201
|
Casillas-Ramírez A, Mosbah IB, Ramalho F, Roselló-Catafau J, Peralta C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci 2006; 79:1881-1894. [PMID: 16828807 DOI: 10.1016/j.lfs.2006.06.024] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/19/2006] [Accepted: 06/08/2006] [Indexed: 02/06/2023]
Abstract
Ischemia-reperfusion (I/R) injury associated with liver transplantation remains a serious complication in clinical practice, in spite of several attempts to solve the problem. The present review focuses on the complexity of I/R injury, summarizing conflicting results obtained from the literature about the mechanisms responsible for it. We also review the therapeutic strategies designed in past years to reduce I/R injury, attempting to explain why most of them have not been applied clinically. These strategies include improvements in pharmacological treatments, modifications of University of Wisconsin (UW) preservation solution based on a variety of additives, and gene therapy. Finally, we will consider new potential protective strategies using trimetazidine, 5-amino-4-imidazole carboxamide riboside (AICAR), melatonin, modulators of the renin-angiotensin system (RAS) and the phosphatidylinositol-3-OH kinase (PI3K)-Akt and the p42/p44 extracellular signal-regulated kinases (Erk 1/2) pathway. These strategies have shown promising results for I/R injury but have not been tested in experimental liver transplantation to date. Moreover, we will review ischemic preconditioning, taking into account the recent clinical studies that suggest that this surgical strategy could be appropriate for liver transplantation.
Collapse
Affiliation(s)
- Araní Casillas-Ramírez
- Experimental Liver Ischemia-Reperfusion Unit, Instituto de Investigaciones Biomédicas de Barcelona August Pi i Sunyer, Experimental Hepatology, IIBB-CSIC, C/ Rosellón 161, 7th floors, 08036-Barcelona, Spain
| | | | | | | | | |
Collapse
|
202
|
Fülöp P, Derdák Z, Sheets A, Sabo E, Berthiaume EP, Resnick MB, Wands JR, Paragh G, Baffy G. Lack of UCP2 reduces Fas-mediated liver injury in ob/ob mice and reveals importance of cell-specific UCP2 expression. Hepatology 2006; 44:592-601. [PMID: 16941708 DOI: 10.1002/hep.21310] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fatty liver is vulnerable to conditions that challenge hepatocellular energy homeostasis. Lipid-laden hepatocytes highly express uncoupling protein-2 (UCP2), a mitochondrial carrier that competes with adenosine triphosphate (ATP) synthesis by mediating proton leak. However, evidence for a link between UCP2 expression and susceptibility of liver to acute injury is lacking. We asked whether absence of UCP2 protects ob/ob mice from Fas-mediated acute liver damage. UCP2-deficient ob/ob mice (ob/ob:ucp2-/-) and UCP2-competent littermates (ob/ob:ucp2+/+) received a single dose of agonistic anti-Fas antibody (Jo2). Low-dose Jo2 (0.15 mg/kg intraperitoneally) caused less serum alanine aminotransferase (ALT) elevation and lower apoptosis rates in ob/ob:ucp2-/- mice. High-dose Jo2 (0.40 mg/kg intraperitoneally) proved uniformly fatal; however, ob/ob:ucp2-/- mice survived longer with less depletion of liver ATP stores, indicating that fatty hepatocytes may benefit from lack of UCP2 during Jo2 challenge. Although UCP2 reportedly controls mitochondrial oxidant production, its absence had no apparent effect on fatty liver tissue malondialdehyde levels augmented by Jo2. This finding prompted us to determine UCP2 expression in Kupffer cells, a major source of intrahepatic oxidative stress. UCP2 expression was found diminished in Kupffer cells of untreated ob/ob:ucp2+/+ mice, conceivably contributing to increased oxidative stress in fatty liver and limiting the impact of UCP2 ablation. In conclusion, whereas UCP2 abundance in fatty hepatocytes exacerbates Fas-mediated injury by compromising ATP stores, downregulation of UCP2 in Kupffer cells may account for persistent oxidative stress in fatty liver. Our data support a cell-specific approach when considering the therapeutic effects of mitochondrial uncoupling in fatty liver disease.
Collapse
Affiliation(s)
- Péter Fülöp
- Division of Gastroenterology & Liver Research Center, Brown Medical School and Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: Cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology 2006; 131:934-45. [PMID: 16952562 DOI: 10.1053/j.gastro.2006.05.054] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 05/11/2006] [Indexed: 02/06/2023]
Affiliation(s)
- Herbert Tilg
- Department of Medicine, Christian Doppler Laboratory for Gut Inflammation and Clinical Division of Gastroenterology and Hepatology, Innsbruck Medical University, Innsbruck, Austria.
| | | |
Collapse
|
204
|
Sluse FE, Jarmuszkiewicz W, Navet R, Douette P, Mathy G, Sluse-Goffart CM. Mitochondrial UCPs: New insights into regulation and impact. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:480-5. [PMID: 16597432 DOI: 10.1016/j.bbabio.2006.02.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/24/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins sustaining an inducible proton conductance. They weaken the proton electrochemical gradient built up by the mitochondrial respiratory chain. Brown fat UCP1 sustains a free fatty acid (FA)-induced purine nucleotide (PN)-inhibited proton conductance. Inhibition of the proton conductance by PN has been considered as a diagnostic of UCP activity. However, conflicting results have been obtained in isolated mitochondria for UCP homologues (i.e., UCP2, UCP3, plant UCP, and protist UCP) where the FFA-activated proton conductance is poorly sensitive to PN under resting respiration conditions. Our recent work clearly indicates that the membranous coenzyme Q, through its redox state, represents a regulator of the inhibition by PN of FFA-activated UCP1 homologues under phosphorylating respiration conditions. Several physiological roles of UCPs have been suggested, including a control of the cellular energy balance as well as the preventive action against oxidative stress. In this paper, we discuss new information emerging from comparative proteomics about the impact of UCPs on mitochondrial physiology, when recombinant UCP1 is expressed in yeast and when UCP2 is over-expressed in hepatic mitochondria during steatosis.
Collapse
Affiliation(s)
- Francis E Sluse
- Laboratory of Bioenergetics, Department of Life Sciences, Institute of Chemistry B6c, University of Liège, Sart Tilman, B-4000 Liege, Belgium.
| | | | | | | | | | | |
Collapse
|
205
|
Casillas-Ramírez A, Mosbah IB, Franco-Gou R, Rimola A, Roselló-Catafau J, Peralta C. [Ischemia-reperfusion syndrome associated with liver transplantation: an update]. GASTROENTEROLOGIA Y HEPATOLOGIA 2006; 29:306-313. [PMID: 16733038 DOI: 10.1157/13087472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion (I/R) injury is the main cause of both initial graft dysfunction and primary failure in liver transplantation. The search for therapeutic strategies to prevent I/R injury has led to research into promising drugs, although most have not been used clinically. Gene therapy requires better transfection techniques, avoiding vector toxicity, and ethical debate before being used clinically. Ischemic preconditioning is the first therapeutic strategy used in clinical practice to reduce I/R injury in hepatectomies for tumors. Future research will provide data on the effectiveness of ischemic preconditioning in reducing I/R injury associated with liver transplantation, and in reducing the vulnerability of steatotic grafts to I/R syndrome so that they can be used in transplantation, thus relieving the organ shortage.
Collapse
Affiliation(s)
- A Casillas-Ramírez
- Unidad de Hepatología Experimental, Instituto de Investigaciones Biomédicas de Barcelona, CSIC-IDIBAPS, Barcelona, España
| | | | | | | | | | | |
Collapse
|
206
|
Douette P, Sluse FE. Mitochondrial uncoupling proteins: new insights from functional and proteomic studies. Free Radic Biol Med 2006; 40:1097-107. [PMID: 16545677 DOI: 10.1016/j.freeradbiomed.2005.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/02/2005] [Accepted: 12/11/2005] [Indexed: 01/20/2023]
Abstract
Mitochondria are the major sites of ATP synthesis through oxidative phosphorylation, a process that is weakened by proton leak. Uncoupling proteins are mitochondrial membrane proteins specialized in inducible proton conductance. They dissipate the proton electrochemical gradient established by the respiratory chain at the expense of reducing substrates. Several physiological roles have been suggested for uncoupling proteins, including roles in the control of the cellular energy balance and in preventive action against oxidative stress. This review focuses on new leads emerging from comparative proteomics about the involvement of uncoupling protein in the mitochondrial physiology. A brief overview on uncoupling proteins and on proteomics applied to mitochondria is also presented herein.
Collapse
Affiliation(s)
- Pierre Douette
- Laboratory of Bioenergetics, Bât. B6C, Allée de la chimie 3, 4000Liège, Belgium
| | | |
Collapse
|
207
|
Abstract
Oxidative stress is a common pathogenetic mechanism contributing to initiation and progression of hepatic damage in a variety of liver disorders. Cell damage occurs when there is an excess of reactive species derived from oxygen and nitrogen, or a defect of antioxidant molecules. Experimental research on the delicately regulated molecular strategies whereby cells control the balance between oxidant and antioxidant molecules has progressed in recent years. On the basis of this evidence, antioxidants represent a logical therapeutic strategy for the treatment of chronic liver disease. Clinical studies with large numbers of patients have not yet been performed. However, results from several pilot trials support this concept and indicate that it may be worth performing multicentre studies, particularly combining antioxidants with anti-inflammatory and/or antiviral therapy. Oxidative stress plays a pathogenetic role in liver diseases such as alcoholic liver disease, chronic viral hepatitis, autoimmune liver diseases and non-alcoholic steatohepatitis. The use of antioxidants (e.g. S-adenosylmethionine [SAMe; ademetionine], tocopherol [vitamin E], polyenylphosphatidylcholine or silymarin) has already shown promising results in some of these pathologies.
Collapse
Affiliation(s)
- Jesús Medina
- Unidad de Hepatología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
208
|
Douette P, Navet R, Gerkens P, de Pauw E, Leprince P, Sluse-Goffart C, Sluse FE. Steatosis-induced proteomic changes in liver mitochondria evidenced by two-dimensional differential in-gel electrophoresis. J Proteome Res 2006; 4:2024-31. [PMID: 16335947 DOI: 10.1021/pr050187z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Steatosis encompasses the accumulation of droplets of fats into hepatocytes. In this work, we performed a comparative analysis of mitochondrial protein patterns found in wild-type and steatosis-affected liver using the novel technique two-dimensional differential in-gel electrophoresis (2D-DIGE). A total of 56 proteins exhibiting significant difference in their abundances were unambiguously identified. Interestingly, major proteins that regulate generation and consumption of the acetyl-CoA pool were dramatically changed during steatosis. Many proteins involved in the response to oxidative stress were also affected.
Collapse
Affiliation(s)
- Pierre Douette
- Laboratory of Bioenergetics, Bât. B6c, Allée de la Chimie 3, 4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
209
|
Anstee QM, Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 2006; 87:1-16. [PMID: 16436109 PMCID: PMC2517349 DOI: 10.1111/j.0959-9673.2006.00465.x] [Citation(s) in RCA: 579] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 11/08/2005] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a histological spectrum of liver disease associated with obesity, diabetes and insulin resistance that extends from isolated steatosis to steatohepatitis and cirrhosis. As well as being a potential cause of progressive liver disease in its own right, steatosis has been shown to be an important cofactor in the pathogenesis of many other liver diseases. Animal models of NAFLD may be divided into two broad categories: those caused by genetic mutation and those with an acquired phenotype produced by dietary or pharmacological manipulation. The literature contains numerous different mouse models that exhibit histological evidence of hepatic steatosis or, more variably, steatohepatitis; however, few replicate the entire human phenotype. The genetic leptin-deficient (ob/ob) or leptin-resistant (db/db) mouse and the dietary methionine/choline-deficient model are used in the majority of published research. More recently, targeted gene disruption and the use of supra-nutritional diets to induce NAFLD have gained greater prominence as researchers have attempted to bridge the phenotype gap between the available models and the human disease. Using the physiological processes that underlie the pathogenesis and progression of NAFLD as a framework, we review the literature describing currently available mouse models of NAFLD, highlight the strengths and weaknesses of established models and describe the key findings that have furthered the understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Quentin M Anstee
- Department of Medicine A, St Mary's Campus, Imperial College, London, UK
| | | |
Collapse
|
210
|
Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 2006; 147:943-51. [PMID: 16269465 DOI: 10.1210/en.2005-0570] [Citation(s) in RCA: 413] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is a relatively new hepatic sequela of obesity and type 2 diabetes. The pathogenesis of liver injury and disease progression in nonalcoholic fatty liver disease, however, is poorly understood. The present study examined the hypothesis that the composition of fatty acids in the steatotic liver promotes liver injury. Using dietary models of hepatic steatosis characterized by similar accumulation of total triglyceride but different composition of fatty acids, we show that hepatic steatosis characterized by increased saturated fatty acids is associated with increased liver injury and markers of endoplasmic reticulum stress (e.g. X-box binding protein-1 mRNA splicing and glucose-regulated protein 78 expression). These changes preceded and/or occurred independently of obesity and differences in leptin, TNFalpha, insulin action, and mitochondrial function. In addition, hepatic steatosis characterized by increased saturated fatty acids reduced proliferative capacity in response to partial hepatectomy and increased liver injury in response to lipopolysaccharide. These data suggest that the composition of fatty acids in the steatotic liver is an important determinant of susceptibility to liver injury.
Collapse
Affiliation(s)
- Dong Wang
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, 80523-1571, USA
| | | | | |
Collapse
|
211
|
Begriche K, Igoudjil A, Pessayre D, Fromenty B. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 2006; 6:1-28. [PMID: 16406828 DOI: 10.1016/j.mito.2005.10.004] [Citation(s) in RCA: 555] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 10/13/2005] [Indexed: 02/07/2023]
Abstract
Calorie-enriched diet and lack of exercise are causing a worldwide surge of obesity, insulin resistance and lipid accretion in liver (i.e. hepatic steatosis), which can lead to steatohepatitis. Steatosis and nonalcoholic steatohepatitis (NASH) can also be induced by drugs such as amiodarone, tamoxifen and some antiretroviral drugs, including stavudine and zidovudine. There is accumulating evidence that mitochondrial dysfunction (more particularly respiratory chain deficiency) plays a key role in the physiopathology of NASH whatever its initial cause. In contrast, the mitochondrial beta-oxidation of fatty acids can be either increased (as in insulin resistance-associated NASH) or decreased (as in drug-induced NASH). However, in both circumstances, generation of reactive oxygen species (ROS) by the damaged respiratory chain can be augmented. ROS generation in an environment enriched in lipids in turn induces lipid peroxidation which releases highly reactive aldehydic derivatives (e.g. malondialdehyde) that have diverse detrimental effects on hepatocytes and other hepatic cells. In hepatocytes, ROS, reactive nitrogen species and lipid peroxidation products further impair the respiratory chain, either directly or indirectly through oxidative damage to the mitochondrial genome. This consequently leads to the generation of more ROS and a vicious cycle occurs. Mitochondrial dysfunction can also lead to apoptosis or necrosis depending on the energy status of the cell. ROS and lipid peroxidation products also increase the generation of several cytokines (TNF-alpha, TGF-beta, Fas ligand) playing a key role in cell death, inflammation and fibrosis. Recent investigations have shown that some genetic polymorphisms can significantly increase the risk of steatohepatitis and that several drugs can prevent or even reverse NASH. Interestingly, most of these drugs could exert their beneficial effects by improving directly or indirectly mitochondrial function in liver. Finding a drug, which could fully prevent oxidative stress and mitochondrial dysfunction in NASH is a major challenge for the next decade.
Collapse
Affiliation(s)
- Karima Begriche
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 481, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 750118 Paris, France
| | | | | | | |
Collapse
|
212
|
Laurens M, Scozzari G, Patrono D, St-Paul MC, Gugenheim J, Huet PM, Crenesse D. Warm ischemia-reperfusion injury is decreased by tacrolimus in steatotic rat liver. Liver Transpl 2006; 12:217-25. [PMID: 16447202 DOI: 10.1002/lt.20585] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia-reperfusion (I-R) injury is poorly tolerated by fatty livers, most probably secondary to reduced cellular adenosine triphosphate (ATP) levels. We investigated the effectiveness of tacrolimus pretreatment on fatty liver I-R injury in obese Zucker rats. Tacrolimus (0.3 mg/kg, intravenously) was injected 24 hours before a 75-minute ischemic period and rats were sacrificed 6 hours later. Tacrolimus modified the response to I-R observed in obese Zucker rats, when compared to nontreated obese rats: a significant reduction in hepatocyte necrosis was associated with a significant increase in hepatocyte apoptosis. In addition, cell necrosis and apoptosis were significantly and inversely correlated in lean nontreated and treated obese Zucker rats following I-R. Tacrolimus also significantly increased the hepatic ATP levels, reduced in nontreated obese rats, toward values found in lean Zucker rat livers. This protective effect of tacrolimus was further confirmed in vivo by a significantly improved survival following pretreatment with tacrolimus, 24 hours prior to ischemia. In conclusion, in obese Zucker rat livers, tacrolimus pretreatment reversed the I-R injury toward the one found in lean Zucker rats. The correlations between ATP levels and the opposite changes in necrosis and apoptotic pathways strongly suggest a cause-effect relationship between tacrolimus and changes in ATP levels.
Collapse
Affiliation(s)
- Marina Laurens
- Laboratoire de Recherches Chirurgicales, Université de Nice Sophia-Antipolis, Nice, France
| | | | | | | | | | | | | |
Collapse
|
213
|
Dai DL, Shen W, Yu HF, Guan XQ, Yi YF. Effect of Cordyceps Sinensis on Uncoupling Protein 2 in Experimental Rats with Nonalcoholic Fatty Liver. JOURNAL OF HEALTH SCIENCE 2006; 52:390-396. [DOI: 10.1248/jhs.52.390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Affiliation(s)
- Dong-Ling Dai
- Internal Medicine Department of ShenZhen Children's Hospital
| | - Wei Shen
- The Second Affiliated Hospital of Chongqing Medical University
| | - Hai-Feng Yu
- General Hospital of ChongQing Steel Corporation
| | | | | |
Collapse
|
214
|
Abstract
The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund, Sweden.
| | | |
Collapse
|
215
|
Sanyal AJ. Mechanisms of Disease: pathogenesis of nonalcoholic fatty liver disease. ACTA ACUST UNITED AC 2005; 2:46-53. [PMID: 16265100 DOI: 10.1038/ncpgasthep0084] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 12/06/2004] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with the metabolic syndrome. The metabolic syndrome is characterized by insulin resistance, which is produced by a complex interaction between genetic factors, macronutrient intake and lifestyle that alters the cytokine profile, cell biology and biochemical milieu of the liver, adipose tissue and striated muscle. The resultant disequilibrium in lipid homeostasis causes triglycerides to accumulate in the liver. An increase in oxidative stress, due to the generation of reactive oxygen species as a result of mitochondrial abnormalities and induction of the cytochrome P-450 system could be one mechanism by which the nonalcoholic fatty liver develops into nonalcoholic steatohepatitis. The pathogenesis of cytologic ballooning and Mallory body formation and their role in NAFLD remain to be defined. In addition, inflammation and fibrosis are likely to be secondary to hepatocyte injury and death.
Collapse
Affiliation(s)
- Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0341, USA.
| |
Collapse
|
216
|
McCarty MF. High mitochondrial redox potential may promote induction and activation of UCP2 in hepatocytes during hepatothermic therapy. Med Hypotheses 2005; 64:1216-9. [PMID: 15823721 DOI: 10.1016/j.mehy.2004.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/07/2004] [Indexed: 11/18/2022]
Abstract
Although uncoupling protein-1 is a key mediator of thermogenesis in activated brown fat, the more recently characterized uncoupling proteins-2 and -3 do not appear to influence basal metabolism, but rather may function to diminish excessive mitochondrial superoxide production when mitochondrial redox potential is high. Under these circumstances, superoxide within the mitochondrial matrix directly activates uncoupling protein-2 (UCP2), and may also promote induction of this protein. Normal healthy hepatocytes do not express UCP2, but this protein is induced in hepatocytes that are steatotic or that are treated with agents that boost superoxide production. It is proposed that induction and activation of UCP2 may play a role in the thermogenesis evoked by hepatothermic therapy, a strategy designed to decrease body fat by maximizing hepatic fatty acid oxidation. Under these conditions, high mitochondrial redox potential would be expected, and induction of UCP2's uncoupling activity would represent a homeostatically appropriate antioxidant response.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Avenue, Encinitas, CA 92024, USA.
| |
Collapse
|
217
|
Prabhakaran K, Li L, Mills EM, Borowitz JL, Isom GE. Up-regulation of uncoupling protein 2 by cyanide is linked with cytotoxicity in mesencephalic cells. J Pharmacol Exp Ther 2005; 314:1338-45. [PMID: 15937145 DOI: 10.1124/jpet.105.088625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uncoupling protein 2 (UCP-2) regulates mitochondrial function by increasing proton leak across the inner membrane to dissociate respiration from ATP synthesis and reduce reactive oxygen species generation. A number of studies have shown that UCP-2 expression protects cells from oxidative stress mediated injuries. In the current study, we show UCP-2-mediated reduction in mitochondrial function contributes to the mitochondrial dysfunction and the necrotic death of primary cultured mesencephalic cells (MCs) after exposure to cyanide, a complex IV inhibitor. The necrotic cell death was directly related to the level of mitochondrial dysfunction, as shown by reduction in ATP levels and decreased mitochondrial membrane potential. Treatment with cyanide for 6 h or longer upregulated UCP-2 expression. Blockade of up-regulation with a transcription or a translational inhibitor reduced the response to cyanide. Knockdown with RNAi or transfection with a UCP-2 dominant-negative interfering mutant reduced the cyanide-induced mitochondrial dysfunction and cell death, showing that constitutive expression of UCP-2 plays a role in the response to cyanide. Overexpression of UCP-2 by transfection with human full-length cDNA potentiated the cyanide toxicity. These findings indicate that UCP-2 can serve as a regulator of mitochondria-mediated necrotic cell death, in which enhanced expression can increase the vulnerability of primary MCs to injury due to complex IV-mediated inhibition by cyanide.
Collapse
Affiliation(s)
- Krishnan Prabhakaran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-1333, USA
| | | | | | | | | |
Collapse
|
218
|
Abstract
The challenges of growing prevalence and evident trend to progressive damage of primary nonalcoholic fatty liver disease confront a poorly understood pathogenesis. It appears to develop in two steps. First, a high adipocyte protein production in the context of a silent inflammatory background causes insulin resistance in adipose tissue. It leads both to lipolysis, with increase of the circulating and hepatic uptake of free fatty acids, and hyperinsulinemia. Within hepatocytes, the subsequent lipogenesis, together with a decreased secretion of lipoproteins, induces an accumulation of excessive hepatic triglycerides (steatosis), impliying some oxidative damage, but it remain balanced by uncoupling protein upregulation and antioxidant systems activation. Second, a more forceful fat catabolism by beta and omega oxidation results in respiratory chain hyperactivity with overproduction of free radicals and reactive oxygen species that exceed the antioxidant capacity. These agents lead to hepatocellular injury and necrosis, inflammatory infiltration and fibrosis (steatohepatitis) through induction of Fas ligand and cytokines (tumor necrosis factor alpha, transforming growth factor beta, interleukin-8), and lipid peroxidation and by-products (malondialdehyde and 4-hydroxynonenal). Other mechanisms (hepatic iron, Kupffer cells dysfunction or endotoxemia) play uncertain roles.
Collapse
Affiliation(s)
- Diego Moreno Sánchez
- Sección de Aparato Digestivo, Hospital General de Móstoles, Móstoles, Madrid, España.
| |
Collapse
|
219
|
Esteves TC, Brand MD. The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:35-44. [PMID: 16005426 DOI: 10.1016/j.bbabio.2005.06.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/06/2005] [Accepted: 06/08/2005] [Indexed: 11/23/2022]
Abstract
The mitochondrial uncoupling proteins UCP2 and UCP3 may be important in attenuating mitochondrial production of reactive oxygen species, in insulin signalling (UCP2), and perhaps in thermogenesis and other processes. To understand their physiological roles, it is necessary to know what reactions they are able to catalyse. We critically examine the evidence for proton transport and anion transport by UCP2 and UCP3. There is good evidence that they increase mitochondrial proton conductance when activated by superoxide, reactive oxygen species derivatives such as hydroxynonenal, and other alkenals or their analogues. However, they do not catalyse proton leak in the absence of such acute activation. They can also catalyse export of fatty acid and other anions, although the relationship of anion transport to proton transport remains controversial.
Collapse
Affiliation(s)
- Telma C Esteves
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
220
|
Tous M, Ferré N, Camps J, Riu F, Joven J. Feeding apolipoprotein E-knockout mice with cholesterol and fat enriched diets may be a model of non-alcoholic steatohepatitis. Mol Cell Biochem 2005; 268:53-8. [PMID: 15724437 DOI: 10.1007/s11010-005-2997-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present study was aimed (1) to investigate the effect of cholesterol and fat enriched diets on the development of steatohepatitis in apolipoprotein E-knockout mice, and (2) to study the chronological relationships between the development of hepatic alterations, hypercholesterolemia and atherosclerotic lesions in this experimental model. The study consisted of two protocols. Protocol 1 was used in 90 mice subdivided in groups of 18. For 10 weeks, each group was given a diet with different fat and cholesterol contents. Protocol 2 was used in 42 mice, subdivided in four groups. Each group was given a diet enriched with cholesterol and palm oil and they were sacrificed at 8, 13, 18 and 24 weeks of age. Results were as following. (1) Mice given high fat/high cholesterol diets developed an impairment of liver histology consisting of fat accumulation, macrophage proliferation, and inflammation. (2) These effects were modulated by the type of fat: olive oil was mainly associated with macrovesicular steatosis and cholesterol plus palm oil with severe steatohepatitis. (3) There was a chronological and quantitative relationship between liver impairment and the formation of atheromatous lesions. We conclude that apolipoprotein E-knockout mice may be a useful model for investigating the mechanisms of diet-induced steatohepatitis.
Collapse
Affiliation(s)
- Mònica Tous
- Centre de Recerca Biomèdica, Institut de Recerca en Ciències de la Salut, Hospital Universitari de Sant Joan, 43201-Reus, Catalunya, Spain
| | | | | | | | | |
Collapse
|
221
|
Růzicka M, Skobisová E, Dlasková A, Santorová J, Smolková K, Spacek T, Zácková M, Modrianský M, Jezek P. Recruitment of mitochondrial uncoupling protein UCP2 after lipopolysaccharide induction. Int J Biochem Cell Biol 2005; 37:809-21. [PMID: 15694840 DOI: 10.1016/j.biocel.2004.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/18/2004] [Accepted: 10/27/2004] [Indexed: 11/17/2022]
Abstract
Rat liver mitochondria contain a negligible amount of mitochondrial uncoupling protein UCP2 as indicated by 3H-GTP binding. UCP2 recruitment in hepatocytes during infection may serve to decrease mitochondrial production of reactive oxygen species (ROS), and this, in turn, would counterbalance the increased oxidative stress. To characterize in detail UCP2 recruitment in hepatocytes, we studied rats pretreated with lipopolysaccharide (LPS) or hepatocytes isolated from them, as an in vitro model for the systemic response to bacterial infection. LPS injection resulted in 3.3- or 3-fold increase of UCP2 mRNA in rat liver and hepatocytes, respectively, as detected by real-time RT-PCR on a LightCycler. A concomitant increase in UCP2 protein content was indicated either by Western blots or was quantified by up to three-fold increase in the number of 3H-GTP binding sites in mitochondria of LPS-stimulated rats. Moreover, H2O2 production was increased by GDP only in mitochondria of LPS-stimulated rats with or without fatty acids and carboxyatractyloside. When monitored by JC1 fluorescent probe in situ mitochondria of hepatocytes from LPS-stimulated rats exhibited lower membrane potential than mitochondria of unstimulated rats. We have demonstrated that the lower membrane potential does not result from apoptosis initiation. However, due to a small extent of potential decrease upon UCP2 recruitment, justified also by theoretical calculations, we conclude that the recruited UCP2 causes only a weak uncoupling which is able to decrease mitochondrial ROS production but not produce enough heat for thermogenesis participating in a febrile response.
Collapse
Affiliation(s)
- Michal Růzicka
- Department of Membrane Transport Biophysics, No. 75 Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 2005; 54:1331-9. [PMID: 15855317 DOI: 10.2337/diabetes.54.5.1331] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.
Collapse
Affiliation(s)
- Marc Foretz
- Institut Cochin, Département de Génétique, Développement et Pathologie Moléculaire, Université René Descartes Paris 5, Institut National de la Santé et de la Recherche Medicale U567, Centre National de la Recherche Scientifique UMR8104, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Segersvärd R, Rippe C, Duplantier M, Herrington MK, Isaksson B, Adrian TE, Erlanson-Albertsson C, Permert J. mRNA for pancreatic uncoupling protein 2 increases in two models of acute experimental pancreatitis in rats and mice. Cell Tissue Res 2005; 320:251-8. [PMID: 15782323 DOI: 10.1007/s00441-004-1024-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2004] [Accepted: 10/19/2004] [Indexed: 11/27/2022]
Abstract
Uncoupling-protein 2 (UCP2) is a mitochondrial protein that appears to be involved in cellular oxidant defense and in the regulation of oncotic cell death, both of which are important features of acute pancreatitis. However, UCP2 expression in acute pancreatitis has not been previously reported. In the current experiments, pancreatic gene expression was studied by real-time reverse-transcription/polymerase chain reaction and Northern blots. Two models of acute experimental pancreatitis were investigated: cerulein-induced pancreatitis in mice at two different time points and taurocholate-induced pancreatitis in rats at two degrees of severity. After cerulein administration, acinar injury and leukocyte infiltration was significantly higher at 24 h compared with 12 h after the first injection of cerulein (P<0.05, P<0.005, respectively). UCP2 mRNA was unchanged at 12 h but was nearly 12-fold greater than control levels after 24 h (P<0.001). UCP2 gene expression correlated with acinar injury (r=0.69; P<0.001). By 72 h after taurocholate administration, the severe group had more necrosis than the mild group (P<0.005). Pancreatic UCP2 mRNA was increased fourfold in the severe group compared with controls (P<0.01). UCP2 expression correlated with parenchymal necrosis (r=0.61; P<0.01). Thus, pancreatic UCP2 mRNA increased in two models of acute pancreatitis. The increase in UCP2 gene expression was correlated with the severity of the disease. Up-regulation of UCP2 in the pancreas may be a protective response to oxidative stress, but this increase may also have a negative influence on cellular energy metabolism. Therefore, acinar UCP2 may be an important modifier of the severity of acute pancreatitis.
Collapse
Affiliation(s)
- Ralf Segersvärd
- Division of Surgery, Center for Surgical Sciences, K53, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Fiorini RN, Donovan JL, Rodwell D, Evans Z, Cheng G, May HD, Milliken CE, Markowitz JS, Campbell C, Haines JK, Schmidt MG, Chavin KD. Short-term administration of (-)-epigallocatechin gallate reduces hepatic steatosis and protects against warm hepatic ischemia/reperfusion injury in steatotic mice. Liver Transpl 2005; 11:298-308. [PMID: 15719408 DOI: 10.1002/lt.20348] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic steatosis increases the extent of cellular injury incurred during ischemia/reperfusion (I/R) injury. (-)-Epigallocatechin gallate (EGCG), the major flavonoid component of green tea (camellia sinensis) is a potent antioxidant that inhibits fatty acid synthase (FAS) in vitro. We investigated the effects of EGCG on hepatic steatosis and markers of cellular damage at baseline and after I/R injury in ob/ob mice. Animals were pretreated with 85 mg/kg EGCG via intraperitoneal (ip) injection for 2 days or oral consumption in the drinking water for 5 days before 15 minutes of warm ischemia and 24 hours of reperfusion. After EGCG administration, total baseline hepatic fat content decreased from baseline. Palmitic acid and linoleic acid levels also were reduced substantially in all ECGC-treated animals before I/R. Alanine aminotransferase (ALT) levels decreased in all EGCG-treated animals compared with control animals after I/R. Histologic analysis demonstrated an average decrease of 65% necrosis after EGCG administration. EGCG administration also increased resting hepatic energy stores as determined by an increase in cellular adenosine triphosphate (ATP) with a concomitant decrease in uncoupling protein 2 (UCP2) before I/R. Finally, there was an increased level of glutathione (GSH) in the EGCG-treated mice compared with the vehicle-treated mice both at baseline and after I/R. In conclusion, taken together, this study demonstrates that treatment with ECGC by either oral or ip administration, significantly protects the liver after I/R, possibly by reducing hepatic fat content, increasing hepatic energy status, and functioning as an antioxidant.
Collapse
Affiliation(s)
- Ryan N Fiorini
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 2005; 432:1027-32. [PMID: 15616563 DOI: 10.1038/nature03047] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 09/20/2004] [Indexed: 12/19/2022]
Abstract
The regulation of fat and glucose metabolism in the liver is controlled primarily by insulin and glucagon. Changes in the circulating concentrations of these hormones signal fed or starvation states and elicit counter-regulatory responses that maintain normoglycaemia. Here we show that in normal mice, plasma insulin inhibits the forkhead transcription factor Foxa2 by nuclear exclusion and that in the fasted (low insulin) state Foxa2 activates transcriptional programmes of lipid metabolism and ketogenesis. In insulin-resistant or hyperinsulinaemic mice, Foxa2 is inactive and permanently located in the cytoplasm of hepatocytes. In these mice, adenoviral expression of Foxa2T156A, a nuclear, constitutively active Foxa2 that cannot be inhibited by insulin, decreases hepatic triglyceride content, increases hepatic insulin sensitivity, reduces glucose production, normalizes plasma glucose and significantly lowers plasma insulin. These changes are associated with increased expression of genes encoding enzymes of fatty acid oxidation, ketogenesis and glycolysis. Chronic hyperinsulinaemia in insulin-resistant syndromes results in the cytoplasmic localization and inactivation of Foxa2, thereby promoting lipid accumulation and insulin resistance in the liver. Pharmacological intervention to inhibit phosphorylation of Foxa2 may be an effective treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Christian Wolfrum
- Laboratory of Metabolic Diseases, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
226
|
Rivers DB, Crawley T, Bauser H. Localization of intracellular calcium release in cells injured by venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) and dependence of calcium mobilization on G-protein activation. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:149-160. [PMID: 15749100 DOI: 10.1016/j.jinsphys.2004.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 05/05/2004] [Indexed: 05/24/2023]
Abstract
Venom from the ectoparasitic wasp Nasonia vitripennis induces cellular injury that appears to involve the release of intracellular calcium stores via the activation of phospholipase C, and culminates in oncotic death. A linkage between release of intracellular Ca2+ and oncosis has not been clearly established and was the focus of this study. When BTI-TN-5B1-4 cells were treated with suramin, an uncoupler of G-proteins, venom-induced swelling and oncotic death were inhibited in a dose-dependent manner for at least 24 h. Suramin also blocked increases in free cytosolic [Ca2+], arguing that venom induces calcium mobilization through G-protein signaling pathways. Endoplasmic reticulum (ER) was predicted to be the source of intracellular calcium release, but labeling with the fluorescent probe ER-tracker revealed no indication of organelle swelling or loss of membrane integrity as would be expected if the Ca(2+)-ATPase pump was disabled by crude venom. Incubation of cell monolayers with calmodulin or nitrendipine, modulators of ER calcium release channels, neither attenuated nor augmented the effects of wasp venom. These results suggest that wasp venom stimulates calcium release from ER compartments distinct from RyRs, L-type Ca2+ channels, and the Ca(2+)-ATPase pump, or calcium is released from some other intracellular store. A reduction of mitochondrial membrane potential delta psi(m) appeared to precede a rise in cytosolic free Ca2+ as evidenced by fluorescent microscopy using the calcium-sensitive probe fluo-4 AM. This argues that the initial insult to the cell resulting from venom elicits a rapid loss of (delta psi(m)), followed by unregulated calcium efflux from mitochondria into the cytosol. Mobilization of calcium in this fashion could stimulate cAMP formation, and subsequently promote calcium release from NAADP-sensitive stores.
Collapse
Affiliation(s)
- David B Rivers
- Department of Biology, Loyola College in Maryland, 4501 North Charles Street, Baltimore, MD 21210, USA.
| | | | | |
Collapse
|
227
|
Baskin-Bey ES, Canbay A, Bronk SF, Werneburg N, Guicciardi ME, Nyberg SL, Gores GJ. Cathepsin B inactivation attenuates hepatocyte apoptosis and liver damage in steatotic livers after cold ischemia-warm reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2005; 288:G396-402. [PMID: 15472011 DOI: 10.1152/ajpgi.00316.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic steatosis predisposes the liver to cold ischemia-warm reperfusion (CI/WR) injury by unclear mechanisms. Because hepatic steatosis has recently been associated with a lysosomal pathway of apoptosis, our aim was to determine whether this cell-death pathway contributes to CI/WR injury of steatotic livers. Wild-type and cathepsin B-knockout (Ctsb(-/-)) mice were fed the methionine/choline-deficient (MCD) diet for 2 wk to induce hepatic steatosis. Mouse livers were stored in the University of Wisconsin solution for 24 h at 4 degrees C and reperfused for 1 h at 37 degrees C in vitro. Immunofluorescence analysis of the lysosomal enzymes cathepsin B and D showed a punctated intracellular pattern consistent with lysosomal localization in wild-type mice fed a standard diet after CI/WR injury. In contrast, cathepsin B and D fluorescence became diffuse in livers from wild-type mice fed MCD diet after CI/WR, indicating that lysosomal permeabilization had occurred. Hepatocyte apoptosis was rare in both normal and steatotic livers in the absence of CI/WR injury but increased in wild-type mice fed an MCD diet and subjected to CI/WR injury. In contrast, hepatocyte apoptosis and liver damage were reduced in Ctsb(-/-) and cathepsin B inhibitor-treated mice fed the MCD diet following CI/WR injury. In conclusion, these findings support a prominent role for the lysosomal pathway of apoptosis in steatotic livers following CI/WR injury.
Collapse
Affiliation(s)
- E S Baskin-Bey
- Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Fink BD, Reszka KJ, Herlein JA, Mathahs MM, Sivitz WI. Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria. Am J Physiol Endocrinol Metab 2005; 288:E71-9. [PMID: 15339748 DOI: 10.1152/ajpendo.00332.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.
Collapse
Affiliation(s)
- Brian D Fink
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Iowa City Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
229
|
Barazzoni R, Bosutti A, Stebel M, Cattin MR, Roder E, Visintin L, Cattin L, Biolo G, Zanetti M, Guarnieri G. Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physiol Endocrinol Metab 2005; 288:E228-35. [PMID: 15328073 DOI: 10.1152/ajpendo.00115.2004] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ghrelin is a gastric hormone increased during caloric restriction and fat depletion. A role of ghrelin in the regulation of lipid and energy metabolism is suggested by fat gain independent of changes in food intake during exogenous ghrelin administration in rodents. We investigated the potential effects of peripheral ghrelin administration (two times daily 200-micrograms [DOSAGE ERROR CORRECTED] sc injection for 4 days) on triglyceride content and mitochondrial and lipid metabolism gene expression in rat liver and muscles. Compared with vehicle, ghrelin increased body weight but not food intake and circulating insulin. In liver, ghrelin induced a lipogenic and glucogenic pattern of gene expression and increased triglyceride content while reducing activated (phosphorylated) stimulator of fatty acid oxidation, AMP-activated protein kinase (AMPK, all P < 0.05), with unchanged mitochondrial oxidative enzyme activities. In contrast, triglyceride content was reduced (P < 0.05) after ghrelin administration in mixed (gastrocnemius) and unchanged in oxidative (soleus) muscle. In mixed muscle, ghrelin increased (P < 0.05) mitochondrial oxidative enzyme activities independent of changes in expression of fat metabolism genes and phosphorylated AMPK. Expression of peroxisome proliferator-activated receptor-gamma, the activation of which reduces muscle fat content, was selectively increased in mixed muscle where it paralleled changes in oxidative capacities (P < 0.05). Thus ghrelin induces tissue-specific changes in mitochondrial and lipid metabolism gene expression and favors triglyceride deposition in liver over skeletal muscle. These novel effects of ghrelin in the regulation of lean tissue fat distribution and metabolism could contribute to metabolic adaptation to caloric restriction and loss of body fat.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Dipartimento di Scienze Cliniche, Clinica Medica, Morfologiche e Technologiche, University of Trieste, Trieste, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Gawrieh S, Opara EC, Koch TR. Oxidative Stress in Nonalcoholic Fatty Liver Disease: Pathogenesis and Antioxidant Therapies. J Investig Med 2004. [DOI: 10.1177/108155890405200822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nonalcoholic fatty liver disease is a common cause of chronic liver disease, a common finding on liver biopsy in those patients with abnormal blood transaminase levels, and a common cause of cryptogenic cirrhosis in the United States. The prevalence of this disorder is expected to rise with the increase in obesity, and the clinical spectrum can range from simple steatosis (fatty liver) to cirrhosis of the liver. Insulin resistance is thought to be pivotal for the development of steatosis, and oxidative stress may be a potential factor that can promote hepatic necroinflammation and fibrosis. Preliminary studies have examined the role of oxidative stress and antioxidants in animal and human studies of this disorder. Efforts to improve the hepatic antioxidant system could be achieved by optimizing the patient's diet, by supplementation with precursors for antioxidants, or by supplementation with essential metals and/or antioxidants. Randomized, controlled trials are required to examine these potential approaches using patients with this disorder.
Collapse
Affiliation(s)
- Samer Gawrieh
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI
| | - Emmanuel C. Opara
- Pritzker Institute of Medical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Timothy R. Koch
- Section of Gastroenterology, Washington Hospital Center, Washington, DC
| |
Collapse
|
231
|
Mills EM, Rusyniak DE, Sprague JE. The role of the sympathetic nervous system and uncoupling proteins in the thermogenesis induced by 3,4-methylenedioxymethamphetamine. J Mol Med (Berl) 2004; 82:787-99. [PMID: 15602689 DOI: 10.1007/s00109-004-0591-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Body temperature regulation involves a homeostatic balance between heat production and dissipation. Sympathetic agents such as 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) can disrupt this balance and as a result produce an often life-threatening hyperthermia. The hyperthermia induced by MDMA appears to result from the activation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-thyroid/adrenal axis. Norepinephrine release mediated by MDMA creates a double-edged sword of heat generation through activation of uncoupling protein (UCP3) along with alpha1- and beta3-adrenoreceptors and loss of heat dissipation through SNS-mediated vasoconstriction. This review examines cellular mechanisms involved in MDMA-induced thermogenesis from UCP activation to vasoconstriction and how these mechanisms are related to other thermogenic conditions and potential treatment modalities.
Collapse
Affiliation(s)
- Edward M Mills
- The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892-1770, USA
| | | | | |
Collapse
|
232
|
Harrison SA, Neuschwander-Tetri BA. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Clin Liver Dis 2004; 8:861-79, ix. [PMID: 15464659 DOI: 10.1016/j.cld.2004.06.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a well-recognized form of chronic liver disease affecting both children and adults that has gained increased recognition. Recently NAFLD has been associated with insulin resistance and its incidence and prevalence is likely increasing, paralleling the rise in obesity and diabetes mellitus in the United States. The article includes current thoughts on the natural history and pathogenesis of NAFLD and describes current trends in the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Stephen A Harrison
- Department of Gastroenterology and Hepatology, Brooke Army Medical Center, 3851 Roger Brooke Drive, Fort Sam Houston, TX 78234, USA.
| | | |
Collapse
|
233
|
Fiorini RN, Shafizadeh SF, Polito C, Rodwell DW, Cheng G, Evans Z, Wan C, Belden S, Haines JK, Birsner J, Lewin D, Wasiluk KR, Dunn DL, Schmidt MG, Chavin KD. Anti-endotoxin monoclonal antibodies are protective against hepatic ischemia/reperfusion injury in steatotic mice. Am J Transplant 2004; 4:1567-73. [PMID: 15367211 DOI: 10.1111/j.1600-6143.2004.00549.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Steatotic mice are particularly susceptible to hepatic ischemia/reperfusion injury compared with their lean littermates. We have previously demonstrated that livers of mice having a spontaneous mutation in the leptin gene (ob/ob), resulting in global obesity and liver steatosis, are ATP depleted, are endotoxin sensitive, and do not survive (I/R) injury. We hypothesize that administration of an anti-LPS monoclonal antibody (mAb) prior to initiation of I/R would be protective from that insult. Steatotic mice (ob/ob) were subjected to 15 min of ischemia via complete porta-hepatis occlusion and varying lengths of reperfusion with or without pre-treatment with an anti-LPS mAb. There was 14-31% survival of isotype matched control mAb treated ob/ob mice after 15 min of ischemia and 24 h of reperfusion. In contrast, 75-83% of ob/ob mice pre-treated with an anti-LPS mAb prior to initiation of I/R survived both ischemia and 24 h of reperfusion. Furthermore, there was a decrease in ALT and circulating endotoxin levels when treated with an anti-LPS mAb compared with control antibodies. Attenuation of the endotoxin load with anti-LPS mAb, prior to initiation of I/R, was cytoprotective and improved survival. Consequently, these studies might offer a solution to the problems associated with using steatotic livers in clinical transplantation.
Collapse
Affiliation(s)
- Ryan N Fiorini
- Department of Surgery, Division of Transplant, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Nadig SN, Periyasamy B, Shafizadeh SF, Polito C, Fiorini RN, Rodwell D, Evans Z, Cheng G, Dunkelberger D, Schmidt M, Self SE, Chavin KD. Hepatocellular ultrastructure after ischemia/reperfusion injury in human orthotopic liver transplantation. J Gastrointest Surg 2004; 8:695-700. [PMID: 15358330 DOI: 10.1016/j.gassur.2004.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The number of patients requiring organ transplants still outpaces the number of available transplantable organs. During the process of orthotopic liver transplantation (OLTx), donor organs undergo significant stress resulting from ischemia and reperfusion. Healthy organs respond to this stressful environment with compensatory mechanisms that ideally allow for complete recovery. However, "marginal" organs do not compensate as well. Hepatic steatosis typically renders an organ nontransplantable; a liver with 30% or more fat has a 25% chance of primary nonfunction (PNF) or graft failure after a technically sound operation. In this study, we report on the significant markers of cellular ultrastructural change in steatotic livers. These include glycogen content, mitochondrial swelling, and hepatocellular blebbing. The data disclosed here argue that further investigation of these factors in marginal organs subjected to I/R may better facilitate our understanding of PNF.
Collapse
Affiliation(s)
- Satish N Nadig
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Liang XF, Ogata HY, Oku H, Chen J, Hwang F. Abundant and constant expression of uncoupling protein 2 in the liver of red sea bream Pagrus major. Comp Biochem Physiol A Mol Integr Physiol 2004; 136:655-61. [PMID: 14613793 DOI: 10.1016/s1095-6433(03)00218-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four overlapping cDNA fragments encoding a partial sequence for uncoupling protein 2 (UCP2) were amplified by PCR using degenerate primers from the liver of a marine teleost fish, red sea bream (Pagrus major). The partial sequence was 674 bp long, encoding 224 amino acids. The deduced amino acid sequence from the cDNA partial sequence contained the signature motifs for mitochondrial transporter protein and revealed positional identity higher than 72.8% with UCP2 from mammals. The fish UCP2 gene was highly expressed in the liver but almost undetectable in the visceral mesenteric adipose tissue. Using beta-actin as control, the UCP2 mRNA level was determined to be at least 20-fold higher in the liver than in the visceral mesenteric adipose tissues. Neither 48 h starvation nor high lipid diet had any significant effect on liver UCP2 gene expression, indicating that the abundant UCP2 gene expression was stable and might have some basic function in a fish liver that always contains high lipid content. The striking contrast of UCP2 gene expression in the two fish fat-depot organs is consistent with their large differences in oxidative capacity. We suggest that the fish liver may adapt to a constantly high fat deposit by maintaining high UCP2 expression to constrain reactive oxygen species (ROS) production and protect hepatocytes from apoptosis.
Collapse
Affiliation(s)
- Xu-Fang Liang
- Department of Biology, Jinan University, Shipai, Guangzhou, 510632, PR China.
| | | | | | | | | |
Collapse
|
236
|
Chavin KD, Fiorini RN, Shafizadeh S, Cheng G, Wan C, Evans Z, Rodwell D, Polito C, Haines JK, Baillie GM, Schmidt MG. Fatty acid synthase blockade protects steatotic livers from warm ischemia reperfusion injury and transplantation. Am J Transplant 2004; 4:1440-7. [PMID: 15307831 DOI: 10.1111/j.1600-6143.2004.00546.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerulenin has been shown to reduce body weight and hepatic steatosis in murine models of obesity by inhibiting fatty acid synthase (FAS). We have shown that attenuating intrahepatocyte lipid content diminished the sensitivity of ob/ob mice to ischemia/reperfusion injury and improved survival after liver transplantation. The mechanism of action is by inhibition of fatty acid metabolism by downregulating PPARalpha, as well as mitochondrial uncoupling protein 2 (UCP2), with a concomitant increase in ATP. A short treatment course of cerulenin prior to I/R injury is ideal for protection of steatotic livers. Cerulenin opens the potential for expanding the use of steatotic livers in transplantation.
Collapse
Affiliation(s)
- Kenneth D Chavin
- Department of Surgery, Division of Transplant, Medical University of South Carolina (MUSC), Charleston, SC, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
McClain CJ, Mokshagundam SPL, Barve SS, Song Z, Hill DB, Chen T, Deaciuc I. Mechanisms of non-alcoholic steatohepatitis. Alcohol 2004; 34:67-79. [PMID: 15670668 DOI: 10.1016/j.alcohol.2004.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 07/09/2004] [Accepted: 07/13/2004] [Indexed: 12/20/2022]
Abstract
In 1980, the term non-alcoholic steatohepatitis was coined to describe a new syndrome occurring in patients who usually were obese (often diabetic) females who had a liver biopsy picture consistent with alcoholic hepatitis, but who denied alcohol use. The causes of this syndrome were unknown, and there was no defined therapy. More than two decades later, this clinical syndrome is only somewhat better understood, and still there is no Food and Drug Administration-approved or even generally accepted drug therapy. Patients with primary non-alcoholic steatohepatitis typically have the insulin resistance syndrome (synonymous with the metabolic syndrome, syndrome X, and so forth), which is characterized by obesity, diabetes, hyperlipidemia, hypertension, and, in some instances, other metabolic abnormalities such as polycystic ovary disease. Secondary non-alcoholic steatohepatitis may be caused by drugs such as tamoxifen, certain industrial toxins, rapid weight loss, and so forth. The cause of non-alcoholic steatohepatitis remains elusive, but most investigators agree that a baseline of steatosis requires a second hit capable of inducing inflammation, fibrosis, or necrosis for non-alcoholic steatohepatitis to develop. Our research group has focused its efforts on the interactions of nutritional abnormalities, cytokines, oxidative stress with lipid peroxidation, and mitochondrial dysfunction in the induction of steatohepatitis, both alcoholic and non-alcoholic in origin. Research findings from other laboratories also support the role of increased cytokine activity, oxidative stress, and mitochondrial dysfunction in the pathogenesis of non-alcoholic steatohepatitis. The objectives of this article are to review the (1) definition and clinical features of non-alcoholic steatohepatitis, (2) potential mechanisms of non-alcoholic steatohepatitis, and (3) potential therapeutic interventions in non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Craig J McClain
- Department of Internal Medicine, University of Louisville Medical Center, 530 South Jackson Street, ACB 3rd Floor, Louisville, KY 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
238
|
Caldwell SH, Chang CY, Nakamoto RK, Krugner-Higby L. Mitochondria in nonalcoholic fatty liver disease. Clin Liver Dis 2004; 8:595-617, x. [PMID: 15331066 DOI: 10.1016/j.cld.2004.04.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver (NAFL) is associated with fundamental issues of fat metabolism and insulin resistance. These abnormalities have been linked to impairment of ATP homeostasis, and a growing body of literature has reported mitochondrial abnormalities in various forms of hepatic steatosis. The changes are evident as structural abnormalities, including greatly increased size and the development of crystalline inclusions, and are usually regarded as pathologic, reflecting either a protective or degenerative response to injury. Although the relationships between structural changes,decreased mitochondrial function, and disease states are becoming clearer, the molecular basis for the perturbations is not well understood. Oxidative damage is the most likely causative process and may result in alterations of mitochondrial DNA (mtDNA), stimulated apoptotic pathways, and increased propensity for necrosis.Overall mitochondrial health likely depends on multiple factors including the integrity of the mtDNA, the composition of cellular lipids, lipoprotein trafficking, the balance of pro- and antioxidant factors, and the metabolic demands placed on the liver. Mitochondrial dysfunction may play a role in numerous clinical conditions associated with NAFL, such as hepatocellular carcinoma, lipodystrophy,age-related insulin resistance, gut dysmotility, cryptogenic cirrhosis, a mild form of gaze palsy, and possibly other more severe neurodegenerative diseases. The prominent role of mitochondrial dysfunction in NAFL provides a new and exciting paradigm in which to view this disorder, its complications, and potential dietary and pharmacologic intervention.
Collapse
Affiliation(s)
- Stephen H Caldwell
- Division of Gastroenterology and Hepatology, University of Virginia Health System, PO Box 800708, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
239
|
Medina J, Fernández-Salazar LI, García-Buey L, Moreno-Otero R. Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care 2004; 27:2057-66. [PMID: 15277442 DOI: 10.2337/diacare.27.8.2057] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) represents an advanced stage of fatty liver disease developed in the absence of alcohol abuse. Its increasing prevalence in western countries, the diagnostic difficulties by noninvasive tests, and the possibility of progression to advanced fibrosis and even cirrhosis make NASH a challenge for hepatologists. NASH is frequently associated with type 2 diabetes and the metabolic syndrome, and several genetic and acquired factors are involved in its pathogenesis. Insulin resistance plays a central role in the development of a steatotic liver, which becomes vulnerable to additional injuries. Several cyclic mechanisms leading to self-enhancement of insulin resistance and hepatic accumulation of fat have been recently identified. Excess intracellular fatty acids, oxidant stress, tumor necrosis factor-alpha, and mitochondrial dysfunction are causes of hepatocellular injury, thereby leading to disease progression and to the establishment of NASH. Intestinal bacterial overgrowth also plays a role, by increasing production of endogenous ethanol and proinflammatory cytokines. Therapeutic strategies aimed at modulating insulin resistance, normalizing lipoprotein metabolism, and downregulating inflammatory mediators with probiotics have promising potential.
Collapse
Affiliation(s)
- Jesús Medina
- Liver Unit, University Hospital La Princesa, Autonomous University, Madrid, Spain
| | | | | | | |
Collapse
|
240
|
Diehl AM. Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease. Clin Liver Dis 2004; 8:619-38, x. [PMID: 15331067 DOI: 10.1016/j.cld.2004.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of hepatic pathology that resembles alcohol-induced fatty liver disease(AFLD), but which develops in individuals who are not heavy drinkers. In people, NAFLD is associated strongly with obesity,insulin resistance, and dysmetabolic syndrome, but the exact mechanisms that promote liver disease in this clinical context remain poorly understood. The proinflammatory cytokine, funor necrosis factor alpha is known to be a key mediator of AFLD. This article discusses clinical and experimental evidence that tumor necrosis factor plays a role in the pathogenesis of insulin resistance syndromes, including nonalcoholic fatty syndromes, including nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Anna Mae Diehl
- The Johns Hopkins University School of Medicine, Department of Medicine, Division of Gastroenterology, Ross Research Building, Room 918, 720 Rutland Avenue, Baltimore, MD, 21205-2109, USA.
| |
Collapse
|
241
|
Choudhury J, Sanyal AJ. Insulin resistance and the pathogenesis of nonalcoholic fatty liver disease. Clin Liver Dis 2004; 8:575-94, ix. [PMID: 15331065 DOI: 10.1016/j.cld.2004.04.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The prevalence of obesity has reached epidemic proportions in most of the western world. Current estimates suggest that 22.5%of the population of the United States suffers from obesity and is at risk for development of obesity-related complications, including hypertension, coronary artery disease, diabetes, hyperlipidemia,increased predisposition for various cancers, and nonalcoholic fatty liver disease. Fatty liver disease is currently the most common abnormality observed in hepatology practice. Since it was first reported in the 1980s in obese diabetic females, our understanding of nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH) has undergone significant metamorphosis. It is now universally accepted that insulin resistance and subsequent hyperinsulinemia are key factors that lead to both NAFL and NASH.This article reviews the role of insulin resistance in the genesis of these conditions.
Collapse
Affiliation(s)
- Jayanta Choudhury
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Box 980711 Richmond, VA 23298-0711, USA
| | | |
Collapse
|
242
|
Romics L, Kodys K, Dolganiuc A, Graham L, Velayudham A, Mandrekar P, Szabo G. Diverse regulation of NF-kappaB and peroxisome proliferator-activated receptors in murine nonalcoholic fatty liver. Hepatology 2004; 40:376-85. [PMID: 15368442 DOI: 10.1002/hep.20304] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fatty liver is highly sensitive to inflammatory activation. Peroxisome proliferator-activated receptors (PPAR) have anti-inflammatory effects and regulate lipid metabolism in the fatty liver. We hypothesized that fatty liver leads to endotoxin sensitivity through an imbalance between pro- and anti-inflammatory signals. Leptin-deficient, ob/ob mice and their lean littermates were challenged with single or double insults and pro- and anti-inflammatory pathways were tested on cytokine production and activation of nuclear regulatory factors NF-kappaB and peroxisome proliferator receptor element (PPRE). Ob/ob mice produced significantly higher serum tumor necrosis factor alpha (TNF-alpha) and interleukin (IL) 6 and showed increased hepatic NF-kappaB activation compared to lean littermates after stimulation with a single dose of lipopolysaccharide (LPS) or alcohol. In ob/ob mice, double insults with alcohol and LPS augmented proinflammatory responses mediated by increased degradation of inhibitory kappaB (IkappaB)-alpha and IkappaB-beta and preferential induction of the p65/p50 NF-kappaB heterodimer. In lean mice, in contrast, acute alcohol attenuated LPS-induced TNF-alpha, IL-6 production, and NF-kappaB activation through reduced IkappaB-alpha degradation and induction of p50/p50 homodimers. PPRE binding was increased in fatty but not in lean livers after alcohol or LPS stimulation. However, cotreatment with alcohol and LPS reduced both PPRE binding and nuclear levels of PPAR-alpha in fatty livers but increased those in lean livers. In conclusion, our results show opposite PPRE and NF-kappaB activation in fatty and lean livers. PPAR activation may represent an anti-inflammatory mechanism that fails in the fatty liver on increased proinflammatory pressure. Thus, an imbalance between PPAR-mediated anti-inflammatory and NF-kappaB-mediated proinflammatory signals may contribute to increased inflammation in the fatty liver.
Collapse
Affiliation(s)
- Laszlo Romics
- Liver Center, Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
As occurs in people, nonalcoholic fatty liver disease (NAFLD) is associated strongly with obesity, diabetes, and dyslipidemia in experimental animals. There are many animal models that have been used to investigate the pathogenesis of nonalcoholic fatty liver disease. Most of this work has used mice or rats that are fed diets high in fat or carbohydrates, or mice that exhibit a genetic deficiency of a satiety factor such as leptin, 5-adenosylmethionine,or enzyme deficiencies in fatty acid oxidation. The purpose of this article is to update information regarding animal models in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Amin A Nanji
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
244
|
Uchino S, Yamaguchi Y, Furuhashi T, Wang FS, Zhang JL, Okabe K, Kihara S, Yamada S, Mori K, Ogawa M. Steatotic liver allografts up-regulate UCP-2 expression and suffer necrosis in rats. J Surg Res 2004; 120:73-82. [PMID: 15172192 DOI: 10.1016/j.jss.2003.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fatty split-liver and living-related liver transplantation is associated with massive hepatocellular necrosis during acute rejection. Uncoupling protein (UCP)-2 is a potential regulator of energy expenditure and ATP production. We investigated the role of UCP-2 and the effects of a metalloprotease inhibitor, Y-39083, on hepatocellular injury in fatty liver allografts in rats. MATERIALS AND METHODS Rats were treated for 6 weeks with high-ethanol or isocalic dextrose-containing liquid diets that caused characteristic pericentral lipid accumulation. Alcoholic or nonalcoholic fatty livers from ACI (RT1a) rats were transplanted into LEW (RT1l) rats orthotopically. Hepatic necrosis was determined histologically following liver transplantation. UCP-2 mRNA levels in the hepatic allograft and in primary cultured hepatocytes from fatty liver stimulated by tumor necrosis factor (TNF)-alpha were determined. Y-39083 was administered to recipient rats continuously at 5 mg/kg/day using an osmotic infusion mini-pump. RESULTS The acute rejection index on day 5 posttransplant in alcoholic and nonalcoholic fatty donor livers was higher than in lean grafts. Massive hepatocyte necrosis was more prominent in alcoholic than nonalcoholic fatty liver allografts and was not seen in lean allografts. UCP-2 transcripts in both alcoholic and nonalcoholic fatty liver allografts were higher than in lean allografts. Serum TNF-alpha concentrations in recipient rats with either fatty liver allograft were greater than in animals with lean allografts. In vitro UCP-2 mRNA levels in primary cultured hepatocytes from both alcoholic and nonalcoholic fatty livers increased more after stimulation with TNF-alpha than those from lean livers. In vitro TNF-alpha production by Kupffer cells isolated from alcohol-induced fatty liver allografts on day 3 posttransplant was greater than those from lean allografts. Y-39083 significantly reduced serum concentrations of TNF-alpha and prevented massive hepatocellular necrosis in rats with both alcoholic and nonalcoholic fatty liver allografts. CONCLUSION Liver grafts with steatosis up-regulated UCP-2. TNF-alpha further enhanced UCP-2 transcripts, inducing massive hepatocellular necrosis during acute rejection. Posttransplantation necrosis may be prevented by metalloprotease inhibitors.
Collapse
Affiliation(s)
- Shinichiro Uchino
- Department of Surgery II, Kumamoto University Medical School, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Fromenty B, Robin MA, Igoudjil A, Mansouri A, Pessayre D. The ins and outs of mitochondrial dysfunction in NASH. DIABETES & METABOLISM 2004; 30:121-38. [PMID: 15223984 DOI: 10.1016/s1262-3636(07)70098-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rich diet and lack of exercise are causing a surge in obesity, insulin resistance and steatosis, which can evolve into steatohepatitis. Steatosis and nonalcoholic steatohepatitis (NASH) can also be induced by drugs such as amiodarone, tamoxifen and some antiretroviral drugs. There is growing evidence that mitochondrial dysfunction, and more specifically respiratory chain deficiency, plays a role in the pathophysiology of NASH whatever its initial cause. In contrast, the B-oxidation of fatty acids can be either increased (as in insulin resistance-associated NASH) or decreased (as in drug-induced NASH). However, in both circumstances, the generation of reactive oxygen species (ROS) by the damaged respiratory chain is augmented, as components of this chain are over-reduced by electrons, which then abnormally react with oxygen to form increased amounts of ROS. Concomitantly, ROS oxidize fat deposits to release lipid peroxidation products that have detrimental effects on hepatocytes and other hepatic cells. In hepatocytes, ROS and lipid peroxidation products further impair the respiratory chain, either directly or indirectly through oxidative damage to the mitochondrial genome. This, in turn, leads to the generation of more ROS and a vicious cycle ensues. Mitochondrial dysfunction can also lead to apoptosis or necrosis depending on the energy status of the cell. ROS and lipid peroxidation products also activate stellate cells, thus resulting in fibrosis. Finally, ROS and lipid peroxidation increase the generation of several cytokines (TNF-alpha, TGF-B, Fas ligand) that play sundry roles in the pathogenesis of NASH. Recent investigations have shown that some genetic polymorphisms can significantly increase the risk of steatohepatitis and that several drugs can prevent or even reverse NASH. For the next decade, reducing the incidence of NASH will be a major challenge for hepatologists.
Collapse
Affiliation(s)
- B Fromenty
- Institut national de la Santé et de la Recherche médicale (INSERM) Unité 481, Faculté de Médecine Xavier Bichat, 750118 Paris, France.
| | | | | | | | | |
Collapse
|
246
|
Burke A, Lucey MR. Non-alcoholic fatty liver disease, non-alcoholic steatohepatitis and orthotopic liver transplantation. Am J Transplant 2004; 4:686-93. [PMID: 15084161 DOI: 10.1111/j.1600-6143.2004.00432.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are becoming increasingly common medical problems in the developed world, often in the setting of the metabolic or insulin resistance syndrome (IRS). It is predicted that by the year 2025 > 25 million Americans may have NASH-related liver disease. NASH and NAFLD also affect the donor population. The use of steatotic donor livers for liver transplantation (LT) is associated with an increased risk of primary nonfunction (PNF) in the allograft. There is particular reluctance to use steatotic livers for living donor LT. There is indirect evidence to suggest that patients undergoing LT for cirrhosis resulting from NASH may have poorer outcome, despite careful selection of LT candidates. Indeed it is likely that many potential LT candidates with NASH are excluded from LT due to co-morbid conditions related to IRS. The post-LT patient is at risk of several components of IRS, such as diabetes mellitus, hypertension, hyperlipidaemia and obesity and there is increasing recognition of de novo and recurrent NAFLD and NASH after LT. Thus NAFLD and NASH affect all aspects of LT including donors, patients in evaluation and the LT recipient.
Collapse
Affiliation(s)
- Anne Burke
- Division of Gastroenterology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | | |
Collapse
|
247
|
Horimoto M, Fülöp P, Derdák Z, Wands JR, Baffy G. Uncoupling protein-2 deficiency promotes oxidant stress and delays liver regeneration in mice. Hepatology 2004; 39:386-92. [PMID: 14767991 DOI: 10.1002/hep.20047] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The control of liver regeneration remains elusive. Because reactive oxygen species (ROS) are able to mediate cell growth arrest and activate proteins that inhibit the cell cycle, ROS production may have a negative impact on liver regeneration. We examined how liver regeneration is affected by uncoupling protein-2 (UCP2), an inner mitochondrial membrane carrier that senses and negatively regulates superoxide production. Liver regeneration was monitored up to 5 days and was found to be significantly delayed in UCP2(-/-) mice after partial hepatectomy. Apoptosis rates in UCP2(+/+) and UCP2(- /-) liver remnants were similar, while parameters of cell proliferation indicated a diminished response in UCP2(- /-) mice with corresponding changes in the expression of key cell cycle regulatory proteins and prolonged activation of stress-responsive protein kinase p38. Levels of malondialdehyde, a marker of ROS generation and oxidant stress, were elevated in UCP2(- /-) livers at every examined time point. Liver remnants of UCP2(+ /+) mice 48 hours post-hepatectomy showed a fourfold increase in the expression of UCP2 protein primarily detected in hepatocytes. In conclusion, our results suggest that absent or insufficient UCP2 function in the regenerating liver results in increased ROS production and negatively modulates the control of cell cycle.
Collapse
Affiliation(s)
- Masayoshi Horimoto
- Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
248
|
Festi D, Colecchia A, Sacco T, Bondi M, Roda E, Marchesini G. Hepatic steatosis in obese patients: clinical aspects and prognostic significance. Obes Rev 2004; 5:27-42. [PMID: 14969505 DOI: 10.1111/j.1467-789x.2004.00126.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease is a new clinicopathological condition of emerging importance, now recognized as the most common cause of abnormal liver tests. It is characterized by a wide spectrum of liver damage: simple steatosis may progress to advanced fibrosis and to cryptogenic cirrhosis through steatohepatitis, and ultimately to hepatocellular carcinoma. Obesity is the most significant single risk factor for the development of fatty liver, both in children and in adults; obesity is also predictive of the presence of fibrosis, potentially progressing to advanced liver disease. From a pathogenic point of view, insulin resistance plays a central role in the accumulation of triglycerides within the hepatocytes and in the initiation of the inflammatory cascade. Chronic hepatocellular injury, necroinflammation, stellate cell activation, progressive fibrosis and ultimately, cirrhosis may be initiated by peroxidation of hepatic lipids and injury-related cytokine release. In the last few years, several pilot studies have shown that treatment with insulin-sensitizing agents, anti-oxidants or cytoprotective drugs may be useful, but there is no evidence-based support from randomized clinical trials. Modifications in lifestyle (e.g. diet and exercise) to reduce obesity remain the mainstay of prevention and treatment of a disease, which puts a large number of individuals at risk of advanced liver disease in the near future.
Collapse
Affiliation(s)
- D Festi
- Department of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
249
|
Abstract
BACKGROUND & AIMS The objective of this study was to address the hepatic effects of acute alcohol consumption in obesity by simulating an alcohol binge in genetically obese fa/fa rats compared with lean Fa/? rats. METHODS Ethanol 4 g/kg or saline was administered by gavage every 12 hours for 3 days. RESULTS Plasma alcohol levels were similar in both groups. Binge ethanol exposure caused liver injury in obese fa/fa but not in lean Fa/? rats, as assessed by alanine aminotransferase and H&E staining. Obesity impaired the antioxidant defense because basal levels of glutathione, glutamate cysteine ligase modulatory subunit, catalase, glutathione reductase, and superoxide dismutase were lower in fa/fa compared with Fa/? rats; the ethanol binge further decreased these antioxidants in fa/fa rats and also decreased glutathione peroxidase activity. Nonesterified fatty acids and lipid peroxidation were increased after ethanol treatment in fa/fa rats. Cytochrome P450 2E1 was down-regulated in fa/fa compared with Fa/? rats; however, the ethanol binge increased cytochrome P450 2E1 in both genotypes. Adenosine triphosphate decreased and uncoupling protein 2 increased in fa/fa rats treated with ethanol. 3-Nitrotyrosine protein adducts were detected only in fa/fa rats treated with ethanol, and this was accompanied by an induction of inducible nitric oxide synthase. Ethanol binge increased caspase-3 and caspase-8 activity, the expression of Fas ligand, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling in fa/fa rats. CONCLUSIONS These data indicate that binge drinking increases apoptosis and liver injury in obese rats more than in lean controls and suggest that the injury may involve oxidative and nitrosative damage.
Collapse
Affiliation(s)
- Michal Carmiel-Haggai
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, and Division of Livers Diseases, Mount Sinai Medical Center, New York, New York 10029, USA
| | | | | |
Collapse
|
250
|
Duval C, Nègre-Salvayre A, Dogilo A, Salvayre R, Pénicaud L, Casteilla L. Increased reactive oxygen species production with antisense oligonucleotides directed against uncoupling protein 2 in murine endothelial cells. Biochem Cell Biol 2003; 80:757-64. [PMID: 12555808 DOI: 10.1139/o02-158] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Uncoupling protein 2 (UCP-2) belongs to the mitochondrial anion carrier family. It is ubiquitously expressed but is most abdundant in the reticuloendothelial system. In addition to uncoupling function, UCP-2 modulates the production of reactive oxygen species (ROS) by isolated mitochondria. Using an antisense oligonucleotide strategy, we investigated whether a defect in UCP-2 expression modulates ROS in intact endothelial cells. Murine endothelial cells (CRL 2181) pretreated by antisense oligonucleotides directed against UCP-2 mRNA exhibited a significant and specific increase in membrane potential and intracellular ROS level compared with control scrambled or anti-UCP-1 and -UCP-3 antisense oligonucleotides. These specific changes induced by UCP-2 antisense oligonucleotides were correlated with a rise in extracellular superoxide anion production and oxidative stress assessed by thiobarbituric acid reactive substance values. Taken together, these data suggest a role for UCP-2 in control of ROS production and subsequent oxidation of surrounding compounds mediating oxidative stress of endothelial cells. These data also support the notion that manipulations of UCP-2 at the genetic level could control ROS metabolism at the cellular level.
Collapse
Affiliation(s)
- Carine Duval
- Unité Mixte recherche (UMR)-INSERM U466, Institut federatif de recherche (IFR) 31, Toulouse, France
| | | | | | | | | | | |
Collapse
|