201
|
Zhang Z, Zhao Z, Margolskee R, Liman E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 2007; 27:5777-86. [PMID: 17522321 PMCID: PMC6672777 DOI: 10.1523/jneurosci.4973-06.2007] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bitter, sweet, and umami tastants are detected by G-protein-coupled receptors that signal through a common second-messenger cascade involving gustducin, phospholipase C beta2, and the transient receptor potential M5 (TRPM5) ion channel. The mechanism by which phosphoinositide signaling activates TRPM5 has been studied in heterologous cell types with contradictory results. To resolve this issue and understand the role of TRPM5 in taste signaling, we took advantage of mice in which the TRPM5 promoter drives expression of green fluorescent protein and mice that carry a targeted deletion of the TRPM5 gene to unequivocally identify TRPM5-dependent currents in taste receptor cells. Our results show that brief elevation of intracellular inositol trisphosphate or Ca2+ is sufficient to gate TRPM5-dependent currents in intact taste cells, but only intracellular Ca2+ is able to activate TRPM5-dependent currents in excised patches. Detailed study in excised patches showed that TRPM5 forms a nonselective cation channel that is half-activated by 8 microM Ca2+ and that desensitizes in response to prolonged exposure to intracellular Ca2+. In addition to channels encoded by the TRPM5 gene, we found that taste cells have a second type of Ca2+-activated nonselective cation channel that is less sensitive to intracellular Ca2+. These data constrain proposed models for taste transduction and suggest a link between receptor signaling and membrane potential in taste cells.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Biological Sciences and Program in Neuroscience, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
202
|
Abstract
The TRP superfamily of cation channels encompasses 28 mammalian members related to the product of the Drosophila trp (transient receptor potential) gene. TRP channels have a widespread distribution in many cell types and organs and gate in response to a broad variety of physical and chemical stimuli; as such, they can be considered as ubiquitous cellular sensors. Several recent studies reported modulation of different TRP channels by phosphoinositides, in particular by phosphatidylinositol 4,5-bisphosphate (PIP(2)). In most cases, PIP(2) promotes TRP channel activation. Here we provide a brief overview of current insights and controversies about the mechanisms and structural determinants of PIP(2)-TRP channel interactions, and zoom in on the regulation of the Ca(2+)- and voltage-gated TRPM4 by phosphoinositides.
Collapse
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research, Division of Physiology, Department of Molecular Cell Biology, KU Leuven, Onderwijs & Navorsing 1, Herestraat 49 bus 802, 3000 Leuven, Belgium.
| | | |
Collapse
|
203
|
Mälkiä A, Madrid R, Meseguer V, de la Peña E, Valero M, Belmonte C, Viana F. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 2007; 581:155-74. [PMID: 17317754 PMCID: PMC2075222 DOI: 10.1113/jphysiol.2006.123059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates into a shift in the apparent temperature threshold for activation towards higher temperatures for native currents. This difference in voltage-dependence readily explains the high threshold temperatures characteristic of many cold thermoreceptors. The modulation of TRPM8 activity by different chemical agents unveils an important flexibility in the temperature-response curve of TRPM8 channels and cold thermoreceptors.
Collapse
Affiliation(s)
- Annika Mälkiä
- Alicante Institute of Neuroscience, University Miguel Hernández-CSIC, Spain.
| | | | | | | | | | | | | |
Collapse
|
204
|
Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 2007; 87:165-217. [PMID: 17237345 DOI: 10.1152/physrev.00021.2006] [Citation(s) in RCA: 1059] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of cation channels that are mostly permeable to both monovalent and divalent cations. The 28 mammalian TRP channels can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are expressed in almost every tissue and cell type and play an important role in the regulation of various cell functions. Currently, significant scientific effort is being devoted to understanding the physiology of TRP channels and their relationship to human diseases. At this point, only a few channelopathies in which defects in TRP genes are the direct cause of cellular dysfunction have been identified. In addition, mapping of TRP genes to susceptible chromosome regions (e.g., translocations, breakpoint intervals, increased frequency of polymorphisms) has been considered suggestive of the involvement of these channels in hereditary diseases. Moreover, strong indications of the involvement of TRP channels in several diseases come from correlations between levels of channel expression and disease symptoms. Finally, TRP channels are involved in some systemic diseases due to their role as targets for irritants, inflammation products, and xenobiotic toxins. The analysis of transgenic models allows further extrapolations of TRP channel deficiency to human physiology and disease. In this review, we provide an overview of the impact of TRP channels on the pathogenesis of several diseases and identify several TRPs for which a causal pathogenic role might be anticipated.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KULeuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
205
|
Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 2007; 8:312-20. [PMID: 17293867 DOI: 10.1038/ni1441] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 01/16/2007] [Indexed: 11/08/2022]
Abstract
Mast cells are key effector cells in allergic reactions. Aggregation of the receptor FcepsilonRI in mast cells triggers the influx of calcium (Ca(2+)) and the release of inflammatory mediators. Here we show that transient receptor potential TRPM4 proteins acted as calcium-activated nonselective cation channels and critically determined the driving force for Ca(2+) influx in mast cells. Trpm4(-/-) bone marrow-derived mast cells had more Ca(2+) entry than did TRPM4(+/+) cells after FcepsilonRI stimulation. Consequently, Trpm4(-/-) bone marrow-derived mast cells had augmented degranulation and released more histamine, leukotrienes and tumor necrosis factor. Trpm4(-/-) mice had a more severe IgE-mediated acute passive cutaneous anaphylactic response, whereas late-phase passive cutaneous anaphylaxis was not affected. Our results establish the physiological function of TRPM4 channels as critical regulators of Ca(2+) entry in mast cells.
Collapse
Affiliation(s)
- Rudi Vennekens
- Laboratory of Ion Channel Research, Division of Physiology, Department of Molecular Cell Biology, Campus Gasthuisberg, O&N1, KU Leuven, Herestraat 49 bus 802, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Voets T, Owsianik G, Janssens A, Talavera K, Nilius B. TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 2007; 3:174-82. [PMID: 17293875 DOI: 10.1038/nchembio862] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 01/10/2007] [Indexed: 11/09/2022]
Abstract
TRPM8, a member of the transient receptor potential (TRP) channel superfamily, is expressed in thermosensitive neurons, in which it functions as a cold and menthol sensor. TRPM8 and most other temperature-sensitive TRP channels (thermoTRPs) are voltage gated; temperature and ligands regulate channel opening by shifting the voltage dependence of activation. The mechanisms and structures underlying gating of thermoTRPs are currently poorly understood. Here we show that charge-neutralizing mutations in transmembrane segment 4 (S4) and the S4-S5 linker of human TRPM8 reduce the channel's gating charge, which indicates that this region is part of the voltage sensor. Mutagenesis-induced changes in voltage sensitivity translated into altered thermal sensitivity, thereby establishing the strict coupling between voltage and temperature sensing. Specific mutations in this region also affected menthol affinity, which indicates a direct interaction between menthol and the TRPM8 voltage sensor. Based on these findings, we present a Monod-Wyman-Changeux-type model explaining the combined effects of voltage, temperature and menthol on TRPM8 gating.
Collapse
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research, Division of Physiology, Department of Molecular Cell Biology, Campus Gasthuisberg O&N1, KU Leuven, Herestraat 49 bus 802, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
207
|
Earley S, Straub SV, Brayden JE. Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 2007; 292:H2613-22. [PMID: 17293488 DOI: 10.1152/ajpheart.01286.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic vasoconstriction results from pressure-induced vascular smooth muscle cell depolarization and Ca(2+) influx via voltage-dependent Ca(2+) channels, a process that is significantly attenuated by inhibition of protein kinase C (PKC). It was recently reported that the melastatin transient receptor potential (TRP) channel TRPM4 is a critical mediator of pressure-induced smooth muscle depolarization and constriction in cerebral arteries. Interestingly, PKC activity enhances the activation of cloned TRPM4 channels expressed in cultured cells by increasing sensitivity of the channel to intracellular Ca(2+). Thus we postulated that PKC-dependent activation of TRPM4 might be a critical mediator of vascular myogenic tone. We report here that PKC inhibition attenuated pressure-induced constriction of cerebral vessels and that stimulation of PKC activity with phorbol 12-myristate 13-acetate (PMA) enhanced the development of myogenic tone. In freshly isolated cerebral artery myocytes, we identified a Ca(2+)-dependent, rapidly inactivating, outwardly rectifying, iberiotoxin-insensitive cation current with properties similar to those of expressed TRPM4 channels. Stimulation of PKC activity with PMA increased the intracellular Ca(2+) sensitivity of this current in vascular smooth muscle cells. To validate TRPM4 as a target of PKC regulation, antisense technology was used to suppress TRPM4 expression in isolated cerebral arteries. Under these conditions, the magnitude of TRPM4-like currents was diminished in cells from arteries treated with antisense oligonucleotides compared with controls, identifying TRPM4 as the molecular entity responsible for the PKC-activated current. Furthermore, the extent of PKC-induced smooth muscle cell depolarization and vasoconstriction was significantly decreased in arteries treated with TRPM4 antisense oligonucleotides compared with controls. We conclude that PKC-dependent regulation of TRPM4 activity contributes to the control of cerebral artery myogenic tone.
Collapse
MESH Headings
- Alkaloids/pharmacology
- Animals
- Benzophenanthridines/pharmacology
- Calcium Signaling/drug effects
- Cell Line
- Cerebral Arteries/metabolism
- Enzyme Activation/drug effects
- Enzyme Activators/pharmacology
- Humans
- In Vitro Techniques
- Ion Channel Gating/drug effects
- Male
- Mechanotransduction, Cellular/drug effects
- Membrane Potentials
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Patch-Clamp Techniques
- Pressure
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Sprague-Dawley
- TRPM Cation Channels/drug effects
- TRPM Cation Channels/genetics
- TRPM Cation Channels/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Transfection
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Scott Earley
- Department of Biomedical Sciences, Colorado State Univeristy, Fort Collins, CO USA 80523-1680, USA.
| | | | | |
Collapse
|
208
|
Abstract
TRPM6 and TRPM7 proteins share similar molecular structures and biophysical properties. Both proteins are Mg(2+)- and Ca(2+)-permeable cation channels with the typical topology of six transmembrane domains. In addition, TRPM6 and TRPM7 function as serine/threonine kinases with kinase domains at their C-terminal tails. At present, the role of the association of kinase and channel domains in TRPM6 and TRPM7 remains elusive. TRPM6 is mainly expressed in kidney and intestine, where it might be responsible for epithelial Mg2+ re/absorption. This hypothesis is strengthened by the identification of TRPM6 mutants in patients with a rare but severe hereditary disease called hypomagnesaemia with secondary hypocalcaemia. The aim of this review is to provide a brief but concise overview of the information currently available about TRPM6.
Collapse
Affiliation(s)
- M Bödding
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
209
|
Abstract
TRPM5 is a cation channel that it is essential for transduction of bitter, sweet and umami tastes. Signaling of these tastes involves the activation of G protein-coupled receptors that stimulate phospholipase C (PLC) beta2, leading to the breakdown of phosphatidylinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3), and release of Ca2+ from intracellular stores. TRPM5 forms a nonselective cation channel that is directly activated by Ca2+ and it is likely to be the downstream target of this signaling cascade. Therefore, study of TRPM5 promises to provide insight into fundamental mechanisms of taste transduction. This review highlights recent work on the mechanisms of activation of the TRPM5 channel. The mouse TRPM5 gene encodes a protein of 1,158 amino acids that is proposed to have six transmembrane domains and to function as a tetramer. TRPM5 is structurally most closely related to the Ca(2+)-activated channel TRPM4 and it is more distantly related to the cold-activated channel TRPM8. In patch clamp recordings, TRPM5 channels are activated by micromolar concentrations of Ca2+ and are permeable to monovalent but not divalent cations. TRPM5 channel activity is strongly regulated by voltage, phosphoinositides and temperature, and is blocked by acid pH. Study of TRPM4 and TRPM8, which show similar modes of regulation, has yielded insights into possible structural domains of TRPM5. Understanding the structural basis for TRPM5 function will ultimately allow the design of pharmaceuticals to enhance or interfere with taste sensations.
Collapse
Affiliation(s)
- E R Liman
- University of Southern California, 3641 Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
210
|
Abstract
In the current review we will summarise data from the recent literature describing molecular and functional properties of TRPM4. Together with TRPM5, these channels are up till now the only molecular candidates for a class of non-selective, Ca(2+)-impermeable cation channels which are activated by elevated Ca2+ levels in the cytosol. Apart from intracellular Ca2+, TRPM4 activation is also dependent on membrane potential. Additionally, channel activity is modulated by ATP, phosphatidylinositol bisphosphate (PiP2), protein kinase C (PKC) phosphorylation and heat. The molecular determinants for channel activation, permeation and modulation are increasingly being clarified, and will be discussed here in detail. The physiological role of Ca(2+)-activated non-selective cation channels is unclear, especially in the absence of gene-specific knock-out mice, but evidence indicates a role as a regulator of membrane potential, and thus the driving force for Ca2+ entry from the extracellular medium.
Collapse
Affiliation(s)
- R Vennekens
- Laboratory of Physiology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, Herestraat 49-Bus 802, 3000 Leuven, Belgium.
| | | |
Collapse
|
211
|
Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 2007; 10:277-9. [PMID: 17259981 DOI: 10.1038/nn1843] [Citation(s) in RCA: 395] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 01/02/2007] [Indexed: 11/10/2022]
Abstract
TRPA1 is an ion channel expressed by nociceptors and activated by irritant compounds such as mustard oil. The endogenous function of TRPA1 has remained unclear, a fact highlighted by ongoing debate over its potential role as a sensor of noxious cold. Here we show that intracellular Ca(2+) activates human TRPA1 via an EF-hand domain and that cold sensitivity occurs indirectly (and nonphysiologically) through increased [Ca(2+)](i) during cooling in heterologous systems.
Collapse
Affiliation(s)
- Sandra Zurborg
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | | | | | | | | |
Collapse
|
212
|
Nilius B, Mahieu F, Karashima Y, Voets T. Regulation of TRP channels: a voltage–lipid connection. Biochem Soc Trans 2007; 35:105-8. [PMID: 17233613 DOI: 10.1042/bst0350105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRP (transient receptor potential) channels respond to a plethora of stimuli in a fine-tuned manner. We show here that both membrane potential and the level of PI (phosphatidylinositol) phosphates are efficient regulators of TRP channel gating. Recent work has shown that this regulation applies to several members of the TRPV (TRP vanilloid) subfamily (TRPV1 and TRPV5) and the TRPM (TRP melastatin) subfamily (TRPM4/TRPM5/TRPM7/TRPM8), whereas regulation of members of the TRPC subfamily is still disputed. The mechanism whereby PIP2 (PI 4,5-bisphosphate) acts on TRPM4, a Ca2+- and voltage-activated channel, is shown in detail in this paper: (i) PIP2 may bind directly to the channel, (ii) PIP2 induces sensitization to activation by Ca2+, and (iii) PIP2 shifts the voltage dependence towards negative and physiologically more meaningful potentials. A PIP2-binding pocket seems to comprise a part of the TRP domain and especially pleckstrin homology domains in the C-terminus.
Collapse
Affiliation(s)
- B Nilius
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
213
|
Rose RA, Hatano N, Ohya S, Imaizumi Y, Giles WR. C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptide C receptor-mediated signalling. J Physiol 2007; 580:255-74. [PMID: 17204501 PMCID: PMC2075416 DOI: 10.1113/jphysiol.2006.120832] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the heart, fibroblasts play an essential role in the deposition of the extracellular matrix and they also secrete a number of hormonal factors. Although natriuretic peptides, including C-type natriuretic peptide (CNP) and brain natriuretic peptide, have antifibrotic effects on cardiac fibroblasts, the effects of CNP on fibroblast electrophysiology have not been examined. In this study, acutely isolated ventricular fibroblasts from the adult rat were used to measure the effects of CNP (2 x 10(-8) M) under whole-cell voltage-clamp conditions. CNP, as well as the natriuretic peptide C receptor (NPR-C) agonist cANF (2 x 10(-8) M), significantly increased an outwardly rectifying non-selective cation current (NSCC). This current has a reversal potential near 0 mV. Activation of this NSCC by cANF was abolished by pre-treating fibroblasts with pertussis toxin, indicating the involvement of G(i) proteins. The cANF-activated NSCC was inhibited by the compounds Gd(3+), SKF 96365 and 2-aminoethoxydiphenyl borate. Quantitative RT-PCR analysis of mRNA from rat ventricular fibroblasts revealed the expression of several transient receptor potential (TRP) channel transcripts. Additional electrophysiological analysis showed that U73122, a phospholipase C antagonist, inhibited the cANF-activated NSCC. Furthermore, the effects of CNP and cANF were mimicked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG), independently of protein kinase C activity. These are defining characteristics of specific TRPC channels. More detailed molecular analysis confirmed the expression of full-length TRPC2, TRPC3 and TRPC5 transcripts. These data indicate that CNP, acting via the NPR-C receptor, activates a NSCC that is at least partially carried by TRPC channels in cardiac fibroblasts.
Collapse
Affiliation(s)
- R A Rose
- Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, AB, Canada T2N 1N4
| | | | | | | | | |
Collapse
|
214
|
Morita H, Honda A, Inoue R, Ito Y, Abe K, Nelson MT, Brayden JE. Membrane Stretch-Induced Activation of a TRPM4-Like Nonselective Cation Channel in Cerebral Artery Myocytes. J Pharmacol Sci 2007; 103:417-26. [PMID: 17420615 DOI: 10.1254/jphs.fp0061332] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Stretch-activated cation channels (SACs) have been observed in many types of smooth muscle cells. However, the molecular identity and activation mechanisms of SACs remain poorly understood. We report that TRPM4-like cation channels are activated by membrane stretch in rat cerebral artery myocytes (CAMs). Negative pressure (> or =20 mmHg, cell-attached mode) activated single channels (approximately 20 pS) in isolated CAMs. These channels were permeable to Na(+) and Cs(+) and inhibited by Gd(3+) (30 microM) and DIDS (100 microM). The effect of negative pressure was abolished by membrane excision, but subsequent application of Ca(2+) (>100 nM) to the intracellular side of the membrane restored single channel activity that was indistinguishable from SACs. Caffeine (5 mM), which depletes SR Ca(2+)-stores, first activated and then abolished SACs. Tetracaine (100 microM), a ryanodine receptor antagonist, inhibited SACs. Overexpression of hTRPM4B in HEK293 cells resulted in the appearance of cation channels that were activated by both negative pressure and Ca(2+) and which had very similar biophysical and pharmacological properties as compared with SACs in CAMs. These studies indicate that TRPM4-like channels in CAMs can be activated by membrane stretch, possibly through ryanodine receptor activation, and this may contribute to the depolarization and concomitant vasoconstriction of intact cerebral arteries following mechanical stimulation.
Collapse
MESH Headings
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology
- Animals
- Boron Compounds/pharmacology
- Calcium Channels/genetics
- Calcium Channels/physiology
- Cell Line
- Cell Membrane/physiology
- Cells, Cultured
- Cerebral Arteries/cytology
- Cerebral Arteries/metabolism
- Cerebral Arteries/physiology
- Female
- Gadolinium/pharmacology
- Gene Expression/drug effects
- Humans
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Patch-Clamp Techniques
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Mechanical
- TRPC Cation Channels/genetics
- TRPC Cation Channels/physiology
- TRPM Cation Channels/genetics
- TRPM Cation Channels/physiology
- TRPV Cation Channels/genetics
- TRPV Cation Channels/physiology
- Transient Receptor Potential Channels/genetics
- Transient Receptor Potential Channels/physiology
Collapse
Affiliation(s)
- Hiromitsu Morita
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
215
|
Schwarz EC, Wolfs MJ, Tonner S, Wenning AS, Quintana A, Griesemer D, Hoth M. TRP channels in lymphocytes. Handb Exp Pharmacol 2007:445-56. [PMID: 17217072 DOI: 10.1007/978-3-540-34891-7_26] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
TRP proteins form ion channels that are activated following receptor stimulation. Several members of the TRP family are likely to be expressed in lymphocytes. However, in many studies, messenger RNA (mRNA) but not protein expression was analyzed and cell lines but not primary human or murine lymphocytes were used. Among the expressed TRP mRNAs are TRPC1, TRPC3, TRPM2, TRPM4, TRPM7, TRPV1, and TRPV2. Regulation of Ca2+ entry is a key process for lymphocyte activation, and TRP channels may both increase Ca2+ influx (such as TRPC3) or decrease Ca2+ influx through membrane depolarization (such as TRPM4). In the future, linking endogenous Ca2+/cation channels in lymphocytes with TRP proteins should lead to a better molecular understanding of lymphocyte activation.
Collapse
Affiliation(s)
- E C Schwarz
- Institut für Physiologie, Universität des Saarlandes, Gebäude 58, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
Collapse
Affiliation(s)
- Kartik Venkatachalam
- Departments of Biological Chemistry and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Craig Montell
- Departments of Biological Chemistry and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
217
|
Fliegert R, Glassmeier G, Schmid F, Cornils K, Genisyuerek S, Harneit A, Schwarz JR, Guse AH. Modulation of Ca2+ entry and plasma membrane potential by human TRPM4b. FEBS J 2006; 274:704-13. [PMID: 17288552 DOI: 10.1111/j.1742-4658.2006.05614.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TRPM4b is a Ca(2+)-activated, voltage-dependent monovalent cation channel that has been shown to act as a negative regulator of Ca(2+) entry and to be involved in the generation of oscillations of Ca(2+) influx in Jurkat T-lymphocytes. Transient overexpression of TRPM4b as an enhanced green fluorescence fusion protein in human embryonic kidney (HEK) cells resulted in its localization in the plasma membrane, as demonstrated by confocal fluorescence microscopy. The functionality and plasma membrane localization of overexpressed TRPM4b was confirmed by induction of Ca(2+)-dependent inward and outward currents in whole cell patch clamp recordings. HEK-293 cells stably overexpressing TRPM4b showed higher ionomycin-activated Ca(2+) influx than wild-type cells. In addition, analysis of the membrane potential using the potentiometric dye bis-(1,3-dibutylbarbituric acid)-trimethine oxonol and by current clamp experiments in the perforated patch configuration revealed a faster initial depolarization after activation of Ca(2+) entry with ionomycin. Furthermore, TRPM4b expression facilitated repolarization and thereby enhanced sustained Ca(2+) influx. In conclusion, in cells with a small negative membrane potential, such as HEK-293 cells, TRPM4b acts as a positive regulator of Ca(2+) entry.
Collapse
Affiliation(s)
- Ralf Fliegert
- Calcium Signalling Group, Institute of Biochemistry and Molecular Biology I: Cellular Signal Transduction, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Ion channel functional diversity can be achieved at the structural level by means of three main mechanisms: (1) transcriptional regulation and processing of mRNA, (2) heteromerization of different pore-forming channel subunits and (3) incorporation of regulatory subunits to the functional channel complex. In this review article we will focus on one of these mechanisms, alternative pre-mRNA splicing, in the context of the TRP superfamily of cation channels. For this purpose, the basic principles governing pre-mRNA splicing will be introduced and comprehensive tables classifying only published spliced-variants of TRP channels will be presented.
Collapse
Affiliation(s)
- Esther Vázquez
- Molecular Physiology and Channelopathies Group, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, C/Dr. Aiguader 80, Barcelona 08003, Spain
| | | |
Collapse
|
219
|
Tominaga M. The Role of TRP Channels in Thermosensation. TRP ION CHANNEL FUNCTION IN SENSORY TRANSDUCTION AND CELLULAR SIGNALING CASCADES 2006. [DOI: 10.1201/9781420005844.ch20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
220
|
Guinamard R, Demion M, Magaud C, Potreau D, Bois P. Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 2006; 48:587-94. [PMID: 16966582 DOI: 10.1161/01.hyp.0000237864.65019.a5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac hypertrophy is associated with electrophysiological modifications, including modification of action potential shape that can give rise to arrhythmias. We report here a higher detection of a calcium-activated nonselective cation current in cardiomyocytes of spontaneously hypertensive rats (SHRs), a model of hypertension and heart hypertrophy when compared with Wistar-Kyoto (WKY) rat, its normotensive equivalent. Freshly isolated cells from the left ventricles of 3- to 6-month-old WKY rats or SHRs were used for patch-clamp recordings. In inside-out patches, the channel presented a linear conductance of 25+/-0.5 pS, did not discriminate Na(+) over K(+), and was not permeable to Ca(2+). Open probability was increased by depolarization and a rise in [Ca(2+)](i) (dissociation constant=10+/-5.4 micromol/L) but reduced by 0.5 mmol/L [ATP](i), 10 micromol/L glibenclamide, or flufenamic acid (IC(50)=5.5+/-1.7 micromol/L). Thus, it owns the fingerprint of the TRPM4 current. Although rarely detected in WKY cardiomyocytes, the current was present in >50% of patches from SHR cardiomyocytes. Moreover, by performing RT-PCR from ventricular samples, we observed that TRPM4 mRNA detection was higher in SHRs than in WKY rats. We propose that a TRPM4 current is expressed in ventricular cardiomyocytes from SHRs. According to its properties, this channel may contribute to the transient inward current implicated in delayed-after-depolarizations observed during [Ca(2+)] overload of cardiomyocytes.
Collapse
Affiliation(s)
- Romain Guinamard
- Institut de Physiologie et Biologie Cellulaires, Centre National de la Recherche Scientifique Unité Mixte de Recherche, Université de Poitiers, Poitiers, France.
| | | | | | | | | |
Collapse
|
221
|
Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 2006; 26:159-78. [PMID: 16777713 DOI: 10.1080/10799890600637506] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Eight members of the TRP-melastatin (TRPM) subfamily have been identified, whose physiological functions and distribution are poorly characterized. Although tissue expression and distribution patterns have been reported for individual TRPM channels, comparisons between individual studies are not possible because of variations in analysis techniques and tissue selection. We report here a comparative analysis of the expression patterns of all of the human TRPM channels in selected peripheral tissues and the central nervous system (CNS) using two distinct but complimentary approaches: TaqMan and SYBR Green real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). These techniques generated comparative distribution profiles and demonstrated tissue-specific co-expression of TRPM mRNA species, indicating significant potential for the formation of heteromeric channels. TRPM channels 2, 4, 5, 6, and 7 in contrast to 1, 3, and 8 are widely distributed in the CNS and periphery. The tissues demonstrating highest expression for individual family members were brain (TRPM1), brain and bone marrow (TRPM2), brain and pituitary (TRPM3), intestine and prostate (TRPM4), intestine, pancreas, and prostate (TRPM5), intestine and brain (TRPM6), heart, pituitary, bone, and adipose tissue (TRPM7), and prostate and liver (TRPM8). The data reported here will guide the elucidation of TRPM channel physiological functions.
Collapse
Affiliation(s)
- Elena Fonfria
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, Harlow, UK
| | | | | | | | | | | |
Collapse
|
222
|
Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 2006; 112:744-60. [PMID: 16842858 DOI: 10.1016/j.pharmthera.2006.05.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Smooth muscle cells (SMC) are essential components of many tissues of the body. Ion channels regulate their membrane potential, the intracellular Ca(2+) concentration ([Ca(2+)](i)) and their contractility. Among the ion channels expressed in SMC cation channels of the transient receptor potential (TRP) superfamily allow the entry of Na(+), Ca(2+) and Mg(2+). Members of the TRP superfamily are essential constituents of tonically active channels (TAC), receptor-operated channels (ROC), store-operated channels (SOC) and stretch-activated channels (SAC). This review focusses on TRP channels (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV2, TRPV4, TRPM4, TRPM7, TRPP2) whose physiological functions in SMC were dissected by downregulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models. Their possible functional role and physiological regulation as homomeric or heteromeric channels in SMC are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes involving SMC-like airway hyperresponsiveness and pulmonary hypertension. Therefore, they present important drug targets for future pharmacological interventions.
Collapse
Affiliation(s)
- Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 1, 35043 Marburg, Germany.
| | | | | | | | | |
Collapse
|
223
|
Lupinsky DA, Magoski NS. Ca2+-dependent regulation of a non-selective cation channel from Aplysia bag cell neurones. J Physiol 2006; 575:491-506. [PMID: 16763004 PMCID: PMC1819442 DOI: 10.1113/jphysiol.2006.105833] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca2+-activated, non-selective cation channels feature prominently in the regulation of neuronal excitability, yet the mechanism of their Ca2+ activation is poorly defined. In the bag cell neurones of Aplysia californica, opening of a voltage-gated, non-selective cation channel initiates a long-lasting afterdischarge that induces egg-laying behaviour. The present study used single-channel recording to investigate Ca2+ activation in this cation channel. Perfusion of Ca2+ onto the cytoplasmic face of channels in excised, inside-out patches yielded a Ca2+ activation EC50 of 10 microm with a Hill coefficient of 0.66. Increasing Ca2+ from 100 nm to 10 microm caused an apparent hyperpolarizing shift in the open probability (Po) versus voltage curve. Beyond 10 microm Ca2+, additional changes in voltage dependence were not evident. Perfusion of Ba2+ onto the cytoplasmic face did not alter Po; moreover, in outside-out recordings, Po was decreased by replacing external Ca2+ with Ba2+ as a charge carrier, suggesting Ca2+ influx through the channel may provide positive feedback. The lack of Ba2+ sensitivity implicated calmodulin in Ca2+ activation. Consistent with this, the application to the cytoplasmic face of calmodulin antagonists, calmidazolium and calmodulin-binding domain, reduced Po, whereas exogenous calmodulin increased Po. Overall, the data indicated that the cation channel is activated by Ca2+ through closely associated calmodulin. Bag cell neurone intracellular Ca2+ rises markedly at the onset of the afterdischarge, which would enhance channel opening and promote bursting to elicit reproduction. Cation channels are essential to nervous system function in many organisms, and closely associated calmodulin may represent a widespread mechanism for their Ca2+ sensitivity.
Collapse
Affiliation(s)
- Derek A Lupinsky
- Department of Physiology, Queen's University, 4th Floor, Botterell Hall, 18 Stuart Street, Kingston, ON, Canada, K7L 3N6
| | | |
Collapse
|
224
|
Abstract
The development of our knowledge on the structure, molecular regulation, and cell function on transient receptor potential (TRP) channels has been growing dramatically during the last few years. Many meetings in the past and upcoming events are now focused on TRP channels as general sensor molecules in cell physiology. However, most of the scientists in the field still feel that we are just beginning to understand these truly remarkable proteins, called TRPs, and there is still a long way to go from structure via molecular regulation to cell and organ function. This generally accepted but exciting view about the long road to the understanding of TRPs dominated all presentations given at the 2006 Minerva-Gentner Symposium on TRP channels and calcium signalling, which was held in Eilat, Israel, and was excellently organized by Baruch Minke (Jerusalem, Israel) and supported by Veit Flockerzi (Homburg, Germany).
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratory of Physiology, KU Leuven, B-3000 Leuven, Belgium.
| | | |
Collapse
|
225
|
Abstract
The aim of this review is to provide a basic framework for understanding the function of mammalian transient receptor potential (TRP) channels, particularly as they have been elucidated in heterologous expression systems. Mammalian TRP channel proteins form six-transmembrane (6-TM) cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Selected functional properties of TRP channels from each subfamily are summarized in this review. Although a single defining characteristic of TRP channel function has not yet emerged, TRP channels may be generally described as calcium-permeable cation channels with polymodal activation properties. By integrating multiple concomitant stimuli and coupling their activity to downstream cellular signal amplification via calcium permeation and membrane depolarization, TRP channels appear well adapted to function in cellular sensation. Our review of recent literature implicating TRP channels in neuronal growth cone steering suggests that TRPs may function more widely in cellular guidance and chemotaxis. The TRP channel gene family and its nomenclature, the encoded proteins and alternatively spliced variants, and the rapidly expanding pharmacology of TRP channels are summarized in online supplemental material.
Collapse
Affiliation(s)
- I Scott Ramsey
- Howard Hughes Medical Institute, Cardiovascular Department, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
226
|
Nilius B, Vennekens R. From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Arch 2006; 453:313-21. [PMID: 16680483 DOI: 10.1007/s00424-006-0088-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/13/2006] [Indexed: 12/01/2022]
Abstract
In 2006, we celebrate not only the milestone paper on the patch-clamp technique but also the publication of the first single-channel measurements in cardiac cells revealing a Ca(2+)-activated, nonselective cation channel. Considerable effort has been undertaken since this time to identify molecular candidates for this class of cation channels that can be found in a variety of tissues. Recent work has shown that this channel is very likely TRPM4, a member of the TRPM ion channel family. The current review links the epochal Colquhoun et al. paper to the detailed molecular knowledge and structure function aspects of this TRP channel. It will be shown that TRPM4 is a Ca(2+)- and voltage-activated channel, which is dramatically modulated by the phospholipid phosphatidyl inositol bisphosphate (PIP(2)) and belongs to the heat-activated thermoTRPs. A functional hallmark of TRPM4, as for several TRP channels, is a dramatic shift of its voltage dependence towards negative, physiologically meaningful potentials.
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratorium voor Fysiologie, Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven, Belgium.
| | | |
Collapse
|
227
|
Takezawa R, Cheng H, Beck A, Ishikawa J, Launay P, Kubota H, Kinet JP, Fleig A, Yamada T, Penner R. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 2006; 69:1413-20. [PMID: 16407466 DOI: 10.1124/mol.105.021154] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
3,5-Bis(trifluoromethyl)pyrazole derivative (BTP2) or N-[4-3, 5-bis(trifluromethyl)pyrazol-1-yl]-4-methyl-1,2,3-thiadiazole-5-carboxamide (YM-58483) is an immunosuppressive compound that potently inhibits both Ca2+ influx and interleukin-2 (IL-2) production in lymphocytes. We report here that BTP2 dosedependently enhances transient receptor potential melastatin 4 (TRPM4), a Ca2+-activated nonselective (CAN) cation channel that decreases Ca2+ influx by depolarizing lymphocytes. The effect of BTP2 on TRPM4 occurs at low nanomolar concentrations and is highly specific, because other ion channels in T lymphocytes are not significantly affected, and the major Ca2+ influx pathway in lymphocytes, ICRAC, is blocked only at 100-fold higher concentrations. The efficacy of BTP2 in blocking IL-2 production is reduced approximately 100-fold when preventing TRPM4-mediated membrane depolarization, suggesting that the BTP2-mediated facilitation of TRPM4 channels represents the major mechanism for its immunosuppressive effect. Our results demonstrate that TRPM4 channels represent a previously unrecognized key element in lymphocyte Ca2+ signaling and that their facilitation by BTP2 supports cell membrane depolarization, which reduces the driving force for Ca2+ entry and ultimately causes the potent suppression of cytokine release.
Collapse
Affiliation(s)
- Ryuichi Takezawa
- Laboratory of Cell and Molecular Signalling, Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., UHT 8, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Members of the family of transient receptor potential (TRP) ion channels mediate a wide range of sensory modalities, including thermosensation and taste. Among the "thermo-TRPs," some, such as TRPV1, are activated by warm temperatures, whereas others, such as TRPM8, are activated by cold. How is temperature able to have such strong and opposing effects on these related channels? Although at a structural level the answer to this question is not known, an elegant biophysical model has been proposed that accounts for the different thermosensitivities of TRP channels. This model posits that temperature acts by shifting the inherent weak voltage sensitivity of TRPV1 and TRPM8 in opposite directions, thus promoting opening of TRPV1 at warm temperatures and TRPM8 at cold temperatures. TRPM5, which is distantly related to TRPM8, is a Ca2+-activated cation channel expressed in taste cells that is essential for sweet, bitter, and umami tastes. Like TRPV1 and TRPM8, TRPM5 is weakly sensitive to voltage and thus may also be temperature sensitive. A recent report shows that activity of TRPM5 is increased at warm temperatures, suggesting that heat may enhance the perception of taste through direct modulation of the putative taste transduction channel.
Collapse
Affiliation(s)
- Emily R Liman
- Department of Biological Sciences, Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
229
|
|
230
|
Abstract
Ion channels are pore-forming transmembrane proteins that allow ions to permeate biological membranes. Pore structure plays a crucial role in determining the ion permeation and selectivity properties of particular channels. In the past few decades, efforts have been undertaken to identify key elements of the pore regions of different classes of ion channels. In this review, we summarize current knowledge about permeation and selectivity of channel proteins from the transient receptor potential (TRP) superfamily. Whereas all TRP channels are permeable for cations, only two TRP channels are impermeable for Ca2+ (TRPM4, TRPM5), and two others are highly Ca2+ permeable (TRPV5, TRPV6). Despite the great advances in the TRP channel field during the past decade, only a limited number of reports have dealt with functional characterization of pore properties, biophysical aspects of cation permeation, or description of pore structures of TRP channels. This review gives an overview of available experimental and theoretical data and discusses the functional impact of pore-structure modifications on TRP channel properties.
Collapse
Affiliation(s)
- Grzegorz Owsianik
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
231
|
Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 2006; 25:467-78. [PMID: 16424899 PMCID: PMC1383543 DOI: 10.1038/sj.emboj.7600963] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 12/20/2005] [Indexed: 11/09/2022] Open
Abstract
Transient receptor potential (TRP) channel, melastatin subfamily (TRPM)4 is a Ca2+-activated monovalent cation channel that depolarizes the plasma membrane and thereby modulates Ca2+ influx through Ca2+-permeable pathways. A typical feature of TRPM4 is its rapid desensitization to intracellular Ca2+ ([Ca2+]i). Here we show that phosphatidylinositol 4,5-biphosphate (PIP2) counteracts desensitization to [Ca2+]i in inside-out patches and rundown of TRPM4 currents in whole-cell patch-clamp experiments. PIP2 shifted the voltage dependence of TRPM4 activation towards negative potentials and increased the channel's Ca2+ sensitivity 100-fold. Conversely, activation of the phospholipase C (PLC)-coupled M1 muscarinic receptor or pharmacological depletion of cellular PIP2 potently inhibited currents through TRPM4. Neutralization of basic residues in a C-terminal pleckstrin homology (PH) domain accelerated TRPM4 current desensitization and strongly attenuated the effect of PIP2, whereas mutations to the C-terminal TRP box and TRP domain had no effect on the PIP2 sensitivity. Our data demonstrate that PIP2 is a strong positive modulator of TRPM4, and implicate the C-terminal PH domain in PIP2 action. PLC-mediated PIP2 breakdown may constitute a physiologically important brake on TRPM4 activity.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
232
|
Abstract
Transient receptor potential (TRP) receptors are, typically, calcium-permeant cation channels that transduce environmental stimuli. Both kidney epithelial and inner ear sensory cells express TRPV1, are mechanosensors and accumulate the aminoglycoside antibiotic gentamicin. Recently, we showed that Texas Red-conjugated gentamicin (GTTR) enters kidney cells via an endosome-independent pathway. Here, we used GTTR to investigate this non-endocytotic mechanism of gentamicin uptake. In serum-free buffers, GTTR penetrated MDCK cells within 30 s and uptake was modulated by extracellular, multivalent cations (Ca2+, La3+, Gd3+) or protons. We verified the La3+ modulation of GTTR uptake using immunocytochemical detection of unconjugated gentamicin. Membrane depolarization, induced by high extracellular K+ or valinomycin, also reduced GTTR uptake, suggesting electrophoretic permeation through ion channels. GTTR uptake was enhanced by the TRPV1 agonists, resiniferatoxin and anandamide, in Ca2+-free media. Competitive antagonists of the TRPV1 cation current, iodo-resiniferatoxin and SB366791, also enhanced GTTR uptake independently of Ca2+, reinforcing these antagonists' potential as latent agonists in specific situations. Ruthenium Red blocked GTTR uptake in the presence or absence of these TRPV1-agonists and antagonists. In addition, GTTR uptake was blocked by RTX in the presence of more physiological levels (2 mM) of Ca2+. Thus gentamicin enters cells via cation channels, and gentamicin uptake can be modulated by regulators of the TRPV1 channel.
Collapse
Affiliation(s)
- Sigrid E Myrdal
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
233
|
Yang XR, Lin MJ, McIntosh LS, Sham JSK. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1267-76. [PMID: 16399784 DOI: 10.1152/ajplung.00515.2005] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transient receptor potential melastatin- (TRPM) and vanilloid-related (TRPV) channels are nonselective cation channels pertinent to diverse physiological functions. Multiple TRPM and TRPV channel subtypes have been identified and cloned in different tissues. However, their information in vascular tissue is scant. In this study, we sought to identify TRPM and TRPV channel subtypes expressed in rat deendothelialized intralobar pulmonary arteries (PAs) and aorta. With RT-PCR, mRNA of TRPM2, TRPM3, TRPM4, TRPM7, and TRPM8 of TRPM family and TRPV1, TRPV2, TRPV3, and TRPV4 of TRPV family were detected in both PAs and aorta. Quantitative real-time RT-PCR showed that TRPM8 and TRPV4 were the most abundantly expressed TRPM and TRPV subtypes, respectively. Moreover, Western blot analysis verified expression of TRPM2, TRPM8, TRPV1, and TRPV4 proteins in both types of vascular tissue. To examine the functional activities of these channels, we monitored intracellular Ca(2+) transients ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) and aortic smooth muscle cells (ASMCs). The TRPM8 agonist menthol (300 muM) and the TRPV4 agonist 4alpha-phorbol 12,13-didecanoate (1 muM) evoked significant increases in [Ca(2+)](i) in PASMCs and ASMCs. These Ca(2+) responses were abolished in the absence of extracellular Ca(2+) or the presence of 300 muM Ni(2+) but were unaffected by 1 muM nifedipine, suggesting Ca(2+) influx via nonselective cation channels. Hence, for the first time, our results indicate that multiple functional TRPM and TRPV channels are coexpressed in rat intralobar PAs and aorta. These novel Ca(2+) entry pathways may play important roles in the regulation of pulmonary and systemic circulation.
Collapse
Affiliation(s)
- Xiao-Ru Yang
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
234
|
Owsianik G, D'hoedt D, Voets T, Nilius B. Structure–function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 2006. [DOI: 10.1007/s10254-005-0006-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
235
|
Gallo EM, Canté-Barrett K, Crabtree GR. Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 2005; 7:25-32. [PMID: 16357855 DOI: 10.1038/ni1295] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/14/2005] [Indexed: 12/14/2022]
Abstract
Ca(2+) signals control a variety of lymphocyte responses, ranging from short-term cytoskeletal modifications to long-term changes in gene expression. The identification of molecules and channels that modulate Ca(2+) entry into T and B lymphocytes has both provided details of the molecular events leading to immune responses and raised controversy. Here we review studies of the pathways that allow Ca(2+) entry, the function of Ca(2+) in the regulation of cell polarity and motility and the principles by which Ca(2+)-dependent transcription regulates lymphocyte function.
Collapse
Affiliation(s)
- Elena M Gallo
- Program in Immunology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
236
|
Abstract
Among the 28 identified and unique mammalian TRP (transient receptor potential) channel isoforms, at least 19 are expressed in vascular endothelial cells. These channels appear to participate in a diverse range of vascular functions, including control of vascular tone, regulation of vascular permeability, mechanosensing, secretion, angiogenesis, endothelial cell proliferation, and endothelial cell apoptosis and death. Malfunction of these channels may result in disorders of the human cardiovascular system. All TRP channels, except for TRPM4 and TRPM5, are cation channels that allow Ca2+ influx. However, there is a daunting diversity in the mode of activation and regulation in each case. Specific TRP channels may be activated by different stimuli such as vasoactive agents, oxidative stress, mechanical stimuli, and heat. TRP channels may then transform these stimuli into changes in the cytosolic Ca2+, which are eventually coupled to various vascular responses. Evidence has been provided to suggest the involvement of at least the following TRP channels in vascular function: TRPC1, TRPC4, TRPC6, and TRPV1 in the control of vascular permeability; TRPC4, TRPV1, and TRPV4 in the regulation of vascular tone; TRPC4 in hypoxia-induced vascular remodeling; and TRPC3, TRPC4, and TRPM2 in oxidative stress-induced responses. However, in spite of the large body of data available, the functional role of many endothelial TRP channels is still poorly understood. Elucidating the mechanisms regulating the different endothelial TRP channels, and the associated development of drugs selectively to target the different isoforms, as a means to treat cardiovascular disease should, therefore, be a high priority.
Collapse
Affiliation(s)
- Xiaoqiang Yao
- Department of Physiology, Chinese University of Hong Kong, China.
| | | |
Collapse
|
237
|
Chubanov V, Mederos y Schnitzler M, Wäring J, Plank A, Gudermann T. Emerging roles of TRPM6/TRPM7 channel kinase signal transduction complexes. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:334-41. [PMID: 15902429 DOI: 10.1007/s00210-005-1056-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Investigations into Drosophila mutants with impaired vision due to mutations in the transient receptor potential gene (trp) initiated a systematic search for TRP homologs in other species, finally leading to the discovery of a whole new family of plasma membrane cation channels involved in multiple physiological processes. Among the recently discovered TRP cation channels two homologous proteins, TRPM6 and TRPM7, display unique domain compositions and biophysical properties. These remarkable genes are vital for Mg(2+) homeostasis in vertebrates and, if disrupted, lead to cell death or human disease.
Collapse
Affiliation(s)
- V Chubanov
- Institut für Pharmakologie und Toxikologie, Philipps-Universität-Marburg, Karl-von-Frisch Strasse 1, 35033, Marburg, Germany
| | | | | | | | | |
Collapse
|
238
|
Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 2005; 57:427-50. [PMID: 16382100 DOI: 10.1124/pr.57.4.6] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- David E Clapham
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
239
|
Zhang Z, Okawa H, Wang Y, Liman ER. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 2005; 280:39185-92. [PMID: 16186107 DOI: 10.1074/jbc.m506965200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM4 is a Ca(2+)-activated nonselective cation channel that regulates membrane potential in response to intracellular Ca(2+) signaling. In lymphocytes it plays an essential role in shaping the pattern of intracellular Ca(2+) oscillations that lead to cytokine secretion. To better understand its role in this and other physiological processes, we investigated mechanisms by which TRPM4 is regulated. TRPM4 was expressed in ChoK1 cells, and currents were measured in excised patches. Under these conditions, TRPM4 currents were activated by micromolar concentrations of cytoplasmic Ca(2+) and progressively desensitized. Here we show that desensitization can be explained by a loss of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) from the channels. Poly-l-lysine, a PI(4,5)P(2) scavenger, caused rapid desensitization, whereas MgATP, at concentrations that activate lipid kinases, promoted recovery of TRPM4 currents. Application of exogenous PI(4,5)P(2) to the intracellular surface of the patch restored the properties of TRPM4 currents. Our results suggest that PI(4,5)P(2) acts to uncouple channel opening from changes in the transmembrane potential, allowing current activation at physiological voltages. These data argue that hydrolysis of PI(4,5)P(2) underlies desensitization of TRPM4 and support the idea that PI(4,5)P(2) is a general regulator for the gating of TRPM ion channels.
Collapse
Affiliation(s)
- Zheng Zhang
- Division of Neurobiology, Department of Biological Sciences and Program in Neuroscience, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
240
|
Nilius B, Voets T. TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 2005; 451:1-10. [PMID: 16012814 DOI: 10.1007/s00424-005-1462-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 12/23/2022]
Abstract
The "transient receptor potential" (TRP) family of ion channels comprises more than 50 cation-permeable channels expressed from yeast to man. On the basis of structural homology, the TRP family can be subdivided in to seven main subfamilies: the TRPC ('Canonical') group, the TRPV ('Vanilloid') group, the TRPM ('Melastatin') group, the TRPP ('Polycystin'), the TRPML ('Mucolipin'), the TRPA ('Ankyrin') and the TRPN ('NOMP') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a plethora of data concerning TRPs in a variety of cell types, tissues and species. This paper briefly reviews the TRP superfamily and the basic properties of its many members as a reader's guide in this Special Issue. Hopefully, a better understanding of TRP channel physiology will provide important insight into the relationship between TRP channel dysfunction and human diseases.
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratorium voor Fysiologie, Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.
| | | |
Collapse
|
241
|
Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B. Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 2005; 37:267-78. [PMID: 15670874 DOI: 10.1016/j.ceca.2004.11.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 10/29/2004] [Accepted: 11/03/2004] [Indexed: 11/26/2022]
Abstract
Non-selective cation (NSC) channels activated by intracellular Ca2+ ([Ca2+]i) play an important role in Ca2+ signaling and membrane excitability in many cell types. TRPM4 and TRPM5, two Ca2+-activated cation channels of the TRP superfamily, are potential molecular correlates of NSC channels. We compared the functional properties of mouse TRPM4 and TRPM5 heterologously expressed in HEK 293 cells. Dialyzing cells with different Ca2+ concentrations revealed a difference in Ca2+ sensitivity between TRPM4 and TRPM5, with EC50 values of 20.2+/-4.0 microM and 0.70+/-0.1 microM, respectively. Similarly, TRPM5 activated at lower Ca2+ concentration than TRPM4 when [Ca2+]i was raised by UV uncaging of the Ca2+-cage DMNP-EDTA. Current amplitudes of TRPM4 and TRPM5 were not correlated to the rate of changes in [Ca2+]i. The Ca2+ sensitivity of both channels was strongly reduced in inside-out patches, resulting in approximately 10-30 times higher EC50 values than under whole-cell conditions. Currents through TRPM4 and TRPM5 deactivated at negative and activated at positive potentials with similar kinetics. Both channels were equally sensitive to block by intracellular spermine. TRPM4 displayed a 10-fold higher affinity for block by flufenamic acid. Importantly, ATP4- blocked TRPM4 with high affinity (IC50 of 0.8+/-0.1 microM), whereas TRPM5 is insensitive to ATP4- at concentrations up to 1 mM.
Collapse
Affiliation(s)
- Nina D Ullrich
- Laboratorium voor Fysiologie, Department of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
242
|
Freichel M, Vennekens R, Olausson J, Stolz S, Philipp SE, Weissgerber P, Flockerzi V. Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J Physiol 2005; 567:59-66. [PMID: 15975974 PMCID: PMC1474153 DOI: 10.1113/jphysiol.2005.092999] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Available data on transient receptor potential channel (TRPC) protein functions indicate that these proteins represent essential constituents of agonist-activated and phospholipase C-dependent cation entry pathways in primary cells which contribute to the elevation of cytosolic Ca2+. In addition, a striking number of biological functions have already been assigned to the various TRPC proteins, including mechanosensing activity (TRPC1), chemotropic axon guidance (TRPC1 and TRPC3), pheromone sensing and the regulation of sexual and social behaviour (TRPC2), endothelial-dependent regulation of vascular tone, endothelial permeability and neurotransmitter release (TRPC4), axonal growth (TRPC5), modulation of smooth muscle tone in blood vessels and lung and regulation of podocyte structure and function in the kidney (TRPC6). The lack of compounds which specifically block or activate TRPC proteins impairs the analysis of TRPC function in primary cells. We therefore concentrate in this contribution on (i) studies of TRPC-deficient mouse lines, (ii) data obtained by gene-silencing approaches using antisense oligonucleotides or RNA interference, (iii) expression experiments employing dominant negative TRPC constructs, and (iv) recent data correlating mutations of TRPC genes associated with human disease.
Collapse
Affiliation(s)
- Marc Freichel
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, D 66421 Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
243
|
Kühn FJP, Heiner I, Lückhoff A. TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Arch 2005; 451:212-9. [PMID: 15952035 DOI: 10.1007/s00424-005-1446-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
A unique functional property within the transient receptor potential (TRP) family of cation channels is the gating of TRP (melastatin) 2 (TRPM2) channels by ADP-ribose (ADPR). ADPR binds to the intracellular C-terminal tail of TRPM2, a domain that shows homology to enzymes with pyrophosphatase activity. Cytosolic Ca(2+) enhances TRPM2 gating by ADPR; ADPR and Ca(2+) in concert may be an important messenger system mediating Ca(2+) influx. Other stimuli of TRPM2 include NAD and H(2)O(2) and cyclic ADPR, which may act synergistically with ADPR. H(2)O(2), an experimental paradigm of oxidative stress, may also induce the formation of ADPR in the nucleus or mitochondria. In this review, we summarize the gating properties of TRPM2 and the proposed pathways of channel activation in vivo. TRPM2 is likely to be a key player in several signalling pathways, mediating cell death in response to oxidative stress or in reperfusion injury. Moreover, it plays a decisive role in experimentally induced diabetes mellitus and in the activation of leukocytes.
Collapse
Affiliation(s)
- Frank J P Kühn
- Medical Faculty, RWTH Aachen, Institute of Physiology, Pauwelsstrasse 30, 52057 Aachen, Germany
| | | | | |
Collapse
|
244
|
Kraft R, Harteneck C. The mammalian melastatin-related transient receptor potential cation channels: an overview. Pflugers Arch 2005; 451:204-11. [PMID: 15895246 DOI: 10.1007/s00424-005-1428-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 11/27/2022]
Abstract
The mammalian melastatin-related transient receptor potential (TRPM) subfamily contains eight members. TRPM proteins, consisting of six putative transmembrane domains and intracellular N and C termini, form monovalent-permeable cation channels with variable selectivity for Ca(2+), Mg(2+) and other divalent cations. Some functions are linked to their individual cation selectivity: the highly divalent-permeable cation channels TRPM6 and TRPM7 are involved in the control of Mg(2+) influx, whereas the Ca(2+)-impermeable channels TRPM4 and TRPM5 modulate cellular Ca(2+) entry by determining the membrane potential. TRPM2, TRPM3 and TRPM8 mediate a direct influx of Ca(2+) in response to specific stimuli. Electrophysiological properties of the founding member, melastatin (TRPM1), are unexplored. The individual TRPM members are activated by different stimuli, including voltage, Ca(2+), temperature, cell swelling, lipid compounds and other endogenous or exogenous ligands. This review summarizes molecular features, activation mechanisms, biophysical properties and modulators of TRPM channels.
Collapse
Affiliation(s)
- Robert Kraft
- Carl-Ludwig-Institut für Physiologie, Universität Leipzig, Liebigstr. 27, 04103 Leipzig, Germany
| | | |
Collapse
|
245
|
Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T. Gating of TRP channels: a voltage connection? J Physiol 2005; 567:35-44. [PMID: 15878939 PMCID: PMC1474154 DOI: 10.1113/jphysiol.2005.088377] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
TRP channels represent the main pathways for cation influx in non-excitable cells. Although TRP channels were for a long time considered to be voltage independent, several TRP channels now appear to be weakly voltage dependent with an activation curve extending mainly into the non-physiological positive voltage range. In connection with this voltage dependence, there is now abundant evidence that physical stimuli, such as temperature (TRPV1, TRPM8, TRPV3), or the binding of various ligands (TRPV1, TRPV3, TRPM8, TRPM4), shift this voltage dependence towards physiologically relevant potentials, a mechanism that may represent the main functional hallmark of these TRP channels. This review discusses some features of voltage-dependent gating of TRPV1, TRPM4 and TRPM8. A thermodynamic principle is elaborated, which predicts that the small gating charge of TRP channels is a crucial factor for the large voltage shifts induced by various stimuli. Some structural considerations will be given indicating that, although the voltage sensor is not yet known, the C-terminus may substantially change the voltage dependence of these channels.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
246
|
Lis A, Wissenbach U, Philipp SE. Transcriptional regulation and processing increase the functional variability of TRPM channels. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:315-24. [PMID: 15856355 DOI: 10.1007/s00210-005-1050-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 02/19/2005] [Indexed: 12/14/2022]
Abstract
Mammalian TRP channels display heterogenous biophysical properties and are involved in a variety of signal transduction pathways. To carry out their diverse biological functions and to adapt these functions to changes of the environment, mechanisms to regulate their molecular structure are required. Transcriptional regulation and post-transcriptional RNA processing represent essential instruments to generate TRP channel variants with modified properties. TRP variants are expressed depending on the tissue and developmental state. They can show distinct biophysical properties and mechanisms of activation, and thereby determine channel function and malfunction in certain human diseases. In this review, we give an overview of the variants of a given TRP gene, with the focus on the TRPM subfamily, and discuss their relevance with respect to their function under physiological and pathological conditions.
Collapse
Affiliation(s)
- Annette Lis
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
247
|
Abstract
The physiological function and cellular role of some members of the TRPM family are poorly understood and still mysterious. Melastatin, the founding member of the TRPM group, is the most prominent example of the mysteries involved in understanding TRP channel function. Melastatin or TRPM1 was first cloned in 1998 and since then it has been suggested that it functions as a tumor suppressor protein in melanocytes. On the other hand, TRPM8 and TRPA1 have been described as cold receptors, TRPM4 and TRPM5 as calcium-activated nonselective cation channels, TRPM6 and TRPM7 as magnesium-permeable and magnesium-modulated cation channels, TRPM2 as an ADP-ribose-activated channel of macrophages, and TRPM3 as a hypo-osmolarity- and sphingosine-activated channel. There are many unsolved questions and many studies have to be performed to understand the overall function of the TRPM family. In addition to electrophysiological recordings and biochemical characterization, the use of compounds modulating TRPM channel function has often been helpful to study TRPM channels in a cellular context. Therefore, the review will summarize the known functions, activation mechanisms, and pharmacological modulations of the TRPM channels.
Collapse
Affiliation(s)
- Christian Harteneck
- Institut für Pharmakologie, Charité Campus Benjamin Franklin, Thielallee 69-73, 14195, Berlin, Germany.
| |
Collapse
|
248
|
Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T. The selectivity filter of the cation channel TRPM4. J Biol Chem 2005; 280:22899-906. [PMID: 15845551 DOI: 10.1074/jbc.m501686200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential channel melastatin subfamily (TRPM) 4 and its close homologue, TRPM5, are the only two members of the large transient receptor potential superfamily of cation channels that are impermeable to Ca(2+). In this study, we located the TRPM4 selectivity filter and investigated possible structural elements that render it Ca(2+)-impermeable. Based on homology with known cation channel pores, we identified an acidic stretch of six amino acids in the loop between transmembrane helices TM5 and TM6 ((981)EDMDVA(986)) as a potential selectivity filter. Substitution of this six-amino acid stretch with the selectivity filter of TRPV6 (TIIDGP) resulted in a functional channel that combined the gating hallmarks of TRPM4 (activation by Ca(2+), voltage dependence) with TRPV6-like sensitivity to block by extracellular Ca(2+) and Mg(2+) as well as Ca(2+) permeation. Neutralization of Glu(981) resulted in a channel with normal permeability properties but a strongly reduced sensitivity to block by intracellular spermine. Neutralization of Asp(982) yielded a functional channel that exhibited extremely fast desensitization (tau < 5 s), possibly indicating destabilization of the pore. Neutralization of Asp(984) resulted in a non-functional channel with a dominant negative phenotype when coexpressed with wild type TRPM4. Combined neutralization of all three acidic residues resulted in a functional channel whose voltage dependence was shifted toward very positive potentials. Substitution of Gln(977) by a glutamate, the corresponding residue in divalent cation-permeable TRPM channels, altered the monovalent cation permeability sequence and resulted in a pore with moderate Ca(2+) permeability. Our findings delineate the selectivity filter of TRPM channels and provide the first insight into the molecular basis of monovalent cation selectivity.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
249
|
Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 2005; 280:22540-8. [PMID: 15824111 DOI: 10.1074/jbc.m503092200] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM3 is a poorly understood member of the large family of transient receptor potential (TRP) ion channels. Here we describe five novel splice variants of TRPM3, TRPM3alpha1-5. These variants are characterized by a previously unknown amino terminus of 61 residues. The differences between the five variants arise through splice events at three different sites. One of these splice sites might be located in the pore region of the channel as indicated by sequence alignment with other, better-characterized TRP channels. We selected two splice variants, TRPM3alpha1 and TRPM3alpha2, that differ only in this presumed pore region and analyzed their biophysical characteristics after heterologous expression in human embryonic kidney 293 cells. TRPM3alpha1 as well as TRPM3alpha2 induced a novel, outwardly rectifying cationic conductance that was tightly regulated by intracellular Mg(2+). However, these two variants are highly different in their ionic selectivity. Whereas TRPM3alpha1-encoded channels are poorly permeable for divalent cations, TRPM3alpha2-encoded channels are well permeated by Ca(2+) and Mg(2+). Additionally, we found that currents through TRPM3alpha2 are blocked by extracellular monovalent cations, whereas currents through TRPM3alpha1 are not. These differences unambiguously show that TRPM3 proteins constitute a pore-forming channel subunit and localize the position of the ion-conducting pore within the TRPM3 protein. Although the ionic selectivity of ion channels has traditionally been regarded as rather constant for a given channel-encoding gene, our results show that alternative splicing can be a mechanism to produce channels with very different selectivity profiles.
Collapse
Affiliation(s)
- Johannes Oberwinkler
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Gebäude 46, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
250
|
He LP, Hewavitharana T, Soboloff J, Spassova MA, Gill DL. A Functional Link between Store-operated and TRPC Channels Revealed by the 3,5-Bis(trifluoromethyl)pyrazole Derivative, BTP2. J Biol Chem 2005; 280:10997-1006. [PMID: 15647288 DOI: 10.1074/jbc.m411797200] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coupling between receptor-mediated Ca2+ store release and the activation of "store-operated" Ca2+ entry channels is an important but so far poorly understood mechanism. The transient receptor potential (TRP) superfamily of channels contains several members that may serve the function of store-operated channels (SOCs). The 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2, is a recently described inhibitor of SOC activity in T-lymphocytes. We compared its action on SOC activation in a number of cell types and evaluated its modification of three specific TRP channels, canonical transient receptor potential 3 (TRPC3), TRPC5, and TRPV6, to throw light on any link between SOC and TRP channel function. Using HEK293 cells, DT40 B cells, and A7r5 smooth muscle cells, BTP2 blocked store-operated Ca2+ entry within 10 min with an IC50 of 0.1-0.3 microM. Store-operated Ca2+ entry induced by Ca2+ pump blockade or in response to muscarinic or B cell receptor activation was similarly sensitive to BTP2. Using the T3-65 clonal HEK293 cell line stably expressing TRPC3 channels, TRPC3-mediated Sr2+ entry activated by muscarinic receptors was also blocked by BTP2 with an IC50 of <0.3 microM. Importantly, direct activation of TRPC3 channels by diacylglycerol was also blocked by BTP2 (IC50 approximately 0.3 microM). BTP2 still blocked TRPC3 in medium with N-methyl-D-glucamine-chloride replacing Na+, indicating BTP2 did not block divalent cation entry by depolarization induced by activating monovalent cation entry channels. Whereas whole-cell carbachol-induced TRPC3 current was blocked by 3 microM BTP2, single TRPC3 channel recordings revealed persistent short openings suggesting BTP2 reduces the open probability of the channel rather than its pore properties. TRPC5 channels transiently expressed in HEK293 cells were blocked by BTP2 in the same range as TRPC3. However, function of the highly Ca(2+)-selective TRPV6 channel, with many channel properties akin to SOCs, was entirely unaffected by BTP2. The results indicate a strong functional link between the operation of expressed TRPC channels and endogenous SOC activity.
Collapse
Affiliation(s)
- Li-Ping He
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|