201
|
Sung B, Lim G, Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 2003; 23:2899-910. [PMID: 12684477 PMCID: PMC6742068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The central glutamatergic system has been implicated in the pathogenesis of neuropathic pain, and a highly active central glutamate transporter (GT) system regulates the uptake of endogenous glutamate. Here we demonstrate that both the expression and uptake activity of spinal GTs changed after chronic constriction nerve injury (CCI) and contributed to neuropathic pain behaviors in rats. CCI induced an initial GT upregulation up to at least postoperative day 5 primarily within the ipsilateral spinal cord dorsal horn, which was followed by a GT downregulation when examined on postoperative days 7 and 14 by Western blot and immunohistochemistry. Intrathecal administration of the tyrosine kinase receptor inhibitor K252a and the mitogen-activated protein kinase inhibitor PD98059 for postoperative days 1-4 reduced and nearly abolished the initial GT upregulation in CCI rats, respectively. Prevention of the CCI-induced GT upregulation by PD98059 resulted in exacerbated thermal hyperalgesia and mechanical allodynia reversible by the noncompetitive NMDA receptor antagonist MK-801, indicating that the initial GT upregulation hampered the development of neuropathic pain behaviors. Moreover, CCI significantly reduced glutamate uptake activity of spinal GTs when examined on postoperative day 5, which was prevented by riluzole (a positive GT activity regulator) given intrathecally twice a day for postoperative days 1-4. Consistently, riluzole attenuated and gradually reversed neuropathic pain behaviors when the 4 d riluzole treatment was given for postoperative days 1-4 and 5-8, respectively. These results indicate that changes in the expression and glutamate uptake activity of spinal GTs may play a critical role in both the induction and maintenance of neuropathic pain after nerve injury via the regulation of regional glutamate homeostasis, a new mechanism relevant to the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Backil Sung
- Massachusetts General Hospital Pain Center, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
202
|
Abstract
Neuropathic pain is a common and often incapacitating clinical problem for which little useful therapy is presently available. Painful peripheral neuropathies can have many etiologies, among which are trauma, viral infections, exposure to radiation or chemotherapy, and metabolic or autoimmune diseases. Sufferers generally experience both pain at rest and exaggerated, painful sensitivity to light touch. Spontaneous firing of injured nerves is believed to play a critical role in the induction and maintenance of neuropathic pain syndromes. Using a well characterized nerve ligation model in the rat, we demonstrate that hyperpolarization-activated, cyclic nucleotide-modulated (HCN) "pacemaker" channels play a previously unrecognized role in both touch-related pain and spontaneous neuronal discharge originating in the damaged dorsal root ganglion. HCN channels, particularly HCN1, are abundantly expressed in rat primary afferent somata. Nerve injury markedly increases pacemaker currents in large-diameter dorsal root ganglion neurons and results in pacemaker-driven spontaneous action potentials in the ligated nerve. Pharmacological blockade of HCN activity using the specific inhibitor ZD7288 reverses abnormal hypersensitivity to light touch and decreases the firing frequency of ectopic discharges originating in Abeta and Adelta fibers by 90 and 40%, respectively, without conduction blockade. These findings suggest novel insights into the molecular basis of pain and the possibility of new, specific, effective pharmacological therapies.
Collapse
|
203
|
Parada CA, Vivancos GG, Tambeli CH, Cunha FDQ, Ferreira SH. Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fibers causes retrograde mechanical nociceptor sensitization. Proc Natl Acad Sci U S A 2003; 100:2923-8. [PMID: 12589028 PMCID: PMC151442 DOI: 10.1073/pnas.252777799] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study investigated whether activation of presynaptic N-methyl-d-aspartate (NMDA) receptors in the spinal cord produces a retrograde nociceptor sensitization (hypernociception) to mechanical nonnoxious stimulus. By using an electronic version of the von Frey hair test (pressure meter), s.c. intraplantar administration of prostaglandin E(2) (PGE(2)) (50-400 ng per paw) evoked a dose-related ipsilateral paw hypernociception. In contrast, intrathecal (i.t.) administration of NMDA (5-80 ng) and PGE(2) (15-150 ng) evoked dose-related bilateral paw hypernociception. The s.c. intraplantar administration of dipyrone (80-320 microg per paw) or morphine (3 and 9 microg per paw), usually used to antagonize peripheral PGE(2) (100 ng per paw), induced hypernociception and also antagonized the ipsilateral (without affecting the contralateral) paw hypernociception induced by i.t. injections of NMDA (40 ng) or PGE(2) (50 ng). These doses of drugs did not modify the basal mechanical sensitivity of control paws. This result shows that intraspinal NMDA or PGE(2) produces sensitization of the primary sensory neuron in response to mechanical stimulation. In a second series of experiments it was shown that the i.t. treatment with NaV1.8 (SNS/PN3) sodium channel antisense oligodeoxynucleotides, but not mismatch oligodeoxynucleotides, decreased the mRNA expression of sodium tetrodotoxin-resistant channels on the dorsal root ganglia and abolished the mechanical hypernociception induced by i.t. administration of NMDA. Thus, our results support the suggestion that glutamate release in the spinal cord during inflammation causes retrograde hypernociception of nociceptors associated with sodium tetrodotoxin-resistant channels in primary nociceptive sensory neurons.
Collapse
Affiliation(s)
- Carlos Amilcar Parada
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
204
|
Abstract
Acute nociceptive, inflammatory, and neuropathic pain all depend to some degree on the peripheral activation of primary sensory afferent neurons. The localized peripheral administration of drugs, such as by topical application, can potentially optimize drug concentrations at the site of origin of the pain, while leading to lower systemic levels and fewer adverse systemic effects, fewer drug interactions, and no need to titrate doses into a therapeutic range compared with systemic administration. Primary sensory afferent neurons can be activated by a range of inflammatory mediators such as prostanoids, bradykinin, ATP, histamine, and serotonin, and inhibiting their actions represents a strategy for the development of analgesics. Peripheral nerve endings also express a variety of inhibitory neuroreceptors such as opioid, alpha-adrenergic, cholinergic, adenosine and cannabinoid receptors, and agonists for these receptors also represent viable targets for drug development. At present, topical and other forms of peripheral administration of nonsteroidal anti-inflammatory drugs, opioids, capsaicin, local anesthetics, and alpha-adrenoceptor agonists are being used in a variety of clinical states. There also are some clinical data on the use of topical antidepressants and glutamate receptor antagonists. There are preclinical data supporting the potential for development of local formulations of adenosine agonists, cannabinoid agonists, cholinergic ligands, cytokine antagonists, bradykinin antagonists, ATP antagonists, biogenic amine antagonists, neuropeptide antagonists, and agents that alter the availability of nerve growth factor. Given that activation of sensory neurons involves multiple mediators, combinations of agents targeting different mechanisms may be particularly useful. Topical analgesics represent a promising area for future drug development.
Collapse
Affiliation(s)
- Jana Sawynok
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
205
|
Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, White FA, LaMotte RH. Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol 2003; 89:1588-602. [PMID: 12612024 DOI: 10.1152/jn.00855.2002] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated electrophysiological changes in chronically axotomized and neighboring intact dorsal root ganglion (DRG) neurons in rats after either a peripheral axotomy consisting of an L5 spinal nerve ligation (SNL) or a central axotomy produced by an L5 partial rhizotomy (PR). SNL produced lasting hyperalgesia to punctate indentation and tactile allodynia to innocuous stroking of the foot ipsilateral to the injury. PR produced ipsilateral hyperalgesia without allodynia with recovery by day 10. Intracellular recordings were obtained in vivo from the cell bodies (somata) of axotomized and intact DRG neurons, some with functionally identified peripheral receptive fields. PR produced only minor electrophysiological changes in both axotomized and intact somata in L5 DRG. In contrast, extensive changes were observed after SNL in large- and medium-sized, but not small-sized, somata of intact (L4) as well as axotomized (L5) DRG neurons. These changes included (in relation to sham values) higher input resistance, lower current and voltage thresholds, and action potentials with longer durations and slower rising and falling rates. The incidence of spontaneous activity, recorded extracellularly from dorsal root fibers in vitro, was significantly higher (in relation to sham) after SNL but not after PR, and occurred in myelinated but not unmyelinated fibers from both L4 (9.1%) and L5 (16.7%) DRGs. We hypothesize that the changes in the electrophysiological properties of axotomized and intact DRG neurons after SNL are produced by a mechanism associated with Wallerian degeneration and that the hyperexcitability of intact neurons may contribute to SNL-induced hyperalgesia and allodynia.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Veneroni O, Maj R, Calabresi M, Faravelli L, Fariello RG, Salvati P. Anti-allodynic effect of NW-1029, a novel Na(+) channel blocker, in experimental animal models of inflammatory and neuropathic pain. Pain 2003; 102:17-25. [PMID: 12620593 DOI: 10.1016/s0304-3959(02)00183-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NW-1029, a benzylamino propanamide derivative, was selected among several molecules of this chemical class on the basis of its affinity for the [(3)H]batracotoxin ligand displacement of the Na(+) channel complex and also on the basis of its voltage and use-dependent inhibitory action on the Na(+) currents of the rat DRG (dorsal root ganglia) sensory neuron. This study evaluated the analgesic activity of NW-1029 in animal models of inflammatory and neuropathic pain (formalin test in mice, complete Freund's adjuvant and chronic constriction injury in rats) as well as in acute pain test (hot-plate and tail-flick in rats). Orally administered NW-1029 dose-dependently reduced cumulative licking time in the early and late phase of the formalin test (ED(50)=10.1 mg/kg in the late phase). In the CFA model, NW-1029 reversed mechanical allodynia (von Frey test) after both i.p. and p.o. administration (ED(50)=0.57 and 0.53 mg/kg), respectively. Similarly, NW-1029 reversed mechanical allodynia in the CCI model after both i.p. and p.o. administration yielding an ED(50) of 0.89 and 0.67 mg/kg, respectively. No effects were observed in the hot-plate and tail-flick tests up to 30 mg/kg p.o. The compound orally administered (0.1-10 mg/kg) was well tolerated, without signs of neurological impairment up to high doses (ED(50)=470 and 245 mg/kg in rat and mice Rotarod test, respectively). These results indicate that NW-1029 has anti-nociceptive properties in models of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- O Veneroni
- Newron Pharmaceuticals S.p.A Research and Development, Gerenzano, Varese, Italy.
| | | | | | | | | | | |
Collapse
|
207
|
Chaplan SR, Guo HQ, Lee DH, Luo L, Liu C, Kuei C, Velumian AA, Butler MP, Brown SM, Dubin AE. Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J Neurosci 2003; 23:1169-78. [PMID: 12598605 PMCID: PMC6742242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Neuropathic pain is a common and often incapacitating clinical problem for which little useful therapy is presently available. Painful peripheral neuropathies can have many etiologies, among which are trauma, viral infections, exposure to radiation or chemotherapy, and metabolic or autoimmune diseases. Sufferers generally experience both pain at rest and exaggerated, painful sensitivity to light touch. Spontaneous firing of injured nerves is believed to play a critical role in the induction and maintenance of neuropathic pain syndromes. Using a well characterized nerve ligation model in the rat, we demonstrate that hyperpolarization-activated, cyclic nucleotide-modulated (HCN) "pacemaker" channels play a previously unrecognized role in both touch-related pain and spontaneous neuronal discharge originating in the damaged dorsal root ganglion. HCN channels, particularly HCN1, are abundantly expressed in rat primary afferent somata. Nerve injury markedly increases pacemaker currents in large-diameter dorsal root ganglion neurons and results in pacemaker-driven spontaneous action potentials in the ligated nerve. Pharmacological blockade of HCN activity using the specific inhibitor ZD7288 reverses abnormal hypersensitivity to light touch and decreases the firing frequency of ectopic discharges originating in Abeta and Adelta fibers by 90 and 40%, respectively, without conduction blockade. These findings suggest novel insights into the molecular basis of pain and the possibility of new, specific, effective pharmacological therapies.
Collapse
Affiliation(s)
- Sandra R Chaplan
- Neuroscience, Johnson & Johnson Pharmaceutical Research and Development, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Beekwilder JP, O'Leary ME, van den Broek LP, van Kempen GTH, Ypey DL, van den Berg RJ. Kv1.1 channels of dorsal root ganglion neurons are inhibited by n-butyl-p-aminobenzoate, a promising anesthetic for the treatment of chronic pain. J Pharmacol Exp Ther 2003; 304:531-8. [PMID: 12538804 DOI: 10.1124/jpet.102.042135] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we investigated the effects of the local anesthetic n-butyl-p-aminobenzoate (BAB) on the delayed rectifier potassium current of cultured dorsal root ganglion (DRG) neurons using the patch-clamp technique. The majority of the K(+) current of small DRG neurons rapidly activates and slowly inactivates at depolarized voltages. BAB inhibited the whole-cell K(+) current of these neurons with an IC(50) value of 228 microM. Dendrotoxin K (DTX(K)), a specific inhibitor of Kv1.1, reduced the DRG K(+) current at +20 mV by 34%, consistent with an important contribution of channels incorporating the Kv1.1 subunit to the delayed rectifier current. To further investigate the mechanism of BAB inhibition, we examined its effect on Kv1.1 channels heterologously expressed in mammalian tsA201 cells. BAB inhibits the Kv1.1 channels with an IC(50) value of 238 microM, similar to what was observed for the native DRG current. BAB accelerates the opening and closing of Kv1.1, but does not alter the midpoint of steady-state activation. BAB seems to inhibit Kv1.1 by stabilizing closed conformations of the channel. Coexpression with the Kv beta 1 subunit induces rapid inactivation and reduces the BAB sensitivity of Kv1.1. Comparison of the heterologously expressed Kv1.1 and native DRG currents indicates that the Kv beta 1 subunit does not modulate the gating of the DTX(K)-sensitive Kv1.1 channels of DRG neurons. Inhibition of the delayed rectifier current of these neurons may contribute to the long-duration anesthesia attained during the epidural administration of BAB.
Collapse
Affiliation(s)
- J P Beekwilder
- Department of Physiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
209
|
Abstract
The underlying mechanisms of neuropathic pain are poorly understood, and existing treatments are mostly ineffective. We recently demonstrated that antisense mediated "knock-down" of the sodium channel isoform, Na(V)1.8, reverses neuropathic pain behavior after L5/L6 spinal nerve ligation (SNL), implicating a critical functional role of Na(V)1.8 in the neuropathic state. Here we have investigated mechanisms through which Na(V)1.8 contributes to the expression of experimental neuropathic pain. Na(V)1.8 does not appear to contribute to neuropathic pain through an action in injured afferents because the channel is functionally downregulated in the cell bodies of injured neurons and does not redistribute to injured terminals. Although there was little change in Na(V)1.8 protein or functional channels in the cell bodies of uninjured neurons in L4 ganglia, there was a striking increase in Na(V)1.8 immunoreactivity along the sciatic nerve. The distribution of Na(V)1.8 reflected predominantly the presence of functional channels in unmyelinated axons. The C-fiber component of the sciatic nerve compound action potential (CAP) was resistant (>40%) to 100 microm TTX after SNL, whereas both A- and C-fiber components of sciatic nerve CAP were blocked (>90%) by 100 microm TTX in sham-operated rats or the contralateral sciatic nerve of SNL rats. Attenuating expression of Na(V)1.8 with antisense oligodeoxynucleotides prevented the redistribution of Na(V)1.8 in the sciatic nerve and reversed neuropathic pain. These observations suggest that aberrant activity in uninjured C-fibers is a necessary component of pain associated with partial nerve injury. They also suggest that blocking Na(V)1.8 would be an effective treatment of neuropathic pain.
Collapse
|
210
|
Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci 2003. [PMID: 12486159 DOI: 10.1523/jneurosci.22-24-10662.2002] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tissue acidosis is an important feature of inflammation. It is a direct cause of pain and hyperalgesia. Protons activate sensory neurons mainly through acid-sensing ion channels (ASICs) and the subsequent membrane depolarization that leads to action potential generation. We had previously shown that ASIC transcript levels were increased in inflammatory conditions in vivo. We have now found that this increase is caused by the proinflammatory mediators NGF, serotonin, interleukin-1, and bradykinin. A mixture of these mediators increases ASIC-like current amplitude on sensory neurons as well as the number of ASIC-expressing neurons and leads to a higher sensory neuron excitability. An analysis of the promoter region of the ASIC3 encoding gene, an ASIC specifically expressed in sensory neurons and associated with chest pain that accompanies cardiac ischemia, reveals that gene transcription is controlled by NGF and serotonin.
Collapse
|
211
|
André S, Puech-Mallié S, Desmadryl G, Valmier J, Scamps F. Axotomy differentially regulates voltage-gated calcium currents in mice sensory neurones. Neuroreport 2003; 14:147-50. [PMID: 12544847 DOI: 10.1097/00001756-200301200-00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Medium sized dorsal root ganglion neurones are involved in tactile sensation and responsible for allodynia following nerve injury. We examined the effects of sciatic nerve injury on the expression of low and high voltage-gated calcium currents in medium sized neurones isolated from lumbar dorsal root ganglia of adult mice. Based on the relative expression of these calcium channel types, three populations of medium sized neurones were identified in controls. Type I, II and III populations were characterised respectively by small, predominant and no low voltage-gated current compared to the high voltage-gated current. Five days after nerve injury, calcium current expression was differentially affected by axotomy in these three subsets of medium neurones. Altogether, these results suggest that calcium channels are heterogeneously distributed among the medium sized neurones. This heterogeneity should provide specificity not only to sensory functions but also to sensory responses following nerve injury.
Collapse
Affiliation(s)
- Sylvain André
- Inserm U-432, Université Montpellier II, Cedex 5, France
| | | | | | | | | |
Collapse
|
212
|
Gold MS, Weinreich D, Kim CS, Wang R, Treanor J, Porreca F, Lai J. Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 2003; 23:158-66. [PMID: 12514212 PMCID: PMC6742156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
The underlying mechanisms of neuropathic pain are poorly understood, and existing treatments are mostly ineffective. We recently demonstrated that antisense mediated "knock-down" of the sodium channel isoform, Na(V)1.8, reverses neuropathic pain behavior after L5/L6 spinal nerve ligation (SNL), implicating a critical functional role of Na(V)1.8 in the neuropathic state. Here we have investigated mechanisms through which Na(V)1.8 contributes to the expression of experimental neuropathic pain. Na(V)1.8 does not appear to contribute to neuropathic pain through an action in injured afferents because the channel is functionally downregulated in the cell bodies of injured neurons and does not redistribute to injured terminals. Although there was little change in Na(V)1.8 protein or functional channels in the cell bodies of uninjured neurons in L4 ganglia, there was a striking increase in Na(V)1.8 immunoreactivity along the sciatic nerve. The distribution of Na(V)1.8 reflected predominantly the presence of functional channels in unmyelinated axons. The C-fiber component of the sciatic nerve compound action potential (CAP) was resistant (>40%) to 100 microm TTX after SNL, whereas both A- and C-fiber components of sciatic nerve CAP were blocked (>90%) by 100 microm TTX in sham-operated rats or the contralateral sciatic nerve of SNL rats. Attenuating expression of Na(V)1.8 with antisense oligodeoxynucleotides prevented the redistribution of Na(V)1.8 in the sciatic nerve and reversed neuropathic pain. These observations suggest that aberrant activity in uninjured C-fibers is a necessary component of pain associated with partial nerve injury. They also suggest that blocking Na(V)1.8 would be an effective treatment of neuropathic pain.
Collapse
Affiliation(s)
- Michael S Gold
- Department of Oral and Craniofacial Biological Sciences, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
213
|
Mamet J, Baron A, Lazdunski M, Voilley N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci 2002; 22:10662-70. [PMID: 12486159 PMCID: PMC6758460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Tissue acidosis is an important feature of inflammation. It is a direct cause of pain and hyperalgesia. Protons activate sensory neurons mainly through acid-sensing ion channels (ASICs) and the subsequent membrane depolarization that leads to action potential generation. We had previously shown that ASIC transcript levels were increased in inflammatory conditions in vivo. We have now found that this increase is caused by the proinflammatory mediators NGF, serotonin, interleukin-1, and bradykinin. A mixture of these mediators increases ASIC-like current amplitude on sensory neurons as well as the number of ASIC-expressing neurons and leads to a higher sensory neuron excitability. An analysis of the promoter region of the ASIC3 encoding gene, an ASIC specifically expressed in sensory neurons and associated with chest pain that accompanies cardiac ischemia, reveals that gene transcription is controlled by NGF and serotonin.
Collapse
Affiliation(s)
- Julien Mamet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 6097, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | |
Collapse
|
214
|
Peng K, Shu Q, Liu Z, Liang S. Function and solution structure of huwentoxin-IV, a potent neuronal tetrodotoxin (TTX)-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena. J Biol Chem 2002; 277:47564-71. [PMID: 12228241 DOI: 10.1074/jbc.m204063200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a highly potent neurotoxin from the venom of the Chinese bird spider, Selenocosmia huwena. This 4.1-kDa toxin, which has been named huwentoxin-IV, contains 35 residues with three disulfide bridges: Cys-2-Cys-17, Cys-9-Cys-24, and Cys-16-Cys-31, assigned by a chemical strategy including partial reduction of the toxin and sequence analysis of the modified intermediates. It specifically inhibits the neuronal tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel with the IC(50) value of 30 nm in adult rat dorsal root ganglion neurons, while having no significant effect on the tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel. This toxin seems to be a site I toxin affecting the sodium channel through a mechanism quite similar to that of TTX: it suppresses the peak sodium current without altering the activation or inactivation kinetics. The three-dimensional structure of huwentoxin-IV has been determined by two-dimensional (1)H NMR combined with distant geometry and simulated annealing calculation by using 527 nuclear Overhauser effect constraints and 14 dihedral constraints. The resulting structure is composed of a double-stranded antiparallel beta-sheet (Leu-22-Ser-25 and Trp-30-Tyr-33) and four turns (Glu-4-Lys-7, Pro-11-Asp-14, Lys-18-Lys-21 and Arg-26-Arg-29) and belongs to the inhibitor cystine knot structural family. After comparison with other toxins purified from the same species, we are convinced that the positively charged residues of loop IV (residues 25-29), especially residue Arg-26, must be crucial to its binding to the neuronal tetrodotoxin-sensitive voltage-gated sodium channel.
Collapse
Affiliation(s)
- Kuan Peng
- College of Life Sciences, Hunan Normal University, Changsha 410081, People's Republic of China
| | | | | | | |
Collapse
|
215
|
Craner MJ, Klein JP, Renganathan M, Black JA, Waxman SG. Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann Neurol 2002; 52:786-92. [PMID: 12447933 DOI: 10.1002/ana.10364] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although pain is experienced by many patients with diabetic neuropathy, the pathophysiology of painful diabetic neuropathy is not understood. Substantial evidence indicates that dysregulated sodium channel gene transcription contributes to hyperexcitability of dorsal root ganglion neurons, which may produce neuropathic pain after axonal transection. In this study, we examined sodium channel mRNA and protein expression in dorsal root ganglion neurons in rats with streptozotocin-induced diabetes and tactile allodynia, using in situ hybridization and immunocytochemistry for sodium channels Na(v)1.1, Na(v)1.3, Na(v)1.6, Na(v)1.7, Na(v)1.8, and Na(v)1.9. Our results show that, in rats with experimental diabetes, there is a significant upregulation of mRNA for the Na(v)1.3, Na(v)1.6, and Na(v)1.9 sodium channels and a downregulation of Na(v)1.8 mRNA 1 and 8 weeks after onset of allodynia. Channel protein levels display parallel changes. Our results demonstrate dysregulated expression of the genes for sodium channels Na(v)1.3, Na(v)1.6, Na(v)1.8, and Na(v)1.9 in dorsal root ganglion neurons in experimental diabetes and suggest that misexpression of sodium channels contributes to neuropathic pain associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Matthew J Craner
- Department of Neurology, Paralyzed Veterans of America/Eastern Paralyzed Veterans Association Center for Neuroscience and Regeneration Research, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
216
|
Abdulla FA, Smith PA. Changes in Na(+) channel currents of rat dorsal root ganglion neurons following axotomy and axotomy-induced autotomy. J Neurophysiol 2002; 88:2518-29. [PMID: 12424291 DOI: 10.1152/jn.00913.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Section of rat sciatic nerve (axotomy) increases the excitability of neurons in the L(4)-L(5) dorsal root ganglia (DRG). These changes are more pronounced in animals that exhibit a self-mutilatory behavior known as autotomy. We used whole cell recording to examine changes in the tetrodotoxin-sensitive (TTX-S) and the tetrodotoxin-resistant (TTX-R) components of sodium channel currents (I(Na)) that may contribute to axotomy-induced increases in excitability. Cells were initially divided on the basis of size into "large," "medium," and "small" groups. TTX-S I(Na) predominated in "large" cells, whereas TTX-R I(Na) predominated in some, but not all "small cells." "Small" cells were therefore subdivided into "small-slow" cells, which predominantly exhibited TTX-R I(Na) and "small fast" cells that exhibited more TTX-S I(Na). In contrast to results obtained in other laboratories, where slightly different experimental procedures were used, we found that axotomy increased TTX-R and/or TTX-S I(Na) and slowed inactivation. The effects were greatest in "small-slow" cells and least in "large" cells. The changes promoted by axotomy were expressed more clearly in animals that exhibited autotomy. Also, the presence of autotomy correlated with a shift in the properties of I(Na) in "large" rather than "small-slow," putative nociceptive cells. These trends parallel previous observations on axotomy-induced increases in excitability, spike height, and spike width that are also greatest in "small" cells and least in "large" cells. In addition, the presence of autotomy correlates with an increase in excitability of "large" rather than "small" cells. Increases in TTX-R and TTX-S I(Na) thus coincide with axotomy-induced increases in excitability and alterations in spike shape across the whole population of sensory neurons. Injury-induced changes of this type are likely associated with the onset of chronic pain in humans.
Collapse
Affiliation(s)
- Fuad A Abdulla
- University Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
217
|
Kim DS, Choi JO, Rim HD, Cho HJ. Downregulation of voltage-gated potassium channel alpha gene expression in dorsal root ganglia following chronic constriction injury of the rat sciatic nerve. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 105:146-52. [PMID: 12399117 DOI: 10.1016/s0169-328x(02)00388-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hyperexcitability and ectopic spontaneous discharge (ESD) of primary sensory neurons may be important for the generation or maintenance of neuropathic pain. To investigate the relationship between the electrical abnormalities of injured neurons and voltage-gated potassium (Kv) channel gene expression, the expression of the Kv channel alpha genes in the dorsal root ganglion (DRG) was monitored by reverse transcription-polymerase chain reaction (RT-PCR) in a chronic constriction injury (CCI) model of neuropathic pain. Electrophoresis of the RT-PCR products showed the presence of several Kv alpha transcript types with various levels of basal expression in lumbar 4, 5, and 6 DRGs. The Kv 1.2, 1.4, 2.2, 4.2, and 4.3 mRNA levels in the ipsilateral DRG were 63-73% of the contralateral sides of the same animal at 3 days and 34-63% at 7 days following CCI. In addition, Kv 1.1 mRNA levels declined to about 72% of the contralateral level at 7 days. No significant changes in Kv 1.5, 1.6, 2.1, 3.1, 3.2, 3.5, and 4.1 mRNA levels were detectable in the ipsilateral DRG at both days. These results suggest that the downregulation of Kv channel alpha gene expression in the DRG following CCI may result in the reduction of K(+) current and contribute to neuronal excitability and ESD generation.
Collapse
Affiliation(s)
- Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101 Dongin Dong, Taegu 700-422, South Korea
| | | | | | | |
Collapse
|
218
|
Craner MJ, Klein JP, Black JA, Waxman SG. Preferential expression of IGF-I in small DRG neurons and down-regulation following injury. Neuroreport 2002; 13:1649-52. [PMID: 12352620 DOI: 10.1097/00001756-200209160-00016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, we examined the expression of insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) in dorsal root ganglia (DRG) neurons in two rodent models of nerve injury: sciatic nerve axotomy and streptozotocin-induced (STZ) painful diabetic neuropathy. We demonstrate that IGF-I and its receptor are preferentially expressed in small (< 25 microm diameter) DRG neurons. There is a significant down-regulation in the expression of IGF-I and IGF-IR in the small DRG neurons of STZ rats by 59% and 71%, respectively. A parallel reduction in expression is shown in axotomized < 25 microm diameter DRG neurons for IGF-I (47%) but not for IGF-IR. The loss of IGF-I support to a population of predominantly nociceptive neurons may contribute to neuropathic pain observed in these models.
Collapse
Affiliation(s)
- Matthew J Craner
- Department of Neurology LCI 707 and PVA/EPVA Center for Neuroscience and Regeneration Research, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
219
|
Goudet C, Chi CW, Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon 2002; 40:1239-58. [PMID: 12220709 DOI: 10.1016/s0041-0101(02)00142-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the different scorpion species, Buthus martensi Karsch (BmK), a widely distributed scorpion species in Asia, has received a lot of attention. Indeed, over the past decade, more than 70 different peptides, toxins or homologues have been isolated and more peptides are probably still to be revealed. This review is focusing on the many peptides isolated from the venom of this scorpion, their targets, their genes and their structures. The aim is to give both a 'state of the art' view of the research on BmK venom and an illustration of the complexity of this scorpion venom. In the present manuscript, we have listed the different ion channel toxins and homologues isolated from the venom of BmK, either from the literature or from databases. We have described here 51 long-chain peptides related to the Na(+) channel toxins family: 34 related to the alpha-toxin family, four related to the excitatory insect toxin family, 10 related to the depressant insect toxin, one beta-like toxin plus two peptides, BmK AS and AS1, that act on ryanodine receptors. We also listed 18 peptides related to the K(+) channel toxin family: 14 short chain toxins or homologues, two long chain K(+) toxin homologues and two putative K(+) toxin precursors. Additionally, two chlorotoxin like peptides (Bm-12 and 12 b) have been isolated in the venom of BmK. Besides these ion channels toxins, two peptides without disulfide bridges (the bradykinin-potentiating peptide BmK bpp and BmK n1) and three peptides with no known functions have also been discovered in this venom. We have also taken the opportunity of this review to update the classification of scorpion K(+) toxins () which now presents 17 subfamilies instead of the 12 described earlier. The work on the venom of BmK led to the discovery of two new subfamilies, alpha-KT x 14 and alpha-KT x 17.
Collapse
Affiliation(s)
- Cyril Goudet
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Leuven, Van Evenstraat 4, B-3000, Leuven, Belgium
| | | | | |
Collapse
|
220
|
Abe M, Kurihara T, Han W, Shinomiya K, Tanabe T. Changes in expression of voltage-dependent ion channel subunits in dorsal root ganglia of rats with radicular injury and pain. Spine (Phila Pa 1976) 2002; 27:1517-24; discussion 1525. [PMID: 12131710 DOI: 10.1097/00007632-200207150-00007] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Changes in expression of voltage-dependent ion channel subunits were examined in the radicular pain state. Furthermore, antinociceptive effects of gabapentin on radicular pain were compared with effects on peripheral neuropathic pain. OBJECTIVES To clarify molecular substrates involved in the development of radicular pain, and to investigate the responsiveness of radicular pain to gabapentin. SUMMARY OF BACKGROUND DATA Peripheral nerve injuries are known to induce dynamic changes of voltage-dependent Na+ and Ca2+ channel subunits expression in dorsal root ganglion neurons. However, the expression profiles of Na+ and Ca2+ channel subunits in the radicular pain state have not been examined. METHODS Two radicular pain models and one peripheral neuropathic pain model were prepared. By using semiquantitative reverse transcriptase-polymerase chain reaction, the expression levels of several Na+ and Ca2+ channel subunits in the dorsal root ganglions of these pain model rats were investigated. The antinociceptive effects of gabapentin were examined in a behavioral study using the aforementioned pain models. RESULTS All three neuropathic pain operations induced comparable mechanical allodynia and thermal hyperalgesia. The upregulation of the Na(v)1.3 Na+ channel and Ca(v)alpha2delta Ca2+ channel subunits was observed only in the peripheral nerve injury model. A downregulation of the Na(v)1.9 channel was observed in all three pain model rats. A lower dose of gabapentin was significantly more effective in alleviating the mechanical allodynia of rats with radicular pain. CONCLUSIONS The reduction of Na(v)1.9 found in all three models may link to the neuropathic pain state, including radicular pain. The lower sensitivity to gabapentin in rats with peripheral neuropathic pain might be partly explained by the marked upregulation of Ca(v)alpha2delta in the dorsal root ganglions, suggesting that gabapentin may be more effective in radicular pain treatment.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
221
|
Erichsen HK, Blackburn-Munro G. Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain 2002; 98:151-61. [PMID: 12098627 DOI: 10.1016/s0304-3959(02)00039-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spared nerve injury (SNI) model involves a lesion of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the sural nerve intact. The changes in pain-like sensation of the injured animals appear to correlate with a number of symptoms presented in human patients with neuropathic pain syndromes. In order to characterise the SNI model pharmacologically, reflex nociceptive responses to mechanical and cold stimulation were measured after systemic administration of morphine, mexiletine, gabapentin and the glutamate receptor antagonists, MK-801 and NS1209. We observed that injection of morphine (6 mg/kg, s.c.) in non-sedative doses significantly attenuated mechanical hypersensitivity in response to von Frey hair and pin prick stimulation and cold hypersensitivity in response to ethyl chloride. The sodium-channel blocker, mexiletine (37.5 mg/kg, i.p.), relieved both cold allodynia and mechanical hyperalgesia, but the most distinct and prolonged effect was observed on mechanical allodynia. Gabapentin (100 mg/kg, i.p.) significantly alleviated mechanical allodynia for at least 3h, while no significant effects were observed for either mechanical hyperalgesia or cold allodynia. In contrast, the NMDA receptor antagonist MK-801 (0.1 mg/kg, i.p.) and the AMPA receptor antagonist NS1209 (6 mg/kg, i.p.) did not relieve any of the pain-like behaviours of the SNI animals. The present study has shown that a variety of drugs with proven analgesic potency in other models of chronic pain, have differing analgesic profiles in the SNI model of neuropathic pain.
Collapse
|
222
|
Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu SH, Cheng XP, Yan Q, Zhu ZD, Zhang X, Chen Z, Han ZG, Zhang X. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 2002; 99:8360-5. [PMID: 12060780 PMCID: PMC123072 DOI: 10.1073/pnas.122231899] [Citation(s) in RCA: 417] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenotypic modification of dorsal root ganglion (DRG) neurons represents an important mechanism underlying neuropathic pain. However, the nerve injury-induced molecular changes are not fully identified. To determine the molecular alterations in a broader way, we have carried out cDNA array on the genes mainly made from the cDNA libraries of lumbar DRGs of normal rats and of rats 14 days after peripheral axotomy. Of the 7,523 examined genes and expressed sequence tags (ESTs), the expression of 122 genes and 51 expressed sequence tags is strongly changed. These genes encompass a large number of members of distinct families, including neuropeptides, receptors, ion channels, signal transduction molecules, synaptic vesicle proteins, and others. Of particular interest is the up-regulation of gamma-aminobutyric acid(A) receptor alpha5 subunit, peripheral benzodiazepine receptor, nicotinic acetylcholine receptor alpha7 subunit, P2Y1 purinoceptor, Na(+) channel beta2 subunit, and L-type Ca(2+) channel alpha2delta-1 subunit. Our findings therefore reveal dynamic and complex changes in molecular diversity among DRG neurons after axotomy. Sequences reported in this paper have been deposited in the GenBank database (accession numbers BG 662484-BG 673712)
Collapse
Affiliation(s)
- Hua-Sheng Xiao
- Laboratory of Sensory System, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Smith LJ, Shih A, Miletic G, Miletic V. Continual systemic infusion of lidocaine provides analgesia in an animal model of neuropathic pain. Pain 2002; 97:267-273. [PMID: 12044623 DOI: 10.1016/s0304-3959(02)00028-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We examined whether continual constant-rate infusion of lidocaine would provide analgesia during the initial post-injury phase in the chronic constriction injury model of neuropathic pain. Male Sprague-Dawley rats were divided into control and ligated groups and infused with saline or lidocaine (0.15, 0.33, 0.67, and 1.3mg/kg/h) via subcutaneously implanted Alzet((R)) osmotic minipumps. Thermal withdrawal latencies were obtained prior (Day 0) and 3 days after loose sciatic ligation and pump implantation surgery. Ligated animals receiving lidocaine at 0.67 or 1.3mg/kg/h exhibited no change in withdrawal latency on Day 3 after surgery, indicating that lidocaine at these doses prevented the development of thermal hyperalgesia as a sign of neuropathic pain. In contrast, ligated animals treated with saline or lidocaine at 0.15 or 0.33mg/kg/h exhibited hyperalgesia on Day 3 after surgery, indicating that these lower doses of lidocaine failed to provide analgesia. Control animals treated with saline or any of the lidocaine doses exhibited no change in withdrawal latencies between Day 0 and Day 3. In a separate group of ligated animals, lidocaine infusion (0.67mg/kg/h) that was started 24h after sciatic ligation surgery reversed the already present thermal hyperalgesia. Average plasma lidocaine concentrations were 0.11, 0.36, and 0.45microg/ml for animals receiving 0.33, 0.67 and 1.3mg/kg/h of lidocaine, respectively. These results suggest that continual systemic infusion of lidocaine prevents or reverses the development of neuropathic pain following chronic constriction injury. These results add to the increasing body of evidence supporting the therapeutic value of preemptive and post-operative lidocaine administration for the relief of neuropathic pain.
Collapse
Affiliation(s)
- Lesley J Smith
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA
| | | | | | | |
Collapse
|
224
|
Abstract
When the degree of genetic determination of a trait (i.e. its heritability) is high, one tends to presume that environmental factors will not modify its expression by much. Contrary to this expectation, we show here in rats that a psychosocial-behavioral variable, the identity of cagemates, can largely over-ride genetic predisposition to pain behavior. We used selection-line rats that consistently show high (HA) or low (LA) pain phenotype (autotomy) in the neuroma model of neuropathic pain. Normally, HA animals show autotomy after nerve injury while LA animals do not. However, when caged together with HA rats, LA rats showed high levels of autotomy. This occurred even when the individual HA cagemates were familiar preoperatively, and it did not depend on the actual performance of autotomy by the HA rats. Indeed, cage bedding soiled by HA rats was sufficient to induce a modest level of autotomy in LA animals. Chemical cues associated with HA rats, perhaps in combination with behavioral characteristics, are apparently able to induce pain phenotype despite the powerful protection otherwise rendered by the LA genotype. Social factors must be considered in behavior-related research on rodents that have undergone genetic modification. More generally, the overwhelming influence that psychosocial-behavioral variables have on pain perception, and on pain behavior, in humans may have evolutionary roots deeper than has previously been appreciated.
Collapse
Affiliation(s)
- Pnina Raber
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
225
|
Abstract
The Na(v)1.9 Na(+) channel (also known as NaN) is preferentially expressed in nociceptive neurons of the dorsal root ganglia (DRG) and trigeminal ganglia. Na(v)1.9 produces a persistent, tetrodotoxin-resistant current with wide overlap between activation and steady-state inactivation, and appears to modulate resting potential and to amplify small depolarizations. These unique properties indicate that Na(v)1.9 has significant effects on the electroresponsive properties of primary nociceptive neurons. Downregulation of Na(v)1.9, which results from a lack of peripheral glial cell-derived neurotrophic factor following peripheral axotomy, might retune DRG neurons and contribute to their hyperexcitability after nerve injury. Thus, Na(v)1.9 appears to play a key role in nociception and is an attractive target in the search for more effective treatments for pain.
Collapse
Affiliation(s)
- Sulayman Dib-Hajj
- Department of Neurology and PVA/EPVA Neuroscience Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
226
|
Farquhar-Smith WP, Jaggar SI, Rice ASC. Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors. Pain 2002; 97:11-21. [PMID: 12031775 DOI: 10.1016/s0304-3959(01)00419-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cannabinoids have previously been shown to possess analgesic properties in a model of visceral hyperalgesia in which the neurotrophin, nerve growth factor (NGF), plays a pivotal role. The purpose of this study was to investigate the antihyperalgesic effects of two cannabinoids in NGF-evoked visceral hyperalgesia in order to test the hypothesis that endocannabinoids may modulate the NGF-driven elements of inflammatory hyperalgesia. Intra-vesical installation of NGF replicates many features of visceral hyperalgesia, including a bladder hyper-reflexia and increased expression of the immediate early gene c fos in the spinal cord. We investigated the action of anandamide and palmitoylethanolamide (PEA) on these parameters. Both anandamide (at a dose of 25 mg/kg) and PEA (at a dose of 2.5 mg/kg) attenuated the bladder hyper-reflexia induced by intra-vesical NGF. The use of cannabinoid CB1 receptor (SR141617A) and CB2 receptor (SR144528) antagonists suggested that the effect of anandamide was mediated by both CB1 and CB2 cannabinoid receptors whilst the action of PEA was via CB2 (or CB2-like) receptors only. Furthermore, anandamide (25 mg/kg) and PEA (2.5 mg/kg) reduced intra-vesical NGF-evoked spinal cord Fos expression at the appropriate level (L6) by 35 and 43%, respectively. However, neither CB1 nor CB2 receptor antagonists altered the action of anandamide. PEA-induced reduction in Fos expression was abrogated by SR144528. These data add to the growing evidence of a therapeutic potential for cannabinoids, and support the hypothesis that the endogenous cannabinoid system modulates the NGF-mediated components of inflammatory processes.
Collapse
Affiliation(s)
- W Paul Farquhar-Smith
- Pain Research, Department of Anaesthetics, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | | | | |
Collapse
|
227
|
Liu CN, Devor M, Waxman SG, Kocsis JD. Subthreshold oscillations induced by spinal nerve injury in dissociated muscle and cutaneous afferents of mouse DRG. J Neurophysiol 2002; 87:2009-17. [PMID: 11929919 PMCID: PMC2613787 DOI: 10.1152/jn.00705.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Whole cell patch-clamp recordings were obtained from dissociated mouse lumbar dorsal root ganglion (DRG) neurons. Recordings were made from control neurons and neurons axotomized by transection of the corresponding spinal nerve 1-2 days prior to dissociation. Medium to large muscle and cutaneous afferent neurons were identified by retrograde transport of True Blue or Fluoro-Gold injected into the corresponding peripheral tissue. Action potentials were classified as non-inflected spikes (A(0)) and inflected spikes (A(inf)). High-frequency, low-amplitude subthreshold membrane potential oscillations were observed in 8% of control A(0) neurons, but their incidence increased to 31% in the nerve injury group. Fifty percent of axotomized muscle afferent A(0) cells displayed oscillations, while 26% of axotomized cutaneous afferents exhibited oscillations. Lower-frequency oscillations were also observed in a small fraction (4%) of A(inf) neurons on strong depolarization. Their numbers were increased after the nerve injury, but the difference was not statistically significant. The oscillations often triggered burst firing in distinct patterns of action potential activity. These results indicate that injury-induced membrane oscillations of DRG neurons, previously observed in whole DRG of rats, are present in dissociated DRG neurons of the adult mouse. Moreover, these observations indicate that both muscle and cutaneous afferents in the A(beta) size range give rise to injury-induced membrane oscillations, with muscle afferents being more prone to develop oscillations.
Collapse
Affiliation(s)
- Chang-Ning Liu
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
228
|
Ogata N, Ohishi Y. Molecular diversity of structure and function of the voltage-gated Na+ channels. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 88:365-77. [PMID: 12046980 DOI: 10.1254/jjp.88.365] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of different isoforms of voltage-sensitive Na+ channels have now been identified. The recent three-dimensional analysis of Na+ channels has unveiled a unique and unexpected structure of the Na+ channel protein. Na+ channels can be classified into two categories on the basis of their amino acid sequence, Nav1 isoforms currently comprising nine highly homologous clones and Nax that possesses structure diverging from Nav1, especially in several critical functional motifs. Although the functional role of Nav1 isoforms is primarily to form an action potential upstroke in excitable cells, recent biophysical studies indicate that some of the Nav1 isoforms can also influence subthreshold electrical activity through persistent or resurgent Na+ currents. Nav1.8 and Nav1.9 contain an amino acid sequence common to tetrodotoxin resistant Na+ channels and are localized in peripheral nociceptors. Recent patch-clamp experiments on dorsal root ganglion neurons from Nav1.8-knock-out mice unveiled an additional tetrodotoxin-resistant Na+ current. The demonstration of its dependence on Nav1.9 provides evidence for a specialized role of Nav1.9, together with Nav1.8, in pain sensation. Although Nax has not been successfully expressed in an exogenous system, recent investigations using relevant native tissues combined with gene-targeting have disclosed their unique "concentration"-sensitive but not voltage-sensitive roles. In this context, these emerging views of novel functions mediated by different types of Na+ channels are reviewed, to give a perspective for future research on the expanding family of Na+ channel clones.
Collapse
Affiliation(s)
- Nobukuni Ogata
- Department of Physiology, Hiroshima University School of Medicine, Japan.
| | | |
Collapse
|
229
|
Farrag KJ, Costa SKP, Docherty RJ. Differential sensitivity to tetrodotoxin and lack of effect of prostaglandin E2 on the pharmacology and physiology of propagated action potentials. Br J Pharmacol 2002; 135:1449-56. [PMID: 11906958 PMCID: PMC1573269 DOI: 10.1038/sj.bjp.0704607] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
1. We have studied the effects of prostaglandin E(2) (PGE(2)) on action potential propagation in the isolated, desheathed vagus and saphenous nerves of rats using an extracellular grease gap recording method. 2. PGE(2) evoked a small depolarization of vagus nerves but had no effect on the stimulation threshold, size or latency of either the A wave (corresponding to conduction in A fibres) or the C wave (corresponding to conduction in C fibres) of the compound action potential (CAP) recorded from either vagus or saphenous nerves. 3. Lidocaine (0.01 - 10 mM) reduced all components of the CAP of both vagus and saphenous nerves. PGE(2) had no significant effect on the sensitivity of any component of the CAP to lidocaine. 4. Tetrodotoxin (TTX, 10 microM) blocked completely both the A wave and the C wave of the CAP in either vagus or saphenous nerves. 5. In saphenous nerve preparations the A wave was blocked by lower concentrations of TTX than the C wave or any component of the CAP in vagus nerve preparations which suggests that somatosensory A fibres express a different sub-type of TTX-sensitive voltage-gated sodium channel (VGSC) than somatosensory C-fibres or visceral sensory fibres. 6. Chemical activation of VGSCs with veratridine (10 or 50 microM) induced a depolarization in either nerve. The depolarization induced by 50 microM veratridine was blocked by 10 microM TTX. 7. Although TTX-insensitive VGSCs are expressed by some vagal and some somatosensory neurones they do not appear to be expressed functionally in the axons.
Collapse
Affiliation(s)
- K J Farrag
- Sensory Function Group, Centre for Neuroscience, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 1UL
| | - S K P Costa
- Sensory Function Group, Centre for Neuroscience, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 1UL
| | - R J Docherty
- Sensory Function Group, Centre for Neuroscience, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 1UL
- Author for correspondence:
| |
Collapse
|
230
|
Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials. J Neurosci 2002. [PMID: 11826148 DOI: 10.1523/jneurosci.22-03-01187.2002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Afferent discharge generated ectopically in the cell soma of dorsal root ganglion (DRG) neurons may play a role in normal sensation, and it contributes to paraesthesias and pain after nerve trauma. This activity is critically dependent on subthreshold membrane potential oscillations; oscillatory sinusoids that reach threshold trigger low-frequency trains of intermittent spikes. Ectopic firing may also enter a high-frequency bursting mode, however, particularly in the event of neuropathy. Bursting greatly amplifies the overall ectopic barrage. In the present report we show that subthreshold oscillations and burst discharge occur in vivo, as they do in vitro. We then show that although the first spike in each burst is triggered by an oscillatory sinusoid, firing within bursts is maintained by brief regenerative post-spike depolarizing afterpotentials (DAPs). Numerical simulations were used to identify the cellular process underlying rebound DAPs, and hence the mechanism of the spike bursts. Finally, we show that slow ramp and hold (tonic) depolarizations of the sort that occur in DRG neurons during physiologically relevant events are capable of triggering sustained ectopic bursting, but only in cells with subthreshold oscillatory behavior. Oscillations and DAPs are an essential substrate of ectopic burst discharge. Therefore, any consideration of the ways in which cellular regulation of ion channel synthesis and trafficking implement normal sensation and, when disrupted, bring about neuropathic pain must take into account the effects of this regulation on oscillations and bursting.
Collapse
|
231
|
Lee YJ, Zachrisson O, Tonge DA, McNaughton PA. Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons. Mol Cell Neurosci 2002; 19:186-200. [PMID: 11860272 DOI: 10.1006/mcne.2001.1073] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bradykinin B2 receptor mRNA was detected at low levels, both by RT-PCR and by in situ hybridization, in freshly isolated dorsal root ganglia (DRG) and in ganglia cultured in the absence of neurotrophic factors, but was strongly upregulated by culture in the presence of nerve growth factor (NGF). The effect of NGF is mediated via TrkA receptors. The related neurotrophins, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, were ineffective in upregulating B2 mRNA, but a small upregulation was seen with the unrelated neurotrophin glial cell line-derived neurotrophic factor (GDNF). Surface membrane B2 receptor expression, detected by immunofluorescence using a B2-specific antibody, was low in outgrowing axons cultured in the absence of neurotrophic factors, but was elevated by addition of NGF or GDNF. Conditioned media prepared by incubating injured nerve, skin, or muscle had a similar effect to NGF in upregulating B2 mRNA and protein expression, and the activity was largely removed by neutralization of NGF in the conditioned medium with an anti-NGF antibody. After nerve crush injury in vivo an enhancement in B2 mRNA expression was seen, peaking after 7 days and returning to precrush levels after 14 days. In all conditions tested, the proportion of neurons expressing B2 mRNA remained the same at around 23% of small neurons, suggesting that upregulation only occurs in the B2-positive neurons. These experiments show that NGF, and to a lesser extent GDNF, upregulates the expression of bradykinin B2 mRNA and B2 receptor protein in the surface membrane of DRG neurons and that NGF is an important factor responsible for upregulating bradykinin B2 receptor expression after nerve crush injury in vivo.
Collapse
MESH Headings
- Animals
- Bradykinin/metabolism
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/injuries
- Ganglia, Spinal/metabolism
- Glial Cell Line-Derived Neurotrophic Factor
- Growth Cones/drug effects
- Growth Cones/metabolism
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, Inbred Strains
- Nerve Crush
- Nerve Growth Factor/antagonists & inhibitors
- Nerve Growth Factor/metabolism
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/pharmacology
- Nerve Regeneration/drug effects
- Nerve Regeneration/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/pharmacology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Bradykinin B2
- Receptors, Bradykinin/drug effects
- Receptors, Bradykinin/genetics
- Receptors, Bradykinin/metabolism
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Yih-Jing Lee
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1QJ, United Kingdom
| | | | | | | |
Collapse
|
232
|
Abstract
Ectopic spike activity, generated at low levels in intact sensory dorsal root ganglia and intensified following axotomy, is an important cause of neuropathic pain. The spikes are triggered by subthreshold membrane potential oscillations. The depolarizing phase of oscillation sinusoids is due to a phasic voltage-sensitive Na(+) conductance (gNa(+)). Here we examine the repolarizing phase for which K(+) conductance (gK(+)) is implicated. In vivo, gK(+) blockers have excitatory effects inconsistent with the elimination of oscillations. Indeed, using excised dorsal root ganglia in vitro, we found that gK(+) block does not eliminate oscillations; on the contrary, it has a variety of facilitatory effects. However, oscillations were eliminated by shifting the K(+) reversal potential so as to neutralize voltage-insensitive K(+) leak channels. Based on these data, we propose a novel oscillatory model: oscillation sinusoids are due to reciprocation between a phasically activating voltage-dependent, tetrodotoxin-sensitive Na(+) conductance and passive, voltage-independent K(+) leak. In drug-free media, voltage-sensitive K(+) channels act to suppress oscillations and increase their frequency. Numerical simulations support this model and account for the effects of gK(+) block. Oscillations in dorsal root ganglia neurones appear to be based on the simplest possible configuration of ionic conductances compatible with sustained high frequency oscillatory behaviour. The oscillatory mechanism might be exploited in the search for novel analgesic drugs.
Collapse
Affiliation(s)
- Ron Amir
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
233
|
Amir R, Michaelis M, Devor M. Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials. J Neurosci 2002; 22:1187-98. [PMID: 11826148 PMCID: PMC6758504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2001] [Revised: 11/26/2001] [Accepted: 10/23/2001] [Indexed: 02/23/2023] Open
Abstract
Afferent discharge generated ectopically in the cell soma of dorsal root ganglion (DRG) neurons may play a role in normal sensation, and it contributes to paraesthesias and pain after nerve trauma. This activity is critically dependent on subthreshold membrane potential oscillations; oscillatory sinusoids that reach threshold trigger low-frequency trains of intermittent spikes. Ectopic firing may also enter a high-frequency bursting mode, however, particularly in the event of neuropathy. Bursting greatly amplifies the overall ectopic barrage. In the present report we show that subthreshold oscillations and burst discharge occur in vivo, as they do in vitro. We then show that although the first spike in each burst is triggered by an oscillatory sinusoid, firing within bursts is maintained by brief regenerative post-spike depolarizing afterpotentials (DAPs). Numerical simulations were used to identify the cellular process underlying rebound DAPs, and hence the mechanism of the spike bursts. Finally, we show that slow ramp and hold (tonic) depolarizations of the sort that occur in DRG neurons during physiologically relevant events are capable of triggering sustained ectopic bursting, but only in cells with subthreshold oscillatory behavior. Oscillations and DAPs are an essential substrate of ectopic burst discharge. Therefore, any consideration of the ways in which cellular regulation of ion channel synthesis and trafficking implement normal sensation and, when disrupted, bring about neuropathic pain must take into account the effects of this regulation on oscillations and bursting.
Collapse
Affiliation(s)
- Ron Amir
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
234
|
Shembalkar PK, Till S, Boettger MK, Terenghi G, Tate S, Bountra C, Anand P. Increased sodium channel SNS/PN3 immunoreactivity in a causalgic finger. Eur J Pain 2002; 5:319-23. [PMID: 11558987 DOI: 10.1053/eujp.2001.0251] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The sodium channels SNS/PN3 and NaN/SNS2 are regulated by the neurotrophic factors-nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF), and may play an important role in the development of pain after nerve injury or inflammation. These key molecules have been studied in an amputated causalgic finger and control tissues by immunohistochemistry. There was a marked increase in the number and intensity of SNS/PN3-immunoreactive nerve terminals in the affected finger, while GDNF-immunoreactivity was not observed, in contrast to controls. No differences were observed for NGF, trk A, NT-3 or NaN/SNS2-immunoreactivity. While further studies are required, these findings suggest that accumulation of SNS/PN3 and/or loss of GDNF may contribute to pain in causalgia, and that selective blockers of SNS/PN3 and/or rhGDNF may provide effective novel treatments.
Collapse
Affiliation(s)
- P K Shembalkar
- Peripheral Neuropathy Unit, Department of Neurology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
235
|
Kim DS, Yoon CH, Lee SJ, Park SY, Yoo HJ, Cho HJ. Changes in voltage-gated calcium channel alpha(1) gene expression in rat dorsal root ganglia following peripheral nerve injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:151-6. [PMID: 11731020 DOI: 10.1016/s0169-328x(01)00285-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although an increase in the excitability and ectopic spontaneous discharge (ESD) of primary sensory neurons can lead to abnormal burst activity, which is associated with neuropathic pain, the underlying molecular mechanisms are not fully understood. To investigate the relationship between these electrical abnormalities in injured neurons and voltage-gated calcium channel (VGCC) gene expression, reverse transcription-polymerase chain reaction (RT-PCR) was used to monitor the expression of the VGCC alpha(1) gene in the dorsal root ganglion (DRG) following chronic constriction injury (CCI) and axotomy of the rat sciatic nerve. Electrophoresis of the RT-PCR products showed the presence of multiple types of VGCC alpha(1) transcripts with various levels of basal expression in lumbar 4, 5, and 6 DRGs. CCI decreased alpha(1C), alpha(1D), alpha(1H), and alpha(1I) mRNA expression at 7 days in the ipsilateral DRG, to approximately 34-50% of the contralateral side. The same transcripts were repressed 7 days after sciatic axotomy and their reduction levels proved similar to those of CCI. Considering that changes of the intracellular calcium concentration modify the maintenance of ESD in injured DRG, these results suggest that the downregulation of alpha(1C), alpha(1D), alpha(1H) and alpha(1I) subunit gene expression in the rat DRG following peripheral nerve injury may contribute to the production of ESD associated with damaged nerves.
Collapse
Affiliation(s)
- D S Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101 Dongin Dong, 700-422, Taegu, South Korea
| | | | | | | | | | | |
Collapse
|
236
|
Affiliation(s)
- W W Muir
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus 43210-1089, USA
| | | |
Collapse
|
237
|
Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F, Trimmer JS. Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci U S A 2001; 98:13373-8. [PMID: 11698689 PMCID: PMC60878 DOI: 10.1073/pnas.231376298] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Indexed: 12/31/2022] Open
Abstract
Differential expression of ion channels contributes functional diversity to sensory neuron signaling. We find nerve injury induced by the Chung model of neuropathic pain leads to striking reductions in voltage-gated K(+) (Kv) channel subunit expression in dorsal root ganglia (DRG) neurons, suggesting a potential molecular mechanism for hyperexcitability of injured nerves. Moreover, specific classes of DRG neurons express distinct Kv channel subunit combinations. Importantly, Kv1.4 is the sole Kv1 alpha subunit expressed in smaller diameter neurons, suggesting that homomeric Kv1.4 channels predominate in A delta and C fibers arising from these cells. These neurons are presumably nociceptors, because they also express the VR-1 capsaicin receptor, calcitonin gene-related peptide, and/or Na(+) channel SNS/PN3/Nav1.8. In contrast, larger diameter neurons associated with mechanoreception and proprioception express high levels of Kv1.1 and Kv1.2 without Kv1.4 or other Kv1 alpha subunits, suggesting that heteromers of these subunits predominate on large, myelinated afferent axons that extend from these cells.
Collapse
Affiliation(s)
- M N Rasband
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
238
|
Abstract
Skin biopsies that are immunostained to identify nerve fibers provide a new tool for assessing the small caliber nociceptors that terminate in the epidermis, as well as other cutaneous nerve fibers. Skin biopsies can be performed in multiple sites and can be repeated over time, so that a spatiotemporal profile of epidermal innervation can be constructed. This approach may help assess the progression of fiber loss in disease and of regeneration and re-innervation with treatment.
Collapse
Affiliation(s)
- J W Griffin
- Johns Hopkins Hospital, Baltimore, Maryland 21187, USA.
| | | | | |
Collapse
|
239
|
Abstract
Only a generation ago there were few ideas as to what might cause neuropathic pain, and even fewer relevant data. In contrast, we can currently point to hundreds of distinct cellular changes that are triggered by nerve injury and that might be relevant to the emergence of pain symptomatology. The number may soon increase to thousands. It is essential, therefore, to redirect efforts towards the development of experimental strategies for testing which of these are essential parts of the pain process and which are tangential. In this paper I point out four such strategies: timing, deletion, prevention and genetic heterogeneity, and summarize how one neuropathic pain theory, the ectopic pacemaker hypothesis, holds up to scrutiny.
Collapse
Affiliation(s)
- M Devor
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
240
|
Hu SJ, Song XJ, Greenquist KW, Zhang JM, LaMotte RH. Protein kinase A modulates spontaneous activity in chronically compressed dorsal root ganglion neurons in the rat. Pain 2001; 94:39-46. [PMID: 11576743 DOI: 10.1016/s0304-3959(01)00339-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein kinase A (PKA) can play a critical role in the modulation of neuronal excitability. We examined the role of PKA in the modulation of abnormal spontaneous activity (SA) originating from the chronically compressed dorsal root ganglion (CCD). The L(4) and L(5) dorsal root ganglia (DRGs) were compressed by inserting a stainless steel rod into each corresponding intervertebral foramen. After 1-14 postoperative days, SA in DRG neurons with myelinated axons was recorded in vitro from teased dorsal root microfilaments. Rp-cAMPS (5-500 microM), a specific inhibitor of PKA, caused a dose-dependent decrease in the discharge rate of SA when topically applied to the DRG. The highest dose completely blocked the SA, but not the conduction of action potentials. H89 (10 microM), another PKA inhibitor, also markedly decreased SA. Sp-cAMPS (500 microM), a specific activator of PKA, increased the discharge rate of SA in all injured units tested, but did not trigger firing in silent neurons. Okadaic acid (0.1 microM), a protein phosphatase inhibitor, and forskolin (1 microM), an adenyl cyclase activator, each significantly increased the discharge rate of SA. These results strongly suggest that PKA modulates the SA in injured DRG neurons with myelinated axons.
Collapse
Affiliation(s)
- San-Jue Hu
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8051, USA
| | | | | | | | | |
Collapse
|
241
|
Affiliation(s)
- S G Waxman
- Department of Neurology LCI 707, Yale University School of Medicine, P.O. Box 208018, 333 Cedar Street, New Haven, Connecticut 06520-8018, USA.
| |
Collapse
|
242
|
Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. J Neurosci 2001. [PMID: 11487631 DOI: 10.1523/jneurosci.21-16-06077.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of neuronal excitability involves the coordinated expression of different voltage-gated ion channels. We have characterized the expression of two sensory neuron-specific tetrodotoxin-resistant sodium channel alpha subunits, Na(v)1. (SNS/PN3) and Na(v)1.9 (SNS2/NaN), in developing rat lumbar dorsal root ganglia (DRGs). Expression of both Na(v)1.8 and Na(v)1.9 increases with age, beginning at embryonic day (E) 15 and E17, respectively, and reaching adult levels by postnatal day 7. Their distribution is restricted mainly to those subpopulations of primary sensory neurons in developing and adult DRGs that give rise to unmyelinated C-fibers (neurofilament 200 negative). Na(v)1.8 is expressed in a higher proportion of neuronal profiles than Na(v)1.9 at all stages during development, as in the adult. At E17, almost all Na(v)1.8-expressing neurons also express the high-affinity NGF receptor TrkA, and only a small proportion bind to IB4, a marker for c-ret-expressing (glial-derived neurotrophic factor-responsive) neurons. Because IB4 binding neurons differentiate from TrkA neurons in the postnatal period, the proportion of Na(v)1.8 cells that bind to IB4 increases, in parallel with a decrease in the proportion of Na(v)1.8-TrkA co-expressing cells. In contrast, an equal number of Na(v)1.9 cells bind IB4 and TrkA in embryonic life. The differential expression of Na(v)1.8 and Na(v)1.9 in late embryonic development, with their distinctive kinetic properties, may contribute to the development of spontaneous and stimulus-evoked excitability in small diameter primary sensory neurons in the perinatal period and the activity-dependent changes in differentiation they produce.
Collapse
|
243
|
Shah BS, Gonzalez MI, Bramwell S, Pinnock RD, Lee K, Dixon AK. Beta3, a novel auxiliary subunit for the voltage gated sodium channel is upregulated in sensory neurones following streptozocin induced diabetic neuropathy in rat. Neurosci Lett 2001; 309:1-4. [PMID: 11489532 DOI: 10.1016/s0304-3940(01)01976-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study we have used in situ hybridization to examine the changes in mRNA expression of the voltage gated sodium channel subunits beta1 and beta3, which occur in response to streptozocin induced diabetic neuropathy. Under control conditions beta1 mRNA was detected throughout the spinal cord and in large dorsal root ganglion (DRG) Abeta fibres whilst beta3 mRNA was expressed exclusively in the layers I/II and X of the spinal cord and in small DRG c-fibres. Following streptozocin treatment, the expression of beta1 mRNA remained unchanged in both the spinal cord and DRG whilst beta3 message was significantly increased in both the spinal cord and in medium diameter Adelta type DRG neurones. In conclusion, the present study illustrates that the development of the neuropathic pain state is associated with distinct changes in the pattern of beta3 subunit expression and that these changes appear to be specific to the neuropathic pain state induced.
Collapse
MESH Headings
- Animals
- Cell Size/physiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diabetic Neuropathies/physiopathology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Gene Expression Regulation/physiology
- In Situ Hybridization
- Male
- Nerve Fibers
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Neuralgia/metabolism
- Neuralgia/pathology
- Neuralgia/physiopathology
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/pathology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Sodium Channels/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- B S Shah
- Pfizer Global Research and Development, Cambridge Laboratories, Cambridge University Forvie Site, Robinson Way, CB2 2QB, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
244
|
Benn SC, Costigan M, Tate S, Fitzgerald M, Woolf CJ. Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. J Neurosci 2001; 21:6077-85. [PMID: 11487631 PMCID: PMC6763192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2001] [Revised: 05/25/2001] [Accepted: 05/31/2001] [Indexed: 02/21/2023] Open
Abstract
The development of neuronal excitability involves the coordinated expression of different voltage-gated ion channels. We have characterized the expression of two sensory neuron-specific tetrodotoxin-resistant sodium channel alpha subunits, Na(v)1. (SNS/PN3) and Na(v)1.9 (SNS2/NaN), in developing rat lumbar dorsal root ganglia (DRGs). Expression of both Na(v)1.8 and Na(v)1.9 increases with age, beginning at embryonic day (E) 15 and E17, respectively, and reaching adult levels by postnatal day 7. Their distribution is restricted mainly to those subpopulations of primary sensory neurons in developing and adult DRGs that give rise to unmyelinated C-fibers (neurofilament 200 negative). Na(v)1.8 is expressed in a higher proportion of neuronal profiles than Na(v)1.9 at all stages during development, as in the adult. At E17, almost all Na(v)1.8-expressing neurons also express the high-affinity NGF receptor TrkA, and only a small proportion bind to IB4, a marker for c-ret-expressing (glial-derived neurotrophic factor-responsive) neurons. Because IB4 binding neurons differentiate from TrkA neurons in the postnatal period, the proportion of Na(v)1.8 cells that bind to IB4 increases, in parallel with a decrease in the proportion of Na(v)1.8-TrkA co-expressing cells. In contrast, an equal number of Na(v)1.9 cells bind IB4 and TrkA in embryonic life. The differential expression of Na(v)1.8 and Na(v)1.9 in late embryonic development, with their distinctive kinetic properties, may contribute to the development of spontaneous and stimulus-evoked excitability in small diameter primary sensory neurons in the perinatal period and the activity-dependent changes in differentiation they produce.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Antigens, Differentiation/analysis
- Antigens, Differentiation/biosynthesis
- Blotting, Northern
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- NAV1.8 Voltage-Gated Sodium Channel
- NAV1.9 Voltage-Gated Sodium Channel
- Neurons, Afferent/classification
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neuropeptides/drug effects
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Protein Subunits
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/analysis
- Receptor, trkA/biosynthesis
- Sodium Channels/drug effects
- Sodium Channels/genetics
- Sodium Channels/metabolism
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- S C Benn
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
245
|
Abstract
An important aspect of Na+ channel regulation is their distribution on neuronal membranes within the nervous system. The complexity of this process is brought by the molecular diversity of Na+ channels and differential regulation of their distribution. In addition, Na+ channel localization is a highly dynamic process depending on the status of the cell in vitro, and (patho)physiological condition of the organism in vivo. Nonetheless, the pharmacological manipulation of Na+ channel distribution should be possible and will hopefully bring safer and more-potent medicines in the future.
Collapse
|
246
|
Abstract
It is perhaps presumptuous to talk about the molecular basis of a subjective sensation such as pain, but defined conformational changes in membrane proteins, controlled by a family of extra- and intracellular messenger molecules, are known to underlie the activation of sensory nerve terminals and the process of synaptic neurotransmission, which are necessary for pain perception. Furthermore, a subset of neurotransmission processes has a permissive, and possibly exclusive, role in pain perception. Clearly, the experience of pain in the clinical sense with all its affective components of unpleasantness and suffering cannot yet be fully understood in molecular terms, but the process of nociception, whereby the signal generated as a result of tissue damaging or potentially damaging peripheral stimuli reaches and evokes neuronal activity in the central nervous system, is becoming better characterized. Recent advances in neurobiology have given us insights that are already helping improve understanding of the events that lead to a patient experiencing pain and, it is hoped, will also lead to more successful treatment strategies.
Collapse
Affiliation(s)
- R G Hill
- Neuroscience Research Centre, Merck, Sharp and Dohme Research Laboratories, Harlow Essex, UK.
| |
Collapse
|
247
|
Lin YW, Tseng TJ, Lin WM, Hsieh ST. Cutaneous nerve terminal degeneration in painful mononeuropathy. Exp Neurol 2001; 170:290-6. [PMID: 11476595 DOI: 10.1006/exnr.2001.7704] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nociceptive nerves innervate the skin and play an important role in the generation of neuropathic pain. However, it remains elusive whether and how nociceptive nerve terminals degenerate in neuropathic pain conditions. To address this issue, we investigated cutaneous innervation in a model of painful mononeuropathy, the chronic constriction injury (CCI). The hind paws of rats were immunocytochemically stained with a pan-axonal marker, protein gene product 9.5 (PGP 9.5). Within 2 days after CCI, rats exhibited thermal hyperalgesia, and there was a partial depletion of epidermal nerves. The extent of reduction in epidermal nerves after CCI was variable with an epidermal nerve density of 3.65 +/- 1.97 fibers/mm (compared to 15.39 +/- 1.58 fibers/mm on the control side, P < 0.02). There was a mild but concomitant increase in PGP 9.5 (+) Langerhans cells in the epidermis of the skin with CCI (10.19 +/- 1.99 vs 7.75 +/- 1.36 cells/mm, P < 0.05). In the skin denervated by tight ligation of the sciatic nerve, epidermal nerves were completely depleted (0 fibers/mm vs. 12.26 +/- 1.44 fibers/mm on the control side, P < 0.001). Animals with tight ligation of the sciatic nerve exhibited thermal anesthesia. These findings suggest that the epidermis is partially denervated in CCI, and that a partial injury of nerves is correlated with the development of neuropathic pain.
Collapse
Affiliation(s)
- Y W Lin
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 10018, Taiwan
| | | | | | | |
Collapse
|
248
|
Affiliation(s)
- D Bridges
- Department of Anaesthetics, Imperial College School of Medicine, Chelsea and Westminster Hospital Campus, London W2 1NY, UK
| | | | | |
Collapse
|
249
|
Abstract
A variety of isoforms of mammalian voltage-gated sodium channels have been described. Ten genes encoding sodium channel alpha subunits have been identified, and nine of those isoforms have been functionally expressed in exogenous systems. The alpha subunit is associated with accessory beta subunits in some tissues, and three genes encoding different beta subunits have been identified. The alpha subunit isoforms have distinct patterns of development and localization in the nervous system, skeletal and cardiac muscle. In addition, many of the isoforms demonstrate subtle differences in their functional properties. However, there are no clear subfamilies of the channels, unlike the situation with potassium and calcium channels. The subtle differences in the functional properties of the sodium channel isoforms result in unique conductances in specific cell types, which have important physiological effects for the organism. Small alterations in the electrophysiological properties of the channel resulting from mutations in specific isoforms cause human diseases such as periodic paralysis, long QT syndrome, and epilepsy.
Collapse
Affiliation(s)
- A L Goldin
- Department of Microbiology and Molecular Genetics, University of California Irvine, California 92697-4025, USA.
| |
Collapse
|
250
|
Ghassemi F, Dib-Hajj SD, Waxman SG. Beta1 adducin gene expression in DRG is developmentally regulated and is upregulated by glial-derived neurotrophic factor and nerve growth factor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 90:118-24. [PMID: 11406290 DOI: 10.1016/s0169-328x(01)00091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Differential display technique has proven to be effective in identifying differentially regulated genes under a variety of experimental conditions. We identified beta1 adducin as a target in primary rat dorsal root ganglia (DRG) cultures that is upregulated by exposure to nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF). We used real-time reverse-transcription polymerase chain reaction (RT-PCR) for quantitative measurement of beta1 adducin gene expression both in DRG cultures and in vivo. Significant increase in beta1 adducin expression level was observed in DRG cultures treated with either GDNF or NGF, compared to untreated cultures. The expression of beta1 adducin in rat tissues was highest in the brain and high in the cerebellum, superior cervical ganglion and DRG tissues. By contrast, low expression levels of beta1 adducin are detected in sciatic nerve and in non-neural tissues. Our study also showed that expression of beta1 adducin gene is developmentally regulated in rat DRG and trigeminal ganglia, with a peak around P0 and significant attenuation by P21. The level of expression of beta1 adducin in adult rat DRG and trigeminal ganglia may be maintained by the action of neurotrophic factors that are produced in innervated targets like skin and muscle.
Collapse
Affiliation(s)
- F Ghassemi
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|