201
|
Son HE, Kim TH, Jang WG. Curculactones A and B induced the differentiation of C3H10T1/2 and MC3T3-E1 cells to osteoblasts. Bioorg Med Chem Lett 2017; 27:1301-1303. [PMID: 28082041 DOI: 10.1016/j.bmcl.2016.12.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 01/12/2023]
Abstract
Curculactones A and B are rare γ-lactone derivatives obtained from yellow, natural curcumin following γ-irradiation, and are a type of small molecules with a moderate anti-obesity effect. However, the exact role of curculactones A and B in osteoblast differentiation is unknown. In this study, the effects of curculactones A and B on the differentiation of the mesenchymal cell line C3H10T1/2 and pre-osteoblast cell line MC3T3-E1 to osteoblasts were examined. Curculactones A or B could markedly increase the mRNA levels of osteogenic marker genes and alkaline phosphatase (ALP) activity. Collectively, our findings indicate that curculactones A or B induced osteoblast differentiation through osteogenic expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC).
Collapse
Affiliation(s)
- Hyo-Eun Son
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453, Republic of Korea.
| |
Collapse
|
202
|
Orimoto A, Kurokawa M, Handa K, Ishikawa M, Nishida E, Aino M, Mitani A, Ogawa M, Tsuji T, Saito M. F-spondin negatively regulates dental follicle differentiation through the inhibition of TGF-β activity. Arch Oral Biol 2017; 79:7-13. [PMID: 28282516 DOI: 10.1016/j.archoralbio.2017.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE F-spondin is an extracellular matrix (ECM) protein that belongs to the thrombospondin type I repeat superfamily and is a negative regulator of bone mass. We have previously shown that f-spondin is specifically expressed in the dental follicle (DF), which gives rise to the periodontal ligament (PDL) during the tooth root formation stage. To investigate the molecular mechanism of PDL formation, we investigated the function of f-spondin in DF differentiation. DESIGN The expression patterning of f-spondin in the developing tooth germ was compared with that of periodontal ligament-related genes, including runx2, type I collagen and periostin, by in situ hybridization analysis. To investigate the function of f-spondin during periodontal ligament formation, an f-spondin adenovirus was infected into the bell stage of the developing tooth germ, and the effect on dental differentiation was analyzed. RESULTS F-spondin was specifically expressed in the DF of the developing tooth germ; by contrast, type I collagen, runx2 and periostin were expressed in the DF and in the alveolar bone. F-spondin-overexpresssing tooth germ exhibited a reduction in gene expression of periostin and type I collagen in the DF. By contrast, the knockdown of f-spondin in primary DF cells increased the expression of these genes. Treatment with recombinant f-spondin protein functionally inhibited periostin expression induced by transforming growth factor-β (TGF-β). CONCLUSION Our data indicated that f-spondin inhibits the differentiation of DF cells into periodontal ligament cells by inhibiting TGF-β. These data suggested that f-spondin negatively regulates PDL differentiation which may play an important role in the immature phenotype of DF.
Collapse
Affiliation(s)
- Ai Orimoto
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Misaki Kurokawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Japan
| | - Keisuke Handa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Eisaku Nishida
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Makoto Aino
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Miho Ogawa
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| |
Collapse
|
203
|
Ginaldi L, De Martinis M. Osteoimmunology and Beyond. Curr Med Chem 2017; 23:3754-3774. [PMID: 27604089 PMCID: PMC5204071 DOI: 10.2174/0929867323666160907162546] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022]
Abstract
Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity.
Collapse
Affiliation(s)
- Lia Ginaldi
- School and Unit of Allergy and Clinical Immunology, Department of Life, Health, & Environmental Sciences, University of L'Aquila, Italy.
| | | |
Collapse
|
204
|
Huang L, Jin P, Lin X, Lin C, Zheng L, Zhao J. Beneficial effects of sulfonamide‑based gallates on osteoblasts in vitro. Mol Med Rep 2017; 15:1149-1156. [PMID: 28138702 PMCID: PMC5367358 DOI: 10.3892/mmr.2017.6142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/08/2016] [Indexed: 11/05/2022] Open
Abstract
Effective treatments for osteoporosis remain fairly elusive; however, studies have reported that antioxidants may aid in the maintenance of reactive oxygen species at a favorable level, in order to prevent osteoporosis. Gallic acid (GA) and its derivatives are potent antioxidative and anti-inflammatory agents that affect several biochemical and pharmacological pathways; however, GA is slightly cytotoxic and suppresses cell proliferation. The present study modified GA by the introduction of sulfonamide, in order to obtain a novel compound known as JEZ-C, and investigated its effects on osteoblasts by measuring cell proliferation, viability, morphology, alkaline phosphatase (ALP) activity, and the expression of relevant osteoblast markers. Results indicated that JEZ-C may effectively promote osteoblast growth. JEZ-C increased ALP activity, upregulated the expression of osteogenic-related genes, including runt-related transcription factor 2, bone sialoprotein, osteocalcin and alpha-1 type I collagen, thus indicating that JEZ-C enhances bone matrix production and mineralization. The recommended range of JEZ-C concentration is between 6.25×10−3 and 6.25×10−1 µg/ml, within which cell growth was promoted compared with the control. Specifically, treatment with 6.25×10−2 µg/ml JEZ-C is ideal. These findings may represent a novel approach to cell-based therapy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Li Huang
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Pan Jin
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Li Zheng
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
205
|
Roles of PKR in differentiation and apoptosis of bone-related cells. Anat Sci Int 2016; 92:313-319. [DOI: 10.1007/s12565-016-0385-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022]
|
206
|
Ko FC, Martins JS, Reddy P, Bragdon B, Hussein AI, Gerstenfeld LC, Demay MB. Acute Phosphate Restriction Impairs Bone Formation and Increases Marrow Adipose Tissue in Growing Mice. J Bone Miner Res 2016; 31:2204-2214. [PMID: 27324177 DOI: 10.1002/jbmr.2891] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 01/28/2023]
Abstract
Phosphate plays a critical role in chondrocyte maturation and skeletal mineralization. Studies examining the consequences of dietary phosphate restriction in growing mice demonstrated not only the development of rickets, but also a dramatic decrease in bone accompanied by increased marrow adipose tissue (MAT). Thus studies were undertaken to determine the effects of dietary phosphate restriction on bone formation and bone marrow stromal cell (BMSC) differentiation. Acute phosphate restriction of 28-day-old mice profoundly inhibited bone formation within 48 hours. It also resulted in increased mRNA expression of the early osteolineage markers Sox9 and Runt-related transcription factor 2 (Runx2), accompanied by decreased expression of the late osteolineage markers Osterix and Osteocalcin in BMSCs and osteoblasts, suggesting that phosphate restriction arrests osteoblast differentiation between Runx2 and Osterix. Increased expression of PPARγ and CEBPα, key regulators of adipogenic differentiation, was observed within 1 week of dietary phosphate restriction and was followed by a 13-fold increase in MAT at 3 weeks of phosphate restriction. In vitro phosphate restriction did not alter BMSC osteogenic or adipogenic colony formation, implicating aberrant paracrine or endocrine signaling in the in vivo phenotype. Because BMP signaling regulates the transition between Runx2 and Osterix, this pathway was interrogated. A dramatic decrease in pSmad1/5/9 immunoreactivity was observed in the osteoblasts of phosphate-restricted mice on day 31 (d31) and d35. This was accompanied by attenuated expression of the BMP target genes Id1, KLF10, and Foxc2, the latter of which promotes osteogenic and angiogenic differentiation while impairing adipogenesis. A decrease in expression of the Notch target gene Hey1, a BMP-regulated gene that governs angiogenesis, was also observed in phosphate-restricted mice, in association with decreased metaphyseal marrow vasculature. Whereas circulating phosphate levels are known to control growth plate maturation and skeletal mineralization, these studies reveal novel consequences of phosphate restriction in the regulation of bone formation and osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Frank C Ko
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Pooja Reddy
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Amira I Hussein
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
207
|
Osterix represses adipogenesis by negatively regulating PPARγ transcriptional activity. Sci Rep 2016; 6:35655. [PMID: 27752121 PMCID: PMC5067693 DOI: 10.1038/srep35655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Osterix is a novel bone-related transcription factor involved in osteoblast differentiation, and bone maturation. Because a reciprocal relationship exists between adipocyte and osteoblast differentiation of bone marrow derived mesenchymal stem cells, we hypothesized that Osterix might have a role in adipogenesis. Ablation of Osterix enhanced adipogenesis in 3T3-L1 cells, whereas overexpression suppressed this process and inhibited the expression of adipogenic markers including CCAAT/enhancer-binding protein alpha (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). Further studies indicated that Osterix significantly decreased PPARγ-induced transcriptional activity. Using co-immunoprecipitation and GST-pull down analysis, we found that Osterix directly interacts with PPARγ. The ligand-binding domain (LBD) of PPARγ was responsible for this interaction, which was followed by repression of PPARγ-induced transcriptional activity, even in the presence of rosiglitazone. Taken together, we identified the Osterix has an important regulatory role on PPARγ activity, which contributed to the mechanism of adipogenesis.
Collapse
|
208
|
Onizuka S, Iwata T, Park S, Nakai K, Yamato M, Okano T, Izumi Y. ZBTB16 as a Downstream Target Gene of Osterix Regulates Osteoblastogenesis of Human Multipotent Mesenchymal Stromal Cells. J Cell Biochem 2016; 117:2423-34. [PMID: 27335174 PMCID: PMC5094493 DOI: 10.1002/jcb.25634] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Abstract
Human multipotent mesenchymal stromal cells (hMSCs) possess the ability to differentiate into osteoblasts, and they can be utilized as a source for bone regenerative therapy. Osteoinductive pretreatment, which induces the osteoblastic differentiation of hMSCs in vitro, has been widely used for bone tissue engineering prior to cell transplantation. However, the molecular basis of osteoblastic differentiation induced by osteoinductive medium (OIM) is still unknown. Therefore, we used a next-generation sequencer to investigate the changes in gene expression during the osteoblastic differentiation of hMSCs. The hMSCs used in this study possessed both multipotency and self-renewal ability. Whole-transcriptome analysis revealed that the expression of zinc finger and BTB domain containing 16 (ZBTB16) was significantly increased during the osteoblastogenesis of hMSCs. ZBTB16 mRNA and protein expression was enhanced by culturing the hMSCs with OIM. Small interfering RNA (siRNA)-mediated gene silencing of ZBTB16 decreased the activity of alkaline phosphatase (ALP); the expression of osteogenic genes, such as osteocalcin (OCN) and bone sialoprotein (BSP), and the mineralized nodule formation induced by OIM. siRNA-mediated gene silencing of Osterix (Osx), which is known as an essential regulator of osteoblastic differentiation, markedly downregulated the expression of ZBTB16. In addition, chromatin immunoprecipitation (ChIP) assays showed that Osx associated with the ZBTB16 promoter region containing the GC-rich canonical Sp1 sequence, which is the specific Osx binding site. These findings suggest that ZBTB16 acts as a downstream transcriptional regulator of Osx and can be useful as a late marker of osteoblastic differentiation. J. Cell. Biochem. 117: 2423-2434, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Satoru Onizuka
- Department of PeriodontologyGraduate School of Medical Dental SciencesTokyo Medical Dental University1‐5‐45 YushimaBunkyo‐kuTokyo113‐8549Japan
- Institute of Advanced Biomedical Engineering and ScienceTokyo Women's Medical University8‐1 Kawada‐choShinjuku‐kuTokyo162‐8666Japan
| | - Takanori Iwata
- Institute of Advanced Biomedical Engineering and ScienceTokyo Women's Medical University8‐1 Kawada‐choShinjuku‐kuTokyo162‐8666Japan
| | - Sung‐Joon Park
- Human Genome CenterThe Institute of Medical ScienceThe University of Tokyo4‐6‐1 ShirokanedaiMinato‐kuTokyo108‐8639Japan
| | - Kenta Nakai
- Human Genome CenterThe Institute of Medical ScienceThe University of Tokyo4‐6‐1 ShirokanedaiMinato‐kuTokyo108‐8639Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and ScienceTokyo Women's Medical University8‐1 Kawada‐choShinjuku‐kuTokyo162‐8666Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and ScienceTokyo Women's Medical University8‐1 Kawada‐choShinjuku‐kuTokyo162‐8666Japan
| | - Yuichi Izumi
- Department of PeriodontologyGraduate School of Medical Dental SciencesTokyo Medical Dental University1‐5‐45 YushimaBunkyo‐kuTokyo113‐8549Japan
| |
Collapse
|
209
|
Park E, Kim MC, Choi CW, Kim J, Jin HS, Lee R, Lee JW, Park JH, Huh D, Jeong SY. Effects of Dihydrophaseic Acid 3'-O-β-d-Glucopyranoside Isolated from Lycii radicis Cortex on Osteoblast Differentiation. Molecules 2016; 21:molecules21091260. [PMID: 27657033 PMCID: PMC6274582 DOI: 10.3390/molecules21091260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/26/2022] Open
Abstract
Our previous study showed that ethanol extract of Lyciiradicis cortex (LRC) prevented the loss of bone mineral density in ovariectomized mice by promoting the differentiation of osteoblast linage cells. Here, we performed fractionation and isolation of the bioactive compound(s) responsible for the bone formation–enhancing effect of LRC extract. A known sesquiterpene glucoside, (1′R,3′S,5′R,8′S,2Z,4E)-dihydrophaseic acid 3′-O-β-d-glucopyranoside (abbreviated as DPA3G), was isolated from LRC extract and identified as a candidate constituent. We investigated the effects of DPA3G on osteoblast and osteoclast differentiation, which play fundamental roles in bone formation and bone resorption, respectively, during bone remodeling. The DPA3G fraction treatment in mesenchymal stem cell line C3H10T1/2 and preosteoblast cell line MC3T3-E1 significantly enhanced cell proliferation and alkaline phosphatase activity in both cell lines compared to the untreated control cells. Furthermore, DPA3G significantly increased mineralized nodule formation and the mRNA expression of osteoblastogenesis markers, Alpl, Runx2, and Bglap, in MC3T3-E1 cells. The DPA3G treatment, however, did not influence osteoclast differentiation in primary-cultured monocytes of mouse bone marrow. Because osteoblastic and osteoclastic precursor cells coexist in vivo, we tested the DPA3G effects under the co-culture condition of MC3T3-E1 cells and monocytes. Remarkably, DPA3G enhanced not only osteoblast differentiation of MC3T3-El cells but also osteoclast differentiation of monocytes, indicating that DPA3G plays a role in the maintenance of the normal bone remodeling balance. Our results suggest that DPA3G may be a good candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Mun-Chang Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Chun Whan Choi
- Bio-Center, Gyeonggi Institute of Science & Technology Promotion, Suwon 16229, Korea.
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea.
| | - Ryunjin Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Ji-Won Lee
- Korea Food Research Institute, Seongnam 13539, Korea.
| | - Jin-Hyok Park
- Dongwoodang Pharmacy Co., Ltd., Yeongchen 38819, Korea.
| | - Dam Huh
- Dongwoodang Pharmacy Co., Ltd., Yeongchen 38819, Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
210
|
Fang T, Wu Q, Zhou L, Mu S, Fu Q. miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp Cell Res 2016; 347:74-82. [DOI: 10.1016/j.yexcr.2016.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 01/14/2023]
|
211
|
Iijima K, Suzuki R, Iizuka A, Ueno-Yokohata H, Kiyokawa N, Hashizume M. Surface functionalization of tissue culture polystyrene plates with hydroxyapatite under body fluid conditions and its effect on differentiation behaviors of mesenchymal stem cells. Colloids Surf B Biointerfaces 2016; 147:351-359. [PMID: 27559995 DOI: 10.1016/j.colsurfb.2016.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022]
Abstract
The surfaces of polystyrene (PS) cell culture plates were functionalized with hydroxyapatite (HAp) under body fluid conditions utilizing protein adsorption layers and a pretreatment with an alternate soaking process (ASP) using solutions containing calcium and phosphate ions. Adsorption layers of human serum albumin (HSA) formed on the surface of each well of commercial 24-well PS plates by solution processes. CaCl2 and K2HPO4 solutions were alternately added to the wells, the plates were incubated to form the precursors, and this was followed by the addition of simulated body fluid (SBF) and a further incubation for 24h. These treatments resulted in the surfaces of the PS cell culture plates being completely covered with bone-like HAp. The coating of PS plates with HAp promoted the adhesion of mesenchymal stem cells (MSCs) and maintained cell growth that was as fast as that on tissue culture-treated PS (TCPS) plates. Osteogenic differentiation was greater, whereas adipogenic and chondrogenic differentiation was less in the culture on HAp-coated PS plates than in that on TCPS plates. The present method is useful for preparing HAp-coated PS plates at clean benches without the need for any expensive apparatus. HAp coated on PS plates by this method was a bone-like apatite with high bioactivity; therefore, the present HAp-coated PS plates are promising materials for assays of bone-related cells in the bone remodeling process.
Collapse
Affiliation(s)
- Kazutoshi Iijima
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan; Graduate School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Ryo Suzuki
- Graduate School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Ayako Iizuka
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Hitomi Ueno-Yokohata
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mineo Hashizume
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan; Graduate School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan.
| |
Collapse
|
212
|
Varanasi VG, Odatsu T, Bishop T, Chang J, Owyoung J, Loomer PM. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription. J Biomed Mater Res A 2016; 104:2604-15. [PMID: 27279631 DOI: 10.1002/jbm.a.35795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/07/2022]
Abstract
Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016.
Collapse
Affiliation(s)
- Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, 75246
| | - Tetsurou Odatsu
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Timothy Bishop
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Joyce Chang
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Jeremy Owyoung
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Peter M Loomer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, 10010
| |
Collapse
|
213
|
Kaul R, O’Brien MH, Dutra E, Lima A, Utreja A, Yadav S. The Effect of Altered Loading on Mandibular Condylar Cartilage. PLoS One 2016; 11:e0160121. [PMID: 27472059 PMCID: PMC4966927 DOI: 10.1371/journal.pone.0160121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/12/2016] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE The purpose of this study was to delineate the cellular, mechanical and morphometric effects of altered loading on the mandibular condylar cartilage (MCC) and subchondral bone. We hypothesized that altered loading will induce differentiation of cells by accelerating the lineage progression of the MCC. MATERIALS AND METHODS Four-week-old male Dkk3 XCol2A1XCol10A1 mice were randomly divided into two groups: (1) Loaded-Altered loading of MCC was induced by forced mouth opening using a custom-made spring; (2) Control-served as an unloaded group. Mice were euthanized and flow cytometery based cell analysis, micro-CT, gene expression analysis, histology and morphometric measurements were done to assess the response. RESULTS Our flow cytometery data showed that altered loading resulted in a significant increase in a number of Col2a1-positive (blue) and Col10a1-positive (red) expressing cells. The gene expression analysis showed significant increase in expression of BMP2, Col10a1 and Sox 9 in the altered loading group. There was a significant increase in the bone volume fraction and trabecular thickness, but a decrease in the trabecular spacing of the subchondral bone with the altered loading. Morphometric measurements revealed increased mandibular length, increased condylar length and increased cartilage width with altered loading. Our histology showed increased mineralization/calcification of the MCC with 5 days of loading. An unexpected observation was an increase in expression of tartrate resistant acid phosphatase activity in the fibrocartilaginous region with loading. CONCLUSION Altered loading leads to mineralization of fibrocartilage and drives the lineage towards differentiation/maturation.
Collapse
Affiliation(s)
- Raman Kaul
- Division of Orthodontics, University of Connecticut Health Center, Farmington, United States of America
| | - Mara H. O’Brien
- Division of Orthodontics, University of Connecticut Health Center, Farmington, United States of America
| | - Eliane Dutra
- Division of Orthodontics, University of Connecticut Health Center, Farmington, United States of America
| | - Alexandro Lima
- Division of Orthodontics, University of Connecticut Health Center, Farmington, United States of America
| | - Achint Utreja
- Division of Orthodontics, Indiana University Purdue University Indianapolis, Indianapolis, United States of America
| | - Sumit Yadav
- Division of Orthodontics, University of Connecticut Health Center, Farmington, United States of America
- * E-mail:
| |
Collapse
|
214
|
Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:429-59. [PMID: 27002187 PMCID: PMC4911263 DOI: 10.1002/wdev.227] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
Craniosynostosis is a condition of complex etiology that always involves the premature fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard tissues of the head. Steady progress in the field has resulted in identifying gene mutations that recurrently cause craniosynostosis. There are now scores of mutations on many genes causally related to craniosynostosis syndromes, though the genetic basis for the majority of nonsyndromic cases is unknown. Identification of these genetic mutations has allowed significant progress in understanding the intrinsic properties of cranial sutures, including mechanisms responsible for normal suture patency and for pathogenesis of premature suture closure. An understanding of morphogenesis of cranial vault sutures is critical to understanding the pathophysiology of craniosynostosis conditions, but the field is now poised to recognize the repeated changes in additional skeletal and soft tissues of the head that typically accompany premature suture closure. We review the research that has brought an understanding of premature suture closure within our reach. We then enumerate the less well-studied, but equally challenging, nonsutural phenotypes of craniosynostosis conditions that are well characterized in available mouse models. We consider craniosynostosis as a complex growth disorder of multiple tissues of the developing head, whose growth is also targeted by identified mutations in ways that are poorly understood. Knowledge gained from studies of humans and mouse models for these conditions underscores the diverse, associated developmental anomalies of the head that contribute to the complex phenotypes of craniosynostosis conditions presenting novel challenges for future research. WIREs Dev Biol 2016, 5:429-459. doi: 10.1002/wdev.227 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin Flaherty
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
215
|
Yoo SH, Kim JG, Kim BS, Lee J, Pi SH, Lim HD, Shin HI, Cho ES, You HK. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells. PLoS One 2016; 11:e0158481. [PMID: 27359105 PMCID: PMC4928849 DOI: 10.1371/journal.pone.0158481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/16/2016] [Indexed: 11/19/2022] Open
Abstract
The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway.
Collapse
Affiliation(s)
- Su-Hyang Yoo
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Korea
- Faculty of Biological Science and Institute for Biodiversity Research, College of Natural Sciences, Chonbuk National University, Jeonju, Korea
| | - Jae Goo Kim
- Faculty of Biological Science and Institute for Biodiversity Research, College of Natural Sciences, Chonbuk National University, Jeonju, Korea
| | - Beom-Su Kim
- Wonkwang Bone Regeneration Research Institute, Wonkwang University, Daejeon, Korea
- Bone Cell Biotech Inc., Daejeon, Korea
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, Daejeon Dental Hospital, Wonkwang University, Daejeon, Korea
| | - Sung-Hee Pi
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Korea
| | - Hyun-Dae Lim
- Department of Oral Medicine, School of Dentistry, Wonkwang University, Iksan, Korea
| | - Hong-In Shin
- IHBR, Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, Korea
| | - Hyung-Keun You
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Korea
- * E-mail:
| |
Collapse
|
216
|
Choi YH, Kim GS, Choi JH, Jin SW, Kim HG, Han Y, Lee DY, Choi SI, Kim SY, Ahn YS, Lee KY, Jeong HG. Ethanol extract of Lithospermum erythrorhizon Sieb. et Zucc. promotes osteoblastogenesis through the regulation of Runx2 and Osterix. Int J Mol Med 2016; 38:610-8. [PMID: 27353217 DOI: 10.3892/ijmm.2016.2655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/16/2016] [Indexed: 02/04/2023] Open
Abstract
Bone remodeling and homeostasis are largely the result of the coordinated action of osteoblasts and osteoclasts. Osteoblasts are responsible for bone formation. The differentiation of osteoblasts is regulated by the transcription factors, Runx2 and Osterix. Natural products of plant origin are still a major part of traditional medicinal systems in Korea. The root of Lithospermum erythrorhizon Sieb. et Zucc. (LR), the purple gromwell, is an herbal medicine used for inflammatory and infectious diseases. LR is an anti-inflammatory and exerts anticancer effects by inducing the apoptosis of cancer cells. However, the precise molecular signaling mechanisms of osteoblastogenesis as regards LR and osteoblast transcription are not yet known. In this study, we investigated the effects of ethanol (EtOH) extract of LR (LES) on the osteoblast differentiation of C2C12 myoblasts induced by bone morphogenetic protein 4 (BMP4) and the potential involvement of Runx2 and Osterix in these effects. We found that the LES exhibited an ability to induce osteoblast differentiation. LES increased the expression of the osteoblast marker, alkaline phosphatase (ALP), as well as its activity, as shown by ALP staining and ALP activity assay. LES also increased mineralization, as shown by Alizarin Red S staining. Treatment with LES increased the protein levels (as shown by immunoblotting), as well as the transcriptional activity of Runx2 and Osterix and enhanced osteogenic activity. These results suggest that LES modulates osteoblast differentiation at least in part through Runx2 and Osterix.
Collapse
Affiliation(s)
- You Hee Choi
- College of Pharmacy, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Geum Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Republic of Korea
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyung Gyun Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Younho Han
- College of Pharmacy, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Republic of Korea
| | - Soo Im Choi
- YD Global Life Science Co., Ltd., Seongnam 462-807, Republic of Korea
| | - Seung Yu Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Republic of Korea
| | - Young Sup Ahn
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
217
|
Louvet L, Metzinger L, Büchel J, Steppan S, Massy ZA. Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7419524. [PMID: 27419135 PMCID: PMC4933865 DOI: 10.1155/2016/7419524] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/13/2016] [Accepted: 05/22/2016] [Indexed: 12/20/2022]
Abstract
Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease (CKD). High phosphate levels promote VC by inducing abnormalities in mineral and bone metabolism. Previously, we demonstrated that magnesium (Mg(2+)) prevents inorganic phosphate- (Pi-) induced VC in human aortic vascular smooth muscle cells (HAVSMC). As microRNAs (miR) modulate gene expression, we investigated the role of miR-29b, -30b, -125b, -133a, -143, and -204 in the protective effect of Mg(2+) on VC. HAVSMC were cultured in the presence of 3 mM Pi with or without 2 mM Mg(2+) chloride. Total RNA was extracted after 4 h, 24 h, day 3, day 7, and day 10. miR-30b, -133a, and -143 were downregulated during the time course of Pi-induced VC, whereas the addition of Mg(2+) restored (miR-30b) or improved (miR-133a, miR-143) their expression. The expression of specific targets Smad1 and Osterix was significantly increased in the presence of Pi and restored by coincubation with Mg(2+). As miR-30b, miR-133a, and miR-143 are negatively regulated by Pi and restored by Mg(2+) with a congruent modulation of their known targets Runx2, Smad1, and Osterix, our results provide a potential mechanistic explanation of the observed upregulation of these master switches of osteogenesis during the course of VC.
Collapse
Affiliation(s)
- Loïc Louvet
- INSERM U 1088, CURS, University of Picardie Jules Verne, Amiens, France
| | - Laurent Metzinger
- INSERM U 1088, CURS, University of Picardie Jules Verne, Amiens, France
| | - Janine Büchel
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Sonja Steppan
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Ziad A. Massy
- Division of Nephrology, Ambroise Paré University Hospital, APHP, University of Paris Ouest-Versailles-St-Quentin-en-Yvelines (UVSQ), Boulogne-Billancourt, Paris, France
- INSERM U 1018, Research Centre in Epidemiology and Population Health (CESP) Team 5, Villejuif, France
| |
Collapse
|
218
|
Lu J, Qu S, Yao B, Xu Y, Jin Y, Shi K, Shui Y, Pan S, Chen L, Ma C. Osterix acetylation at K307 and K312 enhances its transcriptional activity and is required for osteoblast differentiation. Oncotarget 2016; 7:37471-37486. [PMID: 27250035 PMCID: PMC5122325 DOI: 10.18632/oncotarget.9650] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 05/11/2016] [Indexed: 11/25/2022] Open
Abstract
Osterix (Osx) is an essential transcription factor involved in osteoblast differentiation and bone formation. The precise molecular mechanisms of the regulation of Osx expression are not fully understood. In the present study, we found that in cells, both endogenous and exogenous Osx protein increased after treatment with histone deacetylase inhibitors Trichostatin A and hydroxamic acid. Meanwhile, the results of immunoprecipitation indicated that Osx was an acetylated protein and that the CREB binding protein (CBP), and less efficiently p300, acetylated Osx. The interaction and colocalization of CBP and Osx were demonstrated by Co-immunoprecipitation and immunofluorescence, respectively. In addition, K307 and K312 were identified as the acetylated sites of Osx. By contrast, HDAC4, a histone deacetylase (HDAC), was observed to interact and co-localize with Osx. HDAC4 was demonstrated to mediate the deacetylation of Osx. Moreover, we found that acetylation of Osx enhanced its stability, DNA binding ability and transcriptional activity. Finally, we demonstrated that acetylation of Osx was required for the osteogenic differentiation of C2C12 cells. Taken together, our results provide evidence that CBP-mediated acetylation and HDAC4-mediated deacetylation have critical roles in the modification of Osx, and thus are important in osteoblast differentiation.
Collapse
Affiliation(s)
- Jianlei Lu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Shuang Qu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Bing Yao
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Yuexin Xu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Yucui Jin
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Kaikai Shi
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Yifang Shui
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Li Chen
- Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - Changyan Ma
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
219
|
O'Rourke C, Shelton G, Hutcheson JD, Burke MF, Martyn T, Thayer TE, Shakartzi HR, Buswell MD, Tainsh RE, Yu B, Bagchi A, Rhee DK, Wu C, Derwall M, Buys ES, Yu PB, Bloch KD, Aikawa E, Bloch DB, Malhotra R. Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation. J Vis Exp 2016. [PMID: 27284788 DOI: 10.3791/54017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.
Collapse
Affiliation(s)
- Caitlin O'Rourke
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Georgia Shelton
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Joshua D Hutcheson
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Megan F Burke
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Trejeeve Martyn
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Timothy E Thayer
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Hannah R Shakartzi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Mary D Buswell
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Robert E Tainsh
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Binglan Yu
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - David K Rhee
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Connie Wu
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Matthias Derwall
- Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Paul B Yu
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Kenneth D Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Elena Aikawa
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University; Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School;
| |
Collapse
|
220
|
Huang L, Zhou B, Wu H, Zheng L, Zhao J. Effect of apatite formation of biphasic calcium phosphate ceramic (BCP) on osteoblastogenesis using simulated body fluid (SBF) with or without bovine serum albumin (BSA). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:955-961. [PMID: 27772726 DOI: 10.1016/j.msec.2016.05.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Although biphasic calcium phosphate ceramic (BCP) holds promise in therapy of bone defect, surface mineralization prior to implantation may improve the bioactivity to better integrate with the host. Immersion in simulated body fluid (SBF) and bovine serum albumin-simulated body fluid (BSA-SBF) are common methods to form apatite interface layer. This study was intended to investigate the effect of SBF and BSA-SBF treatment on the bioactivity of BCP in vitro. In this study, osteoblasts were grown on BCP with or without treatment of SBF or BSA-SBF, and detected with general observation, scanning electron microscope (SEM), cell proliferation assay, morphology observation, viability assay, alkaline phosphatase (ALP) activity assay, and osteogenic specific gene expression of alkaline phosphatase (ALPL), bone gamma-carboxyglutamate (gla) protein (BGLAP), bone morphogenetic protein 2 (BMP2), bone sialoprotein (BSP), type I collagen (COLI) and runt-related transcription factor 2 (RUNX2) after culture of 2, 5 and 8days. As the results shown, BCP pre-incubated in SBF and BSA-SBF up-regulated ALP activity and osteogenic related genes and proteins, which testified the positive effect of SBF and BSA-SBF. Especially, BSA-SBF enhanced the cell growth significantly. This study indicated that treatment by BSA-SBF is of importance for BCP before clinical application.
Collapse
Affiliation(s)
- Li Huang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China; Department of Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Zhou
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China; The Medical and Scientific Research Center, Guangxi Medical University, Nanning, China.
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China; Department of Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.
| |
Collapse
|
221
|
TGF-β Signaling Regulates Cementum Formation through Osterix Expression. Sci Rep 2016; 6:26046. [PMID: 27180803 PMCID: PMC4867644 DOI: 10.1038/srep26046] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
TGF-β/BMPs have widely recognized roles in mammalian development, including in bone and tooth formation. To define the functional relevance of the autonomous requirement for TGF-β signaling in mouse tooth development, we analyzed osteocalcin-Cre mediated Tgfbr2 (OC(Cre)Tgfbr2(fl/fl)) conditional knockout mice, which lacks functional TGF-β receptor II (TβRII) in differentiating cementoblasts and cementocytes. Strikingly, OC(Cre)Tgfbr2(fl/fl) mutant mice exhibited a sharp reduction in cellular cementum mass with reduced matrix secretion and mineral apposition rates. To explore the molecular mechanisms underlying the roles of TGF-β signaling through TβRII in cementogenesis, we established a mouse cementoblast model with decreased TβRII expression using OCCM-30 cells. Interestingly, the expression of osterix (Osx), one of the major regulators of cellular cementum formation, was largely decreased in OCCM-30 cells lacking TβRII. Consequently, in those cells, functional ALP activity and the expression of genes associated with cementogenesis were reduced and the cells were partially rescued by Osx transduction. We also found that TGF-β signaling directly regulates Osx expression through a Smad-dependent pathway. These findings strongly suggest that TGF-β signaling plays a major role as one of the upstream regulators of Osx in cementoblast differentiation and cementum formation.
Collapse
|
222
|
Opposite Function of ERα and ERβ in Controlling 17β-Estradiol-mediated Osteogenesis in Osteoblasts. Arch Med Res 2016; 47:255-61. [DOI: 10.1016/j.arcmed.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/01/2016] [Indexed: 01/30/2023]
|
223
|
Barone A, Toti P, Bertossi D, Marconcini S, De Santis D, Nocini PF, Iurlaro A, Alfonsi F, Covani U. Gene Expression of Human Mesenchymal Stem Cells Cultured on Titanium Dental Implant Surfaces. J Craniofac Surg 2016; 27:712-7. [PMID: 27054428 DOI: 10.1097/scs.0000000000002551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The study shows how the influence of titanium surfaces on human mesenchymal stem cells differentiates toward osteocytes lineage and how, after growth, on machined titanium disk or etched titanium disk, changes, in gene expression for RUNX1, CTNNB1, SP7, and DLX5. METHODS Genes were analyzed by means of quantitative real-time polimerase chain reaction. Osseo genic lineage differentiation was also tested by means of the catenin-β1 immunofluorescence, induced osteoblasts, which represented the internal control. RESULTS The RUNX1 and SP7 expressions in the induced osteoblasts prove to be different, compared with cells cultured on metallic supports. Moreover, the levels of expression of the runt-related transcription factor 1 and the osterix appeared more down-regulated in cells that grew on a machined titanium surface. In the present experimental model, mRNA expression of DLX5 and CTNNB1 in human mesenchymal stem cells, cultured on each of the titanium surfaces, showed no differences, compared with osteoblast-induced cells. The immunofluorescence scores, for protein expression of beta-catenin in human mesenchymal stem cell treated cells, illustrates significantly improved results with the etched surface. CONCLUSIONS Present results suggested that different titanium surfaces might induce some differences in terms of gene expression. The only gene analyzed, which proved significant differences between the 2 titanium supports, was SP7; however, the other 3 genes indicating the existence of differences between the 2 titanium groups.
Collapse
Affiliation(s)
- Antonio Barone
- *Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa†Tuscan Stomatologic Institute, Versilia General Hospital, Lido di Camaiore (LU)‡Department of Surgical Sciences, Dental and Maxillofacial Department, University of Verona, Verona§Free practice in Francavilla Fontana||Department of Translational Medicine and Surgery, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Acta Biomater 2016; 36:132-42. [PMID: 27000551 DOI: 10.1016/j.actbio.2016.03.032] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Human bone marrow mesenchymal stem cells (hBMSCs) commitment and differentiation are dictated by bioactive molecules sequestered within their Extra Cellular Matrix (ECM). One common approach to mimic the physiological environment is to functionalize biomaterial surfaces with ECM-derived peptides able to recruit stem cells and trigger their linage-specific differentiation. The objective of this work was to investigate the effect of RGD and BMP-2 ligands crosstalk and density on the extent of hBMSCs osteogenic commitment, without recourse to differentiation medium. RGD peptide promotes cell adhesion via cell transmembrane integrin receptors, while BMP-2 peptide, corresponding to residues 73-92 of Bone Morphogenetic Protein-2, was shown to induce hBMSCs osteoblast differentiation. The immobilization of peptides on aminated glass was ascertained by X-ray Photoelectron Spectroscopy (XPS), the density of grafted peptides was quantified by fluorescence microscopy and the surface roughness was evaluated using Atomic Force Microscopy (AFM). The osteogenic commitment of hBMSCs cultured on RGD and/or BMP-2 surfaces was characterized by immunohistochemistry using STRO-1 as specific stem cells marker and Runx-2 as an earlier osteogenic marker. Biological results showed that the osteogenic commitment of hBMSCs was enhanced on bifunctionalized surfaces as compared to surfaces containing BMP-2, while on RGD surfaces cells mainly preserved their stemness character. These results demonstrated that RGD and BMP-2 mimetic peptides act synergistically to enhance hBMSCs osteogenesis without supplementing the media with osteogenic factors. These findings contribute to the development of biomimetic materials, allowing a deeper understanding of signaling pathways that govern the transition of stem cells towards the osteoblastic lineage. STATEMENT OF SIGNIFICANCE For a long time, scientists thought that the differentiation of Mesenchymal Stem Cells (MSCs) into bone cells was dictated by growth factors. This manuscript shed light on other ligands that play a crucial role in regulating MSCs fate. In concrete terms, it was demonstrated that the osteoinductive effect of BMP-2 peptide is 2 folds improved in the presence of adhesive RGD peptide. Compared to previous works highlighting this synergistic cooperation between RGD and BMP-2 peptides, the main strength of this work lies to the use of primitive human cells (hMSCs) and well-defined biomimetic material surfaces (controlled surface roughness and peptide densities). This work provides valuable insights to develop custom-designed in vitro cell culture models, capable of targeting the desired cell response.
Collapse
|
225
|
Rasi Ghaemi S, Delalat B, Cetó X, Harding FJ, Tuke J, Voelcker NH. Synergistic influence of collagen I and BMP 2 drives osteogenic differentiation of mesenchymal stem cells: A cell microarray analysis. Acta Biomater 2016. [PMID: 26196081 DOI: 10.1016/j.actbio.2015.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell microarrays are a novel platform for the high throughput discovery of new biomaterials. By re-creating a multitude of cell microenvironments on a single slide, this approach can identify the optimal surface composition to drive a desired cell response. To systematically study the effects of molecular microenvironments on stem cell fate, we designed a cell microarray based on parallel exposure of mesenchymal stem cells (MSCs) to surface-immobilised collagen I (Coll I) and bone morphogenetic protein 2 (BMP 2). This was achieved by means of a reactive coating on a slide surface, enabling the covalent anchoring of Coll I and BMP 2 as microscale spots printed by a robotic contact printer. The surface between the printed protein spots was passivated using poly (ethylene glycol) bisamine 10,000Da (A-PEG). MSCs were then captured and cultured on array spots composed of binary mixtures of Coll I and BMP 2, followed by automated image acquisition and quantitative, multi-parameter analysis of cellular responses. Surface compositions that gave the highest osteogenic differentiation were determined using Runx2 expression and calcium deposition. Quantitative single cell analysis revealed subtle concentration-dependent effects of surface-immobilised proteins on the extent of osteogenic differentiation obscured using conventional analysis. In particular, the synergistic interaction of Coll I and BMP 2 in supporting osteogenic differentiation was confirmed. Our studies demonstrate the value of cell microarray platforms to decipher the combinatorial interactions at play in stem cell niche microenvironments.
Collapse
|
226
|
Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:6240794. [PMID: 27110251 PMCID: PMC4826709 DOI: 10.1155/2016/6240794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell constructs are expected to provide osteoinductive materials to develop cell-based therapies for bone regeneration. The proliferation and spontaneous aggregation capability of induced pluripotent stem cells (iPSCs) thus prompted us to fabricate a scaffold-free iPSC construct as a transplantation vehicle. Embryoid bodies of mouse gingival fibroblast-derived iPSCs (GF-iPSCs) were seeded in a cell chamber with a round-bottom well made of a thermoresponsive hydrogel. Collected ball-like cell constructs were cultured in osteogenic induction medium for 30 days with gentle shaking, resulting in significant upregulation of osteogenic marker genes. The constructs consisted of an inner region of unstructured cell mass and an outer osseous tissue region that was surrounded by osteoblast progenitor-like cells. The outer osseous tissue was robustly calcified with elemental calcium and phosphorous as well as hydroxyapatite. Subcutaneous transplantation of the GF-iPSC constructs into immunodeficient mice contributed to extensive ectopic bone formation surrounded by teratoma tissue. These results suggest that mouse GF-iPSCs could facilitate the fabrication of osteoinductive scaffold-free 3D cell constructs, in which the calcified regions and surrounding osteoblasts may function as scaffolds and drivers of osteoinduction, respectively. With incorporation of technologies to inhibit teratoma formation, this system could provide a promising strategy for bone regenerative therapies.
Collapse
|
227
|
Yang JE, Song MS, Shen Y, Ryu PD, Lee SY. The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization. Int J Mol Sci 2016; 17:407. [PMID: 26999128 PMCID: PMC4813262 DOI: 10.3390/ijms17030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/02/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
KCNQ (KV7) channels are voltage-gated potassium (KV) channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation.
Collapse
Affiliation(s)
- Ji Eun Yang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Yiming Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
228
|
The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1652417. [PMID: 27073801 PMCID: PMC4814634 DOI: 10.1155/2016/1652417] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.
Collapse
|
229
|
Suzuki T, Katsumata SI, Matsuzaki H, Suzuki K. A short-term zinc-deficient diet decreases bone formation through down-regulated BMP2 in rat bone. Biosci Biotechnol Biochem 2016; 80:1433-5. [PMID: 26931551 DOI: 10.1080/09168451.2016.1153955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We investigated the effects of a short-term dietary zinc deficiency on bone metabolism. Zinc deficiency increased the mRNA expression of zinc uptake transporters such as Zip1, Zip13, and Zip14 in bone. However, zinc deficiency might not maintain zinc storage in bone, resulting in a decrease in bone formation through downregulation of the expression levels of osteoblastogenesis-related genes.
Collapse
Affiliation(s)
- Takako Suzuki
- a Faculty of Applied Bioscience, Department of Nutritional Science , Tokyo University of Agriculture , Tokyo , Japan
| | - Shin-Ichi Katsumata
- a Faculty of Applied Bioscience, Department of Nutritional Science , Tokyo University of Agriculture , Tokyo , Japan
| | - Hiroshi Matsuzaki
- a Faculty of Applied Bioscience, Department of Nutritional Science , Tokyo University of Agriculture , Tokyo , Japan
| | - Kazuharu Suzuki
- a Faculty of Applied Bioscience, Department of Nutritional Science , Tokyo University of Agriculture , Tokyo , Japan
| |
Collapse
|
230
|
Huang L, Luo Z, Hu Y, Shen X, Li M, Li L, Zhang Y, Yang W, Liu P, Cai K. Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants. J Biomed Mater Res A 2016; 104:1437-51. [PMID: 26822259 DOI: 10.1002/jbm.a.35667] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 01/25/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Huang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Zhong Luo
- School of Life Science; Chongqing University; Chongqing 400044 People's Republic of China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Menghuan Li
- School of Life Science; Chongqing University; Chongqing 400044 People's Republic of China
| | - Liqi Li
- Department of Orthopedics; Xinqiao Hospital, Third Military Medical University; Xinqiao Street Chongqing 400037 People's Republic of China
| | - Yuan Zhang
- Department of Orthopedics; Xinqiao Hospital, Third Military Medical University; Xinqiao Street Chongqing 400037 People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| |
Collapse
|
231
|
Heilig J, Paulsson M, Zaucke F. Insulin-like growth factor 1 receptor (IGF1R) signaling regulates osterix expression and cartilage matrix mineralization during endochondral ossification. Bone 2016; 83:48-57. [PMID: 26475121 DOI: 10.1016/j.bone.2015.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Affiliation(s)
- Juliane Heilig
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany.
| |
Collapse
|
232
|
Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225:152-69. [PMID: 26805518 DOI: 10.1016/j.jconrel.2016.01.033] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keng-Liang Ou
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei city, Taiwan
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
233
|
He YD, Sui BD, Li M, Huang J, Chen S, Wu LA. Site-specific function and regulation of Osterix in tooth root formation. Int Endod J 2016; 49:1124-1131. [PMID: 26599722 DOI: 10.1111/iej.12585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Abstract
Congenital diseases of tooth roots, in terms of developmental abnormalities of short and thin root phenotypes, can lead to loss of teeth. A more complete understanding of the genetic molecular pathways and biological processes controlling tooth root formation is required. Recent studies have revealed that Osterix (Osx), a key mesenchymal transcriptional factor participating in both the processes of osteogenesis and odontogenesis, plays a vital role underlying the mechanisms of developmental differences between root and crown. During tooth development, Osx expression has been identified from late embryonic to postnatal stages when the tooth root develops, particularly in odontoblasts and cementoblasts to promote their differentiation and mineralization. Furthermore, the site-specific function of Osx in tooth root formation has been confirmed, because odontoblastic Osx-conditional knockout mice demonstrate primarily short and thin root phenotypes with no apparent abnormalities in the crown (Journal of Bone and Mineral Research 30, 2014 and 742, Journal of Dental Research 94, 2015 and 430). These findings suggest that Osx functions to promote odontoblast and cementoblast differentiation and root elongation only in root, but not in crown formation. Mechanistic research shows regulatory networks of Osx expression, which can be controlled through manipulating the epithelial BMP signalling, mesenchymal Runx2 expression and cellular phosphorylation levels, indicating feasible routes of promoting Osx expression postnatally (Journal of Cellular Biochemistry 114, 2013 and 975). In this regard, a promising approach might be available to regenerate the congenitally diseased root and that regenerative therapy would be the best choice for patients with developmental tooth diseases.
Collapse
Affiliation(s)
- Y D He
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - B D Sui
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Research and Development Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - M Li
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Huang
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Anatomy, Histology & Embryology, Basic Medical College, The Fourth Military Medical University, Xi'an, China
| | - S Chen
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - L A Wu
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
234
|
Tao K, Xiao D, Weng J, Xiong A, Kang B, Zeng H. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway. Toxicol Lett 2016; 240:68-80. [DOI: 10.1016/j.toxlet.2015.10.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/03/2015] [Accepted: 10/10/2015] [Indexed: 12/11/2022]
|
235
|
Shen X, Zhang Y, Hu Y, Luo Z, Ma P, Li L, Mu C, Huang L, Pei Y, Cai K. Regulation of local bone remodeling mediated by hybrid multilayer coating embedded with hyaluronan-alendronate/BMP-2 nanoparticles on Ti6Al7Nb implants. J Mater Chem B 2016; 4:7101-7111. [PMID: 32263647 DOI: 10.1039/c6tb01779g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronate-alendronate/BMP-2 nanoparticles were inserted into Gel/Chi multilayers on Ti6Al7Nb for enhancing BMP-2 stability and promoting local osteogenesis under osteoporosis.
Collapse
|
236
|
Wu LA, Wang F, Donly KJ, Baker A, Wan C, Luo D, MacDougall M, Chen S. Establishment of Immortalized BMP2/4 Double Knock-Out Osteoblastic Cells Is Essential for Study of Osteoblast Growth, Differentiation, and Osteogenesis. J Cell Physiol 2015; 231:1189-98. [PMID: 26595646 PMCID: PMC4784166 DOI: 10.1002/jcp.25266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock‐out (ko/ko) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4ko/ko cells were verified by green immunofluorescence and PCR. BMP2/4ko/ko osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone‐relate genes was reduced in the BMP2/4ko/ko cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4ko/ko osteoblasts as reflected by decreased Mmp‐2 and Mmp‐9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. J. Cell. Physiol. 231: 1189–1198, 2016. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li-An Wu
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, Texas.,Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an, China
| | - Feng Wang
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, Texas.,Department of Anatomy, Histology & Embryology, Basic Medical College, Fujian Medical University, Fuzhou, China
| | - Kevin J Donly
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, Texas
| | - Andrew Baker
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, Texas
| | - Chunyan Wan
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, Texas
| | - Daoshu Luo
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, Texas
| | - Mary MacDougall
- Department of Oral/Maxillofacial Surgery, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama
| | - Shuo Chen
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, Texas
| |
Collapse
|
237
|
Wang F, Okawa H, Kamano Y, Niibe K, Kayashima H, Osathanon T, Pavasant P, Saeki M, Yatani H, Egusa H. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin. PLoS One 2015; 10:e0145677. [PMID: 26709694 PMCID: PMC4692545 DOI: 10.1371/journal.pone.0145677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/07/2015] [Indexed: 01/25/2023] Open
Abstract
Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation of Amelx was associated with enhanced osteogenic differentiation, especially in the early stage of biomineralization.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroko Okawa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Yuya Kamano
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hiroki Kayashima
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Thanaphum Osathanon
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Yatani
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroshi Egusa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
238
|
Lee DS, Choung HW, Kim HJ, Gronostajski RM, Yang YI, Ryoo HM, Lee ZH, Kim HH, Cho ES, Park JC. NFI-C regulates osteoblast differentiation via control of osterix expression. Stem Cells 2015; 32:2467-79. [PMID: 24801901 DOI: 10.1002/stem.1733] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/30/2014] [Indexed: 01/21/2023]
Abstract
In bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteoblasts and adipocytes. Age-related osteoporosis is associated with a reciprocal decrease of osteogenesis and an increase of adipogenesis in bone marrow. In this study, we demonstrate that disruption of nuclear factor I-C (NFI-C) impairs osteoblast differentiation and bone formation, and increases bone marrow adipocytes. Interestingly, NFI-C controls postnatal bone formation but does not influence prenatal bone development. We also found decreased NFI-C expression in osteogenic cells from human osteoporotic patients. Notably, transplantation of Nfic-overexpressing BMSCs stimulates osteoblast differentiation and new bone formation, but inhibits adipocyte differentiation by suppressing peroxisome proliferator-activated receptor gamma expression in Nfic(-/-) mice showing an age-related osteoporosis-like phenotype. Finally, NFI-C directly regulates Osterix expression but acts downstream of the bone morphogenetic protein-2-Runx2 pathway. These results suggest that NFI-C acts as a transcriptional switch in cell fate determination between osteoblast and adipocyte differentiation in BMSCs. Therefore, regulation of NFI-C expression in BMSCs could be a novel therapeutic approach for treating age-related osteoporosis.
Collapse
Affiliation(s)
- Dong-Seol Lee
- Department of Oral Histology-Developmental Biology, Seoul National University, Chongro-gu, Seoul, Korea; Department of Anatomy and Orofacial Development, School of Dentistry, Chosun University, Dong-gu, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Kolind M, Bobyn JD, Matthews BG, Mikulec K, Aiken A, Little DG, Kalajzic I, Schindeler A. Lineage tracking of mesenchymal and endothelial progenitors in BMP-induced bone formation. Bone 2015; 81:53-59. [PMID: 26141839 PMCID: PMC4844190 DOI: 10.1016/j.bone.2015.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
To better understand the relative contributions of mesenchymal and endothelial progenitor cells to rhBMP-2 induced bone formation, we examined the distribution of lineage-labeled cells in Tie2-Cre:Ai9 and αSMA-creERT2:Col2.3-GFP:Ai9 reporter mice. Established orthopedic models of ectopic bone formation in the hind limb and spine fusion were employed. Tie2-lineage cells were found extensively in the ectopic bone and spine fusion masses, but co-staining was only seen with tartrate-resistant acid phosphatase (TRAP) activity (osteoclasts) and CD31 immunohistochemistry (vascular endothelial cells), and not alkaline phosphatase (AP) activity (osteoblasts). To further confirm the lack of a functional contribution of Tie2-lineage cells to BMP-induced bone, we developed conditional knockout mice where Tie2-lineage cells are rendered null for key bone transcription factor osterix (Tie2-cre:Osx(fx/fx) mice). Conditional knockout mice showed no difference in BMP-induced bone formation compared to littermate controls. Pulse labeling of mesenchymal cells with Tamoxifen in mice undergoing spine fusion revealed that αSMA-lineage cells contributed to the osteoblastic lineage (Col2.3-GFP), but not to endothelial cells or osteoclast populations. These data indicate that the αSMA+ and Tie2+ progenitor lineages make distinct cellular contributions to bone formation, angiogenesis, and resorption/remodeling.
Collapse
Affiliation(s)
- Mille Kolind
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Justin D Bobyn
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Brya G Matthews
- Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Kathy Mikulec
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Alastair Aiken
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David G Little
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Aaron Schindeler
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
240
|
Ordinary and Activated Bone Grafts: Applied Classification and the Main Features. BIOMED RESEARCH INTERNATIONAL 2015; 2015:365050. [PMID: 26649300 PMCID: PMC4662978 DOI: 10.1155/2015/365050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022]
Abstract
Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects.
Collapse
|
241
|
Mechanosensitive TRPM7 mediates shear stress and modulates osteogenic differentiation of mesenchymal stromal cells through Osterix pathway. Sci Rep 2015; 5:16522. [PMID: 26558702 PMCID: PMC4642269 DOI: 10.1038/srep16522] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/13/2015] [Indexed: 01/13/2023] Open
Abstract
Microenvironments that modulate fate commitments of mesenchymal stromal cells (MSCs) are composed of chemical and physical cues, but the latter ones are much less investigated. Here we demonstrate that intermittent fluid shear stress (IFSS), a potent and physiologically relevant mechanical stimulus, regulates osteogenic differentiation of MSCs through Transient receptor potential melastatin 7 (TRPM7)-Osterix axis. Immunostaining showed the localization of TRPM7 near or at cell membrane upon IFSS, and calcium imaging analysis demonstrated the transient increase of cytosolic free calcium. Expressions of osteogenic marker genes including Osterix, but not Runx2, were upregulated after three-hour IFSS. Phosphorylation of p38 and Smad1/5 was promoted by IFSS as well. TRPM7 gene knockdown abolished the promotion of bone-related gene expressions and phosphorylation. We illustrate that TRPM7 is mechanosensitive to shear force of 1.2 Pa, which is much lower than 98 Pa pressure loading reported recently, and mediates distinct mechanotransduction pathways. Additionally, our results suggest the differential roles of TRPM7 in endochondral and intramembranous ossification. Together, this study elucidates the mechanotransduction in MSCs fate commitments and displays an efficient mechano-modulation for MSCs osteogenic differentiation. Such findings should be taken into consideration when designing relevant scaffolds and microfluidic devices for osteogenic induction in the future.
Collapse
|
242
|
Shrivats AR, McDermott MC, Klimak M, Averick SE, Pan H, Matyjaszewski K, Mishina Y, Hollinger JO. Nanogel-Mediated RNAi Against Runx2 and Osx Inhibits Osteogenic Differentiation in Constitutively Active BMPR1A Osteoblasts. ACS Biomater Sci Eng 2015; 1:1139-1150. [PMID: 26985455 PMCID: PMC4790085 DOI: 10.1021/acsbiomaterials.5b00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trauma-induced heterotopic ossification (HO) and fibrodysplasia ossificans progressiva (FOP) are acquired and genetic variants of pathological bone formation occurring in soft tissues. Conventional treatment modalities target the inflammatory processes preceding bone formation. We investigated the development of a prophylaxis for heterotopic bone formation by addressing the biological basis for HO - dysregulation in the bone morphogenetic protein (BMP) signaling pathway. We previously reported the synthesis of cationic nanogel nanostructured polymers (NSPs) for efficient delivery of short interfering ribonucleic acids (siRNAs) and targeted gene silencing. Results suggested that nanogel:siRNA weight ratios of 1:1 and 5:1 silenced Runx2 and Osx gene expression in primary mouse osteoblasts with a constitutively active (ca) BMP Receptor 1A (BMPR1A) by the Q233D mutation. Repeated RNAi treatments over 14 days significantly inhibited alkaline phosphatase activity in caBMPR1A osteoblasts. Hydroxyapatite (HA) deposition was diminished over 28 days in culture, though complete suppression of HA deposition was not achieved. Outcome data suggested minimal cytotoxicity of nanogel-based RNAi therapeutics, and the multistage disruption of BMP-induced bone formation processes. This RNAi based approach to impeding osteoblastic differentiation and subsequent bone formation may form the basis of a clinical therapy for heterotopic bone formation.
Collapse
Affiliation(s)
- Arun R. Shrivats
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Michael C. McDermott
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Molly Klimak
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Saadyah E. Averick
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Haichun Pan
- School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuji Mishina
- School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeffrey O. Hollinger
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
243
|
Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Bone morphogenetic protein signaling in bone homeostasis. Bone 2015; 80:43-59. [PMID: 26051467 DOI: 10.1016/j.bone.2015.05.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/11/2015] [Accepted: 05/20/2015] [Indexed: 01/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are cytokines belonging to the transforming growth factor-β (TGF-β) superfamily. They play multiple functions during development and tissue homeostasis, including regulation of the bone homeostasis. The BMP signaling pathway consists in a well-orchestrated manner of ligands, membrane receptors, co-receptors and intracellular mediators, that regulate the expression of genes controlling the normal functioning of the bone tissues. Interestingly, BMP signaling perturbation is associated to a variety of low and high bone mass diseases, including osteoporosis, bone fracture disorders and heterotopic ossification. Consistent with these findings, in vitro and in vivo studies have shown that BMPs have potent effects on the activity of cells regulating bone function, suggesting that manipulation of the BMP signaling pathway may be employed as a therapeutic approach to treat bone diseases. Here we review the recent advances on BMP signaling and bone homeostasis, and how this knowledge may be used towards improved diagnosis and development of novel treatment modalities. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany.
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
244
|
Regulation of transcriptional network system during bone and cartilage development. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
245
|
Lee SW, Lee HJ, Lee JW, Kim KH, Kang JH, Lee MH, Lee SC. Surface functionalization of microgrooved titanium with dual growth factor-releasing nanoparticles for synergistic osteogenic differentiation of human mesenchymal stem cells. Colloids Surf B Biointerfaces 2015; 135:565-574. [DOI: 10.1016/j.colsurfb.2015.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 11/30/2022]
|
246
|
Nishide Y, Tousen Y, Tadaishi M, Inada M, Miyaura C, Kruger MC, Ishimi Y. Combined Effects of Soy Isoflavones and β-Carotene on Osteoblast Differentiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13750-61. [PMID: 26516892 PMCID: PMC4661612 DOI: 10.3390/ijerph121113750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/06/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022]
Abstract
Soy isoflavones, genistein, daidzein and its metabolite equol, as well as β-carotene have been reported to be effective for maintaining bone health. However, it remains to be elucidated whether combining soy isoflavones with β-carotene is beneficial to bone formation. This study investigated the combined effect of soy isoflavones and β-carotene on the differentiation of MC3T3-E1 preosteoblastic cells. Daidzein and genistein alone did not affect cell growth but increased alkaline phosphatase (ALP) activity. Beta-carotene alone inhibited cell growth and markedly enhanced ALP activity. Soy isoflavones combined with β-carotene resulted in higher ALP activity than treatment with isoflavones or β-carotene alone. We observed significant main effects of β-carotene on the enhanced expression of Runx2, ALP, and ostepontin mRNA, whereas there was a significant main effect of soy isoflavones on the expression of osterix mRNA. To investigate how β-carotene affected osteoblast differentiation, MC3T3-E1 cells were treated with retinoic acid receptor (RAR) pan-antagonist combined with β-carotene. Osteopontin and ALP mRNA expression levels, which were increased following treatment with β-carotene, were significantly suppressed by the RAR pan-antagonist. This suggests treatment with β-carotene enhanced early osteoblastic differentiation, at least in part via RAR signaling. These results indicate that a combination of isoflavones and β-carotene may be useful for maintaining a positive balance of bone turnover by inducing osteoblast differentiation.
Collapse
Affiliation(s)
- Yoriko Nishide
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.
| | - Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | - Miki Tadaishi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.
| | - Marlena C Kruger
- School of Food and Nutrition, Massey Institute of Food Science and Technology, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| |
Collapse
|
247
|
Shaw AT, Gravallese EM. Mediators of inflammation and bone remodeling in rheumatic disease. Semin Cell Dev Biol 2015; 49:2-10. [PMID: 26481971 DOI: 10.1016/j.semcdb.2015.10.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022]
Abstract
Remodeling of bone is a continuous process that occurs throughout life. Under normal physiologic conditions, bone-resorbing osteoclasts and bone-forming osteoblasts are tightly coupled and regulated to ensure proper balance, such that there is no net change in bone mass. However, inflammation perturbs normal bone homeostasis. The impact of inflammation on bone is dependent upon the anatomic site affected, cell types, factors and cytokines present in the local microenvironment, and local mechanical forces. Cytokines are central to the pathogenesis of inflammation-induced bone loss and contribute to the uncoupling of osteoclast-mediated bone resorption and osteoblast-mediated bone formation, thereby disrupting normal remodeling. In this review, we will discuss the effects of cytokines on bone in two settings, rheumatoid arthritis and spondyloarthritis, a disease category that includes ankylosing spondylitis, psoriatic arthritis, reactive arthritis, inflammatory bowel disease, and juvenile onset spondyloarthropathy. The outcome for bone in these disease settings is quite different, and an understanding of the pathogenic mechanisms leading to the net impact on bone has been essential in developing new therapeutic approaches to bone health in these diseases.
Collapse
Affiliation(s)
- Anita T Shaw
- Department of Medicine, Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Ellen M Gravallese
- Department of Medicine, Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
248
|
Das A, Fishero BA, Christophel JJ, Li CJ, Kohli N, Lin Y, Dighe AS, Cui Q. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair. Cell Tissue Res 2015; 364:125-35. [PMID: 26475719 DOI: 10.1007/s00441-015-2301-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/21/2015] [Indexed: 11/28/2022]
Abstract
We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.
Collapse
Affiliation(s)
- Anusuya Das
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Brian A Fishero
- Department of Otolaryngology- Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Jared Christophel
- Department of Otolaryngology- Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Nikita Kohli
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yong Lin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Abhijit S Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
249
|
Li CJ, Madhu V, Balian G, Dighe AS, Cui Q. Cross-Talk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells. J Cell Physiol 2015; 230:2671-82. [PMID: 25753222 DOI: 10.1002/jcp.24983] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/03/2015] [Indexed: 12/29/2022]
Abstract
Deficiency in vascular endothelial growth factor (VEGF) or bone morphogenetic proteins (BMPs) results in fracture non-unions. Therefore, it is indispensable to comprehend the combined effect of VEGF and BMPs on the osteogenic differentiation of osteoprogenitor mesenchymal stem cells (MSCs) that are either naturally occurring at the fracture repair site or exogenously added to enhance the bone repair. We found that the combination of VEGF and BMP-6 enhanced COL1A2 expression, which correlated with upregulated expression of osterix, Dlx5, and Msx2 in human adipose-derived stem cells (hADSCs). Cross-talk between VEGF and BMP-6 pathways upregulated activation of p38 mitogen-activated kinase (p38 MAPK) and inhibited activation of protein kinase B (PKB, also known as Akt), whereas phosphorylation of "mothers against decapentaplegic" homologs 1/5/8 (Smads 1/5/8) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2) was not affected. Consistent with these findings, p38 inhibitor SB203580, or siRNA knockdown of osterix, abrogated crosstalk between the VEGF and BMP-6 pathways and significantly reduced the observed upregulation of COL1A2. Nuclear translocation of the phosphorylated form of osterix was also inhibited by SB203580. Although crosstalk between the VEGF-BMP-6 pathways did not show an effect on the extent of mineralization, inhibition of any one of the three components that were upregulated through the cross-talk, i.e., osterix, Dlx5, and p38 activation, led to a complete inhibition of mineralization. Inhibition of PKB/Akt activation, which is attenuated through the cross-talk, significantly enhanced ALP gene expression. These observations imply that crosstalk between the VEGF and BMP-6 signaling pathways enhances osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Vedavathi Madhu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Gary Balian
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Abhijit S Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
250
|
Wu L, Wang F, Donly KJ, Wan C, Luo D, Harris SE, MacDougall M, Chen S. Establishment of Immortalized Mouse Bmp2 Knock-Out Dental Papilla Mesenchymal Cells Necessary for Study of Odontoblastic Differentiation and Odontogenesis. J Cell Physiol 2015; 230:2588-95. [PMID: 26037045 DOI: 10.1002/jcp.25061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022]
Abstract
Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2(ko/ko)dp) cell line by introducing Cre recombinase and green fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2(fx/fx)dp) cells. iBmp2(ko/ko)dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2(ko/ko)dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmp(ko/ko) cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages.
Collapse
Affiliation(s)
- Lian Wu
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas.,State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an, China
| | - Feng Wang
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Anatomy, Histology and Embryology, Basic Medical College, Fujian Medical University, Fuzhou, China
| | - Kevin J Donly
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chunyan Wan
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Daoshu Luo
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Stephen E Harris
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Mary MacDougall
- Department of Oral/Maxillofacial Surgery, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama
| | - Shuo Chen
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|