201
|
Scarborough RM, Laibelman AM, Clizbe LA, Fretto LJ, Conley PB, Reynolds EE, Sedlock DM, Jantzen H. Novel tricyclic benzothiazolo[2,3-c]thiadiazine antagonists of the platelet ADP receptor (P2Y(12)). Bioorg Med Chem Lett 2001; 11:1805-8. [PMID: 11459636 DOI: 10.1016/s0960-894x(01)00313-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel non-nucleoside tricyclic platelet ADP receptor (P2Y(12)) antagonists have been discovered that bind reversibly and with high affinity to the platelet receptor. Condensation of various 2-aminobenzothiazoles with chlorosulfonylacetyl chloride affords these novel tricyclic heterocycles, which are novel and unpredicted products of this reaction.
Collapse
Affiliation(s)
- R M Scarborough
- COR Therapeutics, Inc., Departments of Medicinal Chemistry and Biology, 94080, South San Francisco, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Greco NJ, Tonon G, Chen W, Luo X, Dalal R, Jamieson GA. Novel structurally altered P(2X1) receptor is preferentially activated by adenosine diphosphate in platelets and megakaryocytic cells. Blood 2001; 98:100-7. [PMID: 11418468 DOI: 10.1182/blood.v98.1.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental and clinical data suggest the presence of multiple types of adenosine diphosphate (ADP) receptors, one coupled to ligand-gated cation channels (P(2X)) and others coupled to G-protein-coupled (P(2Y)) receptors. This report identifies cDNA for a structurally altered P(2X1)-like receptor in megakaryocytic cell lines (Dami and CMK 11-5) and platelets that, when transfected into nonresponsive 1321 cells, confers a specific sensitivity to ADP with the pharmacologic rank order of ADP > > ATP > > > alpha,beta-methylene-ATP as measured by Ca(++) influx. This receptor (P(2X1del)) contains a deletion of 17 amino acids (PALLREAENFTLFIKNS) that includes an NFT consensus sequence for N-linked glycosylation. Glycosylated forms of the P(2X1del) and P(2X1wt) receptors were indistinguishable electrophoretically by Western blot or by immunoprecipitation using available antihuman and antirat antibodies. These results indicate that the expression of the P(2X1del) receptor results in an influx of Ca(++) induced by ADP. Expression of P(2X1del) receptor homomeric subunits is sufficient to express a receptor preferentially activated by ADP and suggests that this altered form, alone or in combination with P(2X1wt) receptors, is a component of an ADP-activated ion channel.
Collapse
MESH Headings
- Adenosine Diphosphate/pharmacology
- Blood Platelets/metabolism
- Calcium Signaling/drug effects
- Dose-Response Relationship, Drug
- Humans
- Megakaryocytes/metabolism
- Polymerase Chain Reaction
- Receptors, Purinergic/drug effects
- Receptors, Purinergic/genetics
- Receptors, Purinergic/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Sequence Homology, Nucleic Acid
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N J Greco
- Platelet Biology and the Product Development Departments, American Red Cross, Rockville, MD, USA.
| | | | | | | | | | | |
Collapse
|
203
|
Koziak K, Kaczmarek E, Park SY, Fu Y, Avraham S, Avraham H. RAFTK/Pyk2 involvement in platelet activation is mediated by phosphoinositide 3-kinase. Br J Haematol 2001; 114:134-40. [PMID: 11472358 DOI: 10.1046/j.1365-2141.2001.02894.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet activation by different agonists initiates a signalling cascade involving the phosphorylation of several protein kinases, which control key regulatory events. Previously, we demonstrated that the related adhesion focal tyrosine kinase (RAFTK, Pyk2) was involved in an early phase of platelet activation, independent of integrin and glycoprotein IIb-IIIa activation. In this study, we demonstrate that RAFTK is co-immunoprecipitated with phosphoinositide 3-kinase (PI3K) upon platelet activation, and that thrombin, ADP and collagen induced the phosphorylation of both PI3K and RAFTK. A low dose of thrombin (0.015 U/ml) induced RAFTK phosphorylation and platelet aggregation in a PI3K activity-dependent manner, whereas a high dose of thrombin (0.1 U/ml) induced these events in a PI3K activity-independent manner. ADP and collagen also induced RAFTK phosphorylation and platelet aggregation in a PI3K activity-dependent manner, similar to that of the low-dose thrombin. Furthermore, protein tyrosine phosphatase activity was associated with RAFTK in response to platelet activation, and was found to be that of protein tyrosine phosphatase-2 (SHP-2). The association of SHP-2 with RAFTK was PI3K-dependent and was increased upon RAFTK phosphorylation. Taken together, our results strongly suggest that the involvement of RAFTK in platelet activation is mediated via the PI3K pathway.
Collapse
Affiliation(s)
- K Koziak
- Division of Experimental Medicine Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
204
|
Nakamura K, Kariyazono H, Masuda H, Sakata R, Yamada K. Effects of sarpogrelate hydrochloride on adenosine diphosphate- or collagen-induced platelet responses in arteriosclerosis obliterans. Blood Coagul Fibrinolysis 2001; 12:391-7. [PMID: 11505083 DOI: 10.1097/00001721-200107000-00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To evaluate the effects of the 5-HT2 receptor antagonist sarpogrelate hydrochloride (sarpogrelate) on platelet responses in arteriosclerosis obliterans (ASO), we examined platelet aggregation and its relationships to platelet-derived growth factor (PDGF), soluble P-selectin (sP-selectin), and transforming growth factor-beta 1 (TGF-beta1). Circulating plasma levels of PDGF and sP-selectin in 13 patients with ASO after 1 week of medication with sarpogrelate were significantly lower than those before medication. In contrast, circulating plasma levels of TGF-beta1 after medication were significantly higher than those before medication. When platelet-rich plasma obtained from ASO patients after medication was stimulated with adenosine diphosphate (ADP) or collagen, platelet aggregation was suppressed compared with rates before medication. Significant decreases in levels of PDGF, sP-selectin and TGF-beta1 released from platelets in response to 5 micromol/l ADP and 1 microg/ml collagen after taking of sarpogrelate were found. There were close correlations between platelet aggregation and respective molecules released from platelets. In conclusion, since platelet activation is involved in pathogenesis of thrombotic disease, sarpogrelate may suppress the development of obstructive arteriosclerosis. PDGF and TGF-beta1, as well as sP-selectin, appear to be useful markers for clinical evaluation of anti-platelet drugs.
Collapse
Affiliation(s)
- K Nakamura
- Department of Hospital Pharmacy, Faculty of Medicine, Kagoshima University, Japan.
| | | | | | | | | |
Collapse
|
205
|
Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson E, Monsma FJ, Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA, Chintala MS. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 2001; 107:1591-8. [PMID: 11413167 PMCID: PMC200194 DOI: 10.1172/jci12242] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ADP plays a critical role in modulating thrombosis and hemostasis. ADP initiates platelet aggregation by simultaneous activation of two G protein-coupled receptors, P2Y1 and P2Y12. Activation of P2Y1 activates phospholipase C and triggers shape change, while P2Y12 couples to Gi to reduce adenylyl cyclase activity. P2Y12 has been shown to be the target of the thienopyridine drugs, ticlopidine and clopidogrel. Recently, we cloned a human orphan receptor, SP1999, highly expressed in brain and platelets, which responded to ADP and had a pharmacological profile similar to that of P2Y12. To determine whether SP1999 is P2Y12, we generated SP1999-null mice. These mice appear normal, but they exhibit highly prolonged bleeding times, and their platelets aggregate poorly in responses to ADP and display a reduced sensitivity to thrombin and collagen. These platelets retain normal shape change and calcium flux in response to ADP but fail to inhibit adenylyl cyclase. In addition, oral clopidogrel does not inhibit aggregation responses to ADP in these mice. These results demonstrate that SP1999 is indeed the elusive receptor, P2Y12. Identification of the target receptor of the thienopyridine drugs affords us a better understanding of platelet function and provides tools that may lead to the discovery of more effective antithrombotic therapies.
Collapse
Affiliation(s)
- C J Foster
- Department of Central Nervous System and Cardiovascular Pharmacology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Affiliation(s)
- D Woulfe
- Departments of Medicine and Pharmacology and the Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
207
|
Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001. [PMID: 11245682 DOI: 10.1523/jneurosci.21-06-01975.2001] [Citation(s) in RCA: 428] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The initial microglial responses that occur after brain injury and in various neurological diseases are characterized by microglial accumulation in the affected sites of brain that results from the migration and proliferation of these cells. The early-phase signal responsible for this accumulation is likely to be transduced by rapidly diffusible factors. In this study, the possibility of ATP released from injured neurons and nerve terminals affecting cell motility was determined in rat primary cultured microglia. Extracellular ATP and ADP induced membrane ruffling and markedly enhanced chemokinesis in Boyden chamber assay. Further analyses using the Dunn chemotaxis chamber assay, which allows direct observation of cell movement, revealed that both ATP and ADP induced chemotaxis of microglia. The elimination of extracellular calcium or treatment with pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, suramin, or adenosine-3'-phosphate-5'-phosphosulfate did not inhibit ATP- or ADP-induced membrane ruffling, whereas AR-C69931MX or pertussis toxin treatments clearly did so. As an intracellular signaling molecule underlying these phenomena, the small G-protein Rac was activated by ATP and ADP stimulation, and its activation was also inhibited by pretreatment with pertussis toxin. These results strongly suggest that membrane ruffling and chemotaxis of microglia induced by ATP or ADP are mediated by G(i/o)-coupled P2Y receptors.
Collapse
|
208
|
Jin J, Tomlinson W, Kirk IP, Kim YB, Humphries RG, Kunapuli SP. The C6-2B glioma cell P2Y(AC) receptor is pharmacologically and molecularly identical to the platelet P2Y(12) receptor. Br J Pharmacol 2001; 133:521-8. [PMID: 11399669 PMCID: PMC1572816 DOI: 10.1038/sj.bjp.0704114] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P2Y receptor activation in many cell types leads to phospholipase C activation and accumulation of inositol phosphates, while in blood platelets, C6-2B glioma cells, and in B10 microvascular endothelial cells a P2Y receptor subtype, which couples to inhibition of adenylyl cyclase, historically termed P2Y(AC), (P2T(AC) or P(2T) in platelets) has been identified. Recently, this receptor has been cloned and designated P2Y(12) in keeping with current P2 receptor nomenclature. Three selective P(2T) receptor antagonists, with a range of affinities, inhibited ADP-induced aggregation of washed human or rat platelets, in a concentration-dependent manner, with a rank order of antagonist potency (pIC(50), human: rat) of AR-C78511 (8.5 : 9.1)>AR-C69581 (6.2 : 6.0)>AR-C70300 (5.4 : 5.1). However, these compounds had no effect on ADP-induced platelet shape change. All three antagonists had no significant effect on the ADP-induced inositol phosphate formation in 1321N1 astrocytoma cells stably expressing the P2Y(1) receptor, when used at concentrations that inhibit platelet aggregation. These antagonists also blocked ADP-induced inhibition of adenylyl cyclase in rat platelets and C6-2B cells with identical rank orders of potency and overlapping concentration - response curves. RT - PCR and nucleotide sequence analyses revealed that the C6-2B cells express the P2Y(12) mRNA. These data demonstrate that the P2Y(AC) receptor in C6-2B cells is pharmacologically identical to the P2T(AC) receptor in rat platelets.
Collapse
Affiliation(s)
- Jianguo Jin
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
| | - Wendy Tomlinson
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Ian P Kirk
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Young B Kim
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
| | - Robert G Humphries
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Satya P Kunapuli
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Department of Pharmacology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Author for correspondence: .
| |
Collapse
|
209
|
Jung SM, Moroi M. Platelet collagen receptor integrin alpha2beta1 activation involves differential participation of ADP-receptor subtypes P2Y1 and P2Y12 but not intracellular calcium change. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3513-22. [PMID: 11422381 DOI: 10.1046/j.1432-1327.2001.02252.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In agonist-induced platelet activation, the collagen platelet receptor integrin alpha2beta1 is activated to high-affinity states through ADP involvement [Jung, S.M. & Moroi, M. (2000) J. Biol. Chem. 275, 8016-8026]. Here we determined the ADP-receptor subtypes involved and their relative contributions to alpha2beta1 activation (assessed by soluble-collagen binding) using the P2Y12 antagonist AR-C69931MX and P2Y1 antagonists adenosine 3',5'-diphosphate (Ado(3,5)PP) and adenosine 3'-phosphate 5'-phosphosulfate (AdoPPS). All three inhibited alpha2beta1 activation induced by low or high ADP, low thrombin, or low collagen-related peptide (CRP) concentrations; however, AR-C69931MX was markedly more inhibitory than the P2Y1 antagonists, suggesting the greater contribution of P2Y12. Inhibition patterns by various combinations of AR-C69931MX, AdoPPS, and wortmannin suggested that P2Y1 and P2Y12 mediate alpha2beta1 activation through different pathways, with possible involvement of phosphoinositide 3-kinase in both. Low concentrations of the acetoxy-methyl derivative of 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (calcium chelator) markedly decreased alpha2beta1 activation by low thrombin or CRP, but did not affect that by low or high ADP. Measurements of intracellular Ca2+ level (fluorimetric method) and alpha2beta1 activation (soluble-collagen binding) in the same platelet preparation indicated that alpha2beta1 activation via ADP receptors was independent of intracellular Ca2+ release. Our data indicate that integrin alpha2beta1 activation by ADP occurs through an inside-out signaling mechanism involving differential contributions by P2Y1 and P2Y12 wherein each contributes to some portion of the activation, with the stronger contribution of P2Y12. Furthermore, intracellular Ca2+ increase is not directly related to integrin alpha2beta1 activation, meaning that it is separate from the calcium mobilization pathways that these two ADP receptors are involved in.
Collapse
Affiliation(s)
- S M Jung
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Japan.
| | | |
Collapse
|
210
|
Abstract
Platelet-inhibitory drugs are of proven benefit to individuals who suffer from atherosclerotic cardiovascular disease. Despite substantial effort to identify more potent platelet-inhibitory agents, aspirin, an irreversible inhibitor of platelet cyclooxygenase activity, remains the standard against which other drugs are judged. Drugs that appear to be at least as efficacious as aspirin in specific clinical settings include the thienopyridines ticlopidine and clopidogrel, specific inhibitors of ADP-stimulated platelet function, and the phosphodiesterase 3 inhibitor cilostazol. Ligand binding to the platelet integrin alphaIIbbeta3 (GPIIb-IIIa), a prerequisite for platelet thrombus formation, has been a prominent target for drug development. Currently, three types of alphaIIbbeta3 antagonists are available: the monoclonal antibody Fab fragment abciximab, cyclic peptides based on the Arg-Gly-Asp (RGD) or related amino acid motifs, and RGD-based peptidomimetics. The efficacy of each type of alphaIIbbeta3 antagonist in the setting of acute coronary artery disease has been confirmed in multicenter clinical trials.
Collapse
Affiliation(s)
- J S Bennett
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
211
|
Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ. ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 2001; 276:8608-15. [PMID: 11104774 DOI: 10.1074/jbc.m009718200] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2Y receptors are a class of G protein-coupled receptors activated primarily by ATP, UTP, and UDP. Five mammalian P2Y receptors have been cloned so far including P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11. P2Y1, P2Y2, and P2Y6 couple to the activation of phospholipase C, whereas P2Y4 and P2Y11 couple to the activation of both phospholipase C and the adenylyl cyclase pathways. Additional ADP receptors linked to Galpha(i) have been described but have not yet been cloned. SP1999 is an orphan G protein-coupled receptor, which is highly expressed in brain, spinal cord, and blood platelets. In the present study, we demonstrate that SP1999 is a Galpha(i)-coupled receptor that is potently activated by ADP. In an effort to identify ligands for SP1999, fractionated rat spinal cord extracts were assayed for Ca(2+) mobilization activity against Chinese hamster ovary cells transiently transfected with SP1999 and chimeric Galpha subunits (Galpha(q/i)). A substance that selectively activated SP1999-transfected cells was identified and purified through a series of chromatographic steps. Mass spectral analysis of the purified material definitively identified it as ADP. ADP was subsequently shown to inhibit forskolin-stimulated adenylyl cyclase activity through selective activation of SP1999 with an EC(50) of 60 nM. Other nucleotides were able to activate SP1999 with a rank order of potency 2-MeS-ATP = 2-MeS-ADP > ADP = adenosine 5'-O-2-(thio)diphosphate > 2-Cl-ATP > adenosine 5'-O-(thiotriphosphate). Thus, SP1999 is a novel, Galpha(i)-linked receptor for ADP.
Collapse
Affiliation(s)
- F L Zhang
- Human Genome Research, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Patil S, Newman DK, Newman PJ. Platelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen. Blood 2001; 97:1727-32. [PMID: 11238114 DOI: 10.1182/blood.v97.6.1727] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet responses to collagen are mediated by the combined actions of the integrin alpha2beta1, which serves as a major collagen-binding receptor, and the GPVI/FcRgamma-chain complex, which transmits collagen-specific activation signals into the cell interior through the action of an immunoreceptor tyrosine-based activation motif within the cytoplasmic domain of the FcRgamma-chain. Despite much progress in identifying components of the signaling pathway responsible for collagen-induced platelet activation, virtually nothing is known about the regulatory elements that modulate this important hemostatic event. PECAM-1, a recently recognized member of the inhibitory receptor family, contains a functional immunoreceptor tyrosine-based inhibitory motif within its cytoplasmic domain that, when tyrosine phosphorylated, recruits and activates the protein-tyrosine phosphatase, SHP-2. To test the hypothesis that PECAM-1 functions to regulate GPVI/FcRgamma-chain-mediated platelet activation, the responses of wild-type versus PECAM-1-deficient murine platelets to GPVI-specific agonists were compared. Four distinct GPVI/FcRgamma-chain-dependent responses were found to be significantly exaggerated in platelets derived from PECAM-1-deficient mice, including Mg++-independent adhesion to immobilized fibrillar collagen, collagen-induced platelet aggregation, platelet aggregation induced by the GPVI-specific agonist collagen-related peptide, and GPVI/FcRgamma-chain-induced dense granule secretion. Together, these data provide compelling evidence that PECAM-1 modulates platelet responses to collagen, and they implicate this novel member of the inhibitory receptor family in the regulation of primary hemostasis.
Collapse
Affiliation(s)
- S Patil
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, and the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53233, USA
| | | | | |
Collapse
|
213
|
Kariyazono H, Nakamura K, Shinkawa T, Yamaguchi T, Sakata R, Yamada K. Inhibition of platelet aggregation and the release of P-selectin from platelets by cilostazol. Thromb Res 2001; 101:445-53. [PMID: 11323002 DOI: 10.1016/s0049-3848(00)00415-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To evaluate the in vitro effects of cilostazol, a phosphodiesterase III inhibitor, on platelet responses, we measured platelet aggregation and the levels of soluble P-selectin, a glycoprotein present on the alpha-granule membrane in resting platelets, and cAMP. Platelet-rich plasma and washed platelets from healthy human volunteers were treated with cilostazol (5, 25 and 50 microM). Platelet-rich plasma was stimulated by ADP (1 and 5 microM) or collagen (5 microg/ml). Washed platelets were stimulated by thrombin (4 U/ml) in the presence or absence of 1 microM forskolin. In vehicle-treated samples, soluble P-selectin levels in response to 1 microM ADP-induced primary aggregation were similar to those of circulating levels of healthy volunteers but the levels in response to 5 microM ADP-induced secondary aggregation and collagen-induced aggregation increased markedly compared to those in response to primary aggregation. This result suggests that P-selectin is released from platelets according to the extent of platelet aggregation. Cilostazol inhibited platelet aggregation as well as P-selectin release in a concentration-dependent manner. Cilostazol inhibited completely thrombin-induced aggregation in the presence of 1 microM forskolin, when cAMP levels were two-fold higher than those in the absence of forskolin. Cilostazol, which increases intracellular cAMP in platelets, may be useful in the treatment of arterial occlusive diseases.
Collapse
Affiliation(s)
- H Kariyazono
- Department of Hospital Pharmacy, Faculty of Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | |
Collapse
|
214
|
Suttitanamongkol S, Gear AR. ADP receptor antagonists inhibit platelet aggregation induced by the chemokines SDF-1, MDC and TARC. FEBS Lett 2001; 490:84-7. [PMID: 11172816 DOI: 10.1016/s0014-5793(00)02413-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability of the chemokines SDF-1, MDC and TARC to induce platelet aggregation depends strongly on low levels of ADP. The ADP receptors involved have now been characterized using the P2Y(1) and P2T(AC) receptor antagonists, A2P5P and AR-C69931MX. Stimulation of aggregation by the chemokines at 10 s was not blocked by AR-C69931MX, but was strongly inhibited by A2P5P. Pertussis toxin abolished the chemokine-stimulated aggregation. We conclude that the P2Y(1) ADP receptor plays a critical role in the initial phases of SDF-1-, MDC- and TARC-induced platelet aggregation, which involve a pertussis toxin-sensitive G protein.
Collapse
Affiliation(s)
- S Suttitanamongkol
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
215
|
Léon C, Freund M, Ravanat C, Baurand A, Cazenave JP, Gachet C. Key role of the P2Y(1) receptor in tissue factor-induced thrombin-dependent acute thromboembolism: studies in P2Y(1)-knockout mice and mice treated with a P2Y(1) antagonist. Circulation 2001; 103:718-23. [PMID: 11156884 DOI: 10.1161/01.cir.103.5.718] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND ADP plays a key role in hemostasis, acting through 2 platelet receptors: the P2Y(1) receptor and an unidentified P2 receptor, called P2cyc, coupled to adenylyl cyclase inhibition, which is the target of the antiplatelet drug clopidogrel. We showed that the P2Y(1) receptor is an essential cofactor in thrombotic states induced by intravenous infusion of collagen and epinephrine. The aim of the present study was to assess the role of this receptor in thrombin-dependent tissue factor-induced thromboembolism. METHODS AND RESULTS Human thromboplastin was injected intravenously into wild-type or P2Y(1)-deficient mice, and the effects on platelet count and mortality were determined and plasma thrombin-antithrombin III (TAT) complexes were quantified. P2Y(1)-deficient mice were resistant to the thromboembolism induced by injection of thromboplastin. Whereas the platelet count decreased sharply in wild-type mice, there was no significant drop in platelets in P2Y(1)-knockout mice. The platelet consumption in wild-type mice was probably due to thrombin generation, because it was abolished by hirudin. Thromboplastin also led to a rise in TAT complexes in plasma, again reflecting thrombin formation. This effect, however, was less important in P2Y(1)-knockout mice than in wild-type mice, indicating that less thrombin was generated in the absence of P2Y(1). Similar results were obtained after intravenous administration of N:(6)-methyl-2'-deoxyadenosine-3':5'-bisphosphate, a selective antagonist of the P2Y(1) receptor, to wild-type mice. CONCLUSIONS Our results demonstrate a role of the P2Y(1) receptor in thrombotic states involving thrombin generation and provide further evidence for the potential relevance of this receptor as a target for antithrombotic drugs.
Collapse
Affiliation(s)
- C Léon
- Institut National de la Santé et de la Recherche Médicale U.311, Etablissement Français du Sang-Alsace, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
216
|
Baurand A, Raboisson P, Freund M, Léon C, Cazenave JP, Bourguignon JJ, Gachet C. Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur J Pharmacol 2001; 412:213-21. [PMID: 11166284 DOI: 10.1016/s0014-2999(01)00733-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of a potent P2Y1 receptor antagonist, N6-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179) on adenosine-5'-diphosphate (ADP)-induced platelet aggregation in vitro, ex vivo and on the bleeding time in vivo were determined. In suspensions of washed platelets, MRS2179 inhibited ADP-induced platelet shape change, aggregation and Ca2+ rise but had no effect on ADP-induced inhibition of adenylyl cyclase. Binding studies using the new radioligand [33P]MRS2179 showed that washed human platelets displayed 134+/-8 binding sites per platelet with an affinity (Kd) of 109+/-18 nM. Finally, intravenous injection of MRS2179 resulted in inhibition of rat platelet aggregation in response to ADP and prolonged the bleeding time, in rats or mice, as compared to controls. These results suggest this potent P2Y1 receptor antagonist to be a promising tool to evaluate the in vivo effects of pharmacologically targeting the P2Y1 receptor with a view to antithrombotic therapy.
Collapse
Affiliation(s)
- A Baurand
- Laboratoire de Biologie et de Pharmacologie de l'Hémostase et de la Thrombose INSERM U.311, Etablissement Français du Sang-Alsace, 10 rue Spielmann, BP 36, 67065 Cédex, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
217
|
MacCarrone M, Bari M, Menichelli A, Giuliani E, Del Principe D, Finazzi-Agrò A. Human platelets bind and degrade 2-arachidonoylglycerol, which activates these cells through a cannabinoid receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:819-25. [PMID: 11168423 DOI: 10.1046/j.1432-1327.2001.01942.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-Delta(4)Ach-Gro) activates human platelets in platelet-rich plasma at physiological concentrations. The activation was inhibited by selective antagonists of CB(1) and CB(2) cannabinoid receptors, but not by acetylsalicylic acid. Human platelets can metabolize 2-Delta(4)Ach-Gro by internalization through a high affinity transporter (K(m) = 300 +/- 30 nM, V(max) = 10 +/- 1 pmol.min(-1).mg protein(-1)), followed by hydrolysis by a fatty acid amide hydrolase (K(m) = 8 +/- 1 microM, V(max) = 400 +/- 50 pmol.min(-1).mg protein(-1)). The anandamide transport inhibitor AM404, and anandamide itself, were ineffective on 2-Delta(4)Ach-Gro uptake by platelets, whereas anandamide competitively inhibited 2-Delta(4)Ach-Gro hydrolysis (inhibition constant = 10 +/- 1 microM). Platelet activation by 2-Delta(4)Ach-Gro was paralleled by an increase of intracellular calcium and inositol-1,4,5-trisphosphate, and by a decrease of cyclic AMP. Moreover, treatment of preloaded platelet-rich plasma with 2-Delta(4)Ach-Gro induced an approximately threefold increase in [(3)H]2-Delta(4)Ach-Gro release, according to a CB receptor-dependent mechanism. On the other hand, ADP and collagen counteracted the activation of platelets by 2-Delta(4)Ach-Gro, whereas 5-hydroxytryptamine (serotonin) enhanced and extended its effects. Remarkably, ADP and collagen also reduced [(3)H]2-Delta(4)Ach-Gro release from 2-Delta(4)Ach-Gro-activated platelets, whereas 5-hydroxytryptamine further increased it. These findings suggest a so far unnoticed interplay between the peripheral endocannabinoid system and physiological platelet agonists.
Collapse
Affiliation(s)
- M MacCarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|
218
|
Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 2001; 97:587-600. [PMID: 11157473 DOI: 10.1182/blood.v97.3.587] [Citation(s) in RCA: 573] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleotides are emerging as an ubiquitous family of extracellular signaling molecules. It has been known for many years that adenosine diphosphate is a potent platelet aggregating factor, but it is now clear that virtually every circulating cell is responsive to nucleotides. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular adenosine triphosphate (ATP). These effects are mediated through a specific class of plasma membrane receptors called purinergic P2 receptors that, according to the molecular structure, are further subdivided into 2 subfamilies: P2Y and P2X. ATP and possibly other nucleotides are released from damaged cells or secreted via nonlytic mechanisms. Thus, during inflammation or vascular damage, nucleotides may provide an important mechanism involved in the activation of leukocytes and platelets. However, the cell physiology of these receptors is still at its dawn, and the precise function of the multiple P2X and P2Y receptor subtypes remains to be understood.
Collapse
Affiliation(s)
- F Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Medical Genetics, and Center of Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
|
220
|
Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001; 409:202-7. [PMID: 11196645 DOI: 10.1038/35051599] [Citation(s) in RCA: 1039] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Platelets have a crucial role in the maintenance of normal haemostasis, and perturbations of this system can lead to pathological thrombus formation and vascular occlusion, resulting in stroke, myocardial infarction and unstable angina. ADP released from damaged vessels and red blood cells induces platelet aggregation through activation of the integrin GPIIb-IIIa and subsequent binding of fibrinogen. ADP is also secreted from platelets on activation, providing positive feedback that potentiates the actions of many platelet activators. ADP mediates platelet aggregation through its action on two G-protein-coupled receptor subtypes. The P2Y1 receptor couples to Gq and mobilizes intracellular calcium ions to mediate platelet shape change and aggregation. The second ADP receptor required for aggregation (variously called P2Y(ADP), P2Y(AC), P2Ycyc or P2T(AC)) is coupled to the inhibition of adenylyl cyclase through Gi. The molecular identity of the Gi-linked receptor is still elusive, even though it is the target of efficacious antithrombotic agents, such as ticlopidine and clopidogrel and AR-C66096 (ref. 9). Here we describe the cloning of this receptor, designated P2Y12, and provide evidence that a patient with a bleeding disorder has a defect in this gene. Cloning of the P2Y12 receptor should facilitate the development of better antiplatelet agents to treat cardiovascular diseases.
Collapse
Affiliation(s)
- G Hollopeter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
|
222
|
Fabre JE, King BF, Koller BH. Study of aggregation of platelets lacking the P2Y1 receptor. Drug Dev Res 2001. [DOI: 10.1002/ddr.1109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
223
|
Sugidachi A, Asai F, Yoneda K, Iwamura R, Ogawa T, Otsuguro KI, Koike H. Antiplatelet action of R-99224, an active metabolite of a novel thienopyridine-type G(i)-linked P2T antagonist, CS-747. Br J Pharmacol 2001; 132:47-54. [PMID: 11156560 PMCID: PMC1572523 DOI: 10.1038/sj.bjp.0703761] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. CS-747 is a novel thienopyridine-type platelet ADP inhibitor which lacks in vitro activity. This study examined pharmacological profiles of R-99224, a hepatic metabolite of CS-747. 2. R-99224 produced a concentration-dependent inhibition of in vitro platelet aggregation in washed human platelets (0.03 - 1 microg ml(-1)), which was relatively specific to ADP compared to collagen and thrombin. 3. R-99224 (0.1 - 3 microg ml(-1)) also elicited a similar inhibition of ADP-induced aggregation in rat platelets. The inhibition by R-99224 (10 microg ml(-1)) persisted even after platelets were washed three times. Intravenous injection of R-99224 (0.1 - 3 mg kg(-1)) to rats resulted in a dose-dependent inhibition of ex vivo ADP-induced platelet aggregation. 4. R-99224 (0.1 - 100 microM) decreased binding of [(3)H]-2-methylthio-ADP ([(3)H]-2-MeS-ADP), a stable ligand for platelet ADP receptors, to washed human platelets. The inhibition by R-99224 reached a plateau at a concentration of 3 microM (1.4 microg ml(-1)), but complete inhibition was not achieved even at the highest concentration used (100 microM). 5. R-99224 (10 microM) in combination with ARL-66096 (0.3 microM), an ATP analogue-type G(i)-linked P2T receptor antagonist, produced no additional inhibition of [(3)H]-2-MeS-ADP binding. In contrast, [(3)H]-2-MeS-ADP binding was completely abolished by R-99224 (10 microM) in combination with A3P5PS (300 microM), a selective P2Y(1) antagonist, suggesting that R-99224 selectively binds to the G(i)-linked P2T receptor. 6. R-99224 (0.01 - 3 microg ml(-1)) inhibited ADP-induced [(125)I]-fibrinogen binding to human platelets in a concentration-dependent manner. R-99224 (0.1 - 1 microg ml(-1)) also inhibited the ADP-induced decrease in cyclic AMP levels in PGE(1)-stimulated platelets, whereas the agent did not affect ADP (10 microM)-induced Ca(2+) mobilization. 7. These findings suggest that R-99224 is a selective and irreversible antagonist of G(i)-linked P2T receptors and that R-99224 is a responsible molecule for in vivo actions of CS-747.
Collapse
Affiliation(s)
- Atsuhiro Sugidachi
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Fumitoshi Asai
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
- Author for correspondence:
| | - Kenji Yoneda
- Ube Research Laboratory, Ube Industries, Ltd., Kogushi 1978-5, Ube City, Yamaguchi 755-8633, Japan
| | - Ryo Iwamura
- Ube Research Laboratory, Ube Industries, Ltd., Kogushi 1978-5, Ube City, Yamaguchi 755-8633, Japan
| | - Taketoshi Ogawa
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ken-ichi Otsuguro
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Koike
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
224
|
Simon J, Vigne P, Eklund KM, Michel AD, Carruthers AM, Humphrey PPA, Frelin C, Barnard EA. Activity of adenosine diphosphates and triphosphates on a P2Y(T) -type receptor in brain capillary endothelial cells. Br J Pharmacol 2001; 132:173-82. [PMID: 11156575 PMCID: PMC1572558 DOI: 10.1038/sj.bjp.0703816] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2000] [Revised: 09/08/2000] [Accepted: 10/31/2000] [Indexed: 11/08/2022] Open
Abstract
1. A P2Y (nucleotide) receptor activity in a clonal population (B10) of rat brain capillary endothelial cells is coupled to inhibition of adenylyl cyclase and has functional similarities to the P2Y(T) (previously designated 'P2T') receptor for ADP of blood platelets. However, the only P2Y receptor which was detectable in a previous study of B10 cells by mRNA analysis was the P2Y(1) receptor, which elsewhere shows no transduction via cyclic nucleotides. We have sought here to clarify these issues. 2. The inhibition of forskolin-stimulated adenylyl cyclase induced by purified nucleotides was measured on B10 cells. The EC(50) value for 2-methylthioADP (2-MeSADP) was 2.2 nM and, surprisingly, 2-MeSATP was an almost equally strong agonist (EC(50)=3.5 nM). ATP and 2-ClATP were weak partial agonists (EC(50)=26 microM and 10 microM respectively) and under appropriate conditions could antagonise the activity on 2-MeSADP. 3. A known selective antagonist of the platelet P2Y(T) receptor, 2-propylthioadenosine-5'-(beta,gamma)-difluoromethylene) triphosphonate (AR-C 66096), was a competitive antagonist of this B10 cell receptor, with pK(B)=7.6. That ligand is inactive at the P2Y(1) receptor in the same cells. Conversely, the competitive P2Y(1) receptor antagonists, the 3', 5'- and 2', 5'-adenosine bis-monophosphates, are, instead, weak agonists at the adenylyl cyclase-inhibitory receptor. 4. The inhibition of adenylyl cyclase by 2-MeSADP was completely abolished by pertussis toxin. 5. In summary, these brain endothelial cells possess a P2Y(T)-type receptor in addition to the P2Y(1) receptor. The two have similarities in agonist profiles but are clearly distinguishable by antagonists and by their second messenger activations. The possible relationships between the B10 and platelet P2Y(T) receptors are discussed.
Collapse
Affiliation(s)
- J Simon
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ
| | - P Vigne
- Institut de Pharmacologie Moleculaire et Cellulaire, CNRS UPR411, 660 Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - K M Eklund
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ
| | - A D Michel
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ
| | - A M Carruthers
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ
| | - P P A Humphrey
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ
| | - C Frelin
- Institut de Pharmacologie Moleculaire et Cellulaire, CNRS UPR411, 660 Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - E A Barnard
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ
| |
Collapse
|
225
|
Yap CL, Hughan SC, Cranmer SL, Nesbitt WS, Rooney MM, Giuliano S, Kulkarni S, Dopheide SM, Yuan Y, Salem HH, Jackson SP. Synergistic adhesive interactions and signaling mechanisms operating between platelet glycoprotein Ib/IX and integrin alpha IIbbeta 3. Studies in human platelets ans transfected Chinese hamster ovary cells. J Biol Chem 2000; 275:41377-88. [PMID: 10967111 DOI: 10.1074/jbc.m005590200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study investigates three aspects of the adhesive interaction operating between platelet glycoprotein Ib/IX and integrin alpha(IIb)beta(3). These include the following: 1) examining the sufficiency of GPIb/IX and integrin alpha(IIb)beta(3) to mediate irreversible cell adhesion on immobilized von Willebrand factor (vWf) under flow; 2) the ability of the vWf-GPIb interaction to induce integrin alpha(IIb)beta(3) activation independent of endogenous platelet stimuli; and 3) the identification of key second messengers linking the vWf-GPIb/IX interaction to integrin alpha(IIb)beta(3) activation. By using Chinese hamster ovary cells transfected with GPIb/IX and integrin alpha(IIb)beta(3), we demonstrate that these receptors are both necessary and sufficient to mediate irreversible cell adhesion under flow, wherein GPIb/IX mediates cell tethering and rolling on immobilized vWf, and integrin alpha(IIb)beta(3) mediates cell arrest. Moreover, we demonstrate direct signaling between GPIb/IX and integrin alpha(IIb)beta(3). Studies on human platelets demonstrated that vWf binding to GPIb/IX is able to induce integrin alpha(IIb)beta(3) activation independent of endogenous platelet stimuli under both static and physiological flow conditions (150-1800 s(-)(1)). Analysis of the key second messengers linking the vWf-GPIb interaction to integrin alpha(IIb)beta(3) activation demonstrated that the first step in the activation process involves calcium release from internal stores, whereas transmembrane calcium influx is a secondary event potentiating integrin alpha(IIb)beta(3) activation.
Collapse
Affiliation(s)
- C L Yap
- Australian Centre for Blood Diseases, Department of Medicine, Monash Medical School, Box Hill Hospital, Victoria 3128, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
FcγRIIA requires a Gi-dependent pathway for an efficient stimulation of phosphoinositide 3-kinase, calcium mobilization, and platelet aggregation. Blood 2000. [DOI: 10.1182/blood.v96.10.3439] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractFcγRIIA, the only Fcγ receptor present in platelets, is involved in heparin-associated thrombocytopenia (HIT). Recently, adenosine diphosphate (ADP) has been shown to play a major role in platelet activation and aggregation induced by FcγRIIA cross-linking or by sera from HIT patients. Herein, we investigated the mechanism of action of ADP as a cofactor in FcγRIIA-dependent platelet activation, which is classically known to involve tyrosine kinases. We first got pharmacologic evidence that the ADP receptor coupled to Gi was required for HIT sera or FcγRIIA clustering-induced platelet secretion and aggregation. Interestingly, the signaling from this ADP receptor could be replaced by triggering another Gi-coupled receptor, the α2A-adrenergic receptor. ADP scavengers did not significantly affect the tyrosine phosphorylation cascade initiated by FcγRIIA cross-linking. Conversely, the Gi-dependent signaling pathway, initiated either by ADP or epinephrine, was required for FcγRIIA-mediated phospholipase C activation and calcium mobilization. Indeed, concomitant signaling from Gi and FcγRIIA itself was necessary for an efficient synthesis of phosphatidylinositol 3,4,5-trisphosphate, a second messenger playing a critical role in the process of phospholipase Cγ2 activation. Altogether, our data demonstrate that converging signaling pathways from Gi and tyrosine kinases are required for platelet secretion and aggregation induced by FcγRIIA.
Collapse
|
227
|
FcγRIIA requires a Gi-dependent pathway for an efficient stimulation of phosphoinositide 3-kinase, calcium mobilization, and platelet aggregation. Blood 2000. [DOI: 10.1182/blood.v96.10.3439.h8003439_3439_3446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FcγRIIA, the only Fcγ receptor present in platelets, is involved in heparin-associated thrombocytopenia (HIT). Recently, adenosine diphosphate (ADP) has been shown to play a major role in platelet activation and aggregation induced by FcγRIIA cross-linking or by sera from HIT patients. Herein, we investigated the mechanism of action of ADP as a cofactor in FcγRIIA-dependent platelet activation, which is classically known to involve tyrosine kinases. We first got pharmacologic evidence that the ADP receptor coupled to Gi was required for HIT sera or FcγRIIA clustering-induced platelet secretion and aggregation. Interestingly, the signaling from this ADP receptor could be replaced by triggering another Gi-coupled receptor, the α2A-adrenergic receptor. ADP scavengers did not significantly affect the tyrosine phosphorylation cascade initiated by FcγRIIA cross-linking. Conversely, the Gi-dependent signaling pathway, initiated either by ADP or epinephrine, was required for FcγRIIA-mediated phospholipase C activation and calcium mobilization. Indeed, concomitant signaling from Gi and FcγRIIA itself was necessary for an efficient synthesis of phosphatidylinositol 3,4,5-trisphosphate, a second messenger playing a critical role in the process of phospholipase Cγ2 activation. Altogether, our data demonstrate that converging signaling pathways from Gi and tyrosine kinases are required for platelet secretion and aggregation induced by FcγRIIA.
Collapse
|
228
|
Cattaneo M, Lecchi A, Lombardi R, Gachet C, Zighetti ML. Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet 'primary secretion defect' are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol 2000; 20:E101-6. [PMID: 11073862 DOI: 10.1161/01.atv.20.11.e101] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two unrelated patients with a congenital bleeding diathesis associated with a severe defect of the platelet ADP receptor coupled to adenylate cyclase (P2(CYC)) have been described so far. In one of them, platelet secretion was shown to be abnormal. We recently showed that platelets with the primary secretion defect (PSD; characterized by abnormal secretion but normal granule stores, thromboxane A(2) production, and ADP-induced primary wave of aggregation) have a moderate defect of P2(CYC). Therefore, the interaction of ADP with the full complement of its receptors seems to be essential for normal platelet secretion, and PSD patients may be heterozygotes for the congenital severe defect of P2(CYC). In this study, we describe 2 new related patients with a severe defect of P2(CYC) and the son of one of them, who is to be considered an obligate heterozygote for the defect. The 2 patients with the severe defect had lifelong histories of abnormal bleeding, prolonged bleeding times, abnormalities of platelet aggregation and secretion, lack of inhibition of adenylate cyclase by ADP, and a deficiency of platelet-binding sites for [(33)P]2 MeS-ADP (240 and 225 sites per platelet; normal range, 530 to 1102). The son of one of them had a mildly prolonged bleeding time and abnormalities of platelet aggregation and secretion similar to those found in patients with PSD. In addition, his platelets showed a moderate defect of binding sites for [(33)P]2 MeS-ADP (430 sites per platelet) and of adenylate cyclase inhibition by ADP. This study of a family with the platelet disorder characterized by a defect of the platelet P2(CYC) receptor supports our hypothesis that the full complement of the platelet ADP receptors is essential for normal platelet secretion and that some patients with the common, ill-defined diagnosis of PSD are actually heterozygous for the defect.
Collapse
Affiliation(s)
- M Cattaneo
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Department of Internal Medicine. IRCCS Ospedale Maggiore, University of Milan, Milan, Italy.
| | | | | | | | | |
Collapse
|
229
|
Payrastre B, Missy K, Trumel C, Bodin S, Plantavid M, Chap H. The integrin alpha IIb/beta 3 in human platelet signal transduction. Biochem Pharmacol 2000; 60:1069-74. [PMID: 11007943 DOI: 10.1016/s0006-2952(00)00417-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Platelets are critical for the maintenance of the integrity of the vascular system and are the first line of defence against haemorrhage. When they encounter a subendothelial matrix exposed by injury to a vessel, platelets adhere, are activated, and become adhesive for other platelets so that they aggregate. alpha IIb/beta 3, a platelet-specific integrin, is largely prominent amongst the adhesion receptors and is essential for platelet aggregation. The ligands for alpha IIb/beta 3 are the multivalent adhesive proteins fibrinogen and von Willebrand factor. In resting platelets, alpha IIb/beta 3 is normally in a low activation state, unable to interact with soluble fibrinogen. Stimulation of platelets with various agonists will induce a conformational change in alpha IIb/beta 3 (inside-out signalling), which is then able to bind soluble fibrinogen resulting in the onset of platelet aggregation. However, fibrinogen binding to its membrane receptor is not simply a passive event allowing the formation of intercellular bridges between platelets. Indeed, a complex signalling pathway triggered by integrin ligation and clustering (outside-in signalling) will regulate the extent of irreversible platelet aggregation and clot retraction. Amongst the signalling enzymes activated downstream of alpha IIb/beta 3 engagement, phosphoinositide 3-kinase plays an important role in the control of the irreversible phase of aggregation.
Collapse
Affiliation(s)
- B Payrastre
- Inserm Unite 326, Hopital Purpan, IFR 30, 31059 Toulouse, France.
| | | | | | | | | | | |
Collapse
|
230
|
Contribution of ecto-5′-nucleotidase to the inhibition of platelet aggregation by human endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.6.2157] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We studied the role of adenosine (Ado), which is generated from adenine nucleotides via the activity of ecto-5′-nucleotidase (ecto-5′-NT), in the inhibition of platelet aggregation by endothelial cells (ECs). The enzymatic activity of nucleotidases on human umbilical vein endothelial cells (HUVECs) was examined with regard to (1) the inhibition of adenosine diphosphate (ADP)–induced platelet aggregation and (2) the liberation of inorganic phosphate from adenine nucleotides. Adenosine 5′-monophosphate (AMP) preincubated with HUVECs significantly inhibited ADP-induced platelet aggregation. This was completely blocked by the treatment of HUVECs with a specific inhibitor of ecto-5′-NT, 5′-[αβ-methylene] diphosphate (APCP), or by the addition of an A2a receptor antagonist. Neither nitric oxide nor prostacyclin was involved in this inhibitory activity, suggesting that Ado generated in the incubation medium by the activity of 5′-NT on HUVECs inhibited platelet aggregation. When ADP was incubated on HUVECs, it lost most of its agonistic activity for platelets. Pretreatment of HUVECs with APCP at a concentration that abolished ecto-5′-NT activity partially restored ADP-induced platelet aggregation. Ecto-5′-NT contributes to EC function by inhibiting platelet aggregation in cooperation with ATP diphosphohydrolase, which degrades ADP to AMP.
Collapse
|
231
|
ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of Gαq. Blood 2000. [DOI: 10.1182/blood.v96.6.2134] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Platelets from Gαq knockout mice are unable to aggregate in response to physiological agonists like adenosine 5′-diphosphate (ADP), thromboxane A2, thrombin, or collagen, although shape change still occurs in response to all of these agonists except ADP. ADP-induced platelet aggregation results from simultaneous activation of the purinergic P2Y1receptor coupled to calcium mobilization and shape change and of a distinct P2 receptor, P2cyc, coupled through Gi to adenylyl cyclase inhibition, which is responsible for completion and amplification of the response. P2cyc could be the molecular target of the antithrombotic drug clopidogrel and the adenosine triphosphate (ATP) analogs AR-C69931MX, AR-C67085, and AR-C66096. The aim of the present study was to determine whether externally added ADP could still act through the Gi pathway in Gαq-deficient mouse platelets and thereby amplify the residual responses to agonists such as thrombin or collagen. It was found that (1) ADP and adrenaline still inhibited cyclic AMP accumulation in Gαq-deficient platelets; (2) both agonists restored collagen- but not thrombin-induced aggregation in these platelets; (3) the effects of ADP were selectively inhibited in vitro by the ATP analog AR-C69931MX and ex vivo by clopidogrel and hence were apparently mediated by the P2cyc receptor; and (4) high concentrations of ADP (100 μmol/L) induced aggregation without shape change in Gαq-deficient platelets through activation of P2cyc. Since adrenaline was not able to induce platelet aggregation even at high concentrations, we conclude that the effects of ADP mediated by P2cyc are not restricted to the inhibition of adenylyl cyclase through Gi2.
Collapse
|
232
|
Abstract
We studied the role of adenosine (Ado), which is generated from adenine nucleotides via the activity of ecto-5′-nucleotidase (ecto-5′-NT), in the inhibition of platelet aggregation by endothelial cells (ECs). The enzymatic activity of nucleotidases on human umbilical vein endothelial cells (HUVECs) was examined with regard to (1) the inhibition of adenosine diphosphate (ADP)–induced platelet aggregation and (2) the liberation of inorganic phosphate from adenine nucleotides. Adenosine 5′-monophosphate (AMP) preincubated with HUVECs significantly inhibited ADP-induced platelet aggregation. This was completely blocked by the treatment of HUVECs with a specific inhibitor of ecto-5′-NT, 5′-[αβ-methylene] diphosphate (APCP), or by the addition of an A2a receptor antagonist. Neither nitric oxide nor prostacyclin was involved in this inhibitory activity, suggesting that Ado generated in the incubation medium by the activity of 5′-NT on HUVECs inhibited platelet aggregation. When ADP was incubated on HUVECs, it lost most of its agonistic activity for platelets. Pretreatment of HUVECs with APCP at a concentration that abolished ecto-5′-NT activity partially restored ADP-induced platelet aggregation. Ecto-5′-NT contributes to EC function by inhibiting platelet aggregation in cooperation with ATP diphosphohydrolase, which degrades ADP to AMP.
Collapse
|
233
|
ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of Gαq. Blood 2000. [DOI: 10.1182/blood.v96.6.2134.h8002134_2134_2139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets from Gαq knockout mice are unable to aggregate in response to physiological agonists like adenosine 5′-diphosphate (ADP), thromboxane A2, thrombin, or collagen, although shape change still occurs in response to all of these agonists except ADP. ADP-induced platelet aggregation results from simultaneous activation of the purinergic P2Y1receptor coupled to calcium mobilization and shape change and of a distinct P2 receptor, P2cyc, coupled through Gi to adenylyl cyclase inhibition, which is responsible for completion and amplification of the response. P2cyc could be the molecular target of the antithrombotic drug clopidogrel and the adenosine triphosphate (ATP) analogs AR-C69931MX, AR-C67085, and AR-C66096. The aim of the present study was to determine whether externally added ADP could still act through the Gi pathway in Gαq-deficient mouse platelets and thereby amplify the residual responses to agonists such as thrombin or collagen. It was found that (1) ADP and adrenaline still inhibited cyclic AMP accumulation in Gαq-deficient platelets; (2) both agonists restored collagen- but not thrombin-induced aggregation in these platelets; (3) the effects of ADP were selectively inhibited in vitro by the ATP analog AR-C69931MX and ex vivo by clopidogrel and hence were apparently mediated by the P2cyc receptor; and (4) high concentrations of ADP (100 μmol/L) induced aggregation without shape change in Gαq-deficient platelets through activation of P2cyc. Since adrenaline was not able to induce platelet aggregation even at high concentrations, we conclude that the effects of ADP mediated by P2cyc are not restricted to the inhibition of adenylyl cyclase through Gi2.
Collapse
|
234
|
Storey RF, Sanderson HM, White AE, May JA, Cameron KE, Heptinstall S. The central role of the P(2T) receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity. Br J Haematol 2000; 110:925-34. [PMID: 11054084 DOI: 10.1046/j.1365-2141.2000.02208.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine diphosphate (ADP) is an important platelet agonist and ADP released from platelet dense granules amplifies responses to other agonists. There are three known subtypes of ADP receptor on platelets: P2X(1), P2Y(1) and P(2T) receptors. Sustained ADP-induced aggregation requires co-activation of P2Y(1) and P(2T) receptors. AR-C69931MX, a selective P(2T) receptor antagonist and novel antithrombotic agent, was studied to characterize further the function of the P(2T) receptor. The roles of the P2Y(1) receptor and thromboxane A(2) were assessed using the selective P2Y(1) antagonist A2P5P and aspirin respectively. Aggregation was measured by whole blood single-platelet counting and platelet-rich plasma turbidimetry, using hirudin anticoagulation. Dense granule release was estimated using ([14)C]-5-hydroxytryptamine (HT)-labelled platelets. Ca(2+) mobilization, P-selectin expression, Annexin V binding and microparticle formation were determined by flow cytometry. P(2T) receptor activation amplified ADP-induced aggregation initiated by the P2Y(1) receptor, as well as amplifying aggregation, secretion and procoagulant responses induced by other agonists, including U46619, thrombin receptor-activating peptide (TRAP) and collagen, independent of thromboxane A(2) synthesis, which played a more peripheral role. P(2T) receptor activation sustained elevated cytosolic Ca(2+) induced by other pathways. These studies indicate that the P(2T) receptor plays a central role in amplifying platelet responses and demonstrate the clinical potential of P(2T) receptor antagonists.
Collapse
Affiliation(s)
- R F Storey
- Cardiovascular Medicine, University Hospital, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
235
|
Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ. ADP is not an agonist at P2X(1) receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 2000; 131:108-14. [PMID: 10960076 PMCID: PMC1572284 DOI: 10.1038/sj.bjp.0703517] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ADP, an important agonist in thrombosis and haemostasis, has been reported to activate platelets via three receptors, P2X(1), P2Y(1) and P2T(AC). Given the low potency of ADP at P2X(1) receptors and recognized contamination of commercial samples of adenosine nucleotides, we have re-examined the activation of P2X(1) receptors by ADP following HPLC and enzymatic purification. Native P2X(1) receptor currents in megakaryocytes were activated by alpha, beta-meATP (10 microM) and commercial samples of ADP (10 microM), but not by purified ADP (10 - 100 microM). Purified ADP (up to 1 mM) was also inactive at recombinant human P2X(1) receptors expressed in Xenopus oocytes. Purification did not modify the ability of ADP to activate P2Y receptors coupled to Ca(2+) mobilization in rat megakaryocytes. In human platelets, P2X(1) and P2Y receptor-mediated [Ca(2+)](i) responses were distinguished by their different kinetics at 13 degrees C. In 1 mM Ca(2+) saline, alpha,beta-meATP (10 microM) and commercial ADP (40 microM) activated a rapid [Ca(2+)](i) increase (lag time < or =0.5 s) through the activation of P2X(1) receptors. Hexokinase treatment of ADP shifted the lag time by approximately 2 s, indicating loss of the P2X(1) receptor-mediated response. A revised scheme is proposed for physiological activation of P2 receptors in human platelets. ATP stimulates P2X(1) receptors, whereas ADP is a selective agonist at metabotropic (P2Y(1) and P2T(AC)) receptors.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG
- Author for correspondence:
| | - Steven J Ennion
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester LE1 9HN
| | - Michael G Rolf
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG
| | - Richard J Evans
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester LE1 9HN
| |
Collapse
|
236
|
Sage SO, Yamoah EH, Heemskerk JW. The roles of P(2X1)and P(2T AC)receptors in ADP-evoked calcium signalling in human platelets. Cell Calcium 2000; 28:119-26. [PMID: 10970768 DOI: 10.1054/ceca.2000.0139] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The roles of P(2X1)and P(2T AC)receptors in ADP-evoked Ca(2+)signalling were investigated in fura-2-loaded human platelets. Desensitization of the P(2X1)receptor with the selective agonist, alphabeta-methylene ATP, reduced the integral of the ADP-evoked rise in [Ca(2+)](i)to about 90% of control; a reduction equivalent to the integral of the P(2X1)-evoked response alone. After elevating cAMP or cGMP levels using prostaglandin E(1)or sodium nitroprusside, prior P(2X1)desensitization reduced the integral of the ADP-evoked response to about 70% of control. This reduction was greater than the integral of the P(2X1)-evoked response alone under the same conditions, suggesting rapidly activated Ca(2+)entry via the P(2X1)receptor potentiates Ca(2+)responses evoked via the phospholipase C-coupled P(2Y1)receptor. The P(2T AC)receptor antagonist, AR-C69931MX, at a concentration completely inhibiting aggregation, did not significantly affect the initial peaks but caused a significant reduction in the integrals of the ADP-evoked rises in [Ca(2+)](i)to about 71% or 77% of controls in the presence or absence of external Ca(2+)respectively. This suggests that the main effect of lowering cAMP levels after inhibition of adenylyl cyclase via P(2T AC)receptors may be reduced Ca(2+)removal from the cytosol. These results indicate that both the P(2X1)and P(2T AC)receptors play a significant role in ADP-evoked Ca(2+)signalling in human platelets.
Collapse
Affiliation(s)
- S O Sage
- Department of Physiology, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
237
|
Cusack NJ, Hourani SM. Platelet P2 receptors: from curiosity to clinical targets. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:37-43. [PMID: 10869698 DOI: 10.1016/s0165-1838(00)00151-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adenosine 5'-diphosphate (ADP) is a paracrine mediator that activates human blood platelets, causing them to become adhesive and thereby contributing to their role in hemostasis. The actions of ADP were initially thought to be mediated by a unique ADP receptor termed P2(T) found only on platelets and antagonized by ATP, but it appears that at least two P2Y receptor subtypes are involved, a P2Y(1) receptor linked in some way to control of intracellular-free calcium levels and another P2Y receptor linked via an inhibitory G protein to adenylate cyclase. In addition, the presence of excitatory P2X(1) receptors that mediate the influx of monovalent and divalent cations in response to both ADP and ATP has been demonstrated. The precise contribution that each of these P2 receptors make to the overall phenomena associated with platelet aggregation, adhesion and hemostasis is yet to be defined. Antithrombotic agents that interfere with the actions of ADP are marketed, and P2 receptor antagonists are entering clinical trials for acute treatments of thrombosis. This review seeks to summarize the present state of knowledge of platelet P2 receptor pharmacology and therapeutics.
Collapse
Affiliation(s)
- N J Cusack
- Discovery Therapeutics, Inc., 2028 Dabney Road, Suite E-17, Richmond, VA 23230, USA.
| | | |
Collapse
|
238
|
Stromal cell–derived factor-1 and macrophage-derived chemokine: 2 chemokines that activate platelets. Blood 2000. [DOI: 10.1182/blood.v96.1.50] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPlatelets play roles in both thrombosis and inflammation, and chemokines that are released at sites of inflammation could potentially activate platelets. Among the chemokine receptors expressed on platelets, the CXCR4 is the receptor for chemokine stromal cell-derived factor-1 (SDF-1), and the CCR4 is the receptor for macrophage-derived chemokine (MDC). Of the chemokines tested, SDF-1 and MDC were the only 2 that activated platelets. Both are weak agonists, but they enhanced response to low-dose adenosine 5′-diphosphate (ADP), epinephrine, or serotonin. When SDF-1 and MDC were added together, full and brisk platelet aggregation occurred. Platelet activation by these 2 chemokines appears to involve distinct pathways: SDF-1 inhibited an increase in cyclic adenosine monophosphate (cAMP) following prostaglandin (PG) I2, while MDC had no effect. In contrast, MDC, but not SDF-1, lead to Ca++mobilization by platelets. Further, second-wave aggregation induced by MDC in platelet-rich plasma was inhibited by aspirin, ADP scavenger creatine phosphate/creative phosphokinase (CP/CPK), and ARL-66096, an antagonist of the ADP P2TAC receptor involved in adenylyl cyclase inhibition. But the aggregation was not affected by A3P5PS, an inhibitor of the ADP P2Y receptor. SDF-1–induced aggregation was inhibited by aspirin, but it was only slightly affected by CP/CPK, ARL-66096, or A3P5PS. Finally, the presence of chemokines in platelets was determined. Reverse transcriptase–polymerase chain reaction studies with platelet RNA did not detect the presence of SDF-1 or MDC. In summary, SDF-1 and MDC are platelet agonists that activate distinct intracellular pathways. Their importance in the development of thrombosis at sites of inflammation needs to be further evaluated.
Collapse
|
239
|
Goepfert C, Imai M, Brouard S, Csizmadia E, Kaczmarek E, Robson SC. CD39 Modulates Endothelial Cell Activation and Apoptosis. Mol Med 2000. [DOI: 10.1007/bf03401797] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
240
|
Abstract
Platelets play roles in both thrombosis and inflammation, and chemokines that are released at sites of inflammation could potentially activate platelets. Among the chemokine receptors expressed on platelets, the CXCR4 is the receptor for chemokine stromal cell-derived factor-1 (SDF-1), and the CCR4 is the receptor for macrophage-derived chemokine (MDC). Of the chemokines tested, SDF-1 and MDC were the only 2 that activated platelets. Both are weak agonists, but they enhanced response to low-dose adenosine 5′-diphosphate (ADP), epinephrine, or serotonin. When SDF-1 and MDC were added together, full and brisk platelet aggregation occurred. Platelet activation by these 2 chemokines appears to involve distinct pathways: SDF-1 inhibited an increase in cyclic adenosine monophosphate (cAMP) following prostaglandin (PG) I2, while MDC had no effect. In contrast, MDC, but not SDF-1, lead to Ca++mobilization by platelets. Further, second-wave aggregation induced by MDC in platelet-rich plasma was inhibited by aspirin, ADP scavenger creatine phosphate/creative phosphokinase (CP/CPK), and ARL-66096, an antagonist of the ADP P2TAC receptor involved in adenylyl cyclase inhibition. But the aggregation was not affected by A3P5PS, an inhibitor of the ADP P2Y receptor. SDF-1–induced aggregation was inhibited by aspirin, but it was only slightly affected by CP/CPK, ARL-66096, or A3P5PS. Finally, the presence of chemokines in platelets was determined. Reverse transcriptase–polymerase chain reaction studies with platelet RNA did not detect the presence of SDF-1 or MDC. In summary, SDF-1 and MDC are platelet agonists that activate distinct intracellular pathways. Their importance in the development of thrombosis at sites of inflammation needs to be further evaluated.
Collapse
|
241
|
Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM. Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors. Cell Signal 2000; 12:351-60. [PMID: 10889463 DOI: 10.1016/s0898-6568(00)00083-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nucleotides are ubiquitous intercellular messengers whose actions are mediated by specific receptors. Since the first clonings in 1993, it is known that nucleotide receptors belong to two families: the ionotropic P2X receptors and the metabotropic P2Y receptors. Five human P2Y receptor subtypes have been cloned so far and a sixth one must still be isolated. In this review we will show that they differ by their preference for adenine versus uracil nucleotides and triphospho versus diphospho nucleotides, as well as by their transduction mechanisms and cell expression.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Brussels, Belgium
| | | | | | | | | |
Collapse
|
242
|
Ishii-Watabe A, Uchida E, Mizuguchi H, Hayakawa T. On the mechanism of plasmin-induced platelet aggregation. Implications of the dual role of granule ADP. Biochem Pharmacol 2000; 59:1345-55. [PMID: 10751543 DOI: 10.1016/s0006-2952(00)00279-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmin-induced platelet aggregation has been considered to be a cause of reocclusion after thrombolytic treatment with plasminogen activators. However, little is known regarding the mechanism and regulation of plasmin-induced platelet aggregation. In this study, we demonstrated that plasmin causes the degranulation of platelets, and that ADP released from granules plays a crucial role in the induction of platelet aggregation. This conclusion is supported by results showing that both ADP antagonists and ADPase can inhibit the effect of plasmin on platelets. We also demonstrated that pretreatment of platelets with ADP makes the platelets more sensitive to plasmin, and plasmin-induced platelet aggregation is, therefore, observed at lower concentrations where no aggregation occurs in quiescent platelets. In other words, it is thought that ADP potentiates the plasmin-induced aggregation. The effect of ADP was inhibited by N(6)-[2-(methylthio)-ethyl]-2-(3,3, 3-trifluoropropyl)thio-5'-adenylic acid, monoanhydride with dichloromethylenebisphosphonic acid (AR-C69931), a selective antagonist for the P2T(AC) subtype of P2 receptor, but not by the P2Y1 receptor-selective antagonist adenosine 3'-phosphate 5'-phosphosulfate (A3P5PS). The P2X1 receptor agonist alpha, beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) did not mimic the action of ADP. These data indicate that ADP potentiates plasmin-induced platelet aggregation via the P2T(AC) receptor. In addition, epinephrine, a typical G(i) agonist against platelets, could potentiate the plasmin-induced platelet aggregation, suggesting that the signal via the G(i) protein is involved in potentiating the plasmin-induced platelet aggregation, ADP is secreted from platelet granules, and concomitantly works in conjunction with plasmin in a P2T(AC) receptor-mediated manner.
Collapse
Affiliation(s)
- A Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | |
Collapse
|
243
|
Francischetti IM, Ribeiro JM, Champagne D, Andersen J. Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the blood-sucking bug, Rhodnius prolixus. J Biol Chem 2000; 275:12639-50. [PMID: 10777556 DOI: 10.1074/jbc.275.17.12639] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodnius prolixus aggregation inhibitor 1 (RPAI-1), a 19-kDa protein isolated from the salivary gland of R. prolixus, was purified by strong cation exchange and reverse-phase high performance liquid chromatographies. Based on 49 amino-terminal amino acid sequences of RPAI-1, primers were produced to generate probes to screen an R. prolixus salivary gland cDNA library. A phage containing the full-length clone of RPAI-1 codes for a mature protein of 155 amino acids. RPAI-1 shows sequence homology to triabin and pallidipin, lipocalins from Triatoma pallidipennis. The cDNA sequence was cloned in Pet17B Escherichia coli expression vector, producing an active peptide. RPAI-1 inhibits human platelet-rich plasma aggregation triggered by low concentrations of ADP, collagen, arachidonic acid, thromboxane A(2) mimetics (U46619), and very low doses of thrombin and convulxin. Here we show that ADP is the target of RPAI-1 since (i) RPAI-1 inhibits ADP-dependent large aggregation formation and secretion triggered by U46619, without affecting Ca(2+) increase and shape change; (ii) ADP restored the inhibition of U46619-induced platelet aggregation by RPAI-1, (iii) PGE(1)-induced increase of cAMP (which is antagonized by U46619 in an ADP-dependent manner) was restored by RPAI-1, (iv) RPAI-1 inhibits low concentrations of ADP-mediated responses of indomethacin-treated platelets, and (v) RPAI-1 binds to ADP, as assessed by large zone chromatography. RPAI-1 affects neither integrin alpha(2)beta(1)- nor glycoprotein VI-mediated platelet responses. We conclude that RPAI-1 is the first lipocalin described that inhibits platelet aggregation by a novel mechanism, binding to ADP.
Collapse
Affiliation(s)
- I M Francischetti
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | | | |
Collapse
|
244
|
Francischetti IM, Chiang TM, Guimarães JA, Bon C. Role of the recombinant non-integrin platelet collagen receptor P65 on platelet activation induced by convulxin. Biochem Biophys Res Commun 2000; 270:932-5. [PMID: 10772928 DOI: 10.1006/bbrc.2000.2529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Convulxin (Cvx) isolated from Crotalus durissus terrificus venom selectively binds with a high affinity to platelets and induces platelet aggregation by a mechanism that resembles that induced by collagen. Taking advantage that P65 has been recently cloned and expressed as a recombinant soluble protein (rec-P65), we examined the role of this non-integrin collagen receptor in platelet activation induced by Cvx. Rec-P65 blocked platelet adhesion to collagen-coated surfaces and inhibited platelet aggregation and ATP secretion induced by type I collagen. On the other hand, rec-P65 did not inhibit platelet aggregation and ATP secretion induced by Cvx, and it did not affect platelet adhesion to Cvx. In addition, ligand-blotting indicated that the Cvx binding to the collagen receptor GPVI was preserved in the presence of rec-P65. These observations indicate that P65 does not play a significant role in platelet activation by Cvx; in contrast, platelet response to collagen involves multiple receptors.
Collapse
Affiliation(s)
- I M Francischetti
- Unité des Venins, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75724, France.
| | | | | | | |
Collapse
|
245
|
Dangelmaier C, Jin J, Daniel JL, Smith JB, Kunapuli SP. The P2Y1 receptor mediates ADP-induced p38 kinase-activating factor generation in human platelets. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2283-9. [PMID: 10759852 DOI: 10.1046/j.1432-1327.2000.01235.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
U46619, a thromboxane A2 mimetic, but not ADP, caused activation of p38 mitogen activated protein (MAP) kinase in aspirin-treated platelets. In nonaspirinated human platelets ADP activated p38 MAP kinase in both a time-and concentration-dependent manner, suggesting that ADP-induced p38 MAP kinase activation requires generation of thromboxane A2. However, neither a thromboxane A2/prostaglandin H2 receptor antagonist SQ29548 and a thromboxane synthase inhibitor, furegrelate, either alone or together, nor indomethacin blocked ADP-induced p38 kinase activation in nonaspirinated platelets. Other cycloxygenase products, PGE2, PGD2, and PGF2alpha, failed to activate p38 kinase in aspirin-treated platelets. Hence, ADP must be generating an agonist, other than thromboxane A2, via an aspirin-sensitive pathway, which is capable of activating p38 kinase. AR-C66096, a P2TAC (platelet ADP receptor coupled to inhibition of adenylate cyclase) antagonist, did not inhibit ADP-induced p38 MAP kinase activation. The P2X receptor selective agonist, alpha, beta-methylene ATP, failed to activate p38 MAP kinase. On the other hand, the P2Y1 receptor selective antagonist, adenosine-2'-phosphate-5'-phosphate inhibited ADP-induced p38 kinase activation in a concentration-dependent manner, indicating that the P2Y1 receptor alone mediates ADP-induced generation of the p38 kinase-activating factor. These results demonstrate that ADP causes the generation of a factor in human platelets, which can activate p38 kinase, and that this response is mediated by the P2Y1 receptor. Neither the P2TAC receptor nor the P2X1 receptor has any significant role in this response.
Collapse
Affiliation(s)
- C Dangelmaier
- Department of Pharmacology, Temple University Medical School, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
246
|
Vigne P, Breittmayer JP, Frelin C. Diadenosine polyphosphates as antagonists of the endogenous P2Y(1) receptor in rat brain capillary endothelial cells of the B7 and B10 clones. Br J Pharmacol 2000; 129:1506-12. [PMID: 10742308 PMCID: PMC1571980 DOI: 10.1038/sj.bjp.0703228] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Diadenosine polyphosphates (Ap(n)As, n=2 - 7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of Ap(n)As in clones of rat brain capillary endothelial cells that express P2Y(1) receptors (B10 cells) or both P2Y(1) and P2Y(2) receptors (B7 cells). 2. B10 cells responded to Ap(3)A with rises in intracellular Ca(2+) concentration ([Ca(2+)](i)). This response was prevented by adenosine-3'-phosphate-5'-phosphate, an antagonist of P2Y(1) receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP. 3. Ap(n)As inhibited ADP induced increases in [Ca(2+)](i) mediated by P2Y(1) receptors by shifting ADP concentration-response curves to larger concentrations. Apparent K(i) values were estimated to be 6 microM for Ap(4)A, 10 microM for Ap(5)A and 47 microM for Ap(6)A. Ap(2)A and Ap(3)A were much less active. 4. Ap(n)As were neither agonists nor antagonists of the endogenous P2Y(2) receptor in B7 cells. 5. Ap(n)As are neither agonists nor antagonists of the G(i)-coupled, ADP receptor in B10 cells. 6. The results suggest that most actions of Ap(n)As in B7 and B10 cells can be accounted for by endogenous P2Y(1) receptors. Ap(4)A, Ap(5)A and Ap(6)A are specific antagonists of endogenous Ca(2+)-coupled P2Y(1) receptors.
Collapse
Affiliation(s)
- Paul Vigne
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411, Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
| | | | - Christian Frelin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411, Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
- Author for correspondence:
| |
Collapse
|
247
|
Sugidachi A, Asai F, Ogawa T, Inoue T, Koike H. The in vivo pharmacological profile of CS-747, a novel antiplatelet agent with platelet ADP receptor antagonist properties. Br J Pharmacol 2000; 129:1439-46. [PMID: 10742300 PMCID: PMC1571986 DOI: 10.1038/sj.bjp.0703237] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. CS-747 is a novel antiplatelet agent that generates an active metabolite, R-99224, in vivo. CS-747 itself was totally inactive in vitro. This study examined in vivo pharmacological profiles of CS-747 after single oral administration to rats. 2. Orally administered CS-747 (0.3 - 10 mg kg(-1)) partially but significantly decreased [(3)H]-2-methylthio-ADP binding to rat platelets. CS-747 (3 mg kg(-1), p.o.) treatment neutralized ADP-induced decreases of cyclic AMP concentrations induced by prostaglandin E(1), suggesting that metabolites of CS-747 interfere with G(i)-linked P2T receptor. 3. CS-747 (0.3 and 3 mg kg(-1), p.o.) markedly inhibited ex vivo washed platelet aggregation in response to ADP but not to thrombin. CS-747 also exhibited a marked inhibition of ADP-induced ex vivo platelet aggregation in PRP with a rapid onset (<0.5 h) and long duration (>3 days) of action (ED(50) at 4 h=1.2 mg kg(-1)). 4. R-99224 (IC(50)=45 microM) inhibited in vitro PRP aggregation in a concentration-related manner. 5. CS-747 prevented thrombus formation in a dose-related manner with an ED(50) value of 0.68 mg kg(-1). CS-747 was more potent than clopidogrel (6.2 mg kg(-1)) and ticlopidine (>300 mg kg(-1)). 6. CS-747, clopidogrel, and ticlopidine prolonged the bleeding time. The order of potency of these agents in this activity was the same as that in antiaggregatory and antithrombotic activities. 7. These findings indicate that CS-747 is an orally active and a potent antiplatelet and antithrombotic agent with a rapid onset and long duration of action, and warrants clinical evaluations of the agent.
Collapse
Affiliation(s)
- Atsuhiro Sugidachi
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Fumitoshi Asai
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
- Author for correspondence:
| | - Taketoshi Ogawa
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Teruhiko Inoue
- Ube Research Laboratory, Ube Industries, Ltd., Kogushi 1978-5, Ube City, Yamaguchi 755-8633, Japan
| | - Hiroyuki Koike
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
248
|
|
249
|
Soslau G, Schechner AJ, Alcasid PJ, Class R. Influence of vortex speed on fresh versus stored platelet aggregation in the absence and presence of extracellular ATP. Thromb Res 2000; 97:15-27. [PMID: 10688331 DOI: 10.1016/s0049-3848(99)00124-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Platelets are subjected to vastly differing shear forces under laminar and nonlaminar flow patterns throughout the tortuous cardiovascular system. Different activation pathways appear to be associated with platelet adhesion and aggregation under high shear rates vs. low shear rates. We found that platelets continue to aggregate at very low stirring rates (100 RPM) and low shear forces although significantly less than at high stirring rates (1000 RPM). These conditions may model vortices encountered in vivo, such as downstream of partially occluded blood vessels. The extent of agonist-induced platelet aggregation, at varying stir rates, remained essentially unchanged between 1200 and 600 RPM. This was true for both freshly prepared and stored platelets even though the extent of aggregation was significantly reduced with stored platelets. Agonists used were thrombin, thrombin receptor activating peptide (TRAP), SFLLRNP, the thromboxane A2 mimetic, U46619, plus epinephrine and ADP+epinephrine. At lower stir rates (100-400 RPM), little or no difference in aggregation levels was observed between fresh and stored platelets, depending upon agonist used. This may indicate that old and young platelets, in vivo, would be equally active at vessel walls exposed to blood flowing through a slow vortex at low shear rates. ATP, released from activated platelets, may act as a potent regulator of platelet aggregation within a vortex where the resident time of platelets and bioactive molecules is greater than in laminar flow regions. High levels of extracellular ATP (100 microM) inhibited agonist-induced aggregation of fresh platelets to a greater extent than stored platelets, except with ADP+epinephrine where the converse was observed. Inhibition, in general, appeared to be inversely related to stir rates. Low levels of extracellular ATP (10 nM, 1 microM) generally stimulated agonist-induced aggregations independent of stir rates and to a greater extent with stored platelets than fresh platelets. Unraveling how hemostasis functions within microenvironments may facilitate ways to further regulate this process.
Collapse
Affiliation(s)
- G Soslau
- Department of Biochemistry, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19102-1192, USA.
| | | | | | | |
Collapse
|
250
|
Chapter 10. Antiplatelet therapies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2000. [DOI: 10.1016/s0065-7743(00)35011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|