201
|
Feeding with Sustainably Sourdough Bread Has the Potential to Promote the Healthy Microbiota Metabolism at the Colon Level. Microbiol Spectr 2021; 9:e0049421. [PMID: 34851178 PMCID: PMC8668080 DOI: 10.1128/spectrum.00494-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The contribution of sustainably food processing to healthy intestinal microbial functions is of recent acquisition. The sourdough fermentation fits well with the most sustainable bread making. We manufactured baker’s yeast (BYB) and sourdough (t-SB30) breads, which first underwent to an in-depth characterization. According to nutritional questionnaires, we selected 40 volunteers adhering to the Mediterranean diet. Data on their fecal microbiota and metabolome allowed the selection of two highly representative fecal donors to separately run the Twin Mucosal-SHIME (Twin M-SHIME) under 2-week feeding with BYB and t-SB30. Bread feeding did not affect the microbial composition at phylum and family levels of both donors, in all Twin M-SHIME colon tracts, and lumen and mucosal compartments. The genus core microbiota showed few significant fluctuations, which regarded the relative abundances of Lactobacillus and Leuconostoc according to feeding with BYB and t-SB30, respectively. Compared with BYB, the content of all short chain fatty acids (SCFA), and isovaleric and 2-methylbutyric acids significantly increased with t-SB30 feeding. This was evident for all Twin M-SHIME colon tracts and both donors. The same was found for the content of Asp, Thr, Glu, GABA, and Orn. The bread characterization made possible to identify the main features responsible for this metabolic response. Compared with BYB, t-SB30 had much higher contents of resistant starch, peptides, and free amino acids, and an inhomogeneous microstructure. We used the most efficient approach to investigate a staple food component, excluding interferences from other dietary factors and attenuating human physiology overlaps. The daily consumption of sourdough bread may promote the healthy microbiota metabolism at colon level. IMPORTANCE Knowledge on environmental factors, which may compose the gut microbiota, and drive the host physiology and health is of paramount importance. Human dietary habits and food compositions are pivotal drivers to assemble the human gut microbiota, but, inevitably, unmapped for many diet components, which are poorly investigated individually. Approximately 30% of the human diet consists of fermented foods and beverages. Bread, a fermented/leavened food, is a basic component of the human diet. Its potential effect on gut microbiota composition and functionality is challenging. In this study, we industrially made baker’s yeast and sourdough breads, which were used to feed the Twin Mucosal-SHIME, a worldwide scientifically validated gastrointestinal simulator. Only the consumption of sourdough bread has the potential to enhance the synthesis of short chain fatty acids and free amino acids at the colon level.
Collapse
|
202
|
Zhou WBS, Meng J, Zhang J. Does Low Grade Systemic Inflammation Have a Role in Chronic Pain? Front Mol Neurosci 2021; 14:785214. [PMID: 34858140 PMCID: PMC8631544 DOI: 10.3389/fnmol.2021.785214] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
One of the major clinical manifestations of peripheral neuropathy, either resulting from trauma or diseases, is chronic pain. While it significantly impacts patients’ quality of life, the underlying mechanisms remain elusive, and treatment is not satisfactory. Systemic chronic inflammation (SCI) that we are referring to in this perspective is a state of low-grade, persistent, non-infective inflammation, being found in many physiological and pathological conditions. Distinct from acute inflammation, which is a protective process fighting against intruders, SCI might have harmful effects. It has been associated with many chronic non-communicable diseases. We hypothesize that SCI could be a predisposing and/or precipitating factor in the development of chronic pain, as well as associated comorbidities. We reviewed evidence from human clinical studies indicating the coexistence of SCI with various types of chronic pain. We also collated existing data about the sources of SCI and who could have it, showing that those individuals or patients having SCI usually have higher prevalence of chronic pain and psychological comorbidities. We thus elaborate on the need for further research in the connection between SCI and chronic pain. Several hypotheses have been proposed to explain these complex interactions.
Collapse
Affiliation(s)
- Wen Bo Sam Zhou
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - JingWen Meng
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Ji Zhang
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine McGill University, Montreal, QC, Canada
| |
Collapse
|
203
|
Ghanemi A, Yoshioka M, St-Amand J. Diet Impact on Obesity beyond Calories and Trefoil Factor Family 2 (TFF2) as an Illustration: Metabolic Implications and Potential Applications. Biomolecules 2021; 11:1830. [PMID: 34944474 PMCID: PMC8698828 DOI: 10.3390/biom11121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a health problem with increasing impacts on public health, economy and even social life. In order to reestablish the energy balance, obesity management focuses mainly on two pillars; exercise and diet. Beyond the contribution to the caloric intake, the diet nutrients and composition govern a variety of properties. This includes the energy balance-independent properties and the indirect metabolic effects. Whereas the energy balance-independent properties are close to "pharmacological" effects and include effects such as antioxidant and anti-inflammatory, the indirect metabolic effects represent the contribution a diet can have on energy metabolism beyond the caloric contribution itself, which include the food intake control and metabolic changes. As an illustration, we also described the metabolic implication and hypothetical pathways of the high-fat diet-induced gene Trefoil Factor Family 2. The properties the diet has can have a variety of applications mainly in pharmacology and nutrition and further explore the "pharmacologically" active food towards potential therapeutic applications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| |
Collapse
|
204
|
Yang M, Li N, Tong L, Fan B, Wang L, Wang F, Liu L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
205
|
Narzary Y, Das S, Goyal AK, Lam SS, Sarma H, Sharma D. Fermented fish products in South and Southeast Asian cuisine: indigenous technology processes, nutrient composition, and cultural significance. JOURNAL OF ETHNIC FOODS 2021; 8:33. [DOI: https:/doi.org/10.1186/s42779-021-00109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/30/2021] [Indexed: 09/01/2023]
Abstract
AbstractThe cleaner production of biomass into value-added products via microbial processes adds uniqueness in terms of food quality. The microbe-mediated traditional process for transforming biomass into food is a sustainable practice in Asian food industries. The 18 fermented fish products derived through this process as well as the associated micro-flora and nutritional composition have been focused. This review aims to update the process of green conversion biomass into value-added food products for a more sustainable future. Fish products are classified based on the substrate and source of the enzymes used in fermentation, which includes the three types of technology processing discussed. According to the findings, these fermented fish contain a plethora of beneficial microbiota, making them a valuable source of probiotics that may confer nutritional and health benefits.Bacillus(12 products),Lactobacillus(12 products),Micrococcus(9 products), andStaphylococcus(9 products) were the most common bacterial genera found in 18 fermented fish products. Consuming fermented fish products is beneficial to human health due to their high levels of carbohydrate, protein, fat, and lactic acid. However, biogenic amines, which are produced by certain bacteria as a by-product of their catabolic activity, are a significant potential hazard in traditionally fermented fish.
Collapse
|
206
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
207
|
Abstract
The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.
Collapse
|
208
|
Cardiovascular Effects of Chocolate and Wine-Narrative Review. Nutrients 2021; 13:nu13124269. [PMID: 34959821 PMCID: PMC8704773 DOI: 10.3390/nu13124269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
The consumption of food for pleasure is mainly associated with adverse health effects. This review was carried out to verify recent reports on the impact of chocolate and wine consumption on cardiovascular health, with a particular focus on atherosclerosis. On one side, these products have proven adverse effects on the cardiovascular system, but on the other hand, if consumed in optimal amounts, they have cardiovascular benefits. The submitted data suggest that the beneficial doses are 30–50 g and 130/250 mL for chocolate and wine, respectively, for women and men. The accumulated evidence indicates that the active ingredients in the products under consideration in this review are phenolic compounds, characterized by anti-inflammatory, antioxidant, and antiplatelet properties. However, there are also some reports of cardioprotective properties of other compounds such as esters, amines, biogenic amines, amino acids, fatty acids, mineral ingredients, and vitamins. Our narrative review has shown that in meta-analyses of intervention studies, consumption of chocolate and wine was positively associated with the beneficial outcomes associated with the cardiovascular system. In contrast, the assessment with the GRADE (Grading of Recommendations Assessment, Development and Evaluation) scale did not confirm this phenomenon. In addition, mechanisms of action of bioactive compounds present in chocolate and wine depend on some factors, such as age, sex, body weight, and the presence of additional medical conditions. Patients using cardiovascular drugs simultaneously with both products should be alert to the risk of pharmacologically relevant interactions during their use. Our narrative review leads to the conclusion that there is abundant evidence to prove the beneficial impact of consuming both products on cardiovascular health, however some evidence still remains controversial. Many authors of studies included in this review postulated that well-designed, longitudinal studies should be performed to determine the effects of these products and their components on atherosclerosis and other CVD (Cardiovascular Disease) disease.
Collapse
|
209
|
Buszewski B, Maślak E, Złoch M, Railean-Plugaru V, Kłodzińska E, Pomastowski P. A new approach to identifying pathogens, with particular regard to viruses, based on capillary electrophoresis and other analytical techniques. Trends Analyt Chem 2021; 139:116250. [PMID: 34776563 PMCID: PMC8573725 DOI: 10.1016/j.trac.2021.116250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fast determination, identification and characterization of pathogens is a significant challenge in many fields, from industry to medicine. Standard approaches (e.g., culture media and biochemical tests) are known to be very time-consuming and labor-intensive. Conversely, screening techniques demand a quick and low-cost grouping of microbial isolates, and current analysis call for broad reports of pathogens, involving the application of molecular, microscopy, and electromigration techniques, DNA fingerprinting and also MALDI-TOF methods. The present COVID-19 pandemic is a crisis that affects rich and poor countries alike. Detection of SARS-CoV-2 in patient samples is a critical tool for monitoring disease spread, guiding therapeutic decisions and devising social distancing protocols. The goal of this review is to present an innovative methodology based on preparative separation of pathogens by electromigration techniques in combination with simultaneous analysis of the proteome, lipidome, and genome using laser desorption/ionization analysis.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewa Kłodzińska
- Institute of Sport - National Research Institute, Department of Analytical Chemistry and Instrumental Analysis, 01-982, Warsaw, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| |
Collapse
|
210
|
Craig WJ, Brothers CJ. Nutritional Content and Health Profile of Non-Dairy Plant-Based Yogurt Alternatives. Nutrients 2021; 13:nu13114069. [PMID: 34836324 PMCID: PMC8619131 DOI: 10.3390/nu13114069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Yogurt is considered a healthy, nutritious food in many cultures. With a significant number of people experiencing dairy intolerance, and support for a more sustainable diet, consumer demand for dairy alternatives has surged. The aim of this study was to conduct a cross-sectional survey of plant-based yogurt alternatives to assess their nutritional content and health profile. A total of 249 non-dairy yogurt alternatives were analyzed from the nutrition label listed on the commercial package. The various yogurt alternatives contained extracts of coconut (n = 79), almonds (n = 62), other nuts or seeds (n = 20), oats (n = 20), legumes (n = 16), and mixed blends (n = 52). At least one-third of the yogurt alternatives had 5 g or more of protein/serving. Only 45% of the yogurt alternatives had calcium levels fortified to at least 10% of daily value (DV), while only about one in five had adequate vitamin D and B12 fortification at the 10% DV level. One-half of the yogurt alternatives had high sugar levels, while 93% were low in sodium. Except for the coconut-based products, the yogurts were not high in fat or saturated fat. The yogurt alternatives were not fortified as frequently or to the same levels as the corresponding non-dairy, plant-based beverages.
Collapse
Affiliation(s)
- Winston J. Craig
- Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence:
| | - Cecilia J. Brothers
- Department of Biology, Walla Walla University, College Place, WA 99324, USA;
| |
Collapse
|
211
|
Murphy F, Gathercole J, Lee E, Homewood I, Ross AB, Clerens S, Maes E. Discrimination of milk fermented with different starter cultures by MALDI-TOF MS and REIMS fingerprinting. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
212
|
Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods 2021; 10:foods10112639. [PMID: 34828920 PMCID: PMC8620815 DOI: 10.3390/foods10112639] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are involved in producing a considerable number of fermented products consumed worldwide. Many of those LAB fermented foods are recognized as beneficial for human health due to probiotic LAB or their metabolites produced during food fermentation or after food digestion. In this review, we aim to gather and discuss available information on the health-related effects of LAB-fermented foods. In particular, we focused on the most widely consumed LAB-fermented foods such as yoghurt, kefir, cheese, and plant-based products such as sauerkrauts and kimchi.
Collapse
|
213
|
Zhao D, Cao J, Jin H, Shan Y, Fang J, Liu F. Beneficial impacts of fermented celery ( Apium graveolens L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food Funct 2021; 12:9151-9164. [PMID: 34606532 DOI: 10.1039/d1fo00560j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome caused obesity has long been recognized as a risk of health. Celery and celery extracts have various medicinal properties, such as anti-diabetes and anti-inflammatory properties and blood glucose and serum lipid reduction. However, the effect of probiotic fermentation on celery juice and the association between fermented celery juice (FCJ) and obesity were unclear. This study aimed to evaluate the beneficial effects of FCJ on high-fat diet (HFD) induced obesity and related metabolic syndromes. C57BL/6 mice were randomly divided into six groups (n = 15 per group) fed either a normal diet (ND) or HFD with or without CJ/FCJ (10 g kg-1 day-1) by oral gavage for 12 weeks. Here we demonstrated that the probiotic fermentation of celery juice (CJ) could enhance the active ingredients in celery, such as total polyphenols, flavonoids, vitamin C and SOD. Compared to the slight improvement induced by CJ ingestion, FCJ intake significantly inhibited body weight gain, prevented dyslipidemia and hyperglycemia, and suppressed visceral fat accumulation. Furthermore, 16S rRNA sequencing analysis revealed that FCJ intake altered the composition of gut microbiota, increasing the ratio of Firmicutes/Bacteroidetes and the relative abundance of beneficial bacteria (Lactobacillus, Ruminococcaceae_UCG-014, Faecalibaculum and Blautia), and decreasing the relative abundance of harmful bacteria (Alloprevotella and Helicobacter). These findings suggest that FCJ can prevent HFD-induced obesity and become a novel gut microbiota modulator to prevent HFD-induced gut dysbiosis and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Dong Zhao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinhu Cao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Huiqin Jin
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jian Fang
- Weifang Bowei Agricultural Development Co., Ltd, Weifang 261000, Shandong, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
214
|
Roasa J, De Villa R, Mine Y, Tsao R. Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
215
|
Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021; 48:463-488. [PMID: 34591726 DOI: 10.1080/1040841x.2021.1979933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Ireland
| |
Collapse
|
216
|
Khoirun Nisa A, Afifah DN, Djamiatun K, Syauqy A. The effect of Sorghum Tempeh (Sorghum bicolor L. Moench) on low-density lipoprotein (LDL) and malondialdehyde (MDA) levels in atherogenic diet-induced rats. POTRAVINARSTVO 2021. [DOI: 10.5219/1589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An atherogenic diet induces oxidative stress leading to hypercholesterolemia. This condition causes atherosclerosis followed by increased LDL and MDA. Sorghum tempeh contains fiber and antioxidants that can protectively improve LDL and MDA levels. Therefore, this research aims to determine the effect of sorghum tempeh on LDL and MDA levels in atherogenic diet-induced rats compared to sorghum flour. It used a randomized pre-post test with a control group design. The test subjects were 30 male Sprague Dawley rats, consisting of 6 normal conditioned rats (C1), and 24 that were induced by an atherogenic diet (C2, T1, T2, T3) for 2 weeks. Sorghum flour was administered at a dose of 4.095 g (T1) and the sorghum tempeh at 3.041 g (T2) and 6.081 g (T3) for 4 weeks. Furthermore, C2 was constantly induced through an atherogenic diet. Total cholesterol and LDL levels were then analyzed using the CHOD-PAP method, and MDA levels, using the ELISA method. Meanwhile, statistical analysis for these variables was carried out using IBM SPSS Statistics 21 software. The results showed that the administration of sorghum flour and tempeh significantly reduced total cholesterol, LDL, MDA levels in each group (p = 0.001). Furthermore, it showed that there was a significantly strong correlation between LDL and MDA levels before and after treatment (r = 0.610, r = 0.805, and p = 0.001). The administration of sorghum tempeh at a dose of 6.081 g caused the greatest reduction (∆) in LDL levels at -44.19 ±2.58 mg.dL-1, although, it was not the same as normal control. Meanwhile, sorghum flour at a dose of 4.095 g was the most influential in reducing MDA levels to the same as normal control with delta (∆) at -7.67 ±0.37 ng.mL-1. In conclusion, sorghum tempeh and flour were the most effective at reducing LDL and MDA levels, respectively.
Collapse
|
217
|
Zhou X, Du HH, Jiang M, Zhou C, Deng Y, Long X, Zhao X. Antioxidant Effect of Lactobacillus fermentum CQPC04-Fermented Soy Milk on D-Galactose-Induced Oxidative Aging Mice. Front Nutr 2021; 8:727467. [PMID: 34513906 PMCID: PMC8429822 DOI: 10.3389/fnut.2021.727467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study is to evaluate the changes in soy isoflavones and peptides in soy milk after lactic acid bacterial fermentation, and explore the positive effects of fermented soy milk on an oxidative aging mouse model induced with D-galactose. We found that free soybean isoflavones and peptides increased after soy milk was fermented by Lactobacillus fermentum CQPC04. The in vivo results indicated that L. fermentum CQPC04-fermented soy milk enhanced the organ index of the liver and spleen, and improved the pathological morphology of the liver, spleen, and skin. L. fermentum CQPC04-fermented soy milk increased the enzymatic activity of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT), increased glutathione (GSH), but decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in serum, liver, and brain tissues of oxidative aging mice. The above mentioned fermented soy milk also increased the levels of collagen I (Col I), hyaluronic acid (HA), and collagen III (Col III), and decreased the levels of advanced glycation End products (AGEs) and hydrogen peroxide (H2O2). The RT-qPCR results showed that L. fermentum CQPC04-fermented soy milk upregulated the mRNA expression of nuclear factor erythroid 2?related factor (Nrf2), heme oxygenase-1 (HMOX1), quinone oxido-reductase 1 (Nqo1), neuronal nitric oxide synthase (NOS1), endothelial nitric oxide synthase (NOS3), Cu/Zn–superoxide dismutase (Cu/Zn-SOD), Mn–superoxide dismutase (Mn-SOD), and CAT, but downregulated the expression of inducible nitric oxide synthase (NOS2) and glutamate cysteine ligase modifier subunit (Gclm) in liver and spleen tissues. Lastly, the fermented soy milk also increased the gene expression of Cu/Zn-SOD, Mn-SOD, CAT, GSH-Px, matrix metalloproteinases 1 (TIMP1), and matrix metalloproteinases 2 (TIMP2), and decreased the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) in skin tissue. In conclusion, L. fermentum CQPC04-fermented soy milk was able to satisfactorily delay oxidative aging effects, and its mechanism may be related to the increase in free soy isoflavones and peptides.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| | - Meiqing Jiang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Chaolekang Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yuhan Deng
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
218
|
Li D, Han T, Xue J, Xu W, Xu J, Wu Q. Engineering Fatty Acid Photodecarboxylase to Enable Highly Selective Decarboxylation of
trans
Fatty Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Danyang Li
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Tao Han
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiadan Xue
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jian Xu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
219
|
Zhong A, Chen W, Duan Y, Li K, Tang X, Tian X, Wu Z, Li Z, Wang Y, Wang C. The potential correlation between microbial communities and flavors in traditional fermented sour meat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
220
|
Gupta S, Chen WN. A metabolomics approach to evaluate post-fermentation enhancement of daidzein and genistein in a green okara extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5124-5131. [PMID: 33608899 DOI: 10.1002/jsfa.11158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Okara is a major agri-industrial by-product of the tofu and soymilk industries. Employing food-wastes as substrates for the green production of natural functional compounds is a recent trend that addresses the dual concepts of sustainable production and a zero-waste ecosystem. RESULTS Extracts of unfermented okara and okara fermented with Rhizopus oligosporus were obtained using ethanol as extraction solvent, coupled with ultrasound sonication for enhanced extraction. Fermented extracts yielded significantly better results for total phenolic content (TPC) and total flavonoid content (TFC) than unfermented extracts. A qualitative liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analysis revealed a shift from glucoside forms to respective aglycone forms of the detected isoflavones, post-fermentation. Since the aglycone forms have been associated with numerous health benefits, a quantitative high-performance liquid chromatography (HPLC) analysis was performed. Fermented okara extracts had daidzein and genistein concentrations of 11.782 ± 0.325 μg mL-1 and 10.125 ± 1.028 μg mL-1 , as opposed to that of 6.7 ± 2.42 μg mL-1 and 4.55 ± 0.316 μg mL-1 in raw okara extracts, respectively. Lastly, the detected isoflavones were mapped to their metabolic pathways, to understand the biochemical reactions triggered during the fermentation process. CONCLUSION Fermented okara may be implemented as a sustainable solution for production of natural bioactive isoflavonoids genistein and daidzein. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sulagna Gupta
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
- Residues and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
221
|
Nouioui I, Dye T. Heat-killed Mycolicibacterium aurum Aogashima: An environmental nonpathogenic actinobacteria under development as a safe novel food ingredient. Food Sci Nutr 2021; 9:4839-4854. [PMID: 34531996 PMCID: PMC8441333 DOI: 10.1002/fsn3.2413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Over the last few decades, a wealth of evidence has formed the basis for "the Old Friends hypothesis" suggesting that, in contrast to the past, increasingly people are living in environments with limited and less diverse microbial exposure, with potential consequences for their health. Hence, including safe live or heat-killed microbes in the diet may be beneficial in promoting and maintaining human health. In order to assess the safety of microbes beyond the current use of standardized cultures and probiotic supplements, new approaches are being developed. Here, we present evidence for the safety of heat-killed Mycolicibacterium aurum Aogashima as a novel food, utilizing the decision tree approach developed by Pariza and colleagues (2015). We provide evidence that the genome of M. aurum Aogashima is free of (1) genetic elements associated with pathogenicity or toxigenicity, (2) transferable antibiotic resistance gene DNA, and (3) genes coding for antibiotics used in human or veterinary medicine. Moreover, a 90-day oral toxicity study in rats showed that (4) the no observed adverse effect level (NOAEL) was the highest concentration tested, namely 2000 μg/kg BW/day. We conclude that oral consumption of heat-killed M. aurum Aogashima is safe and warrants further evaluation as a novel food ingredient.
Collapse
Affiliation(s)
- Imen Nouioui
- Devonshire BuildingNewcastle University School of Natural and Environmental SciencesNewcastle Upon TyneUnited Kingdom of Great Britain and Northern Ireland
| | | |
Collapse
|
222
|
Chan LP, Tseng YP, Liu C, Liang CH. Fermented pomegranate extracts protect against oxidative stress and aging of skin. J Cosmet Dermatol 2021; 21:2236-2245. [PMID: 34416060 DOI: 10.1111/jocd.14379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Punica granatum (pomegranate) potentially ameliorates skin inflammation and pain, including herpetic stromal keratitis. Fermentation is a biotechnological technique that may naturally induce health benefits by producing antioxidants. However, the anti-aging effect of fermented pomegranate extracts (FPE) on the skin is still unclear. AIM This investigation evaluates the effects of fermented pomegranate as a functional supplement (FPE drink, FPE-D) and a cosmetic ingredient (FPE serum, FPE-S) in vitro and in vivo. PATIENTS/METHODS The effects of FPE products for anti-oxidation, anti-tyrosinase, anti-inflammation, and anti-aging were examined. Forty subjects were randomly allocated to FPE-D or placebo drink groups (50 ml of a FPE-D /placebo drink daily for 8 weeks for each subject), and another 40 subjects were recruited to FPE-S or placebo serum groups (about 3 ml of a FPE-S /placebo serum daily and nightly/daily for 4 weeks for each subject) in a double-blind study. RESULTS The effects of FPE products on the DPPH, ABTS+ , and NO· free radical scavenging activities, their inhibiting of tyrosinase activity and their enhancement of the skin health of healthy subjects, were investigated. FPE-D improved the moisture, brightness, elasticity, and collagen density of the skin of most subjects at 8 weeks relative to the baseline without treatment (p < 0.05). After 4 weeks of FPE-S serum consumption, the moisture, brightness, elasticity, spots, UV spots, and collagen density of skin were slightly better than those at week 0 (p < 0.05). CONCLUSIONS The daily consumption of fermented pomegranate extracts can protect the skin against oxidative stress and slow skin aging.
Collapse
Affiliation(s)
- Leong-Perng Chan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ping Tseng
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cheng Liu
- Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
223
|
Vijayasarathy S, Gayathri P, Suneetha V. Fermented Foods and Their Abating Role in Gastric Ulcers. J Am Coll Nutr 2021; 41:826-830. [PMID: 34402418 DOI: 10.1080/07315724.2021.1962768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Helicobacter pylori plays a consequential role in gastric inflammations and ulceration. The cure for the same was researched and identified to be the triple therapy regime. Intensive research in the field also proved that altering the food habits during ulcers will be a major factor in the time period that is required for cure. Fermented foods usage dates back to ancient civilizations, but their role in maintaining gastric health are slowly being uncovered. One such major role reported will be the bacterial check that the probiotics in fermented food do in human gastrointestinal tract. Various species of bacteria present in the fermented products will lead to reduction of the H. Pylori infection in the GI tract.Key teaching pointsMicrobes that are active in fermented foods reduce inflammation and improve histological conditions of ulcers caused due to H. pylori.Microbes such as Lactobacillus that were in fermented products when tested showed inhibitory effects, decreasing infection density and reducing mucus depletion.Lactic fermented products showed a decrease in urease activity and reduces H. pylori adhesion through various organic acid secretions.Organisms in fermented products involve various mechanisms like lowering gut pH, improving immunological responses, scavenging free radicals and so on.Fermented foods have many modulatory effects that help fighting and curing gastric ulcers.
Collapse
Affiliation(s)
- S Vijayasarathy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - P Gayathri
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - V Suneetha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| |
Collapse
|
224
|
Gok I. Functional Potential of Several Turkish Fermented Traditional Foods: Biotic Properties, Bioactive Compounds, and Health Benefits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1962340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ilkay Gok
- Faculty of Applied Sciences, Gastronomy Department, Istanbul Okan University, Tuzla, Istanbul, Turkey
| |
Collapse
|
225
|
Lee H, Lee S, Kyung S, Ryu J, Kang S, Park M, Lee C. Metabolite Profiling and Anti-Aging Activity of Rice Koji Fermented with Aspergillus oryzae and Aspergillus cristatus: A Comparative Study. Metabolites 2021; 11:524. [PMID: 34436465 PMCID: PMC8398186 DOI: 10.3390/metabo11080524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Rice koji, used as a starter for maximizing fermentation benefits, produces versatile end products depending on the inoculum microbes used. Here, we performed metabolite profiling to compare rice koji fermented with two important filamentous fungus, Aspergillus oryzae and A. cristatus, during 8 days. The multivariate analyses showed distinct patterns of primary and secondary metabolites in the two kojis. The rice koji fermented with A. oryzae (RAO) showed increased α-glucosidase activity and higher contents of sugar derivatives than the one fermented with A. cristatus (RAC). RAC showed enhanced β-glucosidase activity and increased contents of flavonoids and lysophospholipids, compared to RAO. Overall, at the final fermentation stage (8 days), the antioxidant activities and anti-aging effects were higher in RAC than in RAO, corresponding to the increased metabolites such as flavonoids and auroglaucin derivatives in RAC. This comparative metabolomic approach can be applied in production optimization and quality control analyses of koji products.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
| | - Seoyeon Kyung
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Jeoungjin Ryu
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Seunghyun Kang
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Myeongsam Park
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Choonghwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
226
|
Agbemavor WSK, Buys EM. Presumptive probiotic bacteria from traditionally fermented African food challenge the adhesion of enteroaggregative
E. coli
. J Food Saf 2021. [DOI: 10.1111/jfs.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wisdom Selorm Kofi Agbemavor
- Department of Consumer and Food Sciences University of Pretoria Lynnwood Rd, Hatfield, Pretoria, 0002 South Africa
| | - Elna Maria Buys
- Department of Consumer and Food Sciences University of Pretoria Lynnwood Rd, Hatfield, Pretoria, 0002 South Africa
| |
Collapse
|
227
|
Roselli M, Natella F, Zinno P, Guantario B, Canali R, Schifano E, De Angelis M, Nikoloudaki O, Gobbetti M, Perozzi G, Devirgiliis C. Colonization Ability and Impact on Human Gut Microbiota of Foodborne Microbes From Traditional or Probiotic-Added Fermented Foods: A Systematic Review. Front Nutr 2021; 8:689084. [PMID: 34395494 PMCID: PMC8360115 DOI: 10.3389/fnut.2021.689084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Fausta Natella
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Paola Zinno
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Emily Schifano
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| |
Collapse
|
228
|
Li D, Han T, Xue J, Xu W, Xu J, Wu Q. Engineering Fatty Acid Photodecarboxylase to Enable Highly Selective Decarboxylation of trans Fatty Acids. Angew Chem Int Ed Engl 2021; 60:20695-20699. [PMID: 34288332 DOI: 10.1002/anie.202107694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Indexed: 11/08/2022]
Abstract
Due to the high risk of heart disease caused by the intake of trans fatty acids, a method to eliminate trans fatty acids from foods has become a critical issue. Herein, we engineered fatty acid photo-decarboxylase from Chlorella variabilis (CvFAP) to selectively catalyze the decarboxylation of trans fatty acids to yield readily-removed hydrocarbons and carbon dioxide, while cis fatty acids remained unchanged. An efficient protein engineering based on FRISM strategy was implemented to intensify the electronic interaction between the residues and the double bond of the substrate that stabilized the binding of elaidic acid in the channel. For the model compounds, oleic acid and elaidic acid, the best mutant, V453E, showed a one-thousand-fold improvement in the trans-over-cis (ToC) selectivity compared with wild type (WT). As the first report of the direct biocatalytic decarboxylation resolution of trans/cis fatty acids, this work offers a safe, facile, and eco-friendly process to eliminate trans fatty acids from edible oils.
Collapse
Affiliation(s)
- Danyang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Tao Han
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
229
|
Lactic Acid Fermented Green Tea with Levilactobacillus brevis Capable of Producing γ-Aminobutyric Acid. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The antioxidative activity and bioactive compounds content of lactic acid fermented green tea (LFG) fermented with an outstanding GABA-producing strain under optimised fermentation conditions were evaluated. Levilactobacillus strain GTL 79 was isolated from green tea leaves and selected based on acid production, growth potential, catechin resistance, and GABA production to be applied to LFG. Through 16S rRNA gene sequence analysis, the strain was identified as Levilactobacillus brevis. The optimised conditions were defined as fermentation at 37 °C with supplementation of 1% fermentation alcohol, 6% glucose, and 1% MSG and was determined to be most effective in increasing the lactic acid, acetic acid, and GABA content in LFG by 522.20%, 238.72% and 232.52% (or 247.58%), respectively. Initial DPPH scavenging activity of LFG fermented under the optimised conditions was 88.96% and rose to 94.38% by day 5. Polyphenols may contribute to the initial DPPH scavenging activity, while GABA and other bioactive compounds may contribute to the activity thereafter. Consequently, as GABA and other bioactive compounds found in green tea have been reported to have health benefits, future studies may prove that optimally fermented LFG by L. brevis GTL 79 could be useful in the food and health industries.
Collapse
|
230
|
Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods 2021; 10:foods10071590. [PMID: 34359462 PMCID: PMC8306164 DOI: 10.3390/foods10071590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the gastrointestinal microbiota has been recognised as being essential for health. Indeed, several publications have documented the suitability of probiotics, prebiotics, and symbiotics in the management of different diseases such as diabetes mellitus (DM). Advances in laboratory techniques have allowed the identification and characterisation of new biologically active molecules, referred to as “postbiotics”. Postbiotics are defined as functional bioactive compounds obtained from food-grade microorganisms that confer health benefits when administered in adequate amounts. They include cell structures, secreted molecules or metabolic by-products, and inanimate microorganisms. This heterogeneous group of molecules presents a broad range of mechanisms and may exhibit some advantages over traditional “biotics” such as probiotics and prebiotics. Owing to the growing incidence of DM worldwide and the implications of the microbiota in the disease progression, postbiotics appear to be good candidates as novel therapeutic targets. In the present review, we summarise the current knowledge about postbiotic compounds and their potential application in diabetes management. Additionally, we envision future perspectives on this topic. In summary, the results indicate that postbiotics hold promise as a potential novel therapeutic strategy for DM.
Collapse
|
231
|
Begunova AV, Savinova OS, Moiseenko KV, Glazunova OA, Rozhkova IV, Fedorova TV. Characterization and Functional Properties of Lactobacilli Isolated from Kefir Grains. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
232
|
Ciska E, Honke J, Drabińska N. Changes in glucosinolates and their breakdown products during the fermentation of cabbage and prolonged storage of sauerkraut: Focus on sauerkraut juice. Food Chem 2021; 365:130498. [PMID: 34243119 DOI: 10.1016/j.foodchem.2021.130498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Sauerkraut juice has not gained much scientific attention to date. Therefore, this study aimed to track changes in glucosinolates (GLS) during fermentation of white cabbage and the formation of corresponding breakdown products in sauerkraut and sauerkraut juice separately and to evaluate their stability during prolonged storage of the final products. The results obtained indicate that both sauerkraut and sauerkraut juice are a good source of bioactive compounds: ascorbigen and isothiocyanates. The stability of individual compounds during storage varied, and the absolute content of phytochemicals depended on the content of native GLS in the raw material and its bacterial composition. The dominant compound was ascorbigen, stable in acidic pH in both sauerkraut and sauerkraut juice, even after prolonged storage. Sauerkraut juice was also found as a rich source of bioactive isothiocyanates. One 250 mL glass of sauerkraut juice (after two weeks) can deliver approx. 75 μmol of bioactive ascorbien and isothiocyanates, hence it can be considered as functional food, delivering beneficial health effects.
Collapse
Affiliation(s)
- Ewa Ciska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Joanna Honke
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| |
Collapse
|
233
|
Bragagnolo FS, Funari CS, Ibáñez E, Cifuentes A. Metabolomics as a Tool to Study Underused Soy Parts: In Search of Bioactive Compounds. Foods 2021; 10:foods10061308. [PMID: 34200265 PMCID: PMC8230045 DOI: 10.3390/foods10061308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
The valorization of agri-food by-products is essential from both economic and sustainability perspectives. The large quantity of such materials causes problems for the environment; however, they can also generate new valuable ingredients and products which promote beneficial effects on human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins, and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to show the application of metabolomics for identifying high-added-value compounds in underused parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the factors affecting their production.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Cristiano Soleo Funari
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
- Correspondence:
| |
Collapse
|
234
|
Strauss M, Mičetić-Turk D, Pogačar MŠ, Fijan S. Probiotics for the Prevention of Acute Respiratory-Tract Infections in Older People: Systematic Review. Healthcare (Basel) 2021; 9:690. [PMID: 34200435 PMCID: PMC8228160 DOI: 10.3390/healthcare9060690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 01/14/2023] Open
Abstract
The aim of this systematic review was to present the indirect influence of probiotics on the incidence and duration of acute upper respiratory-tract infections in older people, by regulating the immune system. Eight randomized, placebo-controlled clinical trials met the inclusion criteria, considering the threshold of older people being 60 years and over. Single strain probiotics were used in all studies, including three probiotic strains used in fermented foods: Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1, Lacticaseibacillus paracasei subsp. paracasei CNCM I-1518 and Lacticaseibacillusparacasei Shirota, and three probiotic strains used as food supplements: Loigolactobacillus coryniformis K8 CECT5711, Bacillus subtilis CU1 and Lacticaseibacillus rhamnosus GG. Current evidence showed that certain probiotic strains were better than a placebo in lowering the incidence or number of older people experiencing acute upper respiratory tract infections; however, not all probiotic strains were efficient, and not all studies reported statistically significant outcomes. More high quality large-scale properly controlled clinical studies focusing on older people are warranted.
Collapse
Affiliation(s)
- Maja Strauss
- Faculty of Health Sciences, Institute for Health and Nutrition, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (M.S.); (D.M.-T.)
| | - Dušanka Mičetić-Turk
- Faculty of Health Sciences, Institute for Health and Nutrition, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (M.S.); (D.M.-T.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| | - Maja Šikić Pogačar
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| | - Sabina Fijan
- Faculty of Health Sciences, Institute for Health and Nutrition, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (M.S.); (D.M.-T.)
| |
Collapse
|
235
|
Canonico L, Zannini E, Ciani M, Comitini F. Assessment of non-conventional yeasts with potential probiotic for protein-fortified craft beer production. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
236
|
Allwood JG, Wakeling LT, Bean DC. Fermentation and the microbial community of Japanese koji and miso: A review. J Food Sci 2021; 86:2194-2207. [PMID: 34056716 DOI: 10.1111/1750-3841.15773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022]
Abstract
Miso is a well-known traditional Japanese fermented food, with a characteristic savory flavor and aroma, known predominately as the seasoning in miso soup. Miso production involves a two-stage fermentation, where first a mold, such as Aspergillus oryzae, is inoculated onto a substrate to make koji. A subsequent fermentation, this time by bacteria and yeast, occurs when the koji is added to a salt and soybean mash, with the miso left to ferment for up to 2 years. The microbial community of miso is considered essential to the development of the unique taste, texture, and nutritional profile of miso. Despite the importance of microorganisms in the production of miso, very little research has been undertaken to characterize and describe the microbial process. In this review, we provide an overview of the two-stage fermentation process, describe what is currently known about the microbial communities involved and consider any potential health benefits associated with the consumption of miso, along with food safety concerns. As the popularity of miso continues to expand globally and is produced under new environmental conditions, understanding the microbiological processes involved will assist to ensure that global production of miso is safe as well as delicious.
Collapse
Affiliation(s)
- Joanne G Allwood
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen Campus, Ballarat, Victoria, Australia
| | - Lara T Wakeling
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen Campus, Ballarat, Victoria, Australia
| | - David C Bean
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen Campus, Ballarat, Victoria, Australia
| |
Collapse
|
237
|
Multari S, Guzzon R, Caruso M, Licciardello C, Martens S. Alcoholic fermentation of citrus flavedo and albedo with pure and mixed yeast strains: Physicochemical characteristics and phytochemical profiles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
238
|
Dini I, Laneri S. Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants (Basel) 2021; 10:868. [PMID: 34071441 PMCID: PMC8230008 DOI: 10.3390/antiox10060868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Spices, condiments and extra virgin olive oil (EVOO) are crucial components of human history and nutrition. They are substances added to foods to improve flavor and taste. Many of them are used not only to flavor foods, but also in traditional medicine and cosmetics. They have antioxidant, antiviral, antibiotic, anticoagulant and antiinflammatory properties and exciting potential for preventing chronic degenerative diseases such as cardiomyopathy and cancer when used in the daily diet. Research and development in this particular field are deeply rooted as the consumer inclination towards natural products is significant. It is essential to let consumers know the beneficial effects of the daily consumption of spices, condiments and extra virgin olive oil so that they can choose them based on effects proven by scientific works and not by the mere illusion that plant products are suitable only because they are natural and not chemicals. The study begins with the definition of spices, condiments and extra virgin olive oil. It continues by describing the pathologies that can be prevented with a spicy diet and it concludes by considering the molecules responsible for the beneficial effects on human health (phytochemical) and their eventual transformation when cooked.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | | |
Collapse
|
239
|
Kim IS, Hwang CW, Yang WS, Kim CH. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang. Int J Mol Sci 2021; 22:5746. [PMID: 34072216 PMCID: PMC8198423 DOI: 10.3390/ijms22115746] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation process of CGJ results in the production of enzymes and various physiologically active substances that are not found in raw soybeans, including dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, trypsin inhibitors, and phytic acids. These components prevent atherosclerosis, oxidative stress-mediated heart disease and inflammation, obesity, diabetes, senile dementia, cancer (e.g., breast and lung), and osteoporosis. They have also been shown to have thrombolytic, blood pressure-lowering, lipid-lowering, antimutagenic, immunostimulatory, anti-allergic, antibacterial, anti-atopic dermatitis, anti-androgenetic alopecia, and anti-asthmatic activities, as well as skin improvement properties. In this review, we examined the physiological activities of CGJ and confirmed its potential as a functional food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang 37554, Korea
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
240
|
Lillford P, Hermansson AM. Global missions and the critical needs of food science and technology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
241
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
242
|
Zhang Z, Fan S, Huang D, Xiong T, Nie S, Xie M. Polysaccharides from fermented Asparagus officinalis with Lactobacillus plantarum NCU116 alleviated liver injury via modulation of glutathione homeostasis, bile acid metabolism, and SCFA production. Food Funct 2021; 11:7681-7695. [PMID: 32901642 DOI: 10.1039/d0fo01435d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lactic acid bacteria strain (LAB) NCU116 fermented Asparagus officinalis polysaccharides (FAOP) have been proven to cause substantial changes in physicochemical properties such as monosaccharide composition and molecular weight, accounting for their enhanced immune activity than unprocessed Asparagus officinalis polysaccharides (AOP). In the current study, the hepatoprotective effects of FAOP in mice with cyclophosphamide (CTX)-induced hepatotoxicity were investigated. FAOP were more effective than AOP in alleviating CTX-induced hepatic damage, including inhibition of hepatic biochemical markers (ALT, AST, AKP and LDH) and pro-inflammatory cytokines (TNF-α and IL-1β) as well as reinforcement of antioxidant systems (T-AOC, SOD, CAT, and MDA). In particular, compared with AOP, FAOP showed superior performance by promoting GSH biosynthesis, and normalizing the expression level of bile acid receptors (FXR and SHP) and key enzymes in bile acid synthesis (CYP7A1, CYP8B1 and CYP27A1). Modulation of disordered homeostasis of bile acids by FAOP can be attributed to the upregulation of hepatic short chain fatty acid (SCFA) receptors GPR41 and GPR109A as well as intestinal SCFA production. Furthermore, serum metabolomics study validated the hepatoprotective superiority of FAOP than AOP with evidence from variations in bile acid compositions and the construction of related metabolic pathways. Therefore, LAB NCU116 fermentation of Asparagus officinalis was practical and effective to obtain promising hepatoprotective polysaccharides, which might arise from enhanced SCFA production than unprocessed AOP.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Songtao Fan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Danfei Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China. and National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
243
|
Li KJ, Brouwer-Brolsma EM, Burton-Pimentel KJ, Vergères G, Feskens EJM. A systematic review to identify biomarkers of intake for fermented food products. GENES AND NUTRITION 2021; 16:5. [PMID: 33882831 PMCID: PMC8058972 DOI: 10.1186/s12263-021-00686-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Background Fermented foods are ubiquitous in human diets and often lauded for their sensory, nutritious, and health-promoting qualities. However, precise associations between the intake of fermented foods and health have not been well-established. This is in part due to the limitations of current dietary assessment tools that rely on subjective reporting, making them prone to memory-related errors and reporting bias. The identification of food intake biomarkers (FIBs) bypasses this challenge by providing an objective measure of intake. Despite numerous studies reporting on FIBs for various types of fermented foods and drinks, unique biomarkers associated with the fermentation process (“fermentation-dependent” biomarkers) have not been well documented. We therefore conducted a comprehensive, systematic review of the literature to identify biomarkers of fermented foods commonly consumed in diets across the world. Results After title, abstract, and full-text screening, extraction of data from 301 articles resulted in an extensive list of compounds that were detected in human biofluids following the consumption of various fermented foods, with the majority of articles focusing on coffee (69), wine (69 articles), cocoa (62), beer (34), and bread (29). The identified compounds from all included papers were consolidated and sorted into FIBs proposed for a specific food, for a food group, or for the fermentation process. Alongside food-specific markers (e.g., trigonelline for coffee), and food-group markers (e.g., pentadecanoic acid for dairy intake), several fermentation-dependent markers were revealed. These comprised compounds related to the fermentation process of a particular food, such as mannitol (wine), 2-ethylmalate (beer), methionine (sourdough bread, cheese), theabrownins (tea), and gallic acid (tea, wine), while others were indicative of more general fermentation processes (e.g., ethanol from alcoholic fermentation, 3-phenyllactic acid from lactic fermentation). Conclusions Fermented foods comprise a heterogeneous group of foods. While many of the candidate FIBs identified were found to be non-specific, greater specificity may be observed when considering a combination of compounds identified for individual fermented foods, food groups, and from fermentation processes. Future studies that focus on how fermentation impacts the composition and nutritional quality of food substrates could help to identify novel biomarkers of fermented food intake. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00686-4.
Collapse
Affiliation(s)
- Katherine J Li
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands. .,Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland.
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands
| | - Kathryn J Burton-Pimentel
- Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland
| | - Guy Vergères
- Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
244
|
Chaudhary A, Bhalla S, Patiyal S, Raghava GP, Sahni G. FermFooDb: A database of bioactive peptides derived from fermented foods. Heliyon 2021; 7:e06668. [PMID: 33898816 PMCID: PMC8055555 DOI: 10.1016/j.heliyon.2021.e06668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
Globally fermented foods are in demands due to their functional and nutritional benefits. These foods are sources of probiotic organisms and bioactive peptides, various amino acids, enzymes etc. that provides numerous health benefits. FermFooDb (https://webs.iiitd.edu.in/raghava/fermfoodb/) is a manually curated database of bioactive peptides derived from wide range of foods that maintain comprehensive information about peptides and process of fermentation. This database comprises of 2205 entries with following major fields, peptide sequence, Mass and IC50, food source, functional activity, fermentation conditions, starter culture, testing conditions of sequences in vitro or in vivo, type of model and method of analysis. The bioactive peptides in our database have wide range of therapeutic potentials that includes antihypertensive, ACE-inhibitory, antioxidant, antimicrobial, immunomodulatory and cholesterol lowering peptides. These bioactive peptides were derived from different types of fermented foods that include milk, cheese, yogurt, wheat and rice. Numerous, web-based tools have been integrated to retrieve data, peptide mapping of proteins, similarity search and multiple-sequence alignment. This database will be useful for the food industry and researchers to explore full therapeutic potential of fermented foods from specific cultures.
Collapse
Affiliation(s)
- Anita Chaudhary
- Centre for Environmental Sciences and Resilient Agriculture, ICAR-IARI, New Delhi 110012, India
| | - Sherry Bhalla
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Gajendra P.S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Girish Sahni
- Institute of Microbial Technology, Sector39-A Chandigarh 160036, India
| |
Collapse
|
245
|
Lu Y, Ding H, Jiang X, Zhang H, Ma A, Hu Y, Li Z. Effects of the extract from peanut meal fermented with Bacillus natto and Monascus on lipid metabolism and intestinal barrier function of hyperlipidemic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2561-2569. [PMID: 33063356 DOI: 10.1002/jsfa.10884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hyperlipidemia is one of the metabolic disorders that poses a great threat to human health. This study is aimed at investigating the potential hypolipidemic properties of extract from peanut meal fermented with Bacillus natto and Monascus in mice fed with a high-fat diet. Herein, 60 male C57BL/6J mice were randomly divided into six groups: four control groups, comprised of a normal group, a model (M) group, a positive control group (atorvastatin 10 mg kg-1 ), and a nonfermented peanut meal extract group (150 mg kg-1 ), and two experimental groups, comprised of a fermented peanut meal extract low-dose group (50 mg kg-1 ) and a fermented peanut meal extract high-dose group (FH, 150 mg kg-1 ). RESULTS Body weight (P = 0.001) and levels of serum total cholesterol (P = 0.007), triacylglycerol (P = 0.040), low-density lipoprotein cholesterol (P < 0.001), and leptin (P < 0.001) were remarkably decreased in the FH group, whereas the serum high-density lipoprotein cholesterol levels were increased (P < 0.001) by 78.3% compared with the M group. Ileum tissue stained with hematoxylin and eosin showed that the ileal villus detachments in mice were improved, and the villus height was increased by supplementation with extract from fermented peanut meal. Moreover, the expressions of intestinal ZO-1 (P = 0.003) and occludin (P = 0.013) were elevated in the FH group, compared with the M group. CONCLUSION Extract of peanut meal fermented by B. natto and Monascus can effectively improve hyperlipidemia caused by a high-fat diet in mice, via regulating leptin and blood lipid levels, and protect the intestinal mucosal barrier, which provides evidence for its anti-hyperlipidemia effects and is a research basis for potential industrial development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaqian Lu
- School of Public Health, Medical College, Qingdao University, Qingdao, China
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Haoyue Ding
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Xiaoyang Jiang
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Huiwen Zhang
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Aiguo Ma
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Yingfen Hu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
246
|
Ahire JJ, Jakkamsetty C, Kashikar MS, Lakshmi SG, Madempudi RS. In Vitro Evaluation of Probiotic Properties of Lactobacillus plantarum UBLP40 Isolated from Traditional Indigenous Fermented Food. Probiotics Antimicrob Proteins 2021; 13:1413-1424. [PMID: 33761096 DOI: 10.1007/s12602-021-09775-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
In this study, traditional indigenous fermented food isolate Lactobacillus plantarum UBLP40 was screened for in vitro probiotic properties, antibiotic susceptibility, hemolytic activity, production of lactic acid, hydrogen peroxide, bile salt hydrolase and phytase, and antioxidative activity. Results showed that Lact. plantarum UBLP40 can survive simulated gastrointestinal conditions, adhere to mucin, possess a hydrophobic cell surface, ability to auto-aggregation, and possessed antimicrobial activity against Micrococcus luteus MTCC 106, methicillin-resistant Staphylococcus aureus subsp. aureus ATCC® BAA-1720, Pseudomonas aeruginosa MTCC 1688, and Escherichia coli MTCC 1687. Lact. plantarum UBLP40 produced 48.59 U/mg phytase and 1.78 ± 0.01 gm % lactic acid and showed the ability to produce hydrogen peroxide and bile salt hydrolase. Moreover, the usual antibiotic susceptible profile and non-hemolytic activity indicated the safety of the strain. The intracellular extract of UBLP40 showed 13.8 ± 1.4% (equivalent to ~8 µM butylated hydroxytoluene) α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, reducing activity equivalent to 1 µg L-cysteine, Fe2+ chelation equivalent to 5 µM ethylenediaminetetraacetic acid, and exhibited 17.73 ± 4.40 µM glutathione per gram of protein. In conclusion, this study demonstrates that Lact. plantarum UBLP40 is a potential probiotic candidate.
Collapse
Affiliation(s)
- J J Ahire
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India.
| | - C Jakkamsetty
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| | - M S Kashikar
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| | - S G Lakshmi
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| | - R S Madempudi
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| |
Collapse
|
247
|
Han H, Choi JK, Park J, Im HC, Han JH, Huh MH, Lee YB. Recent innovations in processing technologies for improvement of nutritional quality of soymilk. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1893824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hwana Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Kwon Choi
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Joheun Park
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Hae Cheon Im
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Heum Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Moon Haeng Huh
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Yoon-Bok Lee
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| |
Collapse
|
248
|
Yang X, Ke C, Li L. Physicochemical, rheological and digestive characteristics of soy protein isolate gel induced by lactic acid bacteria. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110243] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
249
|
Marco ML, Sanders ME, Gänzle M, Arrieta MC, Cotter PD, De Vuyst L, Hill C, Holzapfel W, Lebeer S, Merenstein D, Reid G, Wolfe BE, Hutkins R. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol 2021; 18:196-208. [PMID: 33398112 PMCID: PMC7925329 DOI: 10.1038/s41575-020-00390-5] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term 'fermented' led the panel to define fermented foods and beverages as "foods made through desired microbial growth and enzymatic conversions of food components". This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| | - Michael Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Marie Claire Arrieta
- Department of Physiology and Pharmacology, International Microbiome Center, University of Calgary, Calgary, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Wilhelm Holzapfel
- Advanced Green Energy and Environment Institute, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Dan Merenstein
- Department of Family Medicine, Georgetown University, Washington, DC, USA
| | - Gregor Reid
- Lawson Health Research Institute, and Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, Ontario, Canada
| | | | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE, USA.
| |
Collapse
|
250
|
Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T, Hamzah Abdul Latiff A, Abdullah B, Aberer W, Abusada N, Adcock I, Afani A, Agache I, Aggelidis X, Agustin J, Akdis M, Al‐Ahmad M, Al‐Zahab Bassam A, Alburdan H, Aldrey‐Palacios O, Alvarez Cuesta E, Alwan Salman H, Alzaabi A, Amade S, Ambrocio G, Angles R, Annesi‐Maesano I, Ansotegui IJ, Anto J, Ara Bardajo P, Arasi S, Arshad H, Cristina Artesani M, Asayag E, Avolio F, Azhari K, Bachert C, Bagnasco D, Baiardini I, Bajrović N, Bakakos P, Bakeyala Mongono S, Balotro‐Torres C, Barba S, Barbara C, Barbosa E, Barreto B, Bartra J, Bateman ED, Battur L, Bedbrook A, Bedolla Barajas M, Beghé B, Bekere A, Bel E, Ben Kheder A, Benson M, Berghea EC, Bergmann K, Bernardini R, Bernstein D, Bewick M, Bialek S, Białoszewski A, Bieber T, Billo NE, Bilo MB, Bindslev‐Jensen C, Bjermer L, Bobolea I, Bochenska Marciniak M, Bond C, Boner A, Bonini M, Bonini S, Bosnic‐Anticevich S, Bosse I, Botskariova S, Bouchard J, Boulet L, Bourret R, Bousquet P, Braido F, Briggs A, Brightling CE, Brozek J, Brussino L, Buhl R, Bumbacea R, Buquicchio R, Burguete Cabañas M, Bush A, Busse WW, Buters J, Caballero‐Fonseca F, Calderon MA, Calvo M, Camargos P, Camuzat T, Canevari F, Cano A, Canonica GW, Capriles‐Hulett A, Caraballo L, Cardona V, Carlsen K, Carmon Pirez J, Caro J, Carr W, Carreiro‐Martins P, Carreon‐Asuncion F, Carriazo A, Casale T, Castor M, Castro E, Caviglia A, Cecchi L, Cepeda Sarabia A, Chandrasekharan R, Chang Y, Chato‐Andeza V, Chatzi L, Chatzidaki C, Chavannes NH, Chaves Loureiro C, Chelninska M, Chen Y, Cheng L, Chinthrajah S, Chivato T, Chkhartishvili E, Christoff G, Chrystyn H, Chu DK, Chua A, Chuchalin A, Chung KF, Cicerán A, Cingi C, Ciprandi G, Cirule I, Coelho AC, Compalati E, Constantinidis J, Correia de Sousa J, Costa EM, Costa D, Costa Domínguez MDC, Coste A, Cottini M, Cox L, Crisci C, Crivellaro MA, Cruz AA, Cullen J, Custovic A, Cvetkovski B, Czarlewski W, D'Amato G, Silva J, Dahl R, Dahlen S, Daniilidis V, DarjaziniNahhas L, Darsow U, Davies J, Blay F, De Feo G, De Guia E, los Santos C, De Manuel Keenoy E, De Vries G, Deleanu D, Demoly P, Denburg J, Devillier P, Didier A, Dimic Janjic S, Dimou M, Dinh‐Xuan AT, Djukanovic R, Do Ceu Texeira M, Dokic D, Dominguez Silva MG, Douagui H, Douladiris N, Doulaptsi M, Dray G, Dubakiene R, Dupas E, Durham S, Duse M, Dykewicz M, Ebo D, Edelbaher N, Eiwegger T, Eklund P, El‐Gamal Y, El‐Sayed ZA, El‐Sayed SS, El‐Seify M, Emuzyte R, Enecilla L, Erhola M, Espinoza H, Espinoza Contreras JG, Farrell J, Fernandez L, Fink Wagner A, Fiocchi A, Fokkens WJ, Lenia F, Fonseca JA, Fontaine J, Forastiere F, Fuentes Pèrez JM, Gaerlan–Resureccion E, Gaga M, Gálvez Romero JL, Gamkrelidze A, Garcia A, García Cobas CY, García Cruz MDLLH, Gayraud J, Gelardi M, Gemicioglu B, Gennimata D, Genova S, Gereda J, Gerth van Wijk R, Giuliano A, Gomez M, González Diaz S, Gotua M, Grigoreas C, Grisle I, Gualteiro L, Guidacci M, Guldemond N, Gutter Z, Guzmán A, Halloum R, Halpin D, Hamelmann E, Hammadi S, Harvey R, Heffler E, Heinrich J, Hejjaoui A, Hellquist‐Dahl B, Hernández Velázquez L, Hew M, Hossny E, Howarth P, Hrubiško M, Huerta Villalobos YR, Humbert M, Salina H, Hyland M, Ibrahim M, Ilina N, Illario M, Incorvaia C, Infantino A, Irani C, Ispayeva Z, Ivancevich J, E.J. Jares E, Jarvis D, Jassem E, Jenko K, Jiméneracruz Uscanga RD, Johnston SL, Joos G, Jošt M, Julge K, Jung K, Just J, Jutel M, Kaidashev I, Kalayci O, Kalyoncu F, Kapsali J, Kardas P, Karjalainen J, Kasala CA, Katotomichelakis M, Kavaliukaite L, Kazi BS, Keil T, Keith P, Khaitov M, Khaltaev N, Kim Y, Kirenga B, Kleine‐Tebbe J, Klimek L, Koffi N’Goran B, Kompoti E, Kopač P, Koppelman G, KorenJeverica A, Koskinen S, Košnik M, Kostov KV, Kowalski ML, Kralimarkova T, Kramer Vrščaj K, Kraxner H, Kreft S, Kritikos V, Kudlay D, Kuitunen M, Kull I, Kuna P, Kupczyk M, Kvedariene V, Kyriakakou M, Lalek N, Landi M, Lane S, Larenas‐Linnemann D, Lau S, Laune D, Lavrut J, Le L, Lenzenhuber M, Lessa M, Levin M, Li J, Lieberman P, Liotta G, Lipworth B, Liu X, Lobo R, Lodrup Carlsen KC, Lombardi C, Louis R, Loukidis S, Lourenço O, Luna Pech JA, Madjar B, Maggi E, Magnan A, Mahboub B, Mair A, Mais Y, Maitland van der Zee A, Makela M, Makris M, Malling H, Mandajieva M, Manning P, Manousakis M, Maragoudakis P, Marseglia G, Marshall G, Reza Masjedi M, Máspero JF, Matta Campos JJ, Maurer M, Mavale‐Manuel S, Meço C, Melén E, Melioli G, Melo‐Gomes E, Meltzer EO, Menditto E, Menzies‐Gow A, Merk H, Michel J, Micheli Y, Miculinic N, Midão L, Mihaltan F, Mikos N, Milanese M, Milenkovic B, Mitsias D, Moalla B, Moda G, Mogica Martínez MD, Mohammad Y, Moin M, Molimard M, Momas I, Mommers M, Monaco A, Montefort S, Mora D, Morais‐Almeida M, Mösges R, Mostafa B, Mullol J, Münter L, Muraro A, Murray R, Musarra A, Mustakov T, Naclerio R, Nadeau KC, Nadif R, Nakonechna A, Namazova‐Baranova L, Navarro‐Locsin G, Neffen H, Nekam K, Neou A, Nettis E, Neuberger D, Nicod L, Nicola S, Niederberger‐Leppin V, Niedoszytko M, Nieto A, Novellino E, Nunes E, Nyembue D, O’Hehir R, Odjakova C, Ohta K, Okamoto Y, Okubo K, Oliver B, Onorato GL, Pia Orru M, Ouédraogo S, Ouoba K, Paggiaro PL, Pagkalos A, Pajno G, Pala G, Palaniappan S, Pali‐Schöll I, Palkonen S, Palmer S, Panaitescu Bunu C, Panzner P, Papadopoulos NG, Papanikolaou V, Papi A, Paralchev B, Paraskevopoulos G, Park H, Passalacqua G, Patella V, Pavord I, Pawankar R, Pedersen S, Peleve S, Pellegino S, Pereira A, Pérez T, Perna A, Peroni D, Pfaar O, Pham‐Thi N, Pigearias B, Pin I, Piskou K, Pitsios C, Plavec D, Poethig D, Pohl W, Poplas Susic A, Popov TA, Portejoie F, Potter P, Poulsen L, Prados‐Torres A, Prarros F, Price D, Prokopakis E, Puggioni F, Puig‐Domenech E, Puy R, Rabe K, Raciborski F, Ramos J, Recto MT, Reda SM, Regateiro FS, Reider N, Reitsma S, Repka‐Ramirez S, Ridolo E, Rimmer J, Rivero Yeverino D, Angelo Rizzo J, Robalo‐Cordeiro C, Roberts G, Roche N, Rodríguez González M, Rodríguez Zagal E, Rolla G, Rolland C, Roller‐Wirnsberger R, Roman Rodriguez M, Romano A, Romantowski J, Rombaux P, Romualdez J, Rosado‐Pinto J, Rosario N, Rosenwasser L, Rossi O, Rottem M, Rouadi P, Rovina N, Rozman Sinur I, Ruiz M, Ruiz Segura LT, Ryan D, Sagara H, Sakai D, Sakurai D, Saleh W, Salimaki J, Samitas K, Samolinski B, Sánchez Coronel MG, Sanchez‐Borges M, Sanchez‐Lopez J, Sarafoleanu C, Sarquis Serpa F, Sastre‐Dominguez J, Savi E, Sawaf B, Scadding GK, Scheire S, Schmid‐Grendelmeier P, Schuhl JF, Schunemann H, Schvalbová M, Schwarze J, Scichilone N, Senna G, Sepúlveda C, Serrano E, Shields M, Shishkov V, Siafakas N, Simeonov A, FER Simons E, Carlos Sisul J, Sitkauskiene B, Skrindo I, SokličKošak T, Solé D, Sooronbaev T, Soto‐Martinez M, Soto‐Quiros M, Sousa Pinto B, Sova M, Soyka M, Specjalski K, Spranger O, Stamataki S, Stefanaki L, Stellato C, Stelmach R, Strandberg T, Stute P, Subramaniam A, Suppli Ulrik C, Sutherland M, Sylvestre S, Syrigou A, Taborda Barata L, Takovska N, Tan R, Tan F, Tan V, Ping Tang I, Taniguchi M, Tannert L, Tantilipikorn P, Tattersall J, Tesi F, Thijs C, Thomas M, To T, Todo‐Bom A, Togias A, Tomazic P, Tomic‐Spiric V, Toppila‐Salmi S, Toskala E, Triggiani M, Triller N, Triller K, Tsiligianni I, Uberti M, Ulmeanu R, Urbancic J, Urrutia Pereira M, Vachova M, Valdés F, Valenta R, Valentin Rostan M, Valero A, Valiulis A, Vallianatou M, Valovirta E, Van Eerd M, Van Ganse E, Hage M, Vandenplas O, Vasankari T, Vassileva D, Velasco Munoz C, Ventura MT, Vera‐Munoz C, Vicheva D, Vichyanond P, Vidgren P, Viegi G, Vogelmeier C, Von Hertzen L, Vontetsianos T, Vourdas D, Tran Thien Quan V, Wagenmann M, Walker S, Wallace D, Wang DY, Waserman S, Wickman M, Williams S, Williams D, Wilson N, Wong G, Woo K, Wright J, Wroczynski P, Xepapadaki P, Yakovliev P, Yamaguchi M, Yan K, Yeow Yap Y, Yawn B, Yiallouros P, Yorgancioglu A, Yoshihara S, Young I, Yusuf OB, Zaidi A, Zaitoun F, Zar H, Zedda M, Zernotti ME, Zhang L, Zhong N, Zidarn M, Zubrinich C. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021; 76:735-750. [PMID: 32762135 PMCID: PMC7436771 DOI: 10.1111/all.14549] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Large differences in COVID‐19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS‐CoV‐2 binds to its receptor, the angiotensin‐converting enzyme 2 (ACE2). As a result of SARS‐CoV‐2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID‐19. The nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT1R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof‐of‐concept of dietary manipulations that may enhance Nrf2‐associated antioxidant effects, helpful in mitigating COVID‐19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- Charité Universitätsmedizin BerlinHumboldt‐Universität zu Berlin Berlin Germany
- Department of Dermatology and Allergy Berlin Institute of HealthComprehensive Allergy Center Berlin Germany
- MACVIA‐France and CHU Montpellier France
| | - Josep M. Anto
- Centre for Research in Environmental Epidemiology (CREAL) ISGlobAL Barcelona Spain
- IMIM (Hospital del Mar Research Institute) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
| | | | - Tari Haahtela
- Skin and Allergy Hospital Helsinki University Hospital University of Helsinki Finland
| | - Susana C. Fonseca
- Faculty of Sciences GreenUPorto ‐ Sustainable Agrifood Production Research Centre DGAOTUniversity of Porto Porto Portugal
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences Federico II University Napoli Italy
| | - Hubert Blain
- Department of Geriatrics Montpellier University hospital and MUSE Montpellier France
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD) Geneva Switzerland
- AgroParisTech ‐ Paris Institute of Technology for Life, Food and Environmental Sciences Paris France
| | - Aziz Sheikh
- Usher Institute University of Edinburgh Scotland, UK
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Torsten Zuberbier
- Charité Universitätsmedizin BerlinHumboldt‐Universität zu Berlin Berlin Germany
- Department of Dermatology and Allergy Berlin Institute of HealthComprehensive Allergy Center Berlin Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|