201
|
Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnol Adv 2020; 43:107586. [DOI: 10.1016/j.biotechadv.2020.107586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
202
|
Nonthermal Plasma Treatment Improves Uniformity and Adherence of Cyclodextrin-Based Coatings on Hydrophobic Polymer Substrates. COATINGS 2020. [DOI: 10.3390/coatings10111056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low surface energy substrates, which include many plastics and polymers, present challenges toward achieving uniform, adherent coatings, thus limiting intended coating function. These inert materials are common in various applications due to favorable bulk, despite suboptimal surface, properties. The ability to functionally coat low surface energy substrates holds broad value for uses across medicine and industry. Cyclodextrin-based materials represent an emerging, widely useful class of coatings, which have previously been explored for numerous purposes involving sustained release, enhanced sorption, and reversible reuse thereof. In this study, substrate exposure to nonthermal plasma was explored as a novel means to improve uniformity and adherence of cyclodextrin-based polyurethane coatings upon unreceptive polypropylene substrates. Plasma effects on substrates were investigated using contact angle goniometry and X-ray photoelectron spectroscopy (XPS). Plasma impact on coating uniformity was assessed through visualization directly and microscopically. Plasma effects on coating adhesion and bonding were studied with mechanical lap-shear testing and XPS, respectively. Substrate surface wettability and oxygen content increased with plasma exposure, and these modifications were associated with improved coating uniformity, adhesion, and interfacial covalent bonding. Findings demonstrate utility of, and elucidate mechanisms behind, plasma-based surface activation for improving coating uniformity, adherence, and performance on inert polymeric substrates.
Collapse
|
203
|
Imani SM, Ladouceur L, Marshall T, Maclachlan R, Soleymani L, Didar TF. Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS NANO 2020; 14:12341-12369. [PMID: 33034443 PMCID: PMC7553040 DOI: 10.1021/acsnano.0c05937] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/01/2020] [Indexed: 05/05/2023]
Abstract
The global COVID-19 pandemic has attracted considerable attention toward innovative methods and technologies for suppressing the spread of viruses. Transmission via contaminated surfaces has been recognized as an important route for spreading SARS-CoV-2. Although significant efforts have been made to develop antibacterial surface coatings, the literature remains scarce for a systematic study on broad-range antiviral coatings. Here, we aim to provide a comprehensive overview of the antiviral materials and coatings that could be implemented for suppressing the spread of SARS-CoV-2 via contaminated surfaces. We discuss the mechanism of operation and effectivity of several types of inorganic and organic materials, in the bulk and nanomaterial form, and assess the possibility of implementing these as antiviral coatings. Toxicity and environmental concerns are also discussed for the presented approaches. Finally, we present future perspectives with regards to emerging antimicrobial technologies such as omniphobic surfaces and assess their potential in suppressing surface-mediated virus transfer. Although some of these emerging technologies have not yet been tested directly as antiviral coatings, they hold great potential for designing the next generation of antiviral surfaces.
Collapse
Affiliation(s)
- Sara M. Imani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Liane Ladouceur
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Terrel Marshall
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Roderick Maclachlan
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Tohid F. Didar
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Mechanical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Michael G. DeGroote Institute of
Infectious Disease Research, McMaster
University, Hamilton, ON L8N 3Z5,
Canada
| |
Collapse
|
204
|
A Nanoengineered Stainless Steel Surface to Combat Bacterial Attachment and Biofilm Formation. Foods 2020; 9:foods9111518. [PMID: 33105653 PMCID: PMC7690382 DOI: 10.3390/foods9111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Nanopatterning and anti-biofilm characterization of self-cleanable surfaces on stainless steel substrates were demonstrated in the current study. Electrochemical etching in diluted aqua regia solution consisting of 3.6% hydrogen chloride and 1.2% nitric acid was conducted at 10 V for 5, 10, and 15 min to fabricate nanoporous structures on the stainless steel. Variations in the etching rates and surface morphologic characteristics were caused by differences in treatment durations; the specimens treated at 10 V for 10 min showed that the nanoscale pores are needed to enhance the self-cleanability. Under static and realistic flow environments, the populations of Escherichia coli O157:H7 and Salmonella Typhimurium on the developed features were significantly reduced by 2.1–3.0 log colony-forming unit (CFU)/cm2 as compared to bare stainless steel (p < 0.05). The successful fabrication of electrochemically etched stainless steel surfaces with Teflon coating could be useful in the food industry and biomedical fields to hinder biofilm formation in order to improve food safety.
Collapse
|
205
|
Prihoda A, Will J, Duchstein P, Becit B, Lossin F, Schindler T, Berlinghof M, Steinrück HG, Bertram F, Zahn D, Unruh T. Interface between Water-Solvent Mixtures and a Hydrophobic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12077-12086. [PMID: 32960065 DOI: 10.1021/acs.langmuir.0c02745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanism behind the stability of organic nanoparticles prepared by liquid antisolvent (LAS) precipitation without a specific stabilizing agent is poorly understood. In this work, we propose that the organic solvent used in the LAS process rapidly forms a molecular stabilizing layer at the interface of the nanoparticles with the aqueous dispersion medium. To confirm this hypothesis, n-octadecyltrichlorosilane (OTS)-functionalized silicon wafers in contact with water-solvent mixtures were used as a flat model system mimicking the solid-liquid interface of the organic nanoparticles. We studied the equilibrium structure of the interface by X-ray reflectometry (XRR) for water-solvent mixtures (methanol, ethanol, 1-propanol, 2-propanol, acetone, and tetrahydrofuran). The formation of an organic solvent-rich layer at the solid-liquid interface was observed. The layer thickness increases with the organic solvent concentration and correlates with the polar and hydrogen bond fraction of Hansen solubility parameters. We developed a self-consistent adsorption model via complementing adsorption isotherms obtained from XRR data with molecular dynamics simulations.
Collapse
Affiliation(s)
- Annemarie Prihoda
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Johannes Will
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
- Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Patrick Duchstein
- Computer Chemistry Centre (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Bahanur Becit
- Computer Chemistry Centre (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Felix Lossin
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Torben Schindler
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Marvin Berlinghof
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Hans-Georg Steinrück
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | | | - Dirk Zahn
- Computer Chemistry Centre (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
206
|
Fabrication of biomimetic slippery liquid‐infused porous surface on 5086 aluminum alloy with excellent antifouling performance. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
207
|
Faustino CMC, Lemos SMC, Monge N, Ribeiro IAC. A scope at antifouling strategies to prevent catheter-associated infections. Adv Colloid Interface Sci 2020; 284:102230. [PMID: 32961420 DOI: 10.1016/j.cis.2020.102230] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/15/2023]
Abstract
The use of invasive medical devices is becoming more common nowadays, with catheters representing one of the most used medical devices. However, there is a risk of infection associated with the use of these devices, since they are made of materials that are prone to bacterial adhesion with biofilm formation, often requiring catheter removal as the only therapeutic option. Catheter-related urinary tract infections (CAUTIs) and central line-associated bloodstream infections (CLABSIs) are among the most common causes of healthcare-associated infections (HAIs) worldwide while endotracheal intubation is responsible for ventilator-associated pneumonia (VAP). Therefore, to avoid the use of biocides due to the potential risk of bacterial resistance development, antifouling strategies aiming at the prevention of bacterial adherence and colonization of catheter surfaces represent important alternative measures. This review is focused on the main strategies that are able to modify the physical or chemical properties of biomaterials, leading to the creation of antiadhesive surfaces. The most promising approaches include coating the surfaces with hydrophilic polymers, such as poly(ethylene glycol) (PEG), poly(acrylamide) and poly(acrylates), betaine-based zwitterionic polymers and amphiphilic polymers or the use of bulk-modified poly(urethanes). Natural polysaccharides and its modifications with heparin, have also been used to improve hemocompatibility. Recently developed bioinspired techniques yielding very promising results in the prevention of bacterial adhesion and colonization of surfaces include slippery liquid-infused porous surfaces (SLIPS) based on the superhydrophilic rim of the pitcher plant and the Sharklet topography inspired by the shark skin, which are potential candidates as surface-modifying approaches for biomedical devices. Concerning the potential application of most of these strategies in catheters, more in vivo studies and clinical trials are needed to assure their efficacy and safety for possible future use.
Collapse
Affiliation(s)
- Célia M C Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sara M C Lemos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
208
|
Parada G, Yu Y, Riley W, Lojovich S, Tshikudi D, Ling Q, Zhang Y, Wang J, Ling L, Yang Y, Nadkarni S, Nabzdyk C, Zhao X. Ultrathin and Robust Hydrogel Coatings on Cardiovascular Medical Devices to Mitigate Thromboembolic and Infectious Complications. Adv Healthc Mater 2020; 9:e2001116. [PMID: 32940970 DOI: 10.1002/adhm.202001116] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/21/2020] [Indexed: 01/10/2023]
Abstract
Thromboembolic and infectious complications stemming from the use of cardiovascular medical devices are still common and result in significant morbidity and mortality. There is no strategy to date that effectively addresses both challenges at the same time. Various surface modification strategies (e.g., silver, heparin, and liquid-impregnated surfaces) are proposed yet each has several limitations and shortcomings. Here, it is shown that the incorporation of an ultrathin and mechanically robust hydrogel layer reduces bacterial adhesion to medical-grade tubing by 95%. It is additionally demonstrated, through a combination of in vitro and in vivo tests, that the hydrogel layer significantly reduces the formation and adhesion of blood clots to the tubing without affecting the blood's intrinsic clotting ability. The adhesion of clots to the tubing walls is reduced by over 90% (in vitro model), which results in an ≈60% increase in the device occlusion time (time before closure due to clot formation) in an in vivo porcine model. The advantageous properties of this passive coating make it a promising surface material candidate for medical devices interfacing with blood.
Collapse
Affiliation(s)
- German Parada
- Chemical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
- Mechanical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Yan Yu
- Mechanical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
- School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - William Riley
- Perfusion Services Massachusetts General Hospital Boston MA 02114 USA
| | - Sarah Lojovich
- Perfusion Services Massachusetts General Hospital Boston MA 02114 USA
| | - Diane Tshikudi
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA 02114 USA
| | - Qing Ling
- Tongji Medical School Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Yefang Zhang
- Tongji Medical School Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Jiaxin Wang
- Tongji Medical School Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Lei Ling
- Tongji Medical School Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Yueying Yang
- Mechanical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
- School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan Hubei 430064 China
| | - Seemantini Nadkarni
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA 02114 USA
| | - Christoph Nabzdyk
- Department of Anesthesia Critical Care and Pain Medicine Massachusetts General Hospital Boston MA 02114 USA
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester Rochester MN 55902 USA
| | - Xuanhe Zhao
- Mechanical Engineering Department Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
209
|
Bandyopadhyay S, Jones A, McLean A, Sterner M, Robbins C, Cunningham M, Walters M, Doddapaneni K, Keitel I, Gallagher C. Slippery liquid infused fluoropolymer coating for central lines to reduce catheter associated clotting and infections. Sci Rep 2020; 10:14973. [PMID: 32917923 PMCID: PMC7486915 DOI: 10.1038/s41598-020-71711-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022] Open
Abstract
Thrombosis and infections are two grave, interrelated problems associated with the use of central venous catheters (CVL). Currently used antibiotic coated CVL has limited clinical success in resisting blood stream infection and may increase the risk of emerging antibiotic resistant strains. We report an antibiotic-free, fluoropolymer-immobilized, liquid perfluorocarbon-coated peripherally inserted central catheter (PICC) line and its effectiveness in reducing catheter associated thrombosis and pathogen colonization, as an alternative to antibiotic coated CVL. Commercially available polyurethane PICC catheter was modified by a three-step lamination process, with thin fluoropolymer layers to yield fluoropolymer-polyurethane-fluoropolymer composite structure before applying the liquid perfluorocarbon (LP). This high throughput process of modifying commercial PICC catheters with fluoropolymer is quicker, safer and shows higher thromboresistance than fluorinated, omniphobic catheter surfaces, produced by previously reported self-assembled monolayer deposition techniques. The LP immobilized on the fluoropolymer is highly durable in physiological flow conditions for over 60 days and continue to resist Staphylococcus colonization.
Collapse
Affiliation(s)
| | - Andrew Jones
- FreeFlow Medical Devices LLC, Lancaster, PA, USA
| | | | | | | | | | - Mark Walters
- Shared Material Instrumentation Facility, Duke University, Durham, NC, USA
| | | | - Isaac Keitel
- FreeFlow Medical Devices LLC, Lancaster, PA, USA
| | | |
Collapse
|
210
|
Yan M, Chen R, Zhang C, Liu Q, Sun G, Liu J, Yu J, Lin C, Wang J. Fully Repairable Slippery Organogel Surfaces with Reconfigurable Paraffin-Based Framework for Universal Antiadhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39807-39816. [PMID: 32805942 DOI: 10.1021/acsami.0c09915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing a slippery lubricant-infused surface (SLIS) whose internal microstructure and surface properties can be fully repaired helps to improve its property stability and extend technological implications but has presented a huge challenge. A class of fully repairable slippery organogel surfaces (SOSs), which uses microstructured paraffin as reconfigurable supporting structure and silicone oil as lubricant dispersion medium, is reported here. Attributed to nearly 90 wt % of silicone oil stored in the slippery organogel system and good compatibility with the paraffin-based framework, SOSs combine continuous lubricity and reliable lubricant storage stability. Furthermore, the thermally sensitive paraffin-based framework can quickly switch between solid supporting structure and liquid solution according to the ambient temperature, thereby achieving rapid regeneration of microstructure. This unique system consisting of reconfigurable framework and flowable lubricant derives two types of repairs aimed at varying degrees of damage. Significantly, the easy-to-prepare SOS, on the other hand, allows the adoption of various substrate surfaces for different purposes to form an antiadhesion coating and exhibits excellent antistain, antialgae, and anti-icing performance, thus greatly improving the flexibility of such materials in practical applications.
Collapse
Affiliation(s)
- Minglong Yan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- HIT (Hainan) Military-Civilian Integration Innovation Research Institute Co., Ltd, Hainan, 572427, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Gaohui Sun
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
211
|
Kreth J, Merritt J, Pfeifer C, Khajotia S, Ferracane J. Interaction between the Oral Microbiome and Dental Composite Biomaterials: Where We Are and Where We Should Go. J Dent Res 2020; 99:1140-1149. [PMID: 32479134 PMCID: PMC7443996 DOI: 10.1177/0022034520927690] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dental composites are routinely placed as part of tooth restoration procedures. The integrity of the restoration is constantly challenged by the metabolic activities of the oral microbiome. This activity directly contributes to a less-than-desirable half-life for the dental composite formulations currently in use. Therefore, many new antimicrobial dental composites are being developed to counteract the microbial challenge. To ensure that these materials will resist microbiome-derived degradation, the model systems used for testing antimicrobial activities should be relevant to the in vivo environment. Here, we summarize the key steps in oral microbial colonization that should be considered in clinically relevant model systems. Oral microbial colonization is a clearly defined developmental process that starts with the formation of the acquired salivary pellicle on the tooth surface, a conditioned film that provides the critical attachment sites for the initial colonizers. Further development includes the integration of additional species and the formation of a diverse, polymicrobial mature biofilm. Biofilm development is discussed in the context of dental composites, and recent research is highlighted regarding the effect of antimicrobial composites on the composition of the oral microbiome. Future challenges are addressed, including the potential of antimicrobial resistance development and how this could be counteracted by detailed studies of microbiome composition and gene expression on dental composites. Ultimately, progress in this area will require interdisciplinary approaches to effectively mitigate the inevitable challenges that arise as new experimental bioactive composites are evaluated for potential clinical efficacy. Success in this area could have the added benefit of inspiring other fields in medically relevant materials research, since microbial colonization of medical implants and devices is a ubiquitous problem in the field.
Collapse
Affiliation(s)
- J. Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - J. Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - C.S. Pfeifer
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - S. Khajotia
- Department of Restorative Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J.L. Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
212
|
Wang C, Wang S, Pan H, Min L, Zheng H, Zhu H, Liu G, Yang W, Chen X, Hou X. Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties. SCIENCE ADVANCES 2020; 6:eabb4700. [PMID: 32917618 PMCID: PMC7473668 DOI: 10.1126/sciadv.abb4700] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/21/2020] [Indexed: 05/11/2023]
Abstract
Catheters are indispensable medical devices that are extensively used in daily medical treatment. However, existing catheter materials continue to encounter many problems, such as thrombosis, single functionality, and inadaptability to environmental changes. Inspired by blood vessels, we develop a self-adaptive liquid gating membrane-based catheter with anticoagulation and positionally drug release properties. Our multifunctional liquid gating membrane-based catheter significantly attenuates blood clot formation and can be used as a general catheter design strategy to offer various drugs positionally releasing applications to comprehensively enhance the safety, functionality, and performance of medical catheters' materials.
Collapse
Affiliation(s)
- Chunyan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| | - Shuli Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| | - Hong Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingli Min
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| | - Huili Zheng
- Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Huang Zhu
- School of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Weizhong Yang
- School of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Xinyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
213
|
Melde BJ, Malanoski AP, Moore MH, Johnson BJ. Covalently attached liquids as protective coatings. POLYM INT 2020. [DOI: 10.1002/pi.6098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Brian J Melde
- Center for Bio/Molecular Science & Engineering US Naval Research Laboratory Washington DC USA
| | - Anthony P Malanoski
- Center for Bio/Molecular Science & Engineering US Naval Research Laboratory Washington DC USA
| | - Martin H Moore
- Center for Bio/Molecular Science & Engineering US Naval Research Laboratory Washington DC USA
| | - Brandy J Johnson
- Center for Bio/Molecular Science & Engineering US Naval Research Laboratory Washington DC USA
| |
Collapse
|
214
|
Badv M, Bayat F, Weitz JI, Didar TF. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020; 258:120291. [PMID: 32798745 DOI: 10.1016/j.biomaterials.2020.120291] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Device-associated clot formation and poor tissue integration are ongoing problems with permanent and temporary implantable medical devices. These complications lead to increased rates of mortality and morbidity and impose a burden on healthcare systems. In this review, we outline the current approaches for developing single and multi-functional surface coating techniques that aim to circumvent the limitations associated with existing blood-contacting medical devices. We focus on surface coatings that possess dual hemocompatibility and biofunctionality features and discuss their advantages and shortcomings to providing a biocompatible and biodynamic interface between the medical implant and blood. Lastly, we outline the newly developed surface modification techniques that use lubricant-infused coatings and discuss their unique potential and limitations in mitigating medical device-associated complications.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Thrombosis & Atherosclerosis Research Institute (TaARI), Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
215
|
Abstract
The growing trend for personalized medicine calls for more reliable implantable biosensors that are capable of continuously monitoring target analytes for extended periods (i.e., >30 d). While promising biosensors for various applications are constantly being developed in the laboratories across the world, many struggle to maintain reliable functionality in complex in vivo environments over time. In this review, we explore the impact of various biotic and abiotic failure modes on the reliability of implantable biosensors. We discuss various design considerations for the development of chronically reliable implantable biosensors with a specific focus on strategies to combat biofouling, which is a fundamental challenge for many implantable devices. Briefly, we introduce the process of the foreign body response and compare the in vitro and the in vivo performances of state-of-the-art implantable biosensors. We then discuss the latest development in material science to minimize and delay biofouling including the usage of various hydrophilic, biomimetic, drug-eluting, zwitterionic, and other smart polymer materials. We also explore a number of active anti-biofouling approaches including stimuli-responsive materials and mechanical actuation. Finally, we conclude this topical review with a discussion on future research opportunities towards more reliable implantable biosensors.
Collapse
|
216
|
Song K, Shim J, Jung JY, Lee C, Nam Y. Endowing antifouling properties on metal substrata by creating an artificial barrier layer based on scalable metal oxide nanostructures. BIOFOULING 2020; 36:766-782. [PMID: 32842788 DOI: 10.1080/08927014.2020.1811238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Here, by creating different types of artificial barrier layer against bacterial attachment, anti-biofouling properties were endowed on three metallic surfaces - aluminum, stainless steel and titanium. To each metallic surface, a tailored chemical oxidation process was applied to grow scalable oxide structures with an additional appropriate coating, resulting in three different types of anti-biofouling barrier, a thin water film, an air layer and an oil layer. Fluorescence images of the attached bacteria showed that the water layer improved the anti-biofouling performance up to 8-12 h and the air layer up to 12-24 h, comparable with the lifetime of the air layer. In comparison, the oil layer exhibited the best anti-biofouling performance by suppressing the fouled area by < 10% up to 72 h regardless of the substratum type. The present work provides simple, low-cost, scalable strategies to enhance the anti-biofouling performance of industrially important metallic surfaces. [Formula: see text].
Collapse
Affiliation(s)
- Kyounghwan Song
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Jaehwan Shim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Jung-Yeul Jung
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships & Ocean Engineering, Daejeon, Republic of Korea
| | - Choongyeop Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Youngsuk Nam
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
217
|
Evaporating droplets on oil-wetted surfaces: Suppression of the coffee-stain effect. Proc Natl Acad Sci U S A 2020; 117:16756-16763. [PMID: 32616571 DOI: 10.1073/pnas.2006153117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The evaporation of suspension droplets is the underlying mechanism in many surface-coating and surface-patterning applications. However, the uniformity of the final deposit suffers from the coffee-stain effect caused by contact line pinning. Here, we show that control over particle deposition can be achieved through droplet evaporation on oil-wetted hydrophilic surfaces. We demonstrate by flow visualization, theory, and numerics that the final deposit of the particles is governed by the coupling of the flow field in the evaporating droplet, the movement of its contact line, and the wetting state of the thin film surrounding the droplet. We show that the dynamics of the contact line can be tuned through the addition of a surfactant, thereby controlling the surface energies, which then leads to control over the final particle deposit. We also obtain an analytical expression for the radial velocity profile which reflects the hindering of the evaporation at the rim of the droplet by the nonvolatile oil meniscus, preventing flow toward the contact line, thus suppressing the coffee-stain effect. Finally, we confirm our physical interpretation by numerical simulations that are in qualitative agreement with the experiment.
Collapse
|
218
|
Mangal U, Min YJ, Seo JY, Kim DE, Cha JY, Lee KJ, Kwon JS, Choi SH. Changes in tribological and antibacterial properties of poly(methyl methacrylate)-based 3D-printed intra-oral appliances by incorporating nanodiamonds. J Mech Behav Biomed Mater 2020; 110:103992. [PMID: 32750663 DOI: 10.1016/j.jmbbm.2020.103992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
It is essential for 3D-printed intra-oral appliances to be able to withstand the mechanical and microbial insult existent in the harsh environment of the oral cavity. Poly(methyl methacrylate) (PMMA)-based appliances are widely used in dentistry. Hence, the present study aimed to evaluate the role of nanodiamonds (NDs) as fillers to enhance the resistance to friction and wear. Using a solution-based mixing technique, 0.1 wt% ND was incorporated into the PMMA, and specimens were 3D-printed for tribological and bacterial analysis. The control specimens without ND fillers were tested against specimens with both amine-functionalized NDs (A-ND) and pure non-functionalized NDs (ND). The surface hardness test revealed a statistically significant increase in the Vickers micro-hardness (p < 0.001) in the nanocomposite groups. There was a significant reduction in the coefficient of friction (COF) (p < 0.01) in both the ND and A-ND nanocomposites compared to the stainless steel (SS) counter surfaces. However, for titanium (Ti)-based specimens, the COF of the control group was similar to that of A-ND but lower than that of ND. The wear resistance evaluation revealed that both the ND and A-ND groups displayed enhanced resistance to surface loss in comparison to the controls for both SS and Ti counter-surfaces (p < 0.001). Furthermore, both A-ND and ND exhibited significantly enhanced resistance to the formation of Streptococcus mutans biofilms after 48 h (p < 0.01) compared to the control group. Hence, we concluded that the addition of 0.1 wt% ND in the PMMA-based resin for 3D printing resulted in significant improvement in properties such as COF, wear resistance, and resistance to S. mutans, without any notable impact associated with the functionalization of the NDs.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - You Jin Min
- Department of Mechanical Engineering, Yonsei University College of Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dae-Eun Kim
- Department of Mechanical Engineering, Yonsei University College of Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
219
|
Recent Advances in Mussel-Inspired Synthetic Polymers as Marine Antifouling Coatings. COATINGS 2020. [DOI: 10.3390/coatings10070653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic oligomers and polymers inspired by the multifunctional tethering system (byssus) of the common mussel (genus Mytilus) have emerged since the 1980s as a very active research domain within the wider bioinspired and biomimetic materials arena. The unique combination of strong underwater adhesion, robust mechanical properties and self-healing capacity has been linked to a large extent to the presence of the unusual α-amino acid derivative l-DOPA (l-3,4-dihydroxyphenylalanine) as a building block of the mussel byssus proteins. This paper provides a short overview of marine biofouling, discussing the different marine biofouling species and natural defenses against these, as well as biomimicry as a concept investigated in the marine antifouling context. A detailed discussion of the literature on the Mytilus mussel family follows, covering elements of their biology, biochemistry and the specific measures adopted by these mussels to utilise their l-DOPA-rich protein sequences (and specifically the ortho-bisphenol (catechol) moiety) in their benefit. A comprehensive account is then given of the key catechol chemistries (covalent and non-covalent/intermolecular) relevant to adhesion, cohesion and self-healing, as well as of some of the most characteristic mussel protein synthetic mimics reported over the past 30 years and the related polymer functionalisation strategies with l-DOPA/catechol. Lastly, we review some of the most recent advances in such mussel-inspired synthetic oligomers and polymers, claimed as specifically aimed or intended for use in marine antifouling coatings and/or tested against marine biofouling species.
Collapse
|
220
|
Wang C, Yan Y, Du D, Xiong X, Ma Y. WO 3-Based Slippery Liquid-Infused Porous Surfaces with Long-Term Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29767-29777. [PMID: 32510196 DOI: 10.1021/acsami.0c05315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) inspired by Nepenthes pitcher plants exhibit excellent hydrophobicity, antifouling and anti-icing properties, and long-term durability under pressure and temperature. SLIPS have potential applications including in biomedical devices, self-cleaning structures, and water-resistant coatings. A big challenge posed by SLIPS is the durability of the lubricant in the porous layer. Herein, uniform tungsten oxide nanofiber networks were synthesized on the surface of stainless steel through a simple one-step hydrothermal method. WO3 nanofiber networks on stainless steels were chemically modified, filled with a lubricant, and prepared as SLIPS with excellent liquid repellency and good anti-biofouling properties. The relationship of the nanostructures and the slippery properties of the obtained WO3-based SLIPS have been investigated in detail in this work. The liquid retention and long-term stability of the SLIPS were characterized using high shear force and water flow impact. We found that the long-term durability of the SLIPS is strongly related to the diameters and the Brunauer-Emmett-Teller surface areas of the WO3 nanostructures. The durability of the SLIPS is better when the diameter of the WO3 nanostructures is smaller. The WO3-based SLIPS prepared in this work exhibit outstanding slippery property, anti-biofouling, and long-term stability under extreme conditions such as high shear rate and water washing and thus may have potential application for surface modification of medical devices in the future.
Collapse
Affiliation(s)
- Chunxia Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuxin Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Daming Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Xiong
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
221
|
Ouyang Y, Zhao J, Qiu R, Hu S, Niu H, Zhang Y, Chen M. Biomimetic partition structure infused by nano-compositing liquid to form bio-inspired self-healing surface for corrosion inhibition. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
222
|
Balaure PC, Grumezescu AM. Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part I: Molecular Basis of Biofilm Recalcitrance. Passive Anti-Biofouling Nanocoatings. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1230. [PMID: 32599948 PMCID: PMC7353097 DOI: 10.3390/nano10061230] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022]
Abstract
Medical device-associated infections are becoming a leading cause of morbidity and mortality worldwide, prompting researchers to find new, more effective ways to control the bacterial colonisation of surfaces and biofilm development. Bacteria in biofilms exhibit a set of "emergent properties", meaning those properties that are not predictable from the study of free-living bacterial cells. The social coordinated behaviour in the biofilm lifestyle involves intricate signaling pathways and molecular mechanisms underlying the gain in resistance and tolerance (recalcitrance) towards antimicrobial agents as compared to free-floating bacteria. Nanotechnology provides powerful tools to disrupt the processes responsible for recalcitrance development in all stages of the biofilm life cycle. The present paper is a state-of-the-art review of the surface nanoengineering strategies currently used to design antibiofilm coatings. The review is structurally organised in two parts according to the targeted biofilm life cycle stages and molecular mechanisms intervening in recalcitrance development. Therefore, in the present first part, we begin with a presentation of the current knowledge of the molecular mechanisms responsible for increased recalcitrance that have to be disrupted. Further, we deal with passive surface nanoengineering strategies that aim to prevent bacterial cells from settling onto a biotic or abiotic surface. Both "fouling-resistant" and "fouling release" strategies are addressed as well as their synergic combination in a single unique nanoplatform.
Collapse
Affiliation(s)
- Paul Cătălin Balaure
- “Costin Nenitzescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1-7, 011061 Bucharest, Romania
| |
Collapse
|
223
|
Yang J, Li J, Jia X, Li Y, Song H. Fabrication of Robust and Transparent Slippery Coating with Hot Water Repellency, Antifouling Property, and Corrosion Resistance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28645-28654. [PMID: 32453938 DOI: 10.1021/acsami.0c06743] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water-repellent coatings with low sliding angles for aqueous liquids are of great significance for practical applications. However, these coatings are susceptible to various types of damage during service and lose their effect. Herein, a robust and transparent slippery coating with extremely low water sliding angle was fabricated by covalently grafting polydimethylsiloxane (PDMS) brushes in a cross-linked skeleton of epoxy resin. Polyamidoamine G5.0 with 128 NH2 end groups was used as curing agent to induce the high cross-linking of the coating and the abundant PDMS brushes being grafted into it. Because of low surface energy and high mobility of PDMS brushes, the obtained coating exhibited a slippery performance for aqueous liquids (10 μL) with a sliding angle lower than 3° and a sliding speed as high as 1.16 mm/s. Even a 10 μL water droplet with temperature of 80 °C can slide off the coating at a low sliding angle (<5°). The strong intermolecular interactions of epoxy cross-linked skeleton endowed the coating with excellent physical and chemical stability. The sliding angle of the coating had no obvious change after heating at 120 °C for 100 h and placing outdoors for 7 months. The slippery performance was not affected by thumb press, knife scratching, high-speed friction, and water of different pH values. Furthermore, because of the excellent stability, antifouling performance, and corrosion resistance, the slippery coating can be applied to a variety of substrates, which makes the robust slippery coating have real potential for practical applications.
Collapse
Affiliation(s)
- Jin Yang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Jiayu Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiaohua Jia
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Yong Li
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Haojie Song
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| |
Collapse
|
224
|
Girard HL, Bourrianne P, Yeganeh M, Cohen RE, McKinley GH, Varanasi KK. Lubricant-Impregnated Surfaces for Mitigating Asphaltene Deposition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28750-28758. [PMID: 32515182 DOI: 10.1021/acsami.0c03967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Asphaltenes are heavy aromatic components of crude oil. Their complex chemical makeup-an aromatic core surrounded by aliphatic side chains-enables them to adhere to most surfaces. Their buildup in pipes can result in clogging and lead to interruption of production operations and expensive mechanical cleaning. We demonstrate the use of liquid-impregnated surfaces (LIS) to prevent asphaltene deposition and buildup on substrates. Indeed, these surfaces expose a liquid interface to the working fluid, which combines the benefits of a dynamic defect-free surface and tunable interfacial properties. In contrast to bulk additives that are typically mixed into the oil phase, the impregnating liquid also provides the great benefit of protecting the underlying solid surface with a stable and minimal layer of lubricant, thereby reducing costs and eliminating the need for subsequent downstream removal. We first select and confirm the thermodynamic stability of a suitable lubricant and its lack of interaction with asphaltenes. By using a carefully selected system composed of a textured and functionalized solid substrate in conjunction with a fluorinated lubricant, we show that asphaltene adsorption is prevented over long time scales. We further demonstrate the possibility of building such a system with representative industrial materials such as aluminum and expose the resulting substrate to an external shear flow to simulate pipe flow conditions.
Collapse
Affiliation(s)
- Henri-Louis Girard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02119, United States
| | - Philippe Bourrianne
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02119, United States
| | - Mohsen Yeganeh
- ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Robert E Cohen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02119, United States
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02119, United States
| | - Kripa K Varanasi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02119, United States
| |
Collapse
|
225
|
Scarratt LRJ, Zhu L, Neto C. Large Effective Slip on Lubricated Surfaces Measured with Colloidal Probe AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6033-6040. [PMID: 32431146 DOI: 10.1021/acs.langmuir.9b02935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we study the interfacial boundary conditions at the interface between two immiscible liquids under a laminar flow. We measure the hydrodynamic drainage forces acting on a colloid probe as it approaches a flat and smooth Teflon film coated with silicone oil films, submerged in a sucrose solution using atomic force microscopy. On Teflon substrates, silicone oil films of thickness several hundred nanometers could be stabilized, and we found the effective slip length over these to be of the order of several hundred nanometers which increases with increasing silicone oil film thickness, as expected. The fitted slip length values weakly increased with increasing shear rates. The high values of effective slip length indicate that lubricant-infused surfaces are likely to reduce drag on length scales that approach the macroscopic scales.
Collapse
Affiliation(s)
- Liam R J Scarratt
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Liwen Zhu
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chiara Neto
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
226
|
Ching JY, Huang BJ, Hsu YT, Khung YL. Anti-Adhesion Behavior from Ring-Strain Amine Cyclic Monolayers Grafted on Silicon (111) Surfaces. Sci Rep 2020; 10:8758. [PMID: 32472042 PMCID: PMC7260185 DOI: 10.1038/s41598-020-65710-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 01/09/2023] Open
Abstract
In this manuscript, a series of amine tagged short cyclic molecules (cyclopropylamine, cyclobutylamine, cyclopentylamine and cyclohexylamine) were thermally grafted onto p-type silicon (111) hydride surfaces via nucleophilic addition. The chemistries of these grafting were verified via XPS, AFM and sessile droplet measurements. Confocal microscopy and cell viability assay was performed on these surfaces incubated for 24 hours with triple negative breast cancer cells (MDA-MB 231), gastric adenocarcinoma cells (AGS) endometrial adenocarcinoma (Hec1A). All cell types had shown a significant reduction when incubated on these ring-strain cyclic monolayer surfaces than compared to standard controls. The expression level of focal adhesion proteins (vinculin, paxilin, talin and zyxin) were subsequently quantified for all three cell types via qPCR analysis. Cells incubate on these surface grafting were observed to have reduced levels of adhesion protein expression than compared to positive controls (collagen coating and APTES). A potential application of these anti-adhesive surfaces is the maintenance of the chondrocyte phenotype during in-vitro cell expansion. Articular chondrocytes cultured for 6 days on ring strained cyclopropane-modified surfaces was able to proliferate but had maintained a spheroid/aggregated phenotype with higher COL2A1 and ACAN gene expression. Herein, these findings had help promote grafting of cyclic monolayers as an viable alternative for producing antifouling surfaces.
Collapse
Affiliation(s)
- Jing Yuan Ching
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Brian J Huang
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40447, Taiwan.,Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Ting Hsu
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
227
|
Tian X, Banerjee S, Gonzalez-Alfonzo I, Cademartiri L. Suppressing Evaporative Loss in Slippery Liquid-Infused Porous Surfaces (SLIPS) with Self-Suspended Perfluorinated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5106-5111. [PMID: 32311263 DOI: 10.1021/acs.langmuir.0c00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article describes an approach to resolving the issue of evaporative loss from slippery liquid-infused porous surfaces (SLIPS). Hydrophobic and oleophobic fluids with significantly reduced evaporative loss rates at temperatures of up to 90 °C were obtained by the one-step mixing of commercially available perfluorinated lubricants with colloidal nanoparticles to form self-suspended nanoparticle fluids (i.e., suspensions nearly devoid of solvent). No evaporative loss was detected at temperatures of as high as 50 °C for over 3 months. Furthermore, the approach allows us to combine the function of the nanoparticles with the slippery characteristic of SLIPS.
Collapse
Affiliation(s)
| | | | | | - Ludovico Cademartiri
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, 43124, Italy
| |
Collapse
|
228
|
Siddiquie RY, Gaddam A, Agrawal A, Dimov SS, Joshi SS. Anti-Biofouling Properties of Femtosecond Laser-Induced Submicron Topographies on Elastomeric Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5349-5358. [PMID: 32343580 DOI: 10.1021/acs.langmuir.0c00753] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibacterial coatings are often employed to elastomer surfaces to inhibit bacterial attachment. However, such approaches could lead to increased antibiotic resistance. Surface micro-/nanotexturing is gaining significant attention recently, as it is a passive approach to reduce bacterial adhesion to surfaces. To this end, this work aims to assess the anti-biofouling functionality of femtosecond laser-induced submicron topographies on biomedical elastomer surfaces. Femtosecond laser processing was employed to produce two types of topographies on stainless-steel substrates. The first one was highly regular and single scale submicron laser-induced periodic surface structures (LIPSS) while the second one was multiscale structures (MSs) containing both submicron- and micron-scale features. Subsequently, these topographies were replicated on polydimethylsiloxane (PDMS) and polyurethane (PU) elastomers to evaluate their bacterial retention characteristics. The submicron textured PDMS and PU surfaces exhibited long-term hydrophobic durability up to 100 h under immersed conditions. Both LIPSS and MS topographies on PDMS and PU elastomeric surfaces were shown to substantially reduce (>89%) the adhesion of Gram-negative Escherichia coli bacteria. At the same time, the anti-biofouling performance of LIPSS and MS topographies was found to be comparable with that of lubricant-impregnated surfaces. The influence of physical defects on textured surfaces on the adhesion behavior of bacteria was also elucidated. The results presented here are significant because the polymeric biomedical components that can be produced by replication cost effectively, while their biocompatibility can be improved through femtosecond surface modification of the respective replication masters.
Collapse
Affiliation(s)
- Reshma Y Siddiquie
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvesh Gaddam
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Stefan S Dimov
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Suhas S Joshi
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
229
|
Wang F, Luo S, Xiao S, Zhang W, Zhuo Y, He J, Zhang Z. Enabling phase transition of infused lubricant in porous structure for exceptional oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122176. [PMID: 32006849 DOI: 10.1016/j.jhazmat.2020.122176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The fundamental mechanism behind oil/water separation materials is their surface wettability that allows either oil or water to pass through. The conventional materials for oil/water separation generally have extreme wettability, namely superhydrophilic for water separation and superhydrophobic for oil separation. Using easily accessible materials that are medium hydrophobic or even relatively hydrophilic for preparing highly efficient oil/water separators have rarely been reported. In this work, a new strategy by triggering phase transition of infused lubricant from liquid to solid state in porous structure is realized in fabricating slippery lubricant infused porous structure for oil/water separations. By infusing polyester fabric with coconut oil, after phase transition, excellent water repellency and oil permeability by an absorbing-permeating mechanism are achieved, despite the low water contact angle on the new material. Although the new phase transformable slippery lubricant infused porous structure, features much milder hydrophobicity than conventional oil/water separators, it can remove diverse types of oil from water with high efficiencies. The phase transformable slippery lubricant infused porous structure is able to maintain their water repellency after immersing in high concentration salt (10 wt% NaCl), acid (25 % HCl), alkaline (25 % NH3·H2O) solutions for 120 h, showing remarkably functional durability in harsh environment. The lubricant phase transition mechanism proposed in this study is universally applicable to porous substrates with various chemical compositions and pore structures, such as porous sponges or even daily life breads, for creating efficient oil/water separators, which can serve as a novel accessible design principle of phase transformable slippery lubricant infused porous structure for eco-friendly oil/water separators.
Collapse
Affiliation(s)
- Feng Wang
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Senbo Xiao
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Wenjing Zhang
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Yizhi Zhuo
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Jianying He
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Zhiliang Zhang
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| |
Collapse
|
230
|
Encinas N, Yang CY, Geyer F, Kaltbeitzel A, Baumli P, Reinholz J, Mailänder V, Butt HJ, Vollmer D. Submicrometer-Sized Roughness Suppresses Bacteria Adhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21192-21200. [PMID: 32142252 PMCID: PMC7226781 DOI: 10.1021/acsami.9b22621] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of functional polymer brushes or films provides a route toward antifouling coatings. Furthermore, nanorough or superhydrophobic surfaces can delay biofilm formation. Here we show that submicrometer-sized roughness can outweigh surface chemistry by testing the adhesion of E. coli to surfaces of different topography and wettability over long exposure times (>7 days). Gram-negative and positive bacterial strains are tested for comparison. We show that an irregular three-dimensional layer of silicone nanofilaments suppresses bacterial adhesion, both in the presence and absence of an air cushion. We hypothesize that a 3D topography can delay biofilm formation (i) if bacteria do not fit into the pores of the coating or (ii) if bending of the bacteria is required to adhere. Thus, such a 3D topography offers an underestimated possibility to design antibacterial surfaces that do not require biocides or antibiotics.
Collapse
Affiliation(s)
- Noemí Encinas
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ching-Yu Yang
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Florian Geyer
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Philipp Baumli
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jonas Reinholz
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstrasse
1, Mainz 55131, Germany
| | - Volker Mailänder
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstrasse
1, Mainz 55131, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Doris Vollmer
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
231
|
Li H, Shkolyar E, Wang J, Conti S, Pao AC, Liao JC, Wong TS, Wong PK. SLIPS-LAB-A bioinspired bioanalysis system for metabolic evaluation of urinary stone disease. SCIENCE ADVANCES 2020; 6:eaba8535. [PMID: 32494753 PMCID: PMC7244315 DOI: 10.1126/sciadv.aba8535] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/18/2020] [Indexed: 05/21/2023]
Abstract
Urinary stone disease is among the most common medical conditions. Standard evaluation of urinary stone disease involves a metabolic workup of stone formers based on measurement of minerals and solutes excreted in 24-hour urine samples. Nevertheless, 24-hour urine testing is slow, expensive, and inconvenient for patients, which has hindered widespread adoption in clinical practice. Here, we demonstrate SLIPS-LAB (Slippery Liquid-Infused Porous Surface Laboratory), a droplet-based bioanalysis system, for rapid measurement of urinary stone-associated analytes. The ultra-repellent and antifouling properties of SLIPS, which is a biologically inspired surface technology, allow autonomous liquid handling and manipulation of physiological samples without complicated sample preparation procedures and supporting equipment. We pilot a study that examines key urinary analytes in clinical samples from patients with urinary stone. The simplicity and speed of SLIPS-LAB hold the potential to provide actionable diagnostic information for patients with urinary stone disease and rapid feedback for responses to dietary and pharmacologic treatments.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Eugene Shkolyar
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Wang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Simon Conti
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Alan C. Pao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Tak-Sing Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
232
|
Bandyopadhyay S, Khare S, Bhandaru N, Mukherjee R, Chakraborty S. High Temperature Durability of Oleoplaned Slippery Copper Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4135-4143. [PMID: 32216354 DOI: 10.1021/acs.langmuir.9b03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Slippery surfaces, inspired by the functionality of trapping interfaces of specialized leaves of pitcher plants, have been widely used in self-cleaning, anti-icing, antifrost, and self-healing surfaces. They can be fabricated on metallic surfaces as well, presenting a more durable and low-maintenance anticorrosive surface on metals. However, the lack of studies on the durability of these slippery surfaces at high temperature prohibits their practical deployment in real industrial applications where thermal effects are critical and high temperature conditions are inevitable. We present here a unique fabrication technique of a copper-based oleoplaned slippery surface that has been tested for high temperature durability under repeated thermal cycles. Their slipperiness at high temperatures has also been tested in the absence of the Leidenfrost effect. Our findings suggest that these new substrates can be used for fabricating low maintenance surfaces for high temperature applications or even where the surface undergoes repeated thermal cycles like heat exchanger pipes, utensils, engine casings, and outdoor metallic structures.
Collapse
Affiliation(s)
- Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Shreshth Khare
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nandini Bhandaru
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, 500 078 Telangana, India
| | - Rabibrata Mukherjee
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Chakraborty
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
233
|
Marquis K, Chasse B, Regan DP, Boutiette AL, Khalil A, Howell C. Vascularized Polymers Spatially Control Bacterial Cells on Surfaces. ACTA ACUST UNITED AC 2020; 4:e1900216. [PMID: 32293124 DOI: 10.1002/adbi.201900216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/05/2019] [Indexed: 11/10/2022]
Abstract
Nature uses vascular systems to permit large-area control over the functionality of surfaces that lie above them. In this work, the application of this concept to the control of a hybrid living-nonliving system is demonstrated. Defined arrangements of vascular channels are created in agar using a fugitive ink printing method. The antibiotic gentamicin is then introduced into the vascular network where it diffuses to the surface and interacts with a model system of Escherichia coli cells. The cells either live or die depending on their distance from the underlying channels, permitting spatial control over the biological system. Using single-channel systems to define critical parameters, a theoretical model is developed to define the final surface pattern based solely on the arrangement of the underlying vascular channels. The model is then successfully used to create more complex arrangements of cells at the surface. Finally, by introducing different types of active compounds into separate vascular channels, a mixture of bacterial species is separated and localized at defined points. This work demonstrates the ability of bioinspired embedded vascular systems to predictably control a biological system at a surface, laying the groundwork for future spatially and temporally controlled biointerfaces in both industry and medicine.
Collapse
Affiliation(s)
- Kayla Marquis
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Benjamin Chasse
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Daniel P Regan
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| | - Amber L Boutiette
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Andre Khalil
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| |
Collapse
|
234
|
Wylie M, Bell SEJ, Nockemann P, Bell R, McCoy CP. Phosphonium Ionic Liquid-Infused Poly(vinyl chloride) Surfaces Possessing Potent Antifouling Properties. ACS OMEGA 2020; 5:7771-7781. [PMID: 32309685 PMCID: PMC7160832 DOI: 10.1021/acsomega.9b03528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Microbial fouling is a costly issue, which impacts a wide range of industries, such as healthcare, food processing, and construction industries, and improved strategies to reduce the impact of fouling are urgently required. Slippery liquid-infused porous surfaces (SLIPSs) have recently been developed as a bioinspired approach to prevent antifouling. Here, we report the development of slippery, superhydrophilic surfaces by infusing roughened poly(vinyl chloride) (PVC) substrates with phosphonium ionic liquids (PILs). These surfaces were capable of reducing viable bacterial adherence by Staphylococcus aureus and Pseudomonas aeruginosa by >6 log10 cfu mL-1 after 24 h under static conditions relative to control PVC. Furthermore, we report the potential of a series of asymmetric quaternary alkyl PILs with varying alkyl chain lengths (C4-C18) and counteranions to act as antimicrobial agents against both Gram +ve and Gram -ve bacteria and illustrate their potential as antimicrobial alternatives to traditional fluorinated lubricants commonly used in the synthesis of SLIPSs.
Collapse
Affiliation(s)
- Matthew
P. Wylie
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - Peter Nockemann
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - Rory Bell
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Colin P. McCoy
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
235
|
Goodband S, Armstrong S, Kusumaatmaja H, Voïtchovsky K. Effect of Ageing on the Structure and Properties of Model Liquid-Infused Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3461-3470. [PMID: 32164408 PMCID: PMC7146855 DOI: 10.1021/acs.langmuir.0c00059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/12/2020] [Indexed: 05/05/2023]
Abstract
Liquid-infused surfaces (LISs) exhibit unique properties that make them ideal candidates for a wide range of applications, from antifouling and anti-icing coatings to self-healing surfaces and controlled wetting. However, when exposed to realistic environmental conditions, LISs tend to age and progressively lose their desirable properties, potentially compromising their application. The associated ageing mechanisms are still poorly understood, and results reflecting real-life applications are scarce. Here, we track the ageing of a model LIS composed of glass surfaces functionalized with hydrophobic nanoparticles and infused with silicone oil. The LISs are fully submerged in aqueous solutions and exposed to acoustic pressure waves for set time intervals. The ageing is monitored by periodic measurements of the LIS's wetting properties. We also track the changes to the LIS's nanoscale structure. We find that the LISs rapidly lose their slippery properties because of a combination of oil loss, smoothing of the nanoporous functional layer, and substrate degradation when directly exposed to the solution. The oil loss is consistent with water microdroplets entering the oil layer and displacing oil away from the surface. These mechanisms are general and could play a role in the ageing of most LISs.
Collapse
Affiliation(s)
| | - Steven Armstrong
- Smart
Materials & Surfaces Laboratory, Faculty of Engineering &
Environment, Northumbria University, Newcastle Upon Tyne NE18ST, U.K.
| | | | | |
Collapse
|
236
|
Shemesh M, Ostrov I. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2327-2336. [PMID: 31975392 DOI: 10.1002/jsfa.10285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/28/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Biofilm-forming Bacillus species are often involved in persistent contamination and spoilage of dairy products. They therefore present a major microbiological challenge in the field of dairy food quality and safety. Due to their substantial physiological versatility, Bacillus species can survive in various parts of dairy manufacturing plants, leading to a high risk of product spoilage and potential dissemination of foodborne diseases. Furthermore, biofilm and heat-resistant spore formation make these bacteria challenging to eliminate. Thus, some strategies have been employed to remove, prevent, or delay the formation of Bacillus biofilms in the dairy industry, but with limited success. Lack of understanding of the Bacillus biofilm structure and behavior in conditions relevant to dairy-associated environments could partially account for this situation. The current paper reviews dairy-associated biofilm formation by Bacillus species, with particular attention to the role of biofilm in Bacillus species adaptation and survival in a dairy processing environment. Relevant model systems are discussed for the development of novel antimicrobial approaches to improve the quality of dairy food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| | - Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
237
|
Li C, Jiao Y, Lv X, Wu S, Chen C, Zhang Y, Li J, Hu Y, Wu D, Chu J. In Situ Reversible Tuning from Pinned to Roll-Down Superhydrophobic States on a Thermal-Responsive Shape Memory Polymer by a Silver Nanowire Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13464-13472. [PMID: 32100537 DOI: 10.1021/acsami.9b20223] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape memory polymer (SMP) surfaces with tunable wettability have attracted extensive attention due to their widespread applications. However, there have been rare reports on in situ tuning wettability with SMP materials. In this paper, we reported a kind of distinct superhydrophobic SMP microconed surface on the silver nanowire (AgNW) film to achieve in situ reversible transition between pinned and roll-down states. The mechanism is taking advantage of the in situ heating functionality of the silver nanowire film by voltage, which provides the transition energy for SMP to achieve the fixation and recovery of temporary shape. It is noteworthy that the reversible transition could be repeated many times (>100 cycles), and we quantitatively investigate the shape memory ability of microcones with varied height and space under different applied voltages. These results show that the tilted microcones could recover its original upright state under a small voltage (4-11 V) in a short time, and the shortest recovery time is about 0.5 min under an applied voltage of ∼10 V. Finally, we utilize SMP microcone arrays with tunable wettability to realize lossless droplet transportation, and the tilted microconed surface also achieves liquid unidirectional transport due to its anisotropic water adhesion force. The robust microconed SMP surface with reversible morphology transitions will have far-ranging applications including droplet manipulation, reprogrammable fog harvesting, and so on.
Collapse
Affiliation(s)
- Chuanzong Li
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Lv
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sizhu Wu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
238
|
Wang S, Yang X, Wu F, Min L, Chen X, Hou X. Inner Surface Design of Functional Microchannels for Microscale Flow Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905318. [PMID: 31793747 DOI: 10.1002/smll.201905318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/03/2019] [Indexed: 05/05/2023]
Abstract
Fluidic flow behaviors in microfluidics are dominated by the interfaces created between the fluids and the inner surface walls of microchannels. Microchannel inner surface designs, including the surface chemical modification, and the construction of micro-/nanostructures, are good examples of manipulating those interfaces between liquids and surfaces through tuning the chemical and physical properties of the inner walls of the microchannel. Therefore, the microchannel inner surface design plays critical roles in regulating microflows to enhance the capabilities of microfluidic systems for various applications. Most recently, the rapid progresses in micro-/nanofabrication technologies and fundamental materials have also made it possible to integrate increasingly complex chemical and physical surface modification strategies with the preparation of microchannels in microfluidics. Besides, a wave of researches focusing on the ideas of using liquids as dynamic surface materials is identified, and the unique characteristics endowed with liquid-liquid interfaces have revealed that the interesting phenomena can extend the scope of interfacial interactions determining microflow behaviors. This review extensively discusses the microchannel inner surface designs for microflow control, especially evaluates them from the perspectives of the interfaces resulting from the inner surface designs. In addition, prospective opportunities for the development of surface designs of microchannels, and their applications are provided with the potential to attract scientific interest in areas related to the rapid development and applications of various microchannel systems.
Collapse
Affiliation(s)
- Shuli Wang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
| | - Xian Yang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Feng Wu
- Bionic and Soft Matter Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Lingli Min
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
- Bionic and Soft Matter Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
239
|
Bus T, Dale ML, Reynolds KJ, Bastiaansen CWM. Thermoplastic, rubber-like marine antifouling coatings with micro-structures via mechanical embossing. BIOFOULING 2020; 36:138-145. [PMID: 32223324 DOI: 10.1080/08927014.2020.1734576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
New processing routes and materials for non-biocidal, antifouling (AF) coatings with an improved performance are currently much sought after for a range of marine applications. Here, the processing, physical properties and marine AF performance of a fluorinated coating based on a thermoplastic (non-crosslinked) fluorinated polymer are reported. It was found that the addition of lubricating oil and hydrodynamic drag reducing microstructures improved the AF properties substantially, i.e. the settlement of a marine biofilm, containing mixed microalgae including diatoms, was reduced to low levels. More importantly, the remaining fouling was removed from the coatings at low hydrodynamic shear rates and promising AF properties were obtained. Moreover, additional potential benefits were revealed originating from the thermoplastic nature of the coating material which might result in significant cost reductions.
Collapse
Affiliation(s)
- Tom Bus
- Laboratory of Stimuli-Responsive Functional Materials & Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marie L Dale
- AkzoNobel/International Paint Ltd, Gateshead, UK
| | | | - Cees W M Bastiaansen
- Laboratory of Stimuli-Responsive Functional Materials & Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
240
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
241
|
He Y, Wan X, Lin W, Li J, Li Z, Luo F, Li J, Tan H, Fu Q. The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwitterionic block polymer brushes. Biomater Sci 2020; 8:6890-6902. [DOI: 10.1039/d0bm00903b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A well-organized hierarchical structure and appropriate alkyl chain length facilitate the synergistic anti-biofilm effect.
Collapse
Affiliation(s)
- Yuanyuan He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xinyuan Wan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weiwei Lin
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jiehua Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Feng Luo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hong Tan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qiang Fu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
242
|
Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 2020; 49:3688-3715. [DOI: 10.1039/d0cs00036a] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the rational choice, the analysis, the depletion and the properties imparted by the liquid layer in liquid-infused surfaces – a new class of low-adhesion surface.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- The University of Sydney Nano Institute
- The University of Sydney
- Australia
- Central Clinical School
- Faculty of Medicine and Health
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| |
Collapse
|
243
|
Cheng Y, Yang Q, Lu Y, Yong J, Fang Y, Hou X, Chen F. A femtosecond Bessel laser for preparing a nontoxic slippery liquid-infused porous surface (SLIPS) for improving the hemocompatibility of NiTi alloys. Biomater Sci 2020; 8:6505-6514. [DOI: 10.1039/d0bm01369b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A nontoxic slippery liquid-infused porous surface prepared by femtosecond Bessel laser ablation to improve the hemocompatibility of NiTi alloys.
Collapse
Affiliation(s)
- Yang Cheng
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an
- PR China
- The International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies
| | - Qing Yang
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an
- PR China
- The International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies
| | - Yu Lu
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronic Science and Engineering
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronic Science and Engineering
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - Yao Fang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronic Science and Engineering
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronic Science and Engineering
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronic Science and Engineering
- Xi'an Jiaotong University
- Xi'an
- PR China
| |
Collapse
|
244
|
Li Z, Guo Z. Bioinspired surfaces with wettability for antifouling application. NANOSCALE 2019; 11:22636-22663. [PMID: 31755511 DOI: 10.1039/c9nr05870b] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wettability is a special character found in nature, including the superhydrophobicity of lotus leaves, the underwater superoleophobicity of fish scales and the slipperiness of pitcher plants. These surfaces exhibit unique properties such as resistance to icing, corrosion, and the like. The antifouling properties of the material surface have important applications in a variety of areas, such as in hulls, in medical equipment, in water pipes and underwater equipment. However, the traditional anti-fouling surface is usually combined with toxic substances or its manufacturing process is complicated and expensive, which cannot meet the current antifouling demand. These wettable surfaces have always exhibited good anti-biofouling and self-cleaning properties, and their use as antifouling surfaces can well solve the problems of the above-mentioned traditional antifouling surfaces. Here, we divided the wettable surfaces into superhydrophobic surfaces, underwater superoleophobic surfaces and slippery surfaces, respectively, summarizing their development in the field of antifouling. Their research progress in antibacterial, antibiotic flocculation and antiplatelet adhesion is highlighted. Furthermore, we provide our own insights into the shortcomings and development prospects of wettable surface applications in the field of antifouling.
Collapse
Affiliation(s)
- Zhihao Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
245
|
Guo L, Tang GH, Kumar S. Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16377-16387. [PMID: 31702932 DOI: 10.1021/acs.langmuir.9b02603] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) are gaining remarkable attention and have advanced performance in many fields. Although all SLIPS are related to lubricant-impregnation within nano/microstructures on a surface, they differ in many aspects, such as the morphology of droplets, the state of cloaking, the wetting edge, and the lubricant thickness. Requirements of the droplet morphology on SLIPS might change according to a specific application. A molecular-dynamics-based numerical model that can correctly simulate SLIPS is developed and is validated by comparing against the theoretical predictions for all possible stable states for a given droplet, lubricant, and solid surface. On the basis of this model, a detailed analysis of the equilibrium states is conducted. In particular, we discover that the four possible stable states on SLIPS predicted by theoretical studies can be extended to eight states by considering the effects of lubricant thickness and surface geometry in addition to the interfacial tension and surface wettability. These findings could be used to determine the conditions under which a thermodynamically stable state exists on SLIPS. The dynamic behavior of a nanodroplet on SLIPS is also studied, which provides insight into how a proper increase in the lubricant thickness might increase the sliding velocity. The above findings and developed model are expected to provide significant guidelines for designing SLIPS.
Collapse
Affiliation(s)
- Lin Guo
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , P.R. China
- G. W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - G H Tang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , P.R. China
| | - Satish Kumar
- G. W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
246
|
Wu Q, Yang C, Su C, Zhong L, Zhou L, Hang T, Lin H, Chen W, Li L, Xie X. Slippery Liquid-Attached Surface for Robust Biofouling Resistance. ACS Biomater Sci Eng 2019; 6:358-366. [PMID: 33463210 DOI: 10.1021/acsbiomaterials.9b01323] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Materials for biodevices and bioimplants commonly suffer from unwanted but unavoidable biofouling problems due to the nonspecific adhesion of proteins, cells, or bacteria. Chemical coating or physical strategies for reducing biofouling have been pursued, yet highly robust antibiofouling surfaces that can persistently resist contamination in biological environments are still lacking. In this study, we developed a facile method to fabricate a highly robust slippery and antibiofouling surface by conjugating a liquid-like polymer layer to a substrate. This slippery liquid-attached (SLA) surface was created via a one-step equilibration reaction by tethering methoxy-terminated polydimethylsiloxane (PDMS-OCH3) polymer brushes onto a substrate to form a transparent "liquid-like" layer. The SLA surface exhibited excellent sliding behaviors toward a wide range of liquids and small particles and antibiofouling properties against the long-term adhesion of small biomolecules, proteins, cells, and bacteria. Moreover, in contrast to superomniphobic surfaces and liquid-infused porous surfaces (SLIPS) requiring micro/nanostructures, the SLA layer could be obtained on smooth surfaces and maintain its biofouling resistance under abrasion with persistent stability. Our study offers a simple method to functionalize surfaces with robust slippery and antibiofouling properties, which is promising for potential applications including medical implants and biodevices.
Collapse
Affiliation(s)
- Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chen Su
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510006, China
| | - Luyu Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lingfei Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tian Hang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong
| | - Xi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
247
|
Espejo HM, Díaz-Amaya S, Stanciu LA, Bahr DF. Nisin infusion into surface cracks in oxide coatings to create an antibacterial metallic surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110034. [PMID: 31546451 DOI: 10.1016/j.msec.2019.110034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/30/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022]
Abstract
The efficacy of surface topology and chemistry on the ability for a surface to retain antimicrobial performance via the immobilization of a peptide was evaluated. A nanosecond pulsed laser was used to create oxide films on Ti-6Al-4V and 304L stainless steel. The laser conditions employed created a mudflat cracked surface on titanium, but no cracks on the steel. An antimicrobial peptide, nisin, was infused into the cracked and uncracked oxide surfaces to provide antimicrobial activity against Gram-positive bacteria; Listeria monocytogenes was chosen as the model microorganism. Release tests in distilled water at room temperature show that nisin is slowly liberated from the uncracked stainless steel surface, while there was no evidence of nisin liberation from the cracked titanium alloy surfaces, likely due to immobilization of the peptide into the artificially created micro-cracks on the surface of this alloy. Surfaces treated with nisin became active and exhibit anti-microbial performance against L. monocytogenes; this behavior is mostly retained after scrubbing/washing and simple immersion in water.
Collapse
Affiliation(s)
- Héctor M Espejo
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Susana Díaz-Amaya
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Lia A Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - David F Bahr
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
248
|
Kimmins KM, James BD, Nguyen MT, Hatton BD, Sone ED. Oil-Infused Silicone Prevents Zebra Mussel Adhesion. ACS APPLIED BIO MATERIALS 2019; 2:5841-5847. [DOI: 10.1021/acsabm.9b00832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kenneth M. Kimmins
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, ON M5S 3G9, Canada
| | - Bryan D. James
- Department of Materials Science & Engineering, University of Toronto, 184 College Street, Room 140, Toronto, ON M5S 3E4, Canada
| | - Minh-Tam Nguyen
- Department of Materials Science & Engineering, University of Toronto, 184 College Street, Room 140, Toronto, ON M5S 3E4, Canada
| | - Benjamin D. Hatton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, ON M5S 3G9, Canada
- Department of Materials Science & Engineering, University of Toronto, 184 College Street, Room 140, Toronto, ON M5S 3E4, Canada
| | - Eli D. Sone
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, ON M5S 3G9, Canada
- Department of Materials Science & Engineering, University of Toronto, 184 College Street, Room 140, Toronto, ON M5S 3E4, Canada
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
249
|
Antifouling and Fouling-Release Performance of Photo-Embossed Fluorogel Elastomers. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7110419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oil-infused ‘slippery’ polymer surfaces and engineered surface textures have been separately shown to reduce settlement or adhesion strength of marine biofouling organisms. Here, we combine these two approaches in fluorogel surfaces infused with perfluorinated oils, via a facile photo-embossing method that allows the generation of a micro-scale surface relief structure while retaining the properties of lubricant-infused materials. Testing of these surfaces against a range of marine fouling challenges in laboratory assays demonstrated that when the volume percentage of perfluorinated oil was high, adhesion strengths of attached barnacles and biofilms were low. However, diatoms adhered strongly to test surfaces, highlighting the need to explore different combinations of polymer and oil for such surfaces. Furthermore, the tested surface structures increased settlement and adhesion in the assays, demonstrating the need to optimize any surface structure for specific applications. Nevertheless, the results show the feasibility of combining multiple approaches to create future antifouling technologies.
Collapse
|
250
|
Liu Y, Zhao L, Lin J, Yang S. Electrodeposited surfaces with reversibly switching interfacial properties. SCIENCE ADVANCES 2019; 5:eaax0380. [PMID: 31701000 PMCID: PMC6824854 DOI: 10.1126/sciadv.aax0380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/16/2019] [Indexed: 05/16/2023]
Abstract
Engineered surfaces with reversibly switching interfacial properties, such as wettability and liquid repellency, are highly desirable in diverse application fields but are rare. We have developed a general concept to prepare metallic porous surfaces with exceptionally powerful wettability switch capabilities and liquid-repellent properties through an extremely simple one-step electrochemical deposition process. The wettability switch and manipulative liquid-repellent properties are enabled by orientation change of the dodecyl sulfate ions ionically bonded to the porous membranes during electrodeposition. The porous membrane with adjustable wettability enables it to trap different lubricants on demand within the pores to form liquid-infused porous surfaces with varied liquid-repellent properties. We have demonstrated the application of the (liquid-infused) porous membrane in encryption, controllable droplet transfer, and water harvesting. Moreover, the silver porous membrane can be coated onto a copper mesh, forming a smart antifouling liquid gate capable of allowing water or oil to pass through on request.
Collapse
Affiliation(s)
- Yue Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Liyan Zhao
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Corresponding author.
| |
Collapse
|