TRIM5α nucleotide sequences of additional subspecies and species of the three leporid genera. We also compared lagomorph TRIM5α deduced protein sequences and established TRIM5α gene and TRIM5α protein phylogenies. Results The deduced protein sequence of Iberian hare TRIM5α was 89% identical to European rabbit TRIM5α, although high divergence was observed at the PRYSPRY v1 region between rabbit and the identified alleles from this hare species (allele 1: 50% divergence; allele 2: 53% divergence). A high identity was expected between the Sylvilagus and Oryctolagus TRIM5α proteins and, in fact, the Sylvilagus TRIM5α was 91% identical to the Oryctolagus protein. Nevertheless, the PRYSPRY v1 region was only 50% similar between these genera. Selection analysis of Lagomorpha TRIM5α proteins identified 25 positively-selected codons, 11 of which are located in the PRYSPRY v1 region, responsible for species specific differences in viral capsid recognition. Conclusions By extending Lagomorpha TRIM5α studies to an additional genus known to bear RELIK, we verified that the divergent species-specific pattern observed between the Oryctolagus and Lepus PRYSPRY-domains is also present in Sylvilagus TRIM5α. This work is one of the first known studies that compare the evolution of the antiretroviral restriction factor TRIM5α in different mammalian groups, Lagomorpha and Primates.
Collapse
Affiliation(s)
- Ana Lemos de Matos
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | | | | | | | | |
Collapse
|
233
|
Perálvarez-Marín A, Tae H, Board PG, Casarotto MG, Dulhunty AF, Samsó M. 3D Mapping of the SPRY2 domain of ryanodine receptor 1 by single-particle cryo-EM. PLoS One 2011; 6:e25813. [PMID: 21998699 PMCID: PMC3187800 DOI: 10.1371/journal.pone.0025813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/11/2011] [Indexed: 01/26/2023] Open
Abstract
The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca(2+) release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Centre d'Estudis Biofísics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - HanShen Tae
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Philip G. Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Marco G. Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Angela F. Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Montserrat Samsó
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
234
|
Espinosa A, Hennig J, Ambrosi A, Anandapadmanaban M, Abelius MS, Sheng Y, Nyberg F, Arrowsmith CH, Sunnerhagen M, Wahren-Herlenius M. Anti-Ro52 autoantibodies from patients with Sjögren's syndrome inhibit the Ro52 E3 ligase activity by blocking the E3/E2 interface. J Biol Chem 2011; 286:36478-91. [PMID: 21862588 DOI: 10.1074/jbc.m111.241786] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ro52 (TRIM21) is an E3 ligase of the tripartite motif family that negatively regulates proinflammatory cytokine production by ubiquitinating transcription factors of the interferon regulatory factor family. Autoantibodies to Ro52 are present in patients with lupus and Sjögren's syndrome, but it is not known if these autoantibodies affect the function of Ro52. To address this question, the requirements for Ro52 E3 ligase activity were first analyzed in detail. Scanning a panel of E2 ubiquitin-conjugating enzymes, we found that UBE2D1-4 and UBE2E1-2 supported the E3 ligase activity of Ro52 and that the E3 ligase activity of Ro52 was dependent on its RING domain. We also found that the N-terminal extensions in the class III E2 enzymes affected their interaction with Ro52. Although the N-terminal extension in UBE2E3 made this E2 enzyme unable to function together with Ro52, the N-terminal extensions in UBE2E1 and UBE2E2 allowed for a functional interaction with Ro52. Anti-Ro52-positive patient sera and affinity-purified anti-RING domain autoantibodies inhibited the E3 activity of Ro52 in ubiquitination assays. Using NMR, limited proteolysis, ELISA, and Ro52 mutants, we mapped the interactions between Ro52, UBE2E1, and anti-Ro52 autoantibodies. We found that anti-Ro52 autoantibodies inhibited the E3 ligase activity of Ro52 by sterically blocking the E2/E3 interaction between Ro52 and UBE2E1. Our data suggest that anti-Ro52 autoantibodies binding the RING domain of Ro52 may be actively involved in the pathogenesis of rheumatic autoimmune disease by inhibiting Ro52-mediated ubiquitination.
Collapse
Affiliation(s)
- Alexander Espinosa
- Rheumatology Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Boudinot P, van der Aa LM, Jouneau L, Du Pasquier L, Pontarotti P, Briolat V, Benmansour A, Levraud JP. Origin and evolution of TRIM proteins: new insights from the complete TRIM repertoire of zebrafish and pufferfish. PLoS One 2011; 6:e22022. [PMID: 21789205 PMCID: PMC3137616 DOI: 10.1371/journal.pone.0022022] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/12/2011] [Indexed: 11/19/2022] Open
Abstract
Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets--adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described--all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC.
Collapse
Affiliation(s)
- Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Lieke M. van der Aa
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Louis Du Pasquier
- Institute of Zoology and Evolutionary Biology, University of Basel, Basel, Switzerland
| | - Pierre Pontarotti
- Equipe Evolution Biologique et Modélisation UMR 6632 Université de Aix Marseille I/CNRS, Centre St Charles, Marseille, France
| | - Valérie Briolat
- Unité Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France
- URA 2578 du Centre National de la Recherche Scientifique, Paris, France
| | - Abdenour Benmansour
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Jean-Pierre Levraud
- Unité Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France
- URA 2578 du Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
236
|
Molecular characterization and expression pattern of tripartite motif protein 39 in Gallus gallus with a complete PRY/SPRY domain. Int J Mol Sci 2011; 12:3797-809. [PMID: 21747707 PMCID: PMC3131591 DOI: 10.3390/ijms12063797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/04/2011] [Accepted: 06/01/2011] [Indexed: 11/16/2022] Open
Abstract
Members of tripartite motif (TRIM) proteins in mammals play important roles in multiple cellular processes in the immune system. In the present study we have obtained the chicken TRIM39 with the insertion of a base A at position 1006 bp, compared to the sequence in the NCBI database (Accession No: NM 001006196), which made TRIM39 fulfill the TRIM rule of domain composition with both PRY, and SPRY domains. The open reading frame consisted of 1392 bp encoding 463 amino acid residues. The amino acid sequences of TRIM39 protein in mammals were highly similar (from 91.48% to 99.61%), while chicken TRIM39 had relatively low homology with mammals (from 29.2% to 39.59%). Real time RT-PCR indicated that the mRNA expression level of TRIM39 was the highest in spleen, with a lower expression in liver, brain, and lung, suggesting it might be an important protein participating in the immune system.
Collapse
|
237
|
Valiyeva F, Jiang F, Elmaadawi A, Moussa M, Yee SP, Raptis L, Izawa JI, Yang BB, Greenberg NM, Wang F, Xuan JW. Characterization of the oncogenic activity of the novel TRIM59 gene in mouse cancer models. Mol Cancer Ther 2011; 10:1229-40. [PMID: 21593385 DOI: 10.1158/1535-7163.mct-11-0077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel TRIM family member, TRIM59 gene was characterized to be upregulated in SV40 Tag oncogene-directed transgenic and knockout mouse prostate cancer models as a signaling pathway effector. We identified two phosphorylated forms of TRIM59 (p53 and p55) and characterized them using purified TRIM59 proteins from mouse prostate cancer models at different stages with wild-type mice and NIH3T3 cells as controls. p53/p55-TRIM59 proteins possibly represent Ser/Thr and Tyr phosphorylation modifications, respectively. Quantitative measurements by ELISA showed that the p-Ser/Thr TRIM59 correlated with tumorigenesis, whereas the p-Tyr-TRIM59 protein correlated with advanced cancer of the prostate (CaP). The function of TRIM59 was elucidated using short hairpin RNA (shRNA)-mediated knockdown of the gene in human CaP cells, which caused S-phase cell-cycle arrest and cell growth retardation. A hit-and-run effect of TRIM59 shRNA knockdown was observed 24 hours posttransfection. Differential cDNA microarrray analysis was conducted, which showed that the initial and rapid knockdown occurred early in the Ras signaling pathway. To confirm the proto-oncogenic function of TRIM59 in the Ras signaling pathway, we generated a transgenic mouse model using a prostate tissue-specific gene (PSP94) to direct the upregulation of the TRIM59 gene. Restricted TRIM59 gene upregulation in the prostate revealed the full potential for inducing tumorigenesis, similar to the expression of SV40 Tag, and coincided with the upregulation of genes specific to the Ras signaling pathway and bridging genes for SV40 Tag-mediated oncogenesis. The finding of a possible novel oncogene in animal models will implicate a novel strategy for diagnosis, prognosis, and therapy for cancer.
Collapse
Affiliation(s)
- Fatma Valiyeva
- Lawson Health Research Institute, University of Western Ontario, 375 South Street, London, ON, N6A 4G5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Han X, Du H, Massiah MA. Detection and characterization of the in vitro e3 ligase activity of the human MID1 protein. J Mol Biol 2011; 407:505-20. [PMID: 21296087 DOI: 10.1016/j.jmb.2011.01.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/24/2010] [Accepted: 01/24/2011] [Indexed: 12/13/2022]
Abstract
Human MID1 (midline-1) is a microtubule-associated protein that is postulated to target the catalytic subunit of protein phosphatase 2A for degradation. It binds alpha4 that then recruits the catalytic subunit of protein phosphatase 2A. As a member of the TRIM (tripartite motif) family, MID1 has three consecutive zinc-binding domains-RING (really interesting new gene), Bbox1, and Bbox2-that have similar ββα-folds. Here, we describe the in vitro characterization of these domains individually and in tandem. We observed that the RING domain exhibited greater ubiquitin (Ub) E3 ligase activity compared to the Bbox domains. The amount of autopolyubiquitinated products with RING-Bbox1 and RING-Bbox1-Bbox2 domains in tandem was significantly greater than those of the individual domains. However, no polyubiquitinated products were observed for the Bbox1-Bbox domains in tandem. Using mutants of Ub, we observed that these MID1 domain constructs facilitate Ub chain elongation via Lys63 of Ub. In addition, we observed that the high-molecular-weight protein products were primarily due to polyubiquitination at one site (Lys154) on the Bbox1 domain of the RING-Bbox1 and RING-Bbox1-Bbox2 constructs. We observed that MID1 E3 domains could interact with multiple E2-conjugating enzymes. Lastly, a 45-amino-acid peptide derived from the C-terminus of alpha4 that binds tightly to Bbox1 was observed to be monoubiquitinated in the assay and appears to down-regulate the amount of polyubiquitinated products formed. These studies shed light on MID1 E3 ligase activity and show how its three zinc-binding domains can contribute to MID1's overall function.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
239
|
Ohkura S, Goldstone DC, Yap MW, Holden-Dye K, Taylor IA, Stoye JP. Novel escape mutants suggest an extensive TRIM5α binding site spanning the entire outer surface of the murine leukemia virus capsid protein. PLoS Pathog 2011; 7:e1002011. [PMID: 21483490 PMCID: PMC3068999 DOI: 10.1371/journal.ppat.1002011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/28/2011] [Indexed: 12/18/2022] Open
Abstract
After entry into target cells, retroviruses encounter the host restriction
factors such as Fv1 and TRIM5α. While it is clear that these factors target
retrovirus capsid proteins (CA), recognition remains poorly defined in the
absence of structural information. To better understand the binding interaction
between TRIM5α and CA, we selected a panel of novel N-tropic murine
leukaemia virus (N-MLV) escape mutants by a serial passage of replication
competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using
a small percentage of unrestricted cells to allow multiple rounds of virus
replication. The newly identified mutations, many of which involve changes in
charge, are distributed over the outer ‘top’ surface of N-MLV CA,
including the N-terminal β-hairpin, and map up to 29 Ao apart.
Biological characterisation with a number of restriction factors revealed that
only one of the new mutations affects restriction by human TRIM5α,
indicating significant differences in the binding interaction between N-MLV and
the two TRIM5αs, whereas three of the mutations result in dual sensitivity
to Fv1n and Fv1b. Structural studies of two mutants show
that no major changes in the overall CA conformation are associated with escape
from restriction. We conclude that interactions involving much, if not all, of
the surface of CA are vital for TRIM5α binding. Host restriction factors such as TRIM5α are important for preventing cross
species transmission of a variety of retroviruses. They act to block viral
replication but their mode of virus recognition is poorly understood. To address
this question we have developed a procedure for isolating viruses that replicate
in the presence of restriction factors. Analysis of these viruses shows that
individual mutations across the entire surface of the viral capsid molecule can
relieve restriction. Escape from TRIM5α of one species does not necessarily
lead to escape from another. It seems likely that restriction factor recognition
involves extensive weak contacts between factor and virus. We suggest that this
represents an important design feature in a system that recognizes multiple
pathogens.
Collapse
Affiliation(s)
- Sadayuki Ohkura
- Division of Virology, MRC National Institute for Medical Research,
London, United Kingdom
| | - David C. Goldstone
- Division of Molecular Structure, MRC National Institute for Medical
Research, London, United Kingdom
| | - Melvyn W. Yap
- Division of Virology, MRC National Institute for Medical Research,
London, United Kingdom
| | - Kate Holden-Dye
- Division of Virology, MRC National Institute for Medical Research,
London, United Kingdom
| | - Ian A. Taylor
- Division of Molecular Structure, MRC National Institute for Medical
Research, London, United Kingdom
| | - Jonathan P. Stoye
- Division of Virology, MRC National Institute for Medical Research,
London, United Kingdom
- * E-mail:
| |
Collapse
|
240
|
Zhao G, Ke D, Vu T, Ahn J, Shah VB, Yang R, Aiken C, Charlton LM, Gronenborn AM, Zhang P. Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLoS Pathog 2011; 7:e1002009. [PMID: 21455494 PMCID: PMC3063768 DOI: 10.1371/journal.ppat.1002009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 01/13/2011] [Indexed: 11/29/2022] Open
Abstract
TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5α (TRIM5αrh) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5α to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking, the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5αrh containing coiled-coil and SPRY domains (CC-SPRYrh). Concentration-dependent binding of CC-SPRYrh to CA assemblies was observed, while under equivalent conditions the human protein did not bind. Importantly, CC-SPRYrh, but not its human counterpart, disrupted CA tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5αrh on the inter-hexamer interfaces also occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5α disrupts the virion core and demonstrate that structural damage of the viral capsid by TRIM5α is likely one of the important components of the mechanism of TRIM5α-mediated HIV-1 restriction. The cellular protein TRIM5α is a host cell restriction factor that blocks HIV-1 infection in Rhesus macaque cells by targeting the viral capsid. Here, we show that direct binding of a TRIM5α protein, consisting of the coiled-coil and B30.2/SPRY domains, to the viral capsid results in disruption of the surface lattice and fragmentation of the capsid, specifically at inter-hexamer interfaces. Our results reinforce the notion that structural damage of the viral capsid by TRIM5α is central to the mechanism of TRIM5α-mediated HIV-1 restriction.
Collapse
Affiliation(s)
- Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Danxia Ke
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Thomas Vu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Vaibhav B. Shah
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ruifeng Yang
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lisa M. Charlton
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
241
|
Unique spectrum of activity of prosimian TRIM5alpha against exogenous and endogenous retroviruses. J Virol 2011; 85:4173-83. [PMID: 21345948 DOI: 10.1128/jvi.00075-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviruses, the genus of retrovirus that includes HIV-1, rarely endogenize. Some lemurs uniquely possess an endogenous lentivirus called PSIV ("prosimian immunodeficiency virus"). Thus, lemurs provide the opportunity to study the activity of host defense factors, such as TRIM5α, in the setting of germ line invasion. We characterized the activities of TRIM5α proteins from two distant lemurs against exogenous retroviruses and a chimeric PSIV. TRIM5α from gray mouse lemur, which carries PSIV in its genome, exhibited the narrowest restriction activity. One allelic variant of gray mouse lemur TRIM5α restricted only N-tropic murine leukemia virus (N-MLV), while a second variant restricted N-MLV and, uniquely, B-tropic MLV (B-MLV); both variants poorly blocked PSIV. In contrast, TRIM5α from ring-tailed lemur, which does not contain PSIV in its genome, revealed one of the broadest antiviral activities reported to date against lentiviruses, including PSIV. Investigation into the antiviral specificity of ring-tailed lemur TRIM5α demonstrated a major contribution of a 32-amino-acid expansion in variable region 2 (v2) of the B30.2/SPRY domain to the breadth of restriction. Data on lemur TRIM5α and the prediction of ancestral simian sequences hint at an evolutionary scenario where antiretroviral specificity is prominently defined by the lineage-specific expansion of the variable loops of B30.2/SPRY.
Collapse
|
242
|
Kar AK, Mao Y, Bird G, Walensky L, Sodroski J. Characterization of a core fragment of the rhesus monkey TRIM5α protein. BMC BIOCHEMISTRY 2011; 12:1. [PMID: 21205312 PMCID: PMC3025952 DOI: 10.1186/1471-2091-12-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/04/2011] [Indexed: 11/13/2022]
Abstract
Background Like all tripartite motif (TRIM) proteins, the retroviral restriction factor TRIM5α consists of RING, B-box 2 and coiled-coil domains, with a C-terminal B30.2(SPRY) domain. Although structures have been determined for some individual TRIM domains, the structure of an intact TRIM protein is unknown. Results Here, we express and characterize a protease-resistant 29-kD core fragment containing the B-box 2, coiled coil and adjacent linker (L2) region of TRIM5α. This BCCL2 protein formed dimers and higher-order oligomers in solution. Approximately 40% of the BCCL2 secondary structure consisted of alpha helices. Partial loss of alpha-helical content and dissociation of dimers occurred at 42°C, with the residual alpha helices remaining stable up to 80°C. Conclusions These results indicate that the B-box 2, coiled-coil and linker 2 regions of TRIM5α form a core dimerization motif that exhibits a high level of alpha-helical content.
Collapse
Affiliation(s)
- Alak K Kar
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
243
|
Griffiths PD, Milne RSB. Intracellular neutralisation of adenovirus by antibody. Rev Med Virol 2011; 21:1-2. [DOI: 10.1002/rmv.675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
244
|
Maillard PV, Zoete V, Michielin O, Trono D. Homology-based identification of capsid determinants that protect HIV1 from human TRIM5α restriction. J Biol Chem 2010; 286:8128-8140. [PMID: 21169362 DOI: 10.1074/jbc.m110.187609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tropism of retroviruses relies on their ability to exploit cellular factors for their replication as well as to avoid host-encoded inhibitory activities such as TRIM5α. N-tropic murine leukemia virus is sensitive to human TRIM5α (huTRIM5α) restriction, whereas human immunodeficiency virus type 1 (HIV1) escapes this antiviral factor. We previously revealed that mutation of four critical amino acid residues within the capsid can render murine leukemia virus resistant to huTRIM5α. Here, we exploit the high degree of conservation in the tertiary structure of retroviral capsids to map the corresponding positions on the HIV1 capsid. We then demonstrated that, when changes were introduced at some of these positions, HIV1 becomes sensitive to huTRIM5α restriction, a phenomenon reinforced by additionally mutating the nearby cyclophilin A binding loop of the viral protein. These results indicate that retroviruses have evolved similar mechanisms to escape TRIM5α restriction via the interference of structurally homologous determinants in the viral capsid.
Collapse
Affiliation(s)
- Pierre V Maillard
- From the Global Health Institute, School of Life Sciences, and "Frontiers in Genetics" National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne and
| | - Vincent Zoete
- the Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building, 1015 Lausanne, Switzerland
| | - Olivier Michielin
- the Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building, 1015 Lausanne, Switzerland,; the Ludwig Institute for Cancer Research, Ltd., 1066 Epalinges, Switzerland, and; the Pluridisciplinary Centre for Clinical Oncology (CePO), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Didier Trono
- From the Global Health Institute, School of Life Sciences, and "Frontiers in Genetics" National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne and.
| |
Collapse
|
245
|
McNab FW, Rajsbaum R, Stoye JP, O'Garra A. Tripartite-motif proteins and innate immune regulation. Curr Opin Immunol 2010; 23:46-56. [PMID: 21131187 DOI: 10.1016/j.coi.2010.10.021] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022]
Abstract
The tripartite motif containing (TRIM) proteins are a family of proteins that have been implicated in many biological processes including cell differentiation, apoptosis, transcriptional regulation and signaling pathways. Many TRIM proteins are upregulated by the immunologically important Type I and Type II interferons and several, including TRIM5α and TRIM19/PML, restrict viral replication. There is growing evidence that TRIMs also play an important role in the broader immune response through regulating signaling pathways such as the RIG-I pathway. In this review we discuss recent research elucidating TRIM regulation of a number of pathways important in immunity and review the latest findings relating to viral restriction by TRIMs.
Collapse
Affiliation(s)
- Finlay W McNab
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | |
Collapse
|
246
|
Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci U S A 2010; 107:19985-90. [PMID: 21045130 PMCID: PMC2993423 DOI: 10.1073/pnas.1014074107] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antibodies provide effective antiviral immunity despite the fact that viruses escape into cells when they infect. Here we show that antibodies remain attached to viruses after cell infection and mediate an intracellular immune response that disables virions in the cytosol. We have discovered that cells possess a cytosolic IgG receptor, tripartite motif-containing 21 (TRIM21), which binds to antibodies with a higher affinity than any other IgG receptor in the human body. TRIM21 rapidly recruits to incoming antibody-bound virus and targets it to the proteasome via its E3 ubiquitin ligase activity. Proteasomal targeting leads to rapid degradation of virions in the cytosol before translation of virally encoded genes. Infection experiments demonstrate that at physiological antibody concentrations TRIM21 neutralizes viral infection. These results reveal an intracellular arm of adaptive immunity in which the protection mediated by antibodies does not end at the cell membrane but continues inside the cell to provide a last line of defense against infection.
Collapse
Affiliation(s)
- Donna L. Mallery
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| | - William A. McEwan
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| | - Susanna R. Bidgood
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| | - Greg J. Towers
- Division of Infection and Immunity, Medical Research Council Centre for Medical Molecular Virology, University College London, London W1T4JF, United Kingdom
| | - Chris M. Johnson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| | - Leo C. James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| |
Collapse
|
247
|
Hare TRIM5α restricts divergent retroviruses and exhibits significant sequence variation from closely related lagomorpha TRIM5 genes. J Virol 2010; 84:12463-8. [PMID: 20861252 DOI: 10.1128/jvi.01514-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRIM5α proteins recruit and restrict incoming cytoplasmic retroviruses. Primate TRIM5α sequence diversity underlies species-specific restriction and is likely caused by selective pressure from ancient pathogenic infections. Here we show that TRIM5α from the European brown hare restricts diverse retroviruses. Furthermore, it differs significantly in sequence from TRIM5α from the closely related rabbit, suggesting evolutionary changes in the last 12 million years since these species diverged. We propose that, like primates, lagomorphs have been subject to selective pressure from TRIM5-sensitive viruses, possibly related to the endogenous lentivirus RELIK found in both rabbits and hares.
Collapse
|
248
|
Filippakopoulos P, Low A, Sharpe TD, Uppenberg J, Yao S, Kuang Z, Savitsky P, Lewis RS, Nicholson SE, Norton RS, Bullock AN. Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4. J Mol Biol 2010; 401:389-402. [PMID: 20561531 PMCID: PMC2923778 DOI: 10.1016/j.jmb.2010.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/04/2010] [Accepted: 06/08/2010] [Indexed: 11/30/2022]
Abstract
The mammalian SPRY domain- and SOCS box-containing proteins, SPSB1 to SPSB4, belong to the SOCS box family of E3 ubiquitin ligases. Substrate recognition sites for the SPRY domain are identified only for human Par-4 (ELNNNL) and for the Drosophila orthologue GUSTAVUS binding to the DEAD-box RNA helicase VASA (DINNNN). To further investigate this consensus motif, we determined the crystal structures of SPSB1, SPSB2, and SPSB4, as well as their binding modes and affinities for both Par-4 and VASA. Mutation of each of the three Asn residues in Par-4 abrogated binding to all three SPSB proteins, while changing EL to DI enhanced binding. By comparison to SPSB1 and SPSB4, the more divergent protein SPSB2 showed only weak binding to Par-4 and was hypersensitive to DI substitution. Par-4(59–77) binding perturbed NMR resonances from a number of SPSB2 residues flanking the ELNNN binding site, including loop D, which binds the EL/DI sequence. Although interactions with the consensus peptide motif were conserved in all structures, flanking sites in SPSB2 were identified as sites of structural change. These structural changes limit high-affinity interactions for SPSB2 to aspartate-containing sequences, whereas SPSB1 and SPSB4 bind strongly to both Par-4 and VASA peptides.
Collapse
Affiliation(s)
- Panagis Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andrew Low
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Timothy D. Sharpe
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jonas Uppenberg
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Shenggen Yao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Zhihe Kuang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Pavel Savitsky
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rowena S. Lewis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Sandra E. Nicholson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Raymond S. Norton
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Corresponding authors.
| | - Alex N. Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
- Corresponding authors.
| |
Collapse
|
249
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) shows a very narrow host range limited to humans and chimpanzees. Experimentally, HIV-1 does not infect Old World monkeys, such as rhesus (Rh) and cynomolgus (CM) monkeys, and fails to replicate in activated CD4 positive T lymphocytes obtained from these monkeys. In contrast, simian immunodeficiency virus isolated from a macaque monkey (SIVmac) can replicate well in both Rh and CM. In 2004, tripartite motif 5 alpha (TRIM5 alpha) was identified as a host factor which plays an important role in the restricted host range of HIV-1. Rh and CM TRIM5 alpha restrict HIV-1 infection but not SIVmac, while in comparison, anti-viral activity of human TRIM5 alpha against those viruses is very weak. TRIM5 alpha consists of the RING, B-box 2, coiled-coil and SPRY (B30.2) domains. The RING domain is frequently found in E3 ubiquitin ligase and TRIM5 alpha is degraded via the ubiquitin-proteasome pathway during HIV-1 restriction. TRIM5 alpha recognises the multimerised capsid (viral core) of an incoming virus by its alpha-isoform specific SPRY domain and is believed to be involved in innate immunity to control retroviral infection. Differences in amino acid sequences in the SPRY domain of TRIM5 alpha of different monkey species were found to affect species-specific restriction of retrovirus infection, while differences in amino acid sequences in the viral capsid protein determine viral sensitivity to restriction. Accurate structural analysis of the binding surface between the viral capsid protein and TRIM5 alpha SPRY is thus required for the development of new antiretroviral drugs that enhance anti-HIV-1 activity of human TRIM5 alpha.
Collapse
Affiliation(s)
- Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
250
|
Pham QT, Bouchard A, Grütter MG, Berthoux L. Generation of human TRIM5α mutants with high HIV-1 restriction activity. Gene Ther 2010; 17:859-71. [DOI: 10.1038/gt.2010.40] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|