201
|
Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y, Bessarabova M. Drug target prediction and repositioning using an integrated network-based approach. PLoS One 2013; 8:e60618. [PMID: 23593264 PMCID: PMC3617101 DOI: 10.1371/journal.pone.0060618] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example.
Collapse
Affiliation(s)
- Dorothea Emig
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Alexander Ivliev
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Olga Pustovalova
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Lee Lancashire
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Svetlana Bureeva
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Yuri Nikolsky
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Marina Bessarabova
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
- * E-mail:
| |
Collapse
|
202
|
Bellovin DI, Das B, Felsher DW. Tumor dormancy, oncogene addiction, cellular senescence, and self-renewal programs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:91-107. [PMID: 23143977 DOI: 10.1007/978-1-4614-1445-2_6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancers are frequently addicted to initiating oncogenes that elicit aberrant cellular proliferation, self-renewal, and apoptosis. Restoration of oncogenes to normal physiologic regulation can elicit dramatic reversal of the neoplastic phenotype, including reduced proliferation and increased apoptosis of tumor cells (Science 297(5578):63-64, 2002). In some cases, oncogene inactivation is associated with compete elimination of a tumor. However, in other cases, oncogene inactivation induces a conversion of tumor cells to a dormant state that is associated with cellular differentiation and/or loss of the ability to self-replicate. Importantly, this dormant state is reversible, with tumor cells regaining the ability to self-renew upon oncogene reactivation. Thus, understanding the mechanism of oncogene inactivation-induced dormancy may be crucial for predicting therapeutic outcome of targeted therapy. One important mechanistic insight into tumor dormancy is that oncogene addiction might involve regulation of a decision between self-renewal and cellular senescence. Recent evidence suggests that this decision is regulated by multiple mechanisms that include tumor cell-intrinsic, cell-autonomous mechanisms and host-dependent, tumor cell-non-autonomous programs (Mol Cell 4(2):199-207, 1999; Science 297(5578):102-104, 2002; Nature 431(7012):1112-1117, 2004; Proc Natl Acad Sci U S A 104(32):13028-13033, 2007). In particular, the tumor microenvironment, which is known to be critical during tumor initiation (Cancer Cell 7(5):411-423, 2005; J Clin Invest 121(6):2436-2446, 2011), prevention (Nature 410(6832):1107-1111, 2001), and progression (Cytokine Growth Factor Rev 21(1):3-10, 2010), also appears to dictate when oncogene inactivation elicits the permanent loss of self-renewal through induction of cellular senescence (Nat Rev Clin Oncol 8(3):151-160, 2011; Science 313(5795):1960-1964, 2006; N Engl J Med 351(21):2159-21569, 2004). Thus, oncogene addiction may be best modeled as a consequence of the interplay amongst cell-autonomous and host-dependent programs that define when a therapy will result in tumor dormancy.
Collapse
Affiliation(s)
- David I Bellovin
- Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305-5151, USA
| | | | | |
Collapse
|
203
|
Abstract
It is well known that Neuroblastoma (NB) patients whose tumors have an undifferentiated histology and a transcriptome enriched in cell cycle genes have a worse prognosis. This contrasts with the good prognoses of patients whose tumors have histologic evidence of differentiation and a transcriptome enriched in differentiation genes. Tumor cell lines from poor prognosis, high-risk patients contain a number of genetic alterations, including amplification of MYCN, 1pLOH, and unbalanced 11q or gains of Chr 17 and 7, and exhibit uncontrolled growth and an undifferentiated phenotype in in vitro culture. Yet treatment of such NB cell lines with retinoic acid results in growth control and induction of differentiation. This indicates that the signaling pathways that regulate cell growth and differentiation are not functionally lost but dysregulated. Agents such as retinoic acid normalize the signaling pathways and impose growth control and induction of differentiation. Recent studies in embryonic stem cells indicate that polycomb repressor complex proteins (PRC1 and PRC2) play a major role in regulating stem cell lineage specification and coordinating the shift from a transcriptome that supports self-renewal or growth to one that specifies lineage and controls growth. We have shown that in NB, the PRC2 complex is elevated in undifferentiated NB tumors and functions to suppress a number of tumor suppressor genes. This study will review the role of MYC genes in regulating the epigenome in normal development and explore how this role may be altered during tumorigenesis.
Collapse
Affiliation(s)
- Stanley He
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | | | | | | |
Collapse
|
204
|
Velarde MC, Demaria M, Campisi J. Senescent cells and their secretory phenotype as targets for cancer therapy. Interdiscip Top Gerontol Geriatr 2013; 38:17-27. [PMID: 23503512 DOI: 10.1159/000343572] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is a devastating disease that increases exponentially with age. Cancer arises from cells that proliferate in an unregulated manner, an attribute that is countered by cellular senescence. Cellular senescence is a potent tumor-suppressive process that halts the proliferation, essentially irreversibly, of cells at risk for malignant transformation. A number of anti-cancer drugs have emerged that induce tumor cells to undergo cellular senescence. However, although a senescence response can halt the proliferation of cancer cells, the presence of senescent cells in tissues has been associated with age-related diseases, including, ironically, late-life cancer. Thus, anti-cancer therapies that can induce senescence might also drive aging phenotypes and age-related pathology. The deleterious effects of senescent cells most likely derive from their senescence-associated secretory phenotype or SASP. The SASP entails the secretion of numerous inflammatory cytokines, growth factors and proteases that can render the tissue microenvironment favorable for tumor growth. Here, we discuss the beneficial and detrimental effects of inducing cellular senescence, and propose strategies for targeting senescent cells as a means to fight cancer.
Collapse
|
205
|
Chang TM, Hung WC. The homeobox transcription factor Prox1 inhibits proliferation of hepatocellular carcinoma cells by inducing p53-dependent senescence-like phenotype. Cancer Biol Ther 2013; 14:222-9. [PMID: 23291986 DOI: 10.4161/cbt.23293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The homeobox transcription factor Prox1 is highly expressed in adult hepatocytes and is involved in the regulation of bile acid synthesis and gluconeogenesis in the liver by interacting with other transcriptional activators or repressors. Recent studies showed that Prox1 could inhibit proliferation of hepatocellular carcinoma (HCC) cells and reduced Prox1 expression was associated with poor prognosis of HCC patients. However, the underlying mechanism by which Prox1 attenuates HCC growth is still unclear. In this study, we demonstrated that Prox1 induced senescence-like phenotype of HCC cells to reduce cell proliferation. Our results indicated that the tumor suppressor p53 is a key mediator of Prox1-induced growth suppression because Prox1 only induced senescence-like phenotype in HCC cells harboring wild type p53. In addition, knockdown of p53 by shRNA reversed the effect of Prox1. However, chromatin immunoprecipitation assay did not demonstrate the direct binding of Prox1 to proximal promoter of human p53 gene suggesting Prox1 might not directly activate p53 transcription. We found that Prox1 suppressed Twist expression in HCC cells and subsequently relieved its inhibition on p53 gene transcription. The involvement of Twist in the regulation of p53 by Prox1 was supported by the following evidence: (1) Prox1 inhibited Twist expression and promoter activity; (2) knockdown of Twist in SK-HEP-1 cells upregulated p53 expression and (3) ectopic expression of Twist counteracted Prox1-induced p53 transcription and senescence-like phenotype. We also indentified an E-box located at p53 promoter which is required for Twist to inhibit p53 expression. Finally, our animal experiment confirmed that Prox1 suppressed HCC growth in vivo. Collectively, we conclude that Prox1 suppresses proliferation of HCC cells via inhibiting Twist to trigger p53-dependent senescence-like phenotype.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
206
|
Tumor dormancy and cancer stem cells: two sides of the same coin? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:145-79. [PMID: 23143979 DOI: 10.1007/978-1-4614-1445-2_8] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that tumor dormancy represents an important mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate cancers. In addition to its more established role in maintaining minimal residual disease after treatment, dormancy might also critically contribute to early stages of tumor development and the formation of clinically undetectable micrometastatic foci. There are striking parallels between the concept of tumor dormancy and the cancer stem cell (CSC) theory of tumor propagation. For instance, the CSC hypothesis similarly predicts that a subset of self-renewing cancer cells-that is CSCs-is responsible for tumor initiation, bears the preferential ability to survive tumor therapy, and persists long term to ultimately cause delayed cancer recurrence and metastatic progression. Additionally, many of the biological mechanisms involved in controlling the dormant state of a tumor can also govern CSC behavior, including cell cycle modifications, alteration of angiogenic processes, and modulation of antitumor immune responses. In fact, quiescence and immune escape are emerging hallmark features of at least some CSCs, indicating significant overlap between dormant cancer populations and CSCs. Herein, we crucially dissect whether CSCs occupy specific roles in orchestrating the switch between dormancy and exuberant tumor growth. We elucidate how recently uncovered CSC biological features could enable these cells to evade immunologic clearance and regulate cancer expansion, relapse, and progression. We propose that the study of CSC immunobiological pathways holds the promise to critically advance our understanding of the processes mediating tumor dormancy. Ultimately, such research endeavors could unravel novel therapeutic avenues that efficiently target both proliferating and dormant CSCs to minimize the risk of tumor recurrence in cancer patients.
Collapse
|
207
|
Abstract
Studies in primary and tumor cells suggest that MYC plays an important role in regulating cellular senescence, thereby impacting on tumor development. Here we describe different common methods to measure senescence in cell cultures and in tissues. These include measurement of senescence-associated β-galactosidase activity (SA-β-gal), senescence-associated heterochromatin foci (SAHFs), proliferative arrest, morphological changes, and expression and activity of proteins involved in the senescence process, such as p53 and Rb pathway proteins and secretory proteins. It is important to note that there is no unique marker that unambiguously defines a senescent state, and it is therefore necessary to combine measurements of several different markers that together determine whether cells are senescent or not. Measurement of senescence is an important aspect of studies of MYC biology and will improve our understanding of MYC function and regulation both in preclinical and clinical settings. This may form the basis for new concepts of pro-senescence therapy to combat MYC in cancer.
Collapse
Affiliation(s)
- Vedrana Tabor
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
208
|
Anders K, Blankenstein T. Molecular pathways: comparing the effects of drugs and T cells to effectively target oncogenes. Clin Cancer Res 2012. [PMID: 23197254 DOI: 10.1158/1078-0432.ccr-12-3017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutant cancer-driving oncogenes are the best therapeutic targets, both with drugs like small-molecule inhibitors (SMI) and adoptive T-cell therapy (ATT), the most effective form of immunotherapy. Cancer cell survival often depends on oncogenes, which implies that they are homogeneously expressed by all cancer cells and are difficult to select against. Mutant oncogene-directed therapy is relatively selective, as it targets preferentially the oncogene-expressing cancer cells. Both SMI and ATT can be highly effective in relevant preclinical models as well as selected clinical situations, and both share the risk of therapy resistance, facilitated by the frequent genetic instability of cancer cells. Recently, both therapies were compared in the same experimental model targeting the same oncogene. It showed that the oncogene-inactivating drug selected resistant clones, leading eventually to tumor relapse, whereas ATT eradicated large established tumors completely. The mode of tumor destruction likely explained the different outcome with only ATT destroying the tumor vasculature. Elucidating the cellular and molecular mechanisms responsible for tumor regression and relapse will define optimal conditions for the clinic. We argue that the ideal conditions of ATT in the experimental cancer model can be translated to individuals with cancer.
Collapse
Affiliation(s)
- Kathleen Anders
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, Berlin, Germany
| | | |
Collapse
|
209
|
Bisikirska BC, Adam SJ, Alvarez MJ, Rajbhandari P, Cox R, Lefebvre C, Wang K, Rieckhof GE, Felsher DW, Califano A. STK38 is a critical upstream regulator of MYC's oncogenic activity in human B-cell lymphoma. Oncogene 2012. [PMID: 23178486 DOI: 10.1038/onc.2012.543] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The MYC protooncogene is associated with the pathogenesis of most human neoplasia. Conversely, its experimental inactivation elicits oncogene addiction. Besides constituting a formidable therapeutic target, MYC also has an essential function in normal physiology, thus creating the need for context-specific targeting strategies. The analysis of post-translational MYC activity modulation yields novel targets for MYC inactivation. Specifically, following regulatory network analysis in human B-cells, we identify a novel role of the STK38 kinase as a regulator of MYC activity and a candidate target for abrogating tumorigenesis in MYC-addicted lymphoma. We found that STK38 regulates MYC protein stability and turnover in a kinase activity-dependent manner. STK38 kinase inactivation abrogates apoptosis following B-cell receptor activation, whereas its silencing significantly decreases MYC levels and increases apoptosis. Moreover, STK38 knockdown suppresses growth of MYC-addicted tumors in vivo, thus providing a novel viable target for treating these malignancies.
Collapse
Affiliation(s)
- B C Bisikirska
- Joint Centers for Systems Biology, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Bianchi-Smiraglia A, Nikiforov MA. Controversial aspects of oncogene-induced senescence. Cell Cycle 2012; 11:4147-51. [PMID: 23095636 DOI: 10.4161/cc.22589] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a fail-safe mechanism that is developed to suppress cell proliferation caused by aberrant activation of oncoproteins in normal cells. Most of the available literature considers senescence to be caused by activated RAS or RAF proteins. In the current review, we will discuss some of the controversial aspects of RAS- or RAF-induced senescence in different types of normal cells: are tumor suppressors important for OIS? What is the role of DNA damage in OIS? Are there different types of OIS?
Collapse
|
211
|
Kim BC, Lee HC, Lee JJ, Choi CM, Kim DK, Lee JC, Ko YG, Lee JS. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment. EMBO J 2012; 31:4289-303. [PMID: 23085987 DOI: 10.1038/emboj.2012.286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.
Collapse
Affiliation(s)
- Bong Cho Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Ng AJ, Mutsaers AJ, Baker EK, Walkley CR. Genetically engineered mouse models and human osteosarcoma. Clin Sarcoma Res 2012; 2:19. [PMID: 23036272 PMCID: PMC3523007 DOI: 10.1186/2045-3329-2-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common form of bone cancer. Pivotal insight into the genes involved in human osteosarcoma has been provided by the study of rare familial cancer predisposition syndromes. Three kindreds stand out as predisposing to the development of osteosarcoma: Li-Fraumeni syndrome, familial retinoblastoma and RecQ helicase disorders, which include Rothmund-Thomson Syndrome in particular. These disorders have highlighted the important roles of P53 and RB respectively, in the development of osteosarcoma. The association of OS with RECQL4 mutations is apparent but the relevance of this to OS is uncertain as mutations in RECQL4 are not found in sporadic OS. Application of the knowledge or mutations of P53 and RB in familial and sporadic OS has enabled the development of tractable, highly penetrant murine models of OS. These models share many of the cardinal features associated with human osteosarcoma including, importantly, a high incidence of spontaneous metastasis. The recent development of these models has been a significant advance for efforts to improve our understanding of the genetics of human OS and, more critically, to provide a high-throughput genetically modifiable platform for preclinical evaluation of new therapeutics.
Collapse
Affiliation(s)
- Alvin Jm Ng
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| | - Anthony J Mutsaers
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia.,Ontario Veterinary College, University of Guelph, 50 Stone Road, Guelph, ON, N1G 2W1, Canada
| | - Emma K Baker
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| |
Collapse
|
213
|
Clark O, Daga S, Stoker AW. Tyrosine phosphatase inhibitors combined with retinoic acid can enhance differentiation of neuroblastoma cells and trigger ERK- and AKT-dependent, p53-independent senescence. Cancer Lett 2012; 328:44-54. [PMID: 23022267 DOI: 10.1016/j.canlet.2012.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 08/29/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Retinoic acid (RA)-induced differentiation therapy is partially successful in neuroblastoma treatment. We found that a novel combination of vanadium-based PTP inhibitors with RA induced extensive differentiation in neuroblastoma cells. In contrast to RA alone, this led to either permanent differentiation or senescence after 14days of combined treatment followed by chemical removal. Senescence was dependent in part on synergistic AKT and ERK activation. p21 was also strongly induced, but in contrast to oncogene-induced senescence, p53 was not activated. Vanadium-based inhibitors thus serve strongly to enhance RA's ability to drive differentiation and a novel form of senescence in neuroblastoma cells.
Collapse
Affiliation(s)
- Owen Clark
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | |
Collapse
|
214
|
Abstract
National Cancer Institute has announced 24 provocative questions on cancer. Here I try to answer some of them by linking the dots of existing knowledge.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
215
|
Tkach M, Coria L, Rosemblit C, Rivas MA, Proietti CJ, Díaz Flaqué MC, Beguelin W, Frahm I, Charreau EH, Cassataro J, Elizalde PV, Schillaci R. Targeting Stat3 Induces Senescence in Tumor Cells and Elicits Prophylactic and Therapeutic Immune Responses against Breast Cancer Growth Mediated by NK Cells and CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:1162-72. [DOI: 10.4049/jimmunol.1102538] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
216
|
Dang CV. MYC on the path to cancer. Cell 2012; 149:22-35. [PMID: 22464321 DOI: 10.1016/j.cell.2012.03.003] [Citation(s) in RCA: 2413] [Impact Index Per Article: 201.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/30/2012] [Accepted: 03/07/2012] [Indexed: 11/30/2022]
Abstract
The MYC oncogene contributes to the genesis of many human cancers. Recent insights into its expression and function have led to therapeutic opportunities. MYC's activation by bromodomain proteins could be inhibited by drug-like molecules, resulting in tumor inhibition in vivo. Tumor growth can also be curbed by pharmacologically uncoupling bioenergetic pathways involving glucose or glutamine metabolism from Myc-induced cellular biomass accumulation. Other approaches to halt Myc on the path to cancer involve targeting Myc-Max dimerization or Myc-induced microRNA expression. Here the richness of our understanding of MYC is reviewed, highlighting new biological insights and opportunities for cancer therapies.
Collapse
Affiliation(s)
- Chi V Dang
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
217
|
Tran PT, Shroff EH, Burns TF, Thiyagarajan S, Das ST, Zabuawala T, Chen J, Cho YJ, Luong R, Tamayo P, Salih T, Aziz K, Adam SJ, Vicent S, Nielsen CH, Withofs N, Sweet-Cordero A, Gambhir SS, Rudin CM, Felsher DW. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genet 2012; 8:e1002650. [PMID: 22654667 PMCID: PMC3360067 DOI: 10.1371/journal.pgen.1002650] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/27/2012] [Indexed: 12/15/2022] Open
Abstract
KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. Lung cancer is the most common cause of cancer death worldwide. The Twist1 gene encodes for an essential transcription factor required for embryogenesis and overexpressed in many cancer types. It has yet to be shown in vivo whether Twist1 plays a role in the initiation or maintenance of cancer. Here we demonstrate using novel transgenic mouse models that Twist1 cooperates to induce lung tumorigenesis by suppressing cellular senescence programs. Moreover, the suppression of Twist1 in murine tumors elicited cellular senescence and the loss of a neoplastic phenotype. We found that TWIST1 is commonly overexpressed in human lung cancers. Finally, the inhibition of TWIST1 levels in human lung cancer cells was associated with loss of proliferation, induction of cellular senescence, and the inability to form tumors in mice. Hence, we conclude that TWIST1 is a key regulator of cellular senescence programs during tumorigenesis. The targeted inactivation of TWIST1 may be an effective pro-senescence therapy for human lung adenocarcinomas.
Collapse
Affiliation(s)
- Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
- * E-mail: (PTT); (DWF)
| | - Emelyn H. Shroff
- Departments of Medicine and Pathology, Division of Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Timothy F. Burns
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Saravanan Thiyagarajan
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Sandhya T. Das
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Tahera Zabuawala
- Departments of Medicine and Pathology, Division of Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joy Chen
- Departments of Medicine and Pathology, Division of Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yoon-Jae Cho
- Department of Neurology, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Pablo Tamayo
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Tarek Salih
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Khaled Aziz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Stacey J. Adam
- Departments of Medicine and Pathology, Division of Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Silvestre Vicent
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Carsten H. Nielsen
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nadia Withofs
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alejandro Sweet-Cordero
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanjiv S. Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Charles M. Rudin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Dean W. Felsher
- Departments of Medicine and Pathology, Division of Oncology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (PTT); (DWF)
| |
Collapse
|
218
|
Dik S, Scheepers PTJ, Godderis L. Effects of environmental stressors on histone modifications and their relevance to carcinogenesis: A systematic review. Crit Rev Toxicol 2012; 42:491-500. [DOI: 10.3109/10408444.2012.684146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
219
|
Tran PT, Bendapudi PK, Lin HJ, Choi P, Koh S, Chen J, Horng G, Hughes NP, Schwartz LH, Miller VA, Kawashima T, Kitamura T, Paik D, Felsher DW. Survival and death signals can predict tumor response to therapy after oncogene inactivation. Sci Transl Med 2012; 3:103ra99. [PMID: 21974937 DOI: 10.1126/scitranslmed.3002018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancers can exhibit marked tumor regression after oncogene inhibition through a phenomenon called "oncogene addiction." The ability to predict when a tumor will exhibit oncogene addiction would be useful in the development of targeted therapeutics. Oncogene addiction is likely the consequence of many cellular programs. However, we reasoned that many of these inputs may converge on aggregate survival and death signals. To test this, we examined conditional transgenic models of K-ras(G12D)--or MYC-induced lung tumors and lymphoma combined with quantitative imaging and an in situ analysis of biomarkers of proliferation and apoptotic signaling. We then used computational modeling based on ordinary differential equations (ODEs) to show that oncogene addiction could be modeled as differential changes in survival and death intracellular signals. Our mathematical model could be generalized to different imaging methods (computed tomography and bioluminescence imaging), different oncogenes (K-ras(G12D) and MYC), and several tumor types (lung and lymphoma). Our ODE model could predict the differential dynamics of several putative prosurvival and prodeath signaling factors [phosphorylated extracellular signal-regulated kinase 1 and 2, Akt1, Stat3/5 (signal transducer and activator of transcription 3/5), and p38] that contribute to the aggregate survival and death signals after oncogene inactivation. Furthermore, we could predict the influence of specific genetic lesions (p53⁻/⁻, Stat3-d358L, and myr-Akt1) on tumor regression after oncogene inactivation. Then, using machine learning based on support vector machine, we applied quantitative imaging methods to human patients to predict both their EGFR genotype and their progression-free survival after treatment with the targeted therapeutic erlotinib. Hence, the consequences of oncogene inactivation can be accurately modeled on the basis of a relatively small number of parameters that may predict when targeted therapeutics will elicit oncogene addiction after oncogene inactivation and hence tumor regression.
Collapse
Affiliation(s)
- Phuoc T Tran
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
The fusion of empirical science with large-scale computing platforms has allowed rapid advances in our ability to model physiological and pathophysiological processes in silico. In this week's issue of Science Translational Medicine, Tran et al. present a simple framework for the quantitative modeling of oncogene addiction that provides mechanistic insights into tumor biology.
Collapse
Affiliation(s)
- Andrea Califano
- Columbia Initiative in Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
221
|
Jung YS, Qian Y, Chen X. Pirh2 RING-finger E3 ubiquitin ligase: its role in tumorigenesis and cancer therapy. FEBS Lett 2012; 586:1397-402. [PMID: 22673504 DOI: 10.1016/j.febslet.2012.03.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/12/2023]
Abstract
The ubiquitin-dependent proteasome system plays a critical role in many cellular processes and pathogenesis of various human diseases, including cancer. Although there are a large number of E3 ubiquitin ligases, the majority are RING-finger type E3s. Pirh2, a target of p53 transcription factor, contains a highly conserved C(3)H(2)C(3) type RING domain. Importantly, Pirh2 was found to regulate a group of key factors dedicated to the DNA damage response, such as p53, p73, PolH, and c-Myc. Interestingly, Pirh2 was upregulated or downregulated in different types of cancers. These suggest that Pirh2 is implicated in either promoting or suppressing tumor progression in a tissue-dependent manner. This review will focus on the major findings in these studies and discuss the potential to explore Pirh2 as a cancer therapeutic target.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Comparative Oncology Laboratory, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
222
|
Acosta JC, Gil J. Senescence: a new weapon for cancer therapy. Trends Cell Biol 2012; 22:211-9. [DOI: 10.1016/j.tcb.2011.11.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 01/07/2023]
|
223
|
Bachireddy P, Rakhra K, Felsher DW. Immunology in the clinic review series; focus on cancer: multiple roles for the immune system in oncogene addiction. Clin Exp Immunol 2012; 167:188-94. [PMID: 22235994 PMCID: PMC3278684 DOI: 10.1111/j.1365-2249.2011.04514.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite complex genomic and epigenetic abnormalities, many cancers are irrevocably dependent on an initiating oncogenic lesion whose restoration to a normal physiological activation can elicit a dramatic and sudden reversal of their neoplastic properties. This phenomenon of the reversal of tumorigenesis has been described as oncogene addiction. Oncogene addiction had been thought to occur largely through tumour cell-autonomous mechanisms such as proliferative arrest, apoptosis, differentiation and cellular senescence. However, the immune system plays an integral role in almost every aspect of tumorigenesis, including tumour initiation, prevention and progression as well as the response to therapeutics. Here we highlight more recent evidence suggesting that oncogene addiction may be integrally dependent upon host immune-mediated mechanisms, including specific immune effectors and cytokines that regulate tumour cell senescence and tumour-associated angiogenesis. Hence, the host immune system is essential to oncogene addiction.
Collapse
Affiliation(s)
- P Bachireddy
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
224
|
BAG2 is a target of the c-Myc gene and is involved in cellular senescence via the p21(CIP1) pathway. Cancer Lett 2011; 318:34-41. [PMID: 22146591 DOI: 10.1016/j.canlet.2011.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/03/2011] [Accepted: 11/29/2011] [Indexed: 01/20/2023]
Abstract
Suppression of c-Myc is likely to induce cellular senescence in many tumors with unclear mechanisms. A proteomics survey indicated that high levels of BCL2-associated athanogene 2 (BAG2) were found in response to c-Myc repression in TRE293 cells. This observation led to the investigation into the role of BAG2 in c-Myc-induced senescence. The association of the c-Myc/SP1 complex with the BAG2 promoter verified the role of c-Myc/SP1 in regulating BAG2 transcription. Furthermore, high levels of BAG2 were found to induce p21(CIP1)-dependent senescence and subsequent carcinogenetic arrest, suggesting its possible role as an indirect activator of the p21(CIP1) pathway.
Collapse
|
225
|
Saab R. Senescence and pre-malignancy: How do tumors progress? Semin Cancer Biol 2011; 21:385-91. [DOI: 10.1016/j.semcancer.2011.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 09/15/2011] [Accepted: 09/23/2011] [Indexed: 01/15/2023]
|
226
|
Paget JA, Restall IJ, Daneshmand M, Mersereau JA, Simard MA, Parolin DAE, Lavictoire SJ, Amin MS, Islam S, Lorimer IAJ. Repression of cancer cell senescence by PKCι. Oncogene 2011; 31:3584-96. [DOI: 10.1038/onc.2011.524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
227
|
Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011; 20:620-34. [PMID: 22094256 PMCID: PMC3237683 DOI: 10.1016/j.ccr.2011.10.001] [Citation(s) in RCA: 408] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/21/2011] [Accepted: 10/02/2011] [Indexed: 12/31/2022]
Abstract
Cyclin D-dependent kinases (CDK4 and CDK6) are positive regulators of cell cycle entry and they are overactive in the majority of human cancers. However, it is currently not completely understood by which cellular mechanisms CDK4/6 promote tumorigenesis, largely due to the limited number of identified substrates. Here we performed a systematic screen for substrates of cyclin D1-CDK4 and cyclin D3-CDK6. We identified the Forkhead Box M1 (FOXM1) transcription factor as a common critical phosphorylation target. CDK4/6 stabilize and activate FOXM1, thereby maintain expression of G1/S phase genes, suppress the levels of reactive oxygen species (ROS), and protect cancer cells from senescence. Melanoma cells, unlike melanocytes, are highly reliant on CDK4/6-mediated senescence suppression, which makes them particularly susceptible to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Lars Anders
- Department of Cancer Biology Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Genetics Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Nan Ke
- Department of Cancer Biology Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Genetics Harvard Medical School, Boston, MA 02115, USA
| | - Per Hydbring
- Department of Cancer Biology Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Genetics Harvard Medical School, Boston, MA 02115, USA
| | - Yoon J. Choi
- Department of Cancer Biology Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Genetics Harvard Medical School, Boston, MA 02115, USA
| | - Hans R. Widlund
- Department of Dermatology Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joel M. Chick
- Department of Cell Biology Harvard Medical School, Boston, MA 02115, USA
| | - Huili Zhai
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Marc Vidal
- Department of Cancer Biology Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Center for Cancer Systems Biology (CCSB) Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Genetics Harvard Medical School, Boston, MA 02115, USA
| | - Stephen P. Gygi
- Department of Cell Biology Harvard Medical School, Boston, MA 02115, USA
| | - Pascal Braun
- Department of Cancer Biology Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Center for Cancer Systems Biology (CCSB) Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Genetics Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Genetics Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
228
|
Felsher DW. MYC Inactivation Elicits Oncogene Addiction through Both Tumor Cell-Intrinsic and Host-Dependent Mechanisms. Genes Cancer 2011; 1:597-604. [PMID: 21037952 DOI: 10.1177/1947601910377798] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumorigenesis is generally caused by genetic changes that activate oncogenes or inactivate tumor suppressor genes. The targeted inactivation of oncogenes can be associated with tumor regression through the phenomenon of oncogene addiction. One of the most common oncogenic events in human cancer is the activation of the MYC oncogene. The inactivation of MYC may be a general and effective therapy for human cancer. Indeed, it has been experimentally shown that the inactivation of MYC can result in dramatic and sustained tumor regression in lymphoma, leukemia, osteosarcoma, hepatocellular carcinoma, squamous carcinoma, and pancreatic carcinoma through a multitude of mechanisms, including proliferative arrest, terminal differentiation, cellular senescence, induction of apoptosis, and the shutdown of angiogenesis. Cell-autonomous and cell-dependent mechanisms have both been implicated, and recent results suggest a critical role for autocrine factors, including thrombospondin-1 and TGF-β. Hence, targeting the inactivation of MYC appears to elicit oncogene addiction and, thereby, tumor regression through both tumor cell-intrinsic and host-dependent mechanisms.
Collapse
Affiliation(s)
- Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
229
|
Abstract
The MYC protein controls many cellular processes, including proliferation, cell cycle progression, cell growth, metabolism, angiogenesis, differentiation, cell adhesion, and motility. This is primarily achieved through transcriptional regulation of large gene networks that ultimately results in activation or repression of target genes. Given its broad regulatory scope, the expression of the MYC gene itself needs to be tightly controlled. Deregulation of MYC expression promotes tumorigenesis and, not surprisingly, MYC is frequently activated in many different human cancers. Furthermore, these tumors become highly dependent on sustained MYC expression, while MYC inactivation results in desirable anticancer effects, such as cell death, differentiation, and/or senescence. Thus, MYC has emerged as an attractive target for cancer therapy. In addition to regulating protein-coding genes, MYC also governs the expression of microRNAs, many of which have important regulatory roles in cancer development and progression. Here we will discuss how MYC-regulated miRNAs could be exploited for therapeutic development for cancer.
Collapse
Affiliation(s)
- Anna Frenzel
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
230
|
Pocsfalvi G, Votta G, De Vincenzo A, Fiume I, Raj DAA, Marra G, Stoppelli MP, Iaccarino I. Analysis of Secretome Changes Uncovers an Autocrine/Paracrine Component in the Modulation of Cell Proliferation and Motility by c-Myc. J Proteome Res 2011; 10:5326-37. [DOI: 10.1021/pr200584y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gabriella Pocsfalvi
- Institute of Protein Biochemistry − CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Giuseppina Votta
- Institute of Genetics and Biophysics − CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Anna De Vincenzo
- Institute of Genetics and Biophysics − CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Immacolata Fiume
- Institute of Protein Biochemistry − CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | | | - Ingram Iaccarino
- Institute of Genetics and Biophysics − CNR, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
231
|
Larsson LG. Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence. Semin Cancer Biol 2011; 21:367-76. [PMID: 22037160 DOI: 10.1016/j.semcancer.2011.10.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Data accumulating during the last two decades suggest that tumorigenesis is held in check by two major intrinsic failsafe mechanisms; apoptosis and cellular senescence. While apoptosis is a programmed cell death process, cellular senescence, which is the focus of this article, is defined as irreversible cell cycle arrest. This process is triggered either by telomere erosion or by acute stress signals including oncogenic stress induced by overactive oncogenes or underactive tumor suppressor genes. The outcome of this is often replication overload and oxidative stress resulting in DNA damage. Oncogenic stress induces at least three intrinsic pathways, p16/pRb-, Arf/p53/p21- and the DNA damage response (DDR)-pathways, that induce premature senescence if the stress exceeds a threshold level. Oncogene-induced senescence (OIS) is frequently observed in premalignant lesions both in animal tumor models and in human patients but is essentially absent in advanced cancers, suggesting that malignant tumor cells have found ways to bypass or escape senescence. This review focuses on cell-autonomous mechanism by which certain oncogenes, tumor suppressor genes and components of the DDR/DNA-repair machinery suppress senescence - mechanisms that are exploited by tumor cells to evade senescence and continue to multiply. In this way, tumor cells become addicted to the continuous activity of senescence suppressor proteins. However, some senescence pathways, although under suppression, may remain intact and can be re-established if senescence suppressor proteins are inactivated or if senescence inducers are reactivated. This can hopefully form the basis for a "pro-senescence therapy" strategy to combat cancer in the future.
Collapse
Affiliation(s)
- Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
232
|
Ryan JJ, Rehman J, Archer SL. Paracrine proliferative signaling by senescent cells in world health organization group 3 pulmonary hypertension: age corrupting youth? Circ Res 2011; 109:476-9. [PMID: 21852552 DOI: 10.1161/circresaha.111.251579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
233
|
Lee S, Schmitt CA, Reimann M. The Myc/macrophage tango: oncogene-induced senescence, Myc style. Semin Cancer Biol 2011; 21:377-84. [PMID: 22019769 DOI: 10.1016/j.semcancer.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 02/07/2023]
Abstract
Ras/Raf-prototypic oncogenes induce cellular senescence, a terminal cell-cycle arrest, as a default cellular safeguard program, while oncogenic Myc is known to rather promote apoptosis as the prime failsafe mechanism. We review and discuss here evidence for Myc-induced senescence - which is detectable to a limited degree as a cell-autonomous, direct response to Myc action, but occurs predominantly in a non-cell-autonomous fashion via crosstalk of the oncogene-driven cell population with non-neoplastic bystanders, namely cells of the host immune system, prompting them to release pro-senescent cytokines that strike back onto adjacent proliferating tumor cells. In particular, we discuss how Myc-evoked apoptosis serves as a signal for macrophage attraction and activation, followed by the secretion of TGF-β as a cytokine that is capable of terminally arresting Myc-driven lymphoma cells without causing further DNA damage and without launching a senescence-associated, pro-inflammatory, and, therefore, potentially detrimental cytokine response in the target population. In essence, non-cell-autonomous but still oncogene-orchestrated senescence is a functionally relevant, robustly tumor-suppressive principle with critical implications for conceptually novel anti-cancer therapies in the clinic.
Collapse
Affiliation(s)
- Soyoung Lee
- Charité-Universitätsmedizin Berlin/Molekulares Krebsforschungszentrum der Charité-MKFZ, 13353 Berlin, Germany
| | | | | |
Collapse
|
234
|
Lymphomas that recur after MYC suppression continue to exhibit oncogene addiction. Proc Natl Acad Sci U S A 2011; 108:17432-7. [PMID: 21969595 DOI: 10.1073/pnas.1107303108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The suppression of oncogenic levels of MYC is sufficient to induce sustained tumor regression associated with proliferative arrest, differentiation, cellular senescence, and/or apoptosis, a phenomenon known as oncogene addiction. However, after prolonged inactivation of MYC in a conditional transgenic mouse model of Eμ-tTA/tetO-MYC T-cell acute lymphoblastic leukemia, some of the tumors recur, recapitulating what is frequently observed in human tumors in response to targeted therapies. Here we report that these recurring lymphomas express either transgenic or endogenous Myc, albeit in many cases at levels below those in the original tumor, suggesting that tumors continue to be addicted to MYC. Many of the recurring lymphomas (76%) harbored mutations in the tetracycline transactivator, resulting in expression of the MYC transgene even in the presence of doxycycline. Some of the remaining recurring tumors expressed high levels of endogenous Myc, which was associated with a genomic rearrangement of the endogenous Myc locus or activation of Notch1. By gene expression profiling, we confirmed that the primary and recurring tumors have highly similar transcriptomes. Importantly, shRNA-mediated suppression of the high levels of MYC in recurring tumors elicited both suppression of proliferation and increased apoptosis, confirming that these tumors remain oncogene addicted. These results suggest that tumors induced by MYC remain addicted to overexpression of this oncogene.
Collapse
|
235
|
Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel A, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146:904-17. [PMID: 21889194 PMCID: PMC3187920 DOI: 10.1016/j.cell.2011.08.017] [Citation(s) in RCA: 2258] [Impact Index Per Article: 173.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/13/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.
Collapse
Affiliation(s)
- Jake E. Delmore
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Ghayas C. Issa
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Madeleine E. Lemieux
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, 450 Brookline Avenue, Boston, MA 02215
| | - Peter B. Rahl
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Junwei Shi
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Hannah M. Jacobs
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Efstathios Kastritis
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Timothy Gilpatrick
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Ronald M. Paranal
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Anna Schinzel
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Michael R. McKeown
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Timothy P. Heffernan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Christopher R. Vakoc
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - P. Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Paul G. Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - William C. Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
| | - Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Andrew L. Kung
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, 450 Brookline Avenue, Boston, MA 02215
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Constantine S. Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| |
Collapse
|
236
|
The PARP inhibitor PJ34 causes a PARP1-independent, p21 dependent mitotic arrest. DNA Repair (Amst) 2011; 10:1003-13. [PMID: 21840268 DOI: 10.1016/j.dnarep.2011.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/26/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022]
Abstract
Poly(ADP)-ribose polymerase (PARP) inhibitors modify the enzymatic activity of PARP1/2. When certain PARP inhibitors are used either alone or in combination with DNA damage agents they may cause a G2/M mitotic arrest and/or apoptosis in a susceptible genetic context. PARP1 interacts with the cell cycle checkpoint proteins Ataxia Telangectasia Mutated (ATM) and ATM and Rad3-related (ATR) and therefore may influence growth arrest cascades. The PARP inhibitor PJ34 causes a mitotic arrest by an unknown mechanism in certain cell lines, therefore we asked whether PJ34 conditionally activated the checkpoint pathways and which downstream targets were necessary for mitotic arrest. We found that PJ34 produced a concentration dependent G2/M mitotic arrest and differentially affected cell survival in cells with diverse genetic backgrounds. p53 was activated and phosphorylated at Serine15 followed by p21 gene activation through both p53-dependent and -independent pathways. The mitotic arrest was caffeine sensitive and UCN01 insensitive and did not absolutely require p53, ATM or Chk1, while p21 was necessary for maintaining the growth arrest. Significantly, by using stable knockdown cell lines, we found that neither PARP1 nor PARP2 was required for any of these effects produced by PJ34. These results raise questions and cautions for evaluating PARP inhibitor effectiveness, suggesting whether effects should be considered not only on PARP's diverse ADP-ribosylation independent protein interactions but also on homologous proteins that may be producing either overlapping or distinct effect.
Collapse
|
237
|
PP2A-B56α controls oncogene-induced senescence in normal and tumor human melanocytic cells. Oncogene 2011; 31:1484-92. [PMID: 21822300 PMCID: PMC3213274 DOI: 10.1038/onc.2011.339] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oncoprotein C-MYC is overexpressed in human metastatic melanomas and melanoma-derived cells where it is required for suppression of oncogene-induced senescence (OIS). The genetic events that maintain high levels of C-MYC in melanoma cells and their role in OIS are unknown. Here, we report that C-MYC in cells from several randomly chosen melanoma lines was up-regulated at the protein level, and largely due to the increased protein stability. Of all known regulators of C-MYC stability, levels of B56α subunit of the PP2A tumor suppressor complex were substantially suppressed in all human melanoma cells compared to normal melanocytes. Accordingly, immuno-histochemical analysis revealed that the lowest and the highest amounts of PP2A-B56α were predominantly detected in metastatic melanoma tissues and in primary melanomas from patients with good clinical outcome, respectively. Importantly, PP2A-B56α overexpression suppressed C-MYC in melanoma cells and induced OIS, whereas depletion of PP2A-B56α in normal human melanocytes up-regulated C-MYC protein levels and suppressed BRAFV600E- and, less efficiently, NRASQ61R-induced senescence. Our data reveal a mechanism of C-MYC overexpression in melanoma cells and identify a functional role for PP2A-B56α in OIS of melanocytic cells.
Collapse
|
238
|
Abstract
Aggressive primary tumors express transcriptional signatures that correlate with their metastatic propensity. A number of these signatures have been deployed in the clinic as risk stratification tools. However, the molecular basis of these clinically useful prognostic signatures has remained a largely unresolved area of controversy. We recently found that many prognostic signatures reflect the activity of the MYC oncogene, which in turn regulates tumor metastasis through specific effects on cancer cell invasion and migration. These findings offer a general framework for understanding the molecular basis of clinically prognostic transcriptional signatures and suggest potentially new avenues for studying metastasis.
Collapse
Affiliation(s)
- Anita Wolfer
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
239
|
Gutierrez A, Grebliunaite R, Feng H, Kozakewich E, Zhu S, Guo F, Payne E, Mansour M, Dahlberg SE, Neuberg DS, den Hertog J, Prochownik EV, Testa JR, Harris M, Kanki JP, Look AT. Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2011; 208:1595-603. [PMID: 21727187 PMCID: PMC3149218 DOI: 10.1084/jem.20101691] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Loss-of-function mutations in pten genes, or expression of a constitutively active version of Akt2, render T-ALL cell survival and disease progression independent of Myc. The MYC oncogenic transcription factor is overexpressed in most human cases of T cell acute lymphoblastic leukemia (T-ALL), often downstream of mutational NOTCH1 activation. Genetic alterations in the PTEN–PI3K–AKT pathway are also common in T-ALL. We generated a conditional zebrafish model of T-ALL in which 4-hydroxytamoxifen (4HT) treatment induces MYC activation and disease, and withdrawal of 4HT results in T-ALL apoptosis and tumor regression. However, we found that loss-of-function mutations in zebrafish pten genes, or expression of a constitutively active Akt2 transgene, rendered tumors independent of the MYC oncogene and promoted disease progression after 4HT withdrawal. Moreover, MYC suppresses pten mRNA levels, suggesting that Akt pathway activation downstream of MYC promotes tumor progression. Our findings indicate that Akt pathway activation is sufficient for tumor maintenance in this model, even after loss of survival signals driven by the MYC oncogene.
Collapse
Affiliation(s)
- Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
Abundant evidence points to a crucial physiological role for cellular senescence in combating tumorigenesis. Thus, the engagement of senescence may represent a key component for therapeutic intervention in the eradication of cancer. In this Opinion article, we focus on concepts that are relevant to a pro-senescence approach to therapy and we propose potential therapeutic strategies that aim to enhance the pro-senescence response in tumours.
Collapse
Affiliation(s)
- Caterina Nardella
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02215, USA
| | | | | | | |
Collapse
|
241
|
Galoian K, Scully S, McNamara G, Flynn P, Galoyan A. Antitumorigenic effect of brain proline rich polypeptide-1 in human chondrosarcoma. Neurochem Res 2011; 34:2117-21. [PMID: 19484491 DOI: 10.1007/s11064-009-0009-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2009] [Indexed: 02/06/2023]
Abstract
Proline rich polypeptide (PRP-1) produced by neurosecretory cells of the hypothalamus is one of the fragments of neurophysin-vasopressin-associated glycoprotein. The primary structure of the neuropeptide PRP-1 isolated from neurosecretory granules of bovine neurohypophysis. We investigated PRP-1 action on chondrosarcoma, the second most common malignancy in bone, which primarily affects the cartilage cells. This deadly disease does not have any effective treatment. Earlier we demonstrated MYC oncogene inactivating effect by 1 lg/ml concentration brain PRP-1 In the present study we observed reduced viable sarcoma JJ012 cell numbers in comparison with control (89% growth inhibition) when treated with low concentrations of PRP-1 (0.5–1 lg/ml). Higher concentrations did not exhibit inhibitory effect. We assume that PRP-1 in low concentration impedes cell cycle progression. The fact that low concentrations of PRP-1 abolished Myc activity prompts to think that the antitumorigenic effect of PRP-1 in low concentrations is mediated through oncogene inactivation.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopedics, UHealth, Miller School of Medicine, University of Miami, 1600 NW 10th Ave, Suite 8006 (r-2), Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
242
|
Sasaki N, Kuroda J, Nagoshi H, Yamamoto M, Kobayashi S, Tsutsumi Y, Kobayashi T, Shimura Y, Matsumoto Y, Taki T, Nishida K, Horiike S, Akao Y, Taniwaki M. Bcl-2 is a better therapeutic target than c-Myc, but attacking both could be a more effective treatment strategy for B-cell lymphoma with concurrent Bcl-2 and c-Myc overexpression. Exp Hematol 2011; 39:817-28.e1. [PMID: 21640157 DOI: 10.1016/j.exphem.2011.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/30/2011] [Accepted: 05/02/2011] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The prognosis for diffuse large B-cell lymphomas with concomitant overexpression of c-Myc and Bcl-2 remains dismal; there is an urgent need to clarify the significance of these two oncogenes as therapeutic targets for a more effective treatment strategy. MATERIALS AND METHODS We established two novel cell lines, KPUM-MS3 and KPUM-UH1, from two chemoresistant patients with diffuse large B-cell lymphomas with concomitant overexpression of c-Myc and Bcl-2, and investigated the significance of c-Myc and Bcl-2 as therapeutic targets. RESULTS KPUM-MS3 possesses t(14;18)(q32;q21) chromosomal translocation and KPUM-UH1 bcl-2 gene amplification, both of which account for Bcl-2 overexpression. Chromosomal translocation t(8;14)(q24;q34) was found to coexist only in KPUM-UH1, overexpression of pvt-1 messenger RNA was detected only in KPUM-MS3, and reduced expression of miR-143 and miR-145 was identified in both. Working together, these abnormalities can contribute to c-Myc overexpression. Using ABT-263, an inhibitor for Bcl-2, and 10058-F4, an inhibitor for c-Myc, we found that both cell lines were more highly sensitive to cell death as a result of Bcl-2 inhibition than of c-Myc inhibition. When combined with genotoxic agents, ABT-263 exerted additive and/or synergistic cell-killing effects, while 10058-F4 showed, at most, a modest combinatory effect. Importantly, the combination of ABT-263 and 10058-F4 had a synergistic cell-killing effect on both cell lines. CONCLUSIONS Our data suggest that Bcl-2 is a better therapeutic target than c-Myc, but attacking both Bcl-2 and c-Myc would be an even more effective treatment strategy for diffuse large B-cell lymphomas with concurrent Bcl-2 and c-Myc overexpression.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/drug effects
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 18/genetics
- Cytarabine/pharmacology
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Synergism
- Etoposide/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- MicroRNAs/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-myc/antagonists & inhibitors
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spectral Karyotyping
- Sulfonamides/pharmacology
- Thiazoles/pharmacology
- Translocation, Genetic
Collapse
Affiliation(s)
- Nana Sasaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Functional interactions between retinoblastoma and c-MYC in a mouse model of hepatocellular carcinoma. PLoS One 2011; 6:e19758. [PMID: 21573126 PMCID: PMC3089631 DOI: 10.1371/journal.pone.0019758] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 04/10/2011] [Indexed: 12/28/2022] Open
Abstract
Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes.
Collapse
|
244
|
Giuliano S, Ohanna M, Ballotti R, Bertolotto C. Advances in melanoma senescence and potential clinical application. Pigment Cell Melanoma Res 2011; 24:295-308. [PMID: 21143770 DOI: 10.1111/j.1755-148x.2010.00820.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Normal cells possess a limited proliferative life span, after which they enter a state of irreversible growth arrest, called replicative senescence, which acts as a potent barrier against transformation. Transformed cells have escaped the process of replicative senescence and theoretically can not re-enter senescence. However, recent observations showed that transformed cells, and particularly the melanoma cells, can still undergo oncogene or stress-induced senescence. This senescence state is accompanied by many of the markers associated with replicative senescence, such as flattened shape, increased acidic β-galactosidase activity, characteristic changes in gene expression and growth arrest. Interestingly, in some cancers, senescence induction following chemotherapy has been correlated with a favorable patient outcome. In this review, we gathered recent results describing senescence-like phenotype induction in melanoma cells and discuss why senescence may also be exploited as a therapeutic strategy in melanoma.
Collapse
Affiliation(s)
- Sandy Giuliano
- Inserm, U895, Equipe 1, Biologie et Pathologies des Mélanocytes: de la Pigmentation Cutanée au Mélanome, C3M, Nice, France
| | | | | | | |
Collapse
|
245
|
Wang C, Tai Y, Lisanti MP, Liao DJ. c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther 2011; 11:615-26. [PMID: 21278493 DOI: 10.4161/cbt.11.7.14688] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The c-Myc protein, encoded by c-myc gene, in its wild-type form can induce tumors with a high frequency and can induce massive programmed cell death (PCD) in most transgenic mouse models, with greater efficiency than other oncogenes. Evidence also indicates that c-Myc can cause proliferative inhibition, i.e. mitoinhibition. The c-Myc-induced PCD and mitoinhibition, which may be attributable to its inhibition of cyclin D1 and induction of p53, may impose a pressure of compensatory proliferation, i.e. regeneration, onto the initiated cells (cancer progenitor cells) that occur sporadically and are resistant to the mitoinhibition. The initiated cells can thus proliferate robustly and progress to a malignancy. This hypothetical thinking, i.e. the concurrent PCD and mitoinhibition induced by c-Myc can promote carcinogenesis, predicts that an optimal balance is achieved between cell death and ensuing regeneration during oncogenic transformation by c-Myc, which can better promote carcinogenesis. In this perspective, we summarize accumulating evidence and challenge the current model that oncoprotein induces carcinogenesis by promoting cellular proliferation and/or inhibiting PCD. Inspired by c-myc oncogene, we surmise that many tumor-suppressive or growth-inhibitory genes may also be able to promote carcinogenesis in a similar way, i.e. by inducing PCD and/or mitoinhibition of normal cells to create a need for compensatory proliferation that drives a robust replication of initiating cells.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Stem Cell and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
246
|
Chen YJ, Tsai WH, Chen YL, Ko YC, Chou SP, Chen JY, Lin SF. Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells. PLoS One 2011; 6:e17809. [PMID: 21423768 PMCID: PMC3053391 DOI: 10.1371/journal.pone.0017809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/11/2011] [Indexed: 12/15/2022] Open
Abstract
Epstein–Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.
Collapse
Affiliation(s)
- Yen-Ju Chen
- College of Medicine, Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Wan-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Lian Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Jen-Yang Chen
- College of Medicine, Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
- * E-mail: (S-FL); (J-YC)
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
- * E-mail: (S-FL); (J-YC)
| |
Collapse
|
247
|
Kong Y, Cui H, Ramkumar C, Zhang H. Regulation of senescence in cancer and aging. J Aging Res 2011; 2011:963172. [PMID: 21423549 PMCID: PMC3056284 DOI: 10.4061/2011/963172] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/12/2011] [Indexed: 12/12/2022] Open
Abstract
Senescence is regarded as a physiological response of cells to stress, including telomere dysfunction, aberrant oncogenic activation, DNA damage, and oxidative stress. This stress response has an antagonistically pleiotropic effect to organisms: beneficial as a tumor suppressor, but detrimental by contributing to aging. The emergence of senescence as an effective tumor suppression mechanism is highlighted by recent demonstration that senescence prevents proliferation of cells at risk of neoplastic transformation. Consequently, induction of senescence is recognized as a potential treatment of cancer. Substantial evidence also suggests that senescence plays an important role in aging, particularly in aging of stem cells. In this paper, we will discuss the molecular regulation of senescence its role in cancer and aging. The potential utility of senescence in cancer therapeutics will also be discussed.
Collapse
Affiliation(s)
- Yahui Kong
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, S7-125, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
248
|
Fan T, Jiang S, Chung N, Alikhan A, Ni C, Lee CCR, Hornyak TJ. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res 2011; 9:418-29. [PMID: 21383005 DOI: 10.1158/1541-7786.mcr-10-0511] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Polycomb group (PcG) proteins such as Enhancer of zeste homolog 2 (EZH2) are epigenetic transcriptional repressors that function through recognition and modification of histone methylation and chromatin structure. Targets of PcG include cell cycle regulatory proteins which govern cell cycle progression and cellular senescence. Senescence is a characteristic of melanocytic nevi, benign melanocytic proliferations that can be precursors of malignant melanoma. In this study, we report that EZH2, which we find absent in melanocytic nevi but expressed in many or most metastatic melanoma cells, functionally suppresses the senescent state in human melanoma cells. EZH2 depletion in melanoma cells inhibits cell proliferation, restores features of a cellular senescence phenotype, and inhibits growth of melanoma xenografts in vivo. p21/CDKN1A is activated upon EZH2 knockdown in a p53-independent manner and contributes substantially to cell cycle arrest and induction of a senescence phenotype. EZH2 depletion removes histone deacetylase 1 (HDAC1) from the CDKN1A transcriptional start site and downstream region, enhancing histone 3 acetylation globally and at CDKN1A. This results in recruitment of RNA polymerase II, leading to p21/CDKN1A activation. Depletion of EZH2 synergistically activates p21/CDKN1A expression in combination with the HDAC inhibitor trichostatin A. Since melanomas often retain wild-type p53 function activating p21, our findings describe a novel mechanism whereby EZH2 activation during tumor progression represses p21, leading to suppression of cellular senescence and enhanced tumorigenicity.
Collapse
Affiliation(s)
- Tao Fan
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
249
|
Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev 2011; 29:613-39. [PMID: 20922462 DOI: 10.1007/s10555-010-9257-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tumor suppressor p53 homologues, TA-p73, and p63 have been shown to function as tumor suppressors. However, how they function as tumor suppressors remains elusive. Here, I propose a number of tumor suppressor pathways that illustrate how the TA-p73 and p63 could function as negative regulators of invasion, metastasis, and cancer stem cells (CSCs) proliferation. Furthermore, I provide molecular insights into how TA-p73 and p63 could function as tumor suppressors. Remarkably, the guardians--p53, p73, and p63--of the genome are in control of most of the known tumor suppressor miRNAs, tumor suppressor genes, and metastasis suppressors by suppressing c-myc through miR-145/let-7/miR-34/TRIM32/PTEN/FBXW7. In particular, p53 and TA-p73/p63 appear to upregulate the expression of (1) tumor suppressor miRNAs, such as let-7, miR-34, miR-15/16a, miR-145, miR-29, miR-26, miR-30, and miR-146a; (2) tumor suppressor genes, such as PTEN, RBs, CDKN1a/b/c, and CDKN2a/b/c/d; (3) metastasis suppressors, such as Raf kinase inhibitory protein, CycG2, and DEC2, and thereby they enlarge their tumor suppressor network to inhibit tumorigenesis, invasion, angiogenesis, migration, metastasis, and CSCs proliferation.
Collapse
|
250
|
Huang M, Whang P, Chodaparambil JV, Pollyea DA, Kusler B, Xu L, Felsher DW, Mitchell BS. Reactive oxygen species regulate nucleostemin oligomerization and protein degradation. J Biol Chem 2011; 286:11035-46. [PMID: 21242306 DOI: 10.1074/jbc.m110.208470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleostemin (NS) is a nucleolar-nucleoplasmic shuttle protein that regulates cell proliferation, binds p53 and Mdm2, and is highly expressed in tumor cells. We have identified NS as a target of oxidative regulation in transformed hematopoietic cells. NS oligomerization occurs in HL-60 leukemic cells and Raji B lymphoblasts that express high levels of c-Myc and have high intrinsic levels of reactive oxygen species (ROS); reducing agents dissociate NS into monomers and dimers. Exposure of U2OS osteosarcoma cells with low levels of intrinsic ROS to hydrogen peroxide (H(2)O(2)) induces thiol-reversible disulfide bond-mediated oligomerization of NS. Increased exposure to H(2)O(2) impairs NS degradation, immobilizes the protein within the nucleolus, and results in detergent-insoluble NS. The regulation of NS by ROS was validated in a murine lymphoma tumor model in which c-Myc is overexpressed and in CD34+ cells from patients with chronic myelogenous leukemia in blast crisis. In both instances, increased ROS levels were associated with markedly increased expression of NS protein and thiol-reversible oligomerization. Site-directed mutagenesis of critical cysteine-containing regions of nucleostemin altered both its intracellular localization and its stability. MG132, a potent proteasome inhibitor and activator of ROS, markedly decreased degradation and increased nucleolar retention of NS mutants, whereas N-acetyl-L-cysteine largely prevented the effects of MG132. These results indicate that NS is a highly redox-sensitive protein. Increased intracellular ROS levels, such as those that result from oncogenic transformation in hematopoietic malignancies, regulate the ability of NS to oligomerize, prevent its degradation, and may alter its ability to regulate cell proliferation.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|