201
|
Termini JM, Gupta S, Raffa FN, Guirado E, Fischl MA, Niu L, Kanagavelu S, Stone GW. Epstein Barr virus Latent Membrane Protein-1 enhances dendritic cell therapy lymph node migration, activation, and IL-12 secretion. PLoS One 2017; 12:e0184915. [PMID: 28910387 PMCID: PMC5599068 DOI: 10.1371/journal.pone.0184915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/02/2017] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DC) are a promising cell type for cancer vaccines due to their high immunostimulatory capacity. However, improper maturation of DC prior to treatment may account for the limited efficacy of DC vaccine clinical trials. Latent Membrane Protein-1 (LMP1) of Epstein-Barr virus was examined for its ability to mature and activate DC as a gene-based molecular adjuvant for DC vaccines. DC were transduced with an adenovirus 5 vector (Ad5) expressing LMP1 under the control of a Tet-inducible promoter. Ad5-LMP1 was found to mature and activate both human and mouse DC. LMP1 enhanced in vitro migration of DC toward CCL19, as well as in vivo migration of DC to the inguinal lymph nodes of mice following intradermal injection. LMP1-transduced DC increased T cell proliferation in a Pmel-1 adoptive transfer model and enhanced survival in B16-F10 melanoma models. LMP1-DC also enhanced protection in a vaccinia-Gag viral challenge assay. LMP1 induced high levels of IL-12p70 secretion in mouse DC when compared to standard maturation protocols. Importantly, LMP1-transduced human DC retained the capacity to secrete IL-12p70 and TNF in response to DC restimulation. In contrast, DC matured with Monocyte Conditioned Media-Mimic cocktail (Mimic) were impaired in IL-12p70 secretion following restimulation. Overall, LMP1 matured and activated DC, induced migration to the lymph node, and generated high levels of IL-12p70 in a murine model. We propose LMP1 as a promising molecular adjuvant for DC vaccines.
Collapse
Affiliation(s)
- James M. Termini
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sachin Gupta
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Francesca N. Raffa
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Elizabeth Guirado
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Margaret A. Fischl
- Department of Medicine and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Liguo Niu
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Saravana Kanagavelu
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
202
|
Guinn Z, Brown DM, Petro TM. Activation of IRF3 contributes to IFN-γ and ISG54 expression during the immune responses to B16F10 tumor growth. Int Immunopharmacol 2017; 50:121-129. [PMID: 28651122 PMCID: PMC5548377 DOI: 10.1016/j.intimp.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/15/2017] [Accepted: 06/17/2017] [Indexed: 12/22/2022]
Abstract
Interferon Regulatory Factor (IRF-3) has been shown to contribute to immune control of B16 melanoma tumor growth. We have shown previously that IRF-3 has a role in IFN-γ-induced expression of pro-apoptotic interferon stimulated gene 54 (ISG54) in macrophages and IFN-γ in T cells. To investigate the IRF3-IFN-γ-ISG54 nexus, we injected C57Bl/6 (B6) and IRF3KO mice s.c. with luciferase-producing B16-F10 tumor cells. Tumor growth as measured by luciferase levels was similar between B6 and IRF3KO mice at days 2 and 6, but was significantly greater at day 9 in IRF3KO mice compared with B6 mice. Transcription factor assays on splenic protein extracts after tumor inoculation revealed peak activation of IRF3 and IRF7 at day 6 in B6 tumor-bearing mice but not in IRF3KO tumor-bearing mice. Likewise, significant induction of IFN-γ occurred in spleens and tumors in B6 mice from days 6-9 but failed to occur in tumor-bearing IRF3KO mice. Previous reports from other labs showed that the anti-tumor properties of IFN-γ are the result of cell cycle arrest. Using B16F1 cells or B16F1 cells deficient in IFN-γ receptor (B16-IRFGRKO), we found that IFN-γ alone and in synergy with the TLR3/IRF3 agonists, poly I:C, decreased B16F1 cell growth in significant correlation with increased ISG54 expression. Moreover, IFN-γ alone increased expression of the cell cycle inhibitor, p27Kip while IFN-γ plus poly I:C increased cleaved Caspase-3 in B16 cells. Thus, it is likely that an IFN-γ/IRF3/ISG54 nexus can significantly contribute to tumor cell control during anti-tumor immune responses.
Collapse
Affiliation(s)
- Zachary Guinn
- School of Biological Sciences, University of Nebraska-Lincoln, United States
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States; Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, United States.
| |
Collapse
|
203
|
Budhu S, Schaer DA, Li Y, Toledo-Crow R, Panageas K, Yang X, Zhong H, Houghton AN, Silverstein SC, Merghoub T, Wolchok JD. Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal 2017; 10:10/494/eaak9702. [PMID: 28851824 DOI: 10.1126/scisignal.aak9702] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) suppress antitumor immunity by inhibiting the killing of tumor cells by antigen-specific CD8+ T cells. To better understand the mechanisms involved, we used ex vivo three-dimensional collagen-fibrin gel cultures of dissociated B16 melanoma tumors. This system recapitulated the in vivo suppression of antimelanoma immunity, rendering the dissociated tumor cells resistant to killing by cocultured activated, antigen-specific T cells. Immunosuppression was not observed when tumors excised from Treg-depleted mice were cultured in this system. Experiments with neutralizing antibodies showed that blocking transforming growth factor-β (TGF-β) also prevented immunosuppression. Immunosuppression depended on cell-cell contact or cellular proximity because soluble factors from the collagen-fibrin gel cultures did not inhibit tumor cell killing by T cells. Moreover, intravital, two-photon microscopy showed that tumor-specific Pmel-1 effector T cells physically interacted with tumor-resident Tregs in mice. Tregs isolated from B16 tumors alone were sufficient to suppress CD8+ T cell-mediated killing, which depended on surface-bound TGF-β on the Tregs Immunosuppression of CD8+ T cells correlated with a decrease in the abundance of the cytolytic protein granzyme B and an increase in the cell surface amount of the immune checkpoint receptor programmed cell death protein 1 (PD-1). These findings suggest that contact between Tregs and antitumor T cells in the tumor microenvironment inhibits antimelanoma immunity in a TGF-β-dependent manner and highlight potential ways to inhibit intratumoral Tregs therapeutically.
Collapse
Affiliation(s)
- Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David A Schaer
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yongbiao Li
- Research Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ricardo Toledo-Crow
- Research Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katherine Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xia Yang
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hong Zhong
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alan N Houghton
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samuel C Silverstein
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jedd D Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
204
|
Wu S, Zhu W, Peng Y, Wang L, Hong Y, Huang L, Dong D, Xie J, Merchen T, Kruse E, Guo ZS, Bartlett D, Fu N, He Y. The Antitumor Effects of Vaccine-Activated CD8 + T Cells Associate with Weak TCR Signaling and Induction of Stem-Like Memory T Cells. Cancer Immunol Res 2017; 5:908-919. [PMID: 28851693 DOI: 10.1158/2326-6066.cir-17-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/02/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023]
Abstract
To understand why vaccine-activated tumor-specific T cells often fail to generate antitumor effects, we studied two α-fetoprotein-specific CD8+ T cells (Tet499 and Tet212) that had different antitumor effects. We found that Tet499 required high antigen doses for reactivation, but could survive persistent antigen stimulation and maintain their effector functions. In contrast, Tet212 had a low threshold of reactivation, but underwent exhaustion and apoptosis in the presence of persistent antigen. In vivo, Tet499 cells expanded more than Tet212 upon reencountering antigen and generated stronger antitumor effects. The different antigen responsiveness and antitumor effects of Tet212 and Tet499 cells correlated with their activation and differentiation states. Compared with Tet212, the population of Tet499 cells was less activated and contained more stem-like memory T cells (Tscm) that could undergo expansion in vivo The TCR signaling strength on Tet499 was weaker than Tet212, correlating with more severe Tet499 TCR downregulation. Weak TCR signaling may halt T-cell differentiation at the Tscm stage during immune priming and also explains why Tet499 reactivation requires a high antigen dose. Weak TCR signaling of Tet499 cells in the effector stage will also protect them from exhaustion and apoptosis when they reencounter persistent antigen in tumor lesion, which generates antitumor effects. Further investigation of TCR downregulation and manipulation of TCR signaling strength may help design cancer vaccines to elicit a mix of tumor-specific CD8+ T cells, including Tscm, capable of surviving antigen restimulation to generate antitumor effects. Cancer Immunol Res; 5(10); 908-19. ©2017 AACR.
Collapse
Affiliation(s)
- Sha Wu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Division of Laboratory Medicine of Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yibing Peng
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lan Wang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yuan Hong
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lei Huang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Dayong Dong
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Junping Xie
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Todd Merchen
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Edward Kruse
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - David Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Ning Fu
- Division of Laboratory Medicine of Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia. .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
205
|
Shum T, Omer B, Tashiro H, Kruse RL, Wagner DL, Parikh K, Yi Z, Sauer T, Liu D, Parihar R, Castillo P, Liu H, Brenner MK, Metelitsa LS, Gottschalk S, Rooney CM. Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells. Cancer Discov 2017; 7:1238-1247. [PMID: 28830878 DOI: 10.1158/2159-8290.cd-17-0538] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023]
Abstract
Successful adoptive T-cell immunotherapy of solid tumors will require improved expansion and cytotoxicity of tumor-directed T cells within tumors. Providing recombinant or transgenic cytokines may produce the desired benefits but is associated with significant toxicities, constraining clinical use. To circumvent this limitation, we constructed a constitutively signaling cytokine receptor, C7R, which potently triggers the IL7 signaling axis but is unresponsive to extracellular cytokine. This strategy augments modified T-cell function following antigen exposure, but avoids stimulating bystander lymphocytes. Coexpressing the C7R with a tumor-directed chimeric antigen receptor (CAR) increased T-cell proliferation, survival, and antitumor activity during repeated exposure to tumor cells, without T-cell dysfunction or autonomous T-cell growth. Furthermore, C7R-coexpressing CAR T cells were active against metastatic neuroblastoma and orthotopic glioblastoma xenograft models even at cell doses that had been ineffective without C7R support. C7R may thus be able to enhance antigen-specific T-cell therapies against cancer.Significance: The constitutively signaling C7R system developed here delivers potent IL7 stimulation to CAR T cells, increasing their persistence and antitumor activity against multiple preclinical tumor models, supporting its clinical development. Cancer Discov; 7(11); 1238-47. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1201.
Collapse
Affiliation(s)
- Thomas Shum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Bilal Omer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas
| | - Haruko Tashiro
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Robert L Kruse
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Dimitrios L Wagner
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Kathan Parikh
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Zhongzhen Yi
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Tim Sauer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Daofeng Liu
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Robin Parihar
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Paul Castillo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas
| | - Hao Liu
- Biostatistics Shared Resource, Baylor College of Medicine, Houston, Texas
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Leonid S Metelitsa
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas. .,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
206
|
Overwijk WW. Cancer vaccines in the era of checkpoint blockade: the magic is in the adjuvant. Curr Opin Immunol 2017; 47:103-109. [PMID: 28806603 DOI: 10.1016/j.coi.2017.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
While T cell checkpoint blockade therapy of various cancers yields impressive clinical benefits, most patients are not cured. This is thought to result from insufficient spontaneous tumor-specific T cell responses, a situation that could be remedied with cancer-specific vaccination. Much work is underway to identify cancer-specific antigens, leaving open the question of how to formulate these antigens in a manner that provokes potent cancer-specific T cell responses. In this review I discuss paradigms guiding adjuvant development, and consider what may constitutes a clinically relevant T cell response. I also suggest that adjuvants providing multiple non-redundant signals may be the next frontier in the development of cancer vaccines that provide true clinical benefit when combined with T cell checkpoint blockade.
Collapse
Affiliation(s)
- Willem W Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
207
|
Identification of essential genes for cancer immunotherapy. Nature 2017; 548:537-542. [PMID: 28783722 DOI: 10.1038/nature23477] [Citation(s) in RCA: 620] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
Somatic gene mutations can alter the vulnerability of cancer cells to T-cell-based immunotherapies. Here we perturbed genes in human melanoma cells to mimic loss-of-function mutations involved in resistance to these therapies, by using a genome-scale CRISPR-Cas9 library that consisted of around 123,000 single-guide RNAs, and profiled genes whose loss in tumour cells impaired the effector function of CD8+ T cells. The genes that were most enriched in the screen have key roles in antigen presentation and interferon-γ signalling, and correlate with cytolytic activity in patient tumours from The Cancer Genome Atlas. Among the genes validated using different cancer cell lines and antigens, we identified multiple loss-of-function mutations in APLNR, encoding the apelin receptor, in patient tumours that were refractory to immunotherapy. We show that APLNR interacts with JAK1, modulating interferon-γ responses in tumours, and that its functional loss reduces the efficacy of adoptive cell transfer and checkpoint blockade immunotherapies in mouse models. Our results link the loss of essential genes for the effector function of CD8+ T cells with the resistance or non-responsiveness of cancer to immunotherapies.
Collapse
|
208
|
Scheffel MJ, Scurti G, Simms P, Garrett-Mayer E, Mehrotra S, Nishimura MI, Voelkel-Johnson C. Efficacy of Adoptive T-cell Therapy Is Improved by Treatment with the Antioxidant N-Acetyl Cysteine, Which Limits Activation-Induced T-cell Death. Cancer Res 2017; 76:6006-6016. [PMID: 27742673 DOI: 10.1158/0008-5472.can-16-0587] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
Although adoptive transfer of autologous tumor antigen-specific T-cell immunotherapy can produce remarkable clinical efficacy, most patients do not achieve durable complete responses. We hypothesized that reducing susceptibility of T cells to activation-induced cell death (AICD), which increases during the rapid in vitro expansion of therapeutic T cells before their infusion, might improve the persistence of adoptively transferred cells. Our investigations revealed that repetitive stimulation of the T-cell receptor (TCR) induced AICD, as a result of activating the DNA damage response pathway through ATM-mediated Ser15 phosphorylation of p53. Activation of this DNA damage response pathway also occurred upon antigen-specific restimulation in TCR-transduced TIL1383I T cells prepared for adoptive transfer to patients as part of a clinical trial. Notably, treatment with the antioxidant N-acetyl cysteine (NAC) significantly reduced upregulation of the DNA damage marker γH2AX, subsequent ATM activation, and cell death. In the Pmel mouse model of melanoma, the presence of NAC during ex vivo T-cell expansion improved the persistence of adoptively transferred cells, reduced tumor growth, and increased survival. Taken together, our results offer a preclinical proof of concept for the addition of NAC to current therapeutic T-cell expansion protocols, offering immediate potential to improve the quality and therapeutic efficacy of adoptive T-cell therapeutics infused into patients. Cancer Res; 76(20); 6006-16. ©2016 AACR.
Collapse
Affiliation(s)
- Matthew J Scheffel
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Gina Scurti
- Department of Surgery, Loyola University Chicago, Maywood, Illinois
| | - Patricia Simms
- Flow Cytometry Core Facility, Loyola University Chicago, Maywood, Illinois
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
209
|
Benkhoucha M, Molnarfi N, Kaya G, Belnoue E, Bjarnadóttir K, Dietrich PY, Walker PR, Martinvalet D, Derouazi M, Lalive PH. Identification of a novel population of highly cytotoxic c-Met-expressing CD8 + T lymphocytes. EMBO Rep 2017; 18:1545-1558. [PMID: 28751311 DOI: 10.15252/embr.201744075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/22/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) are critical mediators of anti-tumor immunity, and controlling the mechanisms that govern CTL functions could be crucial for enhancing patient outcome. Previously, we reported that hepatocyte growth factor (HGF) limits effective murine CTL responses via antigen-presenting cells. Here, we show that a fraction of murine effector CTLs expresses the HGF receptor c-Met (c-Met+ CTLs). Phenotypic and functional analysis of c-Met+ CTLs reveals that they display enhanced cytolytic capacities compared to their c-Met- CTL counterparts. Furthermore, HGF directly restrains the cytolytic function of c-Met+ CTLs in cell-mediated cytotoxicity reactions in vitro and in vivo and abrogates T-cell responses against metastatic melanoma in vivo Finally, we establish in three murine tumor settings and in human melanoma tissues that c-Met+ CTLs are a naturally occurring CD8+ T-cell population. Together, our findings suggest that the HGF/c-Met pathway could be exploited to control CD8+ T-cell-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Molnarfi
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Gürkan Kaya
- Division of Dermatology, University Hospital of Geneva, Geneva, Switzerland
| | - Elodie Belnoue
- Amal Therapeutics, Geneva, Switzerland.,Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Kristbjörg Bjarnadóttir
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Amal Therapeutics, Geneva, Switzerland.,Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland .,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
210
|
Grant ML, Shields N, Neumann S, Kramer K, Bonato A, Jackson C, Baird MA, Young SL. Combining dendritic cells and B cells for presentation of oxidised tumour antigens to CD8 + T cells. Clin Transl Immunology 2017; 6:e149. [PMID: 28791124 PMCID: PMC5539416 DOI: 10.1038/cti.2017.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
The dendritic cell (DC) is the foremost antigen-presenting cell (APC) for ex vivo expansion of tumour-specific patient T cells. Despite marked responses in some patients following reinfusion of DC-activated autologous or HLA-matched donor T cells, overall response rates remain modest in solid tumours. Furthermore, most studies aim to generate immune responses against defined tumour-associated antigens (TAA), however, meta-analysis reveals that those approaches have less clinical success than those using whole tumour cells or their components. Tumour lysate (TL) is used as a source of tumour antigen in clinical trials and potentially represents the full range of TAAs in an undefined state. Little is known about how different APCs cooperate to present TL antigens. We examined the effect of oxidised whole-cell lysate (ox-L) versus soluble fraction freeze-thaw lysate (s-L) on bone marrow-derived DCs and macrophages, and magnetic bead-isolated splenic B cells. The APCs were used individually, or in combination, to prime T cells. CD8+ T cells produced interferon (IFN)-γ in response to both s-L and ox-L, but only proliferated in response to ox-L. IFN-γ production and proliferation was enhanced by priming with the DC+B cell combination. Compared to DC alone, a trend toward greater interleukin (IL)-12 production was observed when DC+B cell were loaded with s-L and ox-L antigens. CD8+ T-cell specific lysis in vivo was greatest in ox-L-primed groups and DC+B cell priming significantly increased in vivo cytotoxicity compared to DC alone. These improved T-cell responses with two APCs and stressed cell lysate has implications for APC-based adoptive cell therapies.
Collapse
Affiliation(s)
- Melanie L Grant
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Nicholas Shields
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Silke Neumann
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Katrin Kramer
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Andrea Bonato
- Ambulatorio Veterinario Summano, Via Europa, Santorso, Italy
| | | | - Margaret A Baird
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sarah L Young
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
211
|
Pathangey LB, McCurry DB, Gendler SJ, Dominguez AL, Gorman JE, Pathangey G, Mihalik LA, Dang Y, Disis ML, Cohen PA. Surrogate in vitro activation of innate immunity synergizes with interleukin-7 to unleash rapid antigen-driven outgrowth of CD4+ and CD8+ human peripheral blood T-cells naturally recognizing MUC1, HER2/neu and other tumor-associated antigens. Oncotarget 2017; 8:10785-10808. [PMID: 27974697 PMCID: PMC5355224 DOI: 10.18632/oncotarget.13911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/23/2016] [Indexed: 01/21/2023] Open
Abstract
Effective adoptive immunotherapy has proved elusive for many types of human cancer, often due to difficulties achieving robust expansion of natural tumor-specific T-cells from peripheral blood. We hypothesized that antigen-driven T-cell expansion might best be triggered in vitro by acute activation of innate immunity to mimic a life-threatening infection. Unfractionated peripheral blood mononuclear cells (PBMC) were subjected to a two-step culture, first synchronizing their exposure to exogenous antigens with aggressive surrogate activation of innate immunity, followed by γ-chain cytokine-modulated T-cell hyperexpansion. Step 1 exposure to GM-CSF plus paired Toll-like receptor agonists (resiquimod and LPS), stimulated abundant IL-12 and IL-23 secretion, as well as upregulated co-stimulatory molecules and CD11c expression within the myeloid (CD33+) subpopulation. Added synthetic long peptides (>20aa) derived from widely expressed oncoproteins (MUC1, HER2/neu and CMVpp65), were reliably presented to CD4+ T-cells and cross-presented to CD8+ T-cells. Both presentation and cross-presentation demonstrated proteasomal and Sec61 dependence that could bypass the endoplasmic reticulum. Step 2 exposure to exogenous IL-7 or IL-7+IL-2 produced selective and sustained expansion of both CD4+ and CD8+ peptide-specific T-cells with a predominant interferon-γ-producing T1-type, as well as the antigen-specific ability to lyse tumor targets. Other γ-chain cytokines and/or combinations were initially proliferogenic, but followed by a contractile phase not observed with IL-7 or IL-7+IL-2. Regulatory T-cells were minimally propagated under these culture conditions. This mechanistically rational culture sequence, effective even for unvaccinated donors, enables rapid preparation of T-cells recognizing tumor-associated antigens expressed by the majority of human cancers, including pancreatic cancers, breast cancers and glioblastomas.
Collapse
Affiliation(s)
- Latha B Pathangey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Dustin B McCurry
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Sandra J Gendler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Ana L Dominguez
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Jessica E Gorman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Girish Pathangey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Laurie A Mihalik
- Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Yushe Dang
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Peter A Cohen
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
212
|
Park J, Talukder AH, Lim SA, Kim K, Pan K, Melendez B, Bradley SD, Jackson KR, Khalili JS, Wang J, Creasy C, Pan BF, Woodman SE, Bernatchez C, Hawke D, Hwu P, Lee KM, Roszik J, Lizée G, Yee C. SLC45A2: A Melanoma Antigen with High Tumor Selectivity and Reduced Potential for Autoimmune Toxicity. Cancer Immunol Res 2017. [PMID: 28630054 DOI: 10.1158/2326-6066.cir-17-0051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cytotoxic T lymphocyte (CTL)-based immunotherapies have had remarkable success at generating objective clinical responses in patients with advanced metastatic melanoma. Although the melanocyte differentiation antigens (MDA) MART-1, PMEL, and tyrosinase were among the first melanoma tumor-associated antigens identified and targeted with immunotherapy, expression within normal melanocytes of the eye and inner ear can elicit serious autoimmune side effects, thus limiting their clinical potential as CTL targets. Using a tandem mass spectrometry (MS) approach to analyze the immunopeptidomes of 55 melanoma patient-derived cell lines, we identified a number of shared HLA class I-bound peptides derived from the melanocyte-specific transporter protein SLC45A2. Antigen-specific CTLs generated against HLA-A*0201- and HLA-A*2402-restricted SLC45A2 peptides effectively killed a majority of HLA-matched cutaneous, uveal, and mucosal melanoma cell lines tested (18/25). CTLs specific for SLC45A2 showed significantly reduced recognition of HLA-matched primary melanocytes that were, conversely, robustly killed by MART1- and PMEL-specific T cells. Transcriptome analysis revealed that SLC45A2 mRNA expression in normal melanocytes was less than 2% that of other MDAs, therefore providing a more favorable melanoma-to-melanocyte expression ratio. Expression of SLC45A2 and CTL sensitivity could be further upregulated in BRAF(V600E)-mutant melanoma cells upon treatment with BRAF or MEK inhibitors, similarly to other MDAs. Taken together, our study demonstrates the feasibility of using tandem MS as a means of discovering shared immunogenic tumor-associated epitopes and identifies SLC45A2 as a promising immunotherapeutic target for melanoma with high tumor selectivity and reduced potential for autoimmune toxicity. Cancer Immunol Res; 5(8); 618-29. ©2017 AACR.
Collapse
Affiliation(s)
- Jungsun Park
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amjad H Talukder
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seon A Lim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwanghee Kim
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ke Pan
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brenda Melendez
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherille D Bradley
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle R Jackson
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jahan S Khalili
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junmei Wang
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caitlin Creasy
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bih-Fang Pan
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Scott E Woodman
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chantale Bernatchez
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Hawke
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jason Roszik
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Lizée
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Departments of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, Texas
| | - Cassian Yee
- Center for Cancer Immunology Research, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Departments of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
213
|
Oyler-Yaniv J, Oyler-Yaniv A, Shakiba M, Min NK, Chen YH, Cheng SY, Krichevsky O, Altan-Bonnet N, Altan-Bonnet G. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation. Mol Cell 2017; 66:635-647.e7. [PMID: 28575659 PMCID: PMC6611463 DOI: 10.1016/j.molcel.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023]
Abstract
Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways.
Collapse
MESH Headings
- Animals
- Cell Communication
- Cell Line, Tumor
- Coculture Techniques
- Computational Biology
- Computer Simulation
- Databases, Genetic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Janus Kinases/metabolism
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphatidylserines/immunology
- Phosphatidylserines/metabolism
- Phosphorylation
- RAW 264.7 Cells
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Time Factors
- Transcription, Genetic
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alon Oyler-Yaniv
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mojdeh Shakiba
- Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nina K Min
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ying-Han Chen
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Oleg Krichevsky
- Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel; Ilse Kats Center for Nanoscience, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Grégoire Altan-Bonnet
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
214
|
Kim KD, Bae S, Capece T, Nedelkovska H, de Rubio RG, Smrcka AV, Jun CD, Jung W, Park B, Kim TI, Kim M. Targeted calcium influx boosts cytotoxic T lymphocyte function in the tumour microenvironment. Nat Commun 2017; 8:15365. [PMID: 28504276 PMCID: PMC5440668 DOI: 10.1038/ncomms15365] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Adoptive cell transfer utilizing tumour-targeting cytotoxic T lymphocytes (CTLs) is one of the most effective immunotherapies against haematological malignancies, but significant clinical success has not yet been achieved in solid tumours due in part to the strong immunosuppressive tumour microenvironment. Here, we show that suppression of CTL killing by CD4+CD25+Foxp3+ regulatory T cell (Treg) is in part mediated by TGFβ-induced inhibition of inositol trisphosphate (IP3) production, leading to a decrease in T cell receptor (TCR)-dependent intracellular Ca2+ response. Highly selective optical control of Ca2+ signalling in adoptively transferred CTLs enhances T cell activation and IFN-γ production in vitro, leading to a significant reduction in tumour growth in mice. Altogether, our findings indicate that the targeted optogenetic stimulation of intracellular Ca2+ signal allows for the remote control of cytotoxic effector functions of adoptively transferred T cells with outstanding spatial resolution by boosting T cell immune responses at the tumour sites.
Collapse
MESH Headings
- Animals
- Calcium/immunology
- Calcium/metabolism
- Cell Line, Tumor
- HEK293 Cells
- Humans
- Immunotherapy, Adoptive/methods
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/transplantation
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Burden/genetics
- Tumor Burden/immunology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Kyun-Do Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | - Seyeon Bae
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | - Tara Capece
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | - Hristina Nedelkovska
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | - Rafael G. de Rubio
- Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, USA
| | - Alan V. Smrcka
- Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, USA
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Tae-il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
215
|
Rachidi S, Metelli A, Riesenberg B, Wu BX, Nelson MH, Wallace C, Paulos CM, Rubinstein MP, Garrett-Mayer E, Hennig M, Bearden DW, Yang Y, Liu B, Li Z. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol 2017; 2:2/11/eaai7911. [PMID: 28763790 DOI: 10.1126/sciimmunol.aai7911] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 03/23/2017] [Indexed: 12/13/2022]
Abstract
Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We show that genetic targeting of platelets enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as major platelet-derived soluble factors to obliterate CD4+ and CD8+ T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of the TGFβ-docking receptor glycoprotein A repetitions predominant (GARP) rather than secretion of TGFβ per se. Platelet-specific deletion of the GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Last, this study shows that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available antiplatelet agents. We conclude that platelets constrain T cell immunity through a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Saleh Rachidi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alessandra Metelli
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian Riesenberg
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bill X Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michelle H Nelson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Caroline Wallace
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Garrett-Mayer
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mirko Hennig
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel W Bearden
- National Institutes of Standards and Technology, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Yi Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bei Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA. .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,First Affiliated Hospital, Zhengzhou University School of Medicine, Zhengzhou 450052, Henan, China
| |
Collapse
|
216
|
Calì B, Molon B, Viola A. Tuning cancer fate: the unremitting role of host immunity. Open Biol 2017; 7:rsob.170006. [PMID: 28404796 PMCID: PMC5413907 DOI: 10.1098/rsob.170006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.
Collapse
Affiliation(s)
- B Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,Venetian Institute of Molecular Medicine, Padua, Italy
| | - B Molon
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - A Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
217
|
Malik BT, Byrne KT, Vella JL, Zhang P, Shabaneh TB, Steinberg SM, Molodtsov AK, Bowers JS, Angeles CV, Paulos CM, Huang YH, Turk MJ. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci Immunol 2017; 2:2/10/eaam6346. [PMID: 28738020 DOI: 10.1126/sciimmunol.aam6346] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022]
Abstract
Tissue-resident memory T (TRM) cells have been widely characterized in infectious disease settings; however, their role in mediating immunity to cancer remains unknown. We report that skin-resident memory T cell responses to melanoma are generated naturally as a result of autoimmune vitiligo. Melanoma antigen-specific TRM cells resided predominantly in melanocyte-depleted hair follicles and were maintained without recirculation or replenishment from the lymphoid compartment. These cells expressed CD103, CD69, and CLA (cutaneous lymphocyte antigen), but lacked PD-1 (programmed cell death protein-1) or LAG-3 (lymphocyte activation gene-3), and were capable of making IFN-γ (interferon-γ). CD103 expression on CD8 T cells was required for the establishment of TRM cells in the skin but was dispensable for vitiligo development. CD103+ CD8 TRM cells were critical for protection against melanoma rechallenge. This work establishes that CD103-dependent TRM cells play a key role in perpetuating antitumor immunity.
Collapse
Affiliation(s)
- Brian T Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Katelyn T Byrne
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Parker Institute for Cancer Immunotherapy and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer L Vella
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Peisheng Zhang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tamer B Shabaneh
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Shannon M Steinberg
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Aleksey K Molodtsov
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jacob S Bowers
- Departments of Microbiology and Immunology, and Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Christina V Angeles
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Chrystal M Paulos
- Departments of Microbiology and Immunology, and Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. .,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
218
|
The cryo-thermal therapy eradicated melanoma in mice by eliciting CD4 + T-cell-mediated antitumor memory immune response. Cell Death Dis 2017; 8:e2703. [PMID: 28333145 PMCID: PMC5386530 DOI: 10.1038/cddis.2017.125] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/03/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Tumor metastasis is a major concern in tumor therapy. In our previous studies, a novel tumor therapeutic modality of the cryo-thermal therapy has been presented, highlighting its effect on the suppression of distal metastasis and leading to long-term survival in 4T1 murine mammary carcinoma model. To demonstrate the therapeutic efficacy in other aggressive tumor models and further investigate the mechanism of long-term survival induced, in this study, spontaneous metastatic murine B16F10 melanoma model was used. The cryo-thermal therapy induced regression of implanted melanoma and prolonged long-term survival while inhibiting lung metastasis. It also promoted the activation of CD4+ CD25− conventional T cells, while reduced the percentage of CD4+ CD25+ regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the spleen, lung and blood. Furthermore, the cryo-thermal therapy enhanced the cytolytic function of CD8+ T cells and induced differentiation of CD8+ T cells into memory stem T cell (TSCM), and differentiation of CD4+ T cells into dominant CD4-CTL, Th1 and Tfh subsets in the spleen for 90 days after the treatment. It was found that good therapeutic effect was mainly dependent on CD4+ T cells providing a durable memory antitumor immune response. At the same time, significant increase of serum IFN-γ was also observed to provide an ideal microenvironment of antitumor immunity. Further study showed that the rejection of re-challenge of B16F10 but not GL261 tumor in the treated mice in 45 or 60 days after the treatment, implied a strong systemic and melanoma-specific memory antitumor immunity induced by the treatment. Thus the cryo-thermal therapy would be considered as a new therapeutic strategy to prevent tumor recurrence and metastasis with potential clinical applications in the near future.
Collapse
|
219
|
Neitzke DJ, Bowers JS, Andrijauskaite K, O'Connell NS, Garrett-Mayer E, Wrangle J, Li Z, Paulos CM, Cole DJ, Rubinstein MP. Murine Th17 cells utilize IL-2 receptor gamma chain cytokines but are resistant to cytokine withdrawal-induced apoptosis. Cancer Immunol Immunother 2017; 66:737-751. [PMID: 28280853 DOI: 10.1007/s00262-017-1965-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/27/2017] [Indexed: 12/30/2022]
Abstract
Adoptive cellular therapy (ACT) with the Th17 subset of CD4+ T cells can cure established melanoma in preclinical models and holds promise for treating human cancer. However, little is known about the growth factors necessary for optimal engraftment and anti-tumor activity of Th17 cells. Due to the central role of IL-2 receptor gamma chain (IL2Rγ-chain) cytokines (IL-2, IL-7, and IL-15) in the activity and persistence of many T cell subsets after adoptive transfer, we hypothesized that these cytokines are important for Th17 cells. We found that Th17 cells proliferated in response to IL-2, IL-7, and IL-15 in vitro. However, in contrast to many other T cell subsets, including conventionally activated CD8+ T cells, we found that Th17 cells were resistant to apoptosis in the absence of IL2Rγ-chain cytokines. To determine whether Th17 cells utilize IL2Rγ-chain cytokines in vivo, we tracked Th17 cell engraftment after adoptive transfer with or without cytokine depletion. Depletion of IL-7 and/or IL-2 decreased initial engraftment, while depletion of IL-15 did not. Supplementation of IL-2 increased initial Th17 engraftment. To assess the clinical relevance of these findings, we treated melanoma-bearing mice with Th17 cell adoptive transfer and concurrent cytokine depletion or supplementation. We found that simultaneous depletion of IL-2 and IL-7 decreased therapeutic efficacy, depletion of IL-15 had no effect, and IL-2 supplementation increased therapeutic efficacy. Our results show that Th17 cells are responsive to IL2Rγ-chain cytokines, and provide insight into the application of these cytokines for Th17-based therapeutic strategies.
Collapse
Affiliation(s)
- Daniel J Neitzke
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jacob S Bowers
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kristina Andrijauskaite
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nathaniel S O'Connell
- Department of Public Health Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John Wrangle
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David J Cole
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mark P Rubinstein
- Departments of Surgery, and Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Hollings Cancer Center Room 506, Charleston, SC, 29425, USA.
| |
Collapse
|
220
|
|
221
|
Shim KG, Zaidi S, Thompson J, Kottke T, Evgin L, Rajani KR, Schuelke M, Driscoll CB, Huff A, Pulido JS, Vile RG. Inhibitory Receptors Induced by VSV Viroimmunotherapy Are Not Necessarily Targets for Improving Treatment Efficacy. Mol Ther 2017; 25:962-975. [PMID: 28237836 DOI: 10.1016/j.ymthe.2017.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/28/2022] Open
Abstract
Systemic viroimmunotherapy activates endogenous innate and adaptive immune responses against both viral and tumor antigens. We have shown that therapy with vesicular stomatitis virus (VSV) engineered to express a tumor-associated antigen activates antigen-specific adoptively transferred T cells (adoptive cell therapy, ACT) in vivo to generate effective therapy. The overall goal of this study was to phenotypically characterize the immune response to VSV+ACT therapy and use the information gained to rationally improve combination therapy. We observed rapid expansion of blood CD8+ effector cells acutely following VSV therapy with markedly high expression of the immune checkpoint molecules PD-1 and TIM-3. Using these data, we tested a treatment schedule incorporating mAb immune checkpoint inhibitors with VSV+ACT treatment. Unlike clinical scenarios, we delivered therapy at early time points following tumor establishment and treatment. Our goal was to potentiate the immune response generated by VSV therapy to achieve durable control of metastatic disease. Despite the high frequency of endogenous PD-1+ TIM-3+ CD8+ T cells following virus administration, antibody blockade did not improve survival. These findings provide highly significant information about response kinetics to viroimmunotherapy and juxtapose the clinical use of checkpoint inhibitors against chronically dysfunctional T cells and the acute T cell response to oncolytic viruses.
Collapse
Affiliation(s)
- Kevin G Shim
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Shane Zaidi
- Targeted Therapy Laboratory, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JJ, UK
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Karishma R Rajani
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew Schuelke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Amanda Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
222
|
The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol 2017; 39:225-239. [PMID: 28138787 DOI: 10.1007/s00281-016-0616-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
In this review, we focus on the biologic advantages of dendritic cell-based vaccinations as a therapeutic strategy for cancer as well as preclinical and emerging clinical data associated with such approaches for glioblastoma patients.
Collapse
|
223
|
Xin G, Schauder DM, Jing W, Jiang A, Joshi NS, Johnson B, Cui W. Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors. Proc Natl Acad Sci U S A 2017; 114:740-745. [PMID: 28069963 PMCID: PMC5278465 DOI: 10.1073/pnas.1614315114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Because of insufficient migration and antitumor function of transferred T cells, especially inside the immunosuppressive tumor microenvironment (TME), the efficacy of adoptive cell transfer (ACT) is much curtailed in treating solid tumors. To overcome these challenges, we sought to reenergize ACT (ReACT) with a pathogen-based cancer vaccine. To bridge ACT with a pathogen, we genetically engineered tumor-specific CD8 T cells in vitro with a second T-cell receptor (TCR) that recognizes a bacterial antigen. We then transferred these dual-specific T cells in combination with intratumoral bacteria injection to treat solid tumors in mice. The dual-specific CD8 T cells expanded vigorously, migrated to tumor sites, and robustly eradicated primary tumors. The mice cured from ReACT also developed immunological memory against tumor rechallenge. Mechanistically, we have found that this combined approach reverts the immunosuppressive TME and recruits CD8 T cells with an increased number and killing ability to the tumors.
Collapse
Affiliation(s)
- Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53213
| | - David M Schauder
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53213
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Weiqing Jing
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Aimin Jiang
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Nikhil S Joshi
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Bryon Johnson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53213;
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
224
|
Richmond JM, Masterjohn E, Chu R, Tedstone J, Youd ME, Harris JE. CXCR3 Depleting Antibodies Prevent and Reverse Vitiligo in Mice. J Invest Dermatol 2017; 137:982-985. [PMID: 28126463 DOI: 10.1016/j.jid.2016.10.048] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/21/2016] [Accepted: 10/24/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jillian M Richmond
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Ruiyin Chu
- Protein Production and Biology, Sanofi-Genzyme, Framingham, Massachusetts, USA
| | - Jennifer Tedstone
- Immunology and Inflammation Research, Sanofi-Genzyme, Framingham, Massachusetts, USA
| | - Michele E Youd
- Immunology and Inflammation Research, Sanofi-Genzyme, Framingham, Massachusetts, USA
| | - John E Harris
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
225
|
Klinke DJ, Wang Q. Inferring the Impact of Regulatory Mechanisms that Underpin CD8+ T Cell Control of B16 Tumor Growth In vivo Using Mechanistic Models and Simulation. Front Pharmacol 2017; 7:515. [PMID: 28101055 PMCID: PMC5209634 DOI: 10.3389/fphar.2016.00515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
A major barrier for broadening the efficacy of immunotherapies for cancer is identifying key mechanisms that limit the efficacy of tumor infiltrating lymphocytes. Yet, identifying these mechanisms using human samples and mouse models for cancer remains a challenge. While interactions between cancer and the immune system are dynamic and non-linear, identifying the relative roles that biological components play in regulating anti-tumor immunity commonly relies on human intuition alone, which can be limited by cognitive biases. To assist natural intuition, modeling and simulation play an emerging role in identifying therapeutic mechanisms. To illustrate the approach, we developed a multi-scale mechanistic model to describe the control of tumor growth by a primary response of CD8+ T cells against defined tumor antigens using the B16 C57Bl/6 mouse model for malignant melanoma. The mechanistic model was calibrated to data obtained following adenovirus-based immunization and validated to data obtained following adoptive transfer of transgenic CD8+ T cells. More importantly, we use simulation to test whether the postulated network topology, that is the modeled biological components and their associated interactions, is sufficient to capture the observed anti-tumor immune response. Given the available data, the simulation results also provided a statistical basis for quantifying the relative importance of different mechanisms that underpin CD8+ T cell control of B16F10 growth. By identifying conditions where the postulated network topology is incomplete, we illustrate how this approach can be used as part of an iterative design-build-test cycle to expand the predictive power of the model.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical and Biomedical Engineering and WVU Cancer Institute, West Virginia UniversityMorgantown, WV, USA; Department of Microbiology, Immunology, and Cell Biology, West Virginia UniversityMorgantown, WV, USA
| | - Qing Wang
- Department of Computer Science, Mathematics and Engineering, Shepherd University Shepherdstown, WV, USA
| |
Collapse
|
226
|
Ng SSM, Nagy BA, Jensen SM, Hu X, Alicea C, Fox BA, Felber BK, Bergamaschi C, Pavlakis GN. Heterodimeric IL15 Treatment Enhances Tumor Infiltration, Persistence, and Effector Functions of Adoptively Transferred Tumor-specific T Cells in the Absence of Lymphodepletion. Clin Cancer Res 2016; 23:2817-2830. [PMID: 27986749 DOI: 10.1158/1078-0432.ccr-16-1808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Purpose: Adoptive cell transfer (ACT) is a promising immunotherapeutic approach for cancer. Host lymphodepletion is associated with favorable ACT therapy outcomes, but it may cause detrimental effects in humans. We tested the hypothesis that IL15 administration enhances ACT in the absence of lymphodepletion. We previously showed that bioactive IL15 in vivo comprises a stable complex of the IL15 chain with the IL15 receptor alpha chain (IL15Rα), termed heterodimeric IL15 (hetIL15).Experimental Design: We evaluated the effects of the combination regimen ACT + hetIL15 in the absence of lymphodepletion by transferring melanoma-specific Pmel-1 T cells into B16 melanoma-bearing mice.Results: hetIL15 treatment delayed tumor growth by promoting infiltration and persistence of both adoptively transferred Pmel-1 cells and endogenous CD8+ T cells into the tumor. In contrast, persistence of Pmel-1 cells was severely reduced following irradiation in comparison with mice treated with hetIL15. Importantly, we found that hetIL15 treatment led to the preferential enrichment of Pmel-1 cells in B16 tumor sites in an antigen-dependent manner. Upon hetIL15 administration, tumor-infiltrating Pmel-1 cells showed a "nonexhausted" effector phenotype, characterized by increased IFNγ secretion, proliferation, and cytotoxic potential and low level of PD-1. hetIL15 treatment also resulted in an improved ratio of Pmel-1 to Treg in the tumor.Conclusions: hetIL15 administration improves the outcome of ACT in lymphoreplete hosts, a finding with significant implications for improving cell-based cancer immunotherapy strategies. Clin Cancer Res; 23(11); 2817-30. ©2016 AACR.
Collapse
Affiliation(s)
- Sinnie Sin Man Ng
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Bethany A Nagy
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.,Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Shawn M Jensen
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, Oregon
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, Oregon
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.
| |
Collapse
|
227
|
Slaney CY, von Scheidt B, Davenport AJ, Beavis PA, Westwood JA, Mardiana S, Tscharke DC, Ellis S, Prince HM, Trapani JA, Johnstone RW, Smyth MJ, Teng MW, Ali A, Yu Z, Rosenberg SA, Restifo NP, Neeson P, Darcy PK, Kershaw MH. Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clin Cancer Res 2016; 23:2478-2490. [PMID: 27965307 DOI: 10.1158/1078-0432.ccr-16-1860] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/16/2022]
Abstract
Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model.Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors.Results: ACTIV therapy induced durable complete remission of a variety of Her2+ tumors, some in excess of 150 mm2, in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL2, but were independent of IFNγ. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient.Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissues. Clin Cancer Res; 23(10); 2478-90. ©2016 AACR.
Collapse
Affiliation(s)
- Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Bianca von Scheidt
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander J Davenport
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer A Westwood
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Sherly Mardiana
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sarah Ellis
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ricky W Johnstone
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michele W Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Aesha Ali
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Steven A Rosenberg
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Paul Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Australia
| |
Collapse
|
228
|
Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment. Gene Ther 2016; 24:92-103. [PMID: 27906162 PMCID: PMC5441514 DOI: 10.1038/gt.2016.80] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/30/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
CD40 is an interesting target in cancer immunotherapy due to its ability to stimulate T-helper 1 immunity via maturation of dendritic cells and to drive M2 to M1 macrophage differentiation. Pancreatic cancer has a high M2 content that has shown responsive to anti-CD40 agonist therapy and CD40 may thus be a suitable target for immune activation in these patients. In this study, a novel oncolytic adenovirus armed with a trimerized membrane-bound extracellular CD40L (TMZ-CD40L) was evaluated as a treatment of pancreatic cancer. Further, the CD40L mechanisms of action were elucidated in cancer models. The results demonstrated that the virus transferring TMZ-CD40L had oncolytic capacity in pancreatic cancer cells and could control tumor progression. TMZ-CD40L was a potent stimulator of human myeloid cells and T-cell responses. Further, CD40L-mediated stimulation increased tumor-infiltrating T cells in vivo, which may be due to a direct activation of endothelial cells to upregulate receptors for lymphocyte attachment and transmigration. In conclusion, CD40L-mediated gene therapy is an interesting concept for the treatment of tumors with high levels of M2 macrophages, such as pancreatic cancer, and an oncolytic virus as carrier of CD40L may further boost tumor killing and immune activation.
Collapse
|
229
|
Stark FC, McCluskie MJ, Krishnan L. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8⁺ T Cells that Protect Against Subcutaneous B16-OVA Melanoma. Vaccines (Basel) 2016; 4:vaccines4040044. [PMID: 27869670 PMCID: PMC5192364 DOI: 10.3390/vaccines4040044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 01/04/2023] Open
Abstract
Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8+ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8+ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8+ T cell response of up to 45% of all circulating CD8+ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8+ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8+ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8+ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection.
Collapse
Affiliation(s)
- Felicity C Stark
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd., Ottawa, ON K1A 0R6, Canada.
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd., Ottawa, ON K1A 0R6, Canada.
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd., Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
230
|
De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, Douglas M, Tibbitts T, Sharma S, Proctor J, Kosmider N, White K, Stern H, Soglia J, Adams J, Palombella VJ, McGovern K, Kutok JL, Wolchok JD, Merghoub T. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 2016; 539:443-447. [PMID: 27828943 PMCID: PMC5634331 DOI: 10.1038/nature20554] [Citation(s) in RCA: 653] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
Abstract
Recent clinical trials using immunotherapy have demonstrated its potential to control cancer by disinhibiting the immune system. Immune checkpoint blocking (ICB) antibodies against cytotoxic-T-lymphocyte-associated protein 4 or programmed cell death protein 1/programmed death-ligand 1 have displayed durable clinical responses in various cancers. Although these new immunotherapies have had a notable effect on cancer treatment, multiple mechanisms of immune resistance exist in tumours. Among the key mechanisms, myeloid cells have a major role in limiting effective tumour immunity. Growing evidence suggests that high infiltration of immune-suppressive myeloid cells correlates with poor prognosis and ICB resistance. These observations suggest a need for a precision medicine approach in which the design of the immunotherapeutic combination is modified on the basis of the tumour immune landscape to overcome such resistance mechanisms. Here we employ a pre-clinical mouse model system and show that resistance to ICB is directly mediated by the suppressive activity of infiltrating myeloid cells in various tumours. Furthermore, selective pharmacologic targeting of the gamma isoform of phosphoinositide 3-kinase (PI3Kγ), highly expressed in myeloid cells, restores sensitivity to ICB. We demonstrate that targeting PI3Kγ with a selective inhibitor, currently being evaluated in a phase 1 clinical trial (NCT02637531), can reshape the tumour immune microenvironment and promote cytotoxic-T-cell-mediated tumour regression without targeting cancer cells directly. Our results introduce opportunities for new combination strategies using a selective small molecule PI3Kγ inhibitor, such as IPI-549, to overcome resistance to ICB in patients with high levels of suppressive myeloid cell infiltration in tumours.
Collapse
Affiliation(s)
- Olivier De Henau
- Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy and Swim Across America/Ludwig Collaborative Laboratory, New York, New York, USA
| | - Matthew Rausch
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - David Winkler
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Luis Felipe Campesato
- Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy and Swim Across America/Ludwig Collaborative Laboratory, New York, New York, USA
| | - Cailian Liu
- Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy and Swim Across America/Ludwig Collaborative Laboratory, New York, New York, USA
| | - Daniel Hirschhorn Cymerman
- Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy and Swim Across America/Ludwig Collaborative Laboratory, New York, New York, USA
| | - Sadna Budhu
- Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy and Swim Across America/Ludwig Collaborative Laboratory, New York, New York, USA
| | - Arnab Ghosh
- Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy and Swim Across America/Ludwig Collaborative Laboratory, New York, New York, USA
| | - Melissa Pink
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Jeremy Tchaicha
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Mark Douglas
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Thomas Tibbitts
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Sujata Sharma
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | | | - Nicole Kosmider
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Kerry White
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Howard Stern
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - John Soglia
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Julian Adams
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | | | - Karen McGovern
- Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | | | - Jedd D. Wolchok
- Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy and Swim Across America/Ludwig Collaborative Laboratory, New York, New York, USA
- Weill Cornell Medical and Graduate Schools, New York, New York, USA
| | - Taha Merghoub
- Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy and Swim Across America/Ludwig Collaborative Laboratory, New York, New York, USA
| |
Collapse
|
231
|
Wang QJ, Yu Z, Hanada KI, Patel K, Kleiner D, Restifo NP, Yang JC. Preclinical Evaluation of Chimeric Antigen Receptors Targeting CD70-Expressing Cancers. Clin Cancer Res 2016; 23:2267-2276. [PMID: 27803044 DOI: 10.1158/1078-0432.ccr-16-1421] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/05/2016] [Accepted: 10/23/2016] [Indexed: 01/07/2023]
Abstract
Purpose: CD70 expression in normal tissues is restricted to activated lymphoid tissues. Targeting CD70 on CD70-expressing tumors could mediate "on-target, off-tumor" toxicity. This study was to evaluate the feasibility and safety of using anti-human CD70 CARs to treat cancer patients whose tumors express CD70.Experimental Design: Seven anti-human CD70 CARs with binding moieties from human CD27 combined with CD3-zeta and different costimulatory domains from CD28 and/or 41BB were constructed. In vitro functionality of these receptors was compared and in vivo treatment efficacy was evaluated in a xenograft mouse model. A homologous, all murine anti-CD70 CAR model was also used to assess treatment-related toxicities.Results: The CAR consisting of the extracellular binding portion of CD27 fused with 41BB and CD3-zeta (trCD27-41BB-zeta) conferred the highest IFNγ production against CD70-expressing tumors in vitro, and NSG mice bearing established CD70-expressing human tumors could be cured by human lymphocytes transduced with this CAR. In the murine CD27-CD3-zeta CAR model, significant reduction of established tumors and prolonged survival were achieved using CAR-transduced splenocytes in a dose-dependent manner. Host preirradiation enhanced treatment efficacy but increased treatment-related toxicities such as transient weight loss and hematopoetic suppression. The treatment did not appear to block adaptive host immune responses.Conclusions: Preclinical testing supports the safety and efficacy of a CD27-containing CAR targeting CD70-expressing tumors. Clin Cancer Res; 23(9); 2267-76. ©2016 AACR.
Collapse
Affiliation(s)
- Qiong J Wang
- Surgery Branch and Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Zhiya Yu
- Surgery Branch and Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ken-Ichi Hanada
- Surgery Branch and Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Krishna Patel
- Surgery Branch and Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - David Kleiner
- Surgery Branch and Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nicholas P Restifo
- Surgery Branch and Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - James C Yang
- Surgery Branch and Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
232
|
PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection. Proc Natl Acad Sci U S A 2016; 113:E7231-E7239. [PMID: 27799548 DOI: 10.1073/pnas.1603738113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein encoded by the autoimmune-associated protein tyrosine phosphatase nonreceptor type 22 gene, PTPN22, has wide-ranging effects in immune cells including suppression of T-cell receptor signaling and promoting efficient production of type I interferons (IFN-I) by myeloid cells. Here we show that mice deficient in PTPN22 resist chronic viral infection with lymphocytic choriomeningitis virus clone 13 (LCMV cl13). The numbers and function of viral-specific CD4 T lymphocytes is greatly enhanced, whereas expression of the IFNβ-induced IL-2 repressor, cAMP-responsive element modulator (CREM) is reduced. Reduction of CREM expression in wild-type CD4 T lymphocytes prevents the loss of IL-2 production by CD4 T lymphocytes during infection with LCMV cl13. These findings implicate the IFNβ/CREM/IL-2 axis in regulating T-lymphocyte function during chronic viral infection.
Collapse
|
233
|
Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 2016; 22:1402-1410. [PMID: 27775706 DOI: 10.1038/nm.4200] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Checkpoint blockade with antibodies specific for cytotoxic T lymphocyte-associated protein (CTLA)-4 or programmed cell death 1 (PDCD1; also known as PD-1) elicits durable tumor regression in metastatic cancer, but these dramatic responses are confined to a minority of patients. This suboptimal outcome is probably due in part to the complex network of immunosuppressive pathways present in advanced tumors, which are unlikely to be overcome by intervention at a single signaling checkpoint. Here we describe a combination immunotherapy that recruits a variety of innate and adaptive immune cells to eliminate large tumor burdens in syngeneic tumor models and a genetically engineered mouse model of melanoma; to our knowledge tumors of this size have not previously been curable by treatments relying on endogenous immunity. Maximal antitumor efficacy required four components: a tumor-antigen-targeting antibody, a recombinant interleukin-2 with an extended half-life, anti-PD-1 and a powerful T cell vaccine. Depletion experiments revealed that CD8+ T cells, cross-presenting dendritic cells and several other innate immune cell subsets were required for tumor regression. Effective treatment induced infiltration of immune cells and production of inflammatory cytokines in the tumor, enhanced antibody-mediated tumor antigen uptake and promoted antigen spreading. These results demonstrate the capacity of an elicited endogenous immune response to destroy large, established tumors and elucidate essential characteristics of combination immunotherapies that are capable of curing a majority of tumors in experimental settings typically viewed as intractable.
Collapse
|
234
|
Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4:56. [PMID: 27660710 PMCID: PMC5028954 DOI: 10.1186/s40425-016-0160-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Hiep Khong
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
235
|
Mayes K, Alkhatib SG, Peterson K, Alhazmi A, Song C, Chan V, Blevins T, Roberts M, Dumur CI, Wang XY, Landry JW. BPTF Depletion Enhances T-cell-Mediated Antitumor Immunity. Cancer Res 2016; 76:6183-6192. [PMID: 27651309 DOI: 10.1158/0008-5472.can-15-3125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
Genetic studies in fruit flies have implicated the chromatin remodeling complex nucleosome remodeling factor (NURF) in immunity, but it has yet to be studied in mammals. Here we show that its targeting in mice enhances antitumor immunity in two syngeneic models of cancer. NURF was disabled by silencing of bromodomain PHD-finger containing transcription factor (BPTF), the largest and essential subunit of NURF. We found that both CD8+ and CD4+ T cells were necessary for enhanced antitumor activity, with elevated numbers of activated CD8+ T cells observed in BPTF-deficient tumors. Enhanced cytolytic activity was observed for CD8+ T cells cocultured with BPTF-silenced cells. Similar effects were not produced with T-cell receptor transgenic CD8+ T cells, implicating the involvement of novel antigens. Accordingly, enhanced activity was observed for individual CD8+ T-cell clones from mice bearing BPTF-silenced tumors. Mechanistic investigations revealed that NURF directly regulated the expression of genes encoding immunoproteasome subunits Psmb8 and Psmb9 and the antigen transporter genes Tap1 and Tap2 The PSMB8 inhibitor ONX-0914 reversed the effects of BPTF ablation, consistent with a critical role for the immunoproteasome in improving tumor immunogenicity. Thus, NURF normally suppresses tumor antigenicity and its depletion improves antigen processing, CD8 T-cell cytotoxicity, and antitumor immunity, identifying NURF as a candidate therapeutic target to enhance antitumor immunity. Cancer Res; 76(21); 6183-92. ©2016 AACR.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Suehyb G Alkhatib
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Kristen Peterson
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Carolyn Song
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Vivian Chan
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Tana Blevins
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Mark Roberts
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Catherine I Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
236
|
Redeker A, Arens R. Improving Adoptive T Cell Therapy: The Particular Role of T Cell Costimulation, Cytokines, and Post-Transfer Vaccination. Front Immunol 2016; 7:345. [PMID: 27656185 PMCID: PMC5011476 DOI: 10.3389/fimmu.2016.00345] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Adoptive cellular therapy (ACT) is a form of immunotherapy whereby antigen-specific T cells are isolated or engineered, expanded ex vivo, and transferred back to patients. Clinical benefit after ACT has been obtained in treatment of infection, various hematological malignancies, and some solid tumors; however, due to poor functionality and persistence of the transferred T cells, the efficacy of ACT in the treatment of most solid tumors is often marginal. Hence, much effort is undertaken to improve T cell function and persistence in ACT and significant progress is being made. Herein, we will review strategies to improve ACT success rates in the treatment of cancer and infection. We will deliberate on the most favorable phenotype for the tumor-specific T cells that are infused into patients and on how to obtain T cells bearing this phenotype by applying novel ex vivo culture methods. Moreover, we will discuss T cell function and persistence after transfer into patients and how these factors can be manipulated by means of providing costimulatory signals, cytokines, blocking antibodies to inhibitory molecules, and vaccination. Incorporation of these T cell stimulation strategies and combinations of the different treatment modalities are likely to improve clinical response rates further.
Collapse
Affiliation(s)
- Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
237
|
Beyranvand Nejad E, van der Sluis TC, van Duikeren S, Yagita H, Janssen GM, van Veelen PA, Melief CJM, van der Burg SH, Arens R. Tumor Eradication by Cisplatin Is Sustained by CD80/86-Mediated Costimulation of CD8+ T Cells. Cancer Res 2016; 76:6017-6029. [PMID: 27569212 DOI: 10.1158/0008-5472.can-16-0881] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022]
Abstract
Certain cytotoxic chemotherapeutic drugs are immunogenic, stimulating tumor immunity through mechanisms that are not completely understood. Here we show how the DNA-damaging drug cisplatin modulates tumor immunity. At the maximum tolerated dose (MTD), cisplatin cured 50% of mice with established murine TC-1 or C3 tumors, which are preclinical models of human papillomavirus (HPV)-associated cancer. Notably, the curative benefit of cisplatin relied entirely upon induction of tumor-specific CD8+ T cells. Mechanistic investigations showed that cisplatin stimulated tumor infiltration of inflammatory antigen-presenting cells (APC) expressing relatively higher levels of the T-cell costimulatory ligands CD70, CD80, and CD86. Cell death triggered by cisplatin was associated with the release of at least 19 proteins in the tumor environment that could act as damage-associated molecular patterns and upregulate costimulatory molecules, either alone or in concert, but the responsible proteins remain unknown. Essentially, the curative effect of cisplatin was abrogated in mice lacking expression of CD80 and CD86 on APCs. Furthermore, cisplatin treatment was improved by CTLA-4 blockade, which increases the availability of CD80/86 to bind to CD28. In contrast, there was no effect of CD27 stimulation, which replaces CD70 interaction. At the cisplatin MTD, cure rates could also be increased by vaccination with synthetic long peptides, whereas cures could also be achieved at similar rates at 80% of the MTD with reduced side effects. Our findings reveal an essential basis for the immunogenic properties of cisplatin, which are mediated by the induction of costimulatory signals for CD8+ T-cell-dependent tumor destruction. Cancer Res; 76(20); 6017-29. ©2016 AACR.
Collapse
Affiliation(s)
- Elham Beyranvand Nejad
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tetje C van der Sluis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne van Duikeren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - George M Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands. ISA Pharmaceuticals, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
238
|
Menez-Jamet J, Gallou C, Rougeot A, Kosmatopoulos K. Optimized tumor cryptic peptides: the basis for universal neo-antigen-like tumor vaccines. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:266. [PMID: 27563653 DOI: 10.21037/atm.2016.05.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The very impressive clinical results recently obtained in cancer patients treated with immune response checkpoint inhibitors boosted the interest in immunotherapy as a therapeutic choice in cancer treatment. However, these inhibitors require a pre-existing tumor specific immune response and the presence of tumor infiltrating T cells to be efficient. This immune response can be triggered by cancer vaccines. One of the main issues in tumor vaccination is the choice of the right antigen to target. All vaccines tested to date targeted tumor associated antigens (TAA) that are self-antigens and failed to show a clinical efficacy because of the immune self-tolerance to TAA. A new class of tumor antigens has recently been described, the neo-antigens that are created by point mutations of tumor expressing proteins and are recognized by the immune system as non-self. Neo-antigens exhibit two main properties: they are not involved in the immune self-tolerance process and are immunogenic. However, the majority of the neo-antigens are patient specific and their use as cancer vaccines requires their previous identification in each patient individualy that can be done only in highly specialized research centers. It is therefore evident that neo-antigens cannot be used for patient vaccination worldwide. This raises the question of whether we can find neo-antigen like vaccines, which would not be patient specific. In this review we show that optimized cryptic peptides from TAA are neo-antigen like peptides. Optimized cryptic peptides are recognized by the immune system as non-self because they target self-cryptic peptides that escape self-tolerance; in addition they are strongly immunogenic because their sequence is modified in order to enhance their affinity for the HLA molecule. The first vaccine based on the optimized cryptic peptide approach, Vx-001, which targets the widely expressed tumor antigen telomerase reverse transcriptase (TERT), has completed a large phase I clinical study and is currently being tested in a randomized phase II trial in non-small cell lung cancer (NSCLC) patients.
Collapse
Affiliation(s)
| | | | - Aude Rougeot
- Vaxon Biotech, 3 rue de l'Arrivée 75015, Paris, France
| | | |
Collapse
|
239
|
Sanecka A, Yoshida N, Dougan SK, Jackson J, Shastri N, Ploegh H, Blanchard N, Frickel EM. Transnuclear CD8 T cells specific for the immunodominant epitope Gra6 lower acute-phase Toxoplasma gondii burden. Immunology 2016; 149:270-279. [PMID: 27377596 PMCID: PMC5046057 DOI: 10.1111/imm.12643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 11/27/2022] Open
Abstract
We generated a CD8 T‐cell receptor (TCR) transnuclear (TN) mouse specific to the Ld‐restricted immunodominant epitope of GRA6 from Toxoplasma gondii as a source of cells to facilitate further investigation into the CD8 T‐cell‐mediated response against this pathogen. The TN T cells bound Ld‐Gra6 tetramer and proliferated upon unspecific and peptide‐specific stimulation. The TCR beta sequence of the Gra6‐specific TN CD8 T cells is identical in its V‐ and J‐region to the TCR‐β harboured by a hybridoma line generated in response to Gra6 peptide. Adoptively transferred Gra6 TN CD8 T cells proliferated upon Toxoplasma infection in vivo and exhibited an activated phenotype similar to host CD8 T cells specific to Gra6. The brain of Toxoplasma‐infected mice carried Gra6 TN cells already at day 8 post‐infection. Both Gra6 TN mice as well as adoptively transferred Gra6 TN cells were able to significantly reduce the parasite burden in the acute phase of Toxoplasma infection. Overall, the Gra6 TN mouse represents a functional tool to study the protective and immunodominant specific CD8 T‐cell response to Toxoplasma in both the acute and the chronic phases of infection.
Collapse
Affiliation(s)
- Anna Sanecka
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Nagisa Yoshida
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Jackson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hidde Ploegh
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Blanchard
- INSERM UMR1043, CNRS UMR5282, Université de Toulouse-UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK.
| |
Collapse
|
240
|
The modulation of Dicer regulates tumor immunogenicity in melanoma. Oncotarget 2016; 7:47663-47673. [PMID: 27356752 PMCID: PMC5216969 DOI: 10.18632/oncotarget.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma.
Collapse
|
241
|
Abstract
Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.
Collapse
Affiliation(s)
- Weiwei Gao
- a Department of NanoEngineering and Moores Cancer Center , University of California , San Diego , La Jolla , CA , USA
| | - Liangfang Zhang
- a Department of NanoEngineering and Moores Cancer Center , University of California , San Diego , La Jolla , CA , USA
| |
Collapse
|
242
|
Targeted Programming of the Lymph Node Environment Causes Evolution of Local and Systemic Immunity. Cell Mol Bioeng 2016; 9:418-432. [PMID: 27547269 PMCID: PMC4978773 DOI: 10.1007/s12195-016-0455-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Biomaterial vaccines offer cargo protection, targeting, and co-delivery of signals to immune organs such as lymph nodes (LNs), tissues that coordinate adaptive immunity. Understanding how individual vaccine components impact immune response has been difficult owing to the systemic nature of delivery. Direct intra-lymph node (i.LN.) injection offers a unique opportunity to dissect how the doses, kinetics, and combinations of signals reaching LNs influence the LN environment. Here, i.LN. injection was used as a tool to study the local and systemic responses to vaccines comprised of soluble antigen and degradable polymer particles encapsulating toll-like receptor agonists as adjuvants. Microparticle vaccines increased antigen presenting cells and lymphocytes in LNs, enhancing activation of these cells. Enumeration of antigen-specific CD8+ T cells in blood revealed expansion over 7 days, followed by a contraction period over 1 month as memory developed. Extending this strategy to conserved mouse and human tumor antigens resulted in tumor antigen-specific primary and recall responses by CD8+ T cells. During challenge with an aggressive metastatic melanoma model, i.LN. delivery of depots slowed tumor growth more than a potent human vaccine adjuvant, demonstrating local treatment of a target immunological site can promote responses that are potent, systemic, and antigen-specific.
Collapse
|
243
|
Rothermel LD, Sabesan AC, Stephens DJ, Chandran SS, Paria BC, Srivastava AK, Somerville R, Wunderlich JR, Lee CCR, Xi L, Pham TH, Raffeld M, Jailwala P, Kasoji M, Kammula US. Identification of an Immunogenic Subset of Metastatic Uveal Melanoma. Clin Cancer Res 2016; 22:2237-49. [PMID: 26712692 PMCID: PMC4854785 DOI: 10.1158/1078-0432.ccr-15-2294] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Uveal melanoma is a rare melanoma variant with no effective therapies once metastases develop. Although durable cancer regression can be achieved in metastatic cutaneous melanoma with immunotherapies that augment naturally existing antitumor T-cell responses, the role of these treatments for metastatic uveal melanoma remains unclear. We sought to define the relative immunogenicity of these two melanoma variants and determine whether endogenous antitumor immune responses exist against uveal melanoma. EXPERIMENTAL DESIGN We surgically procured liver metastases from uveal melanoma (n = 16) and cutaneous melanoma (n = 35) patients and compared the attributes of their respective tumor cell populations and their infiltrating T cells (TIL) using clinical radiology, histopathology, immune assays, and whole-exomic sequencing. RESULTS Despite having common melanocytic lineage, uveal melanoma and cutaneous melanoma metastases differed in their melanin content, tumor differentiation antigen expression, and somatic mutational profile. Immunologic analysis of TIL cultures expanded from these divergent forms of melanoma revealed cutaneous melanoma TIL were predominantly composed of CD8(+) T cells, whereas uveal melanoma TIL were CD4(+) dominant. Reactivity against autologous tumor was significantly greater in cutaneous melanoma TIL compared with uveal melanoma TIL. However, we identified TIL from a subset of uveal melanoma patients which had robust antitumor reactivity comparable in magnitude with cutaneous melanoma TIL. Interestingly, the absence of melanin pigmentation in the parental tumor strongly correlated with the generation of highly reactive uveal melanoma TIL. CONCLUSIONS The discovery of this immunogenic group of uveal melanoma metastases should prompt clinical efforts to determine whether patients who harbor these unique tumors can benefit from immunotherapies that exploit endogenous antitumor T-cell populations. Clin Cancer Res; 22(9); 2237-49. ©2015 AACR.
Collapse
Affiliation(s)
- Luke D Rothermel
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Arvind C Sabesan
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel J Stephens
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Smita S Chandran
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Biman C Paria
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Abhishek K Srivastava
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert Somerville
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John R Wunderlich
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chyi-Chia R Lee
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Liqiang Xi
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Trinh H Pham
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Parthav Jailwala
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, Maryland
| | - Manjula Kasoji
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, Maryland
| | - Udai S Kammula
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
244
|
Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci U S A 2016; 113:E2646-54. [PMID: 27091975 DOI: 10.1073/pnas.1604268113] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47-SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy.
Collapse
|
245
|
Lee-Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, Young HA, Croft M, Ferrucci L, Biragyn A. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3385-97. [PMID: 26983789 PMCID: PMC4821757 DOI: 10.4049/jimmunol.1502034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
Abstract
B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224; INSERM UMR995, Lille Inflammation Research International Center, F-59000 Lille, France; University of Lille, F-59000 Lille, France
| | - Monica Bodogai
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224
| | - Kanako Moritoh
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, People's Republic of China; Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Robert Wersto
- Flow Cytometry Unit, National Institute on Aging, Baltimore, MD 21244
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224
| | - Howard A Young
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224
| | - Arya Biragyn
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224;
| |
Collapse
|
246
|
Saito H, Okita K, Chang AE, Ito F. Adoptive Transfer of CD8+ T Cells Generated from Induced Pluripotent Stem Cells Triggers Regressions of Large Tumors Along with Immunological Memory. Cancer Res 2016; 76:3473-83. [PMID: 27197199 DOI: 10.1158/0008-5472.can-15-1742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
Abstract
Current approaches to adoptive T-cell therapy are limited by the difficulty of obtaining sufficient numbers of T cells against targeted antigens with useful in vivo characteristics. Theoretically, this limitation could be overcome by using induced pluripotent stem cells (iPSC) that could provide an unlimited source of autologous T cells. However, the therapeutic efficacy of iPSC-derived regenerated T cells remains to be demonstrated. Here, we report the first successful reprogramming of T-cell receptor (TCR) transgenic CD8(+) T cells into pluripotency. As part of the work, we established a syngeneic mouse model for evaluating in vitro and in vivo antitumor reactivity of regenerated T cells from iPSCs bearing a rearranged TCR of known antigen specificity. Stably TCR retained T-cell-derived iPSCs differentiated into CD4(+)CD8(+) T cells that expressed CD3 and the desired TCR in vitro Stimulation of iPSC-derived CD4(+)CD8(+) T cells with the cognate antigen in the presence of IL7 and IL15 followed by expansion with IL2, IL7, and IL15 generated large numbers of less-differentiated CD8(+) T cells with antigen-specific potent cytokine production and cytolytic capacity. Furthermore, adoptively transferred iPSC-derived CD8(+) T cells escaped immune rejection, mediated effective regression of large tumors, improved survival, and established antigen-specific immunological memory. Our findings illustrate the translational potential of iPSCs to provide an unlimited number of phenotypically defined, functional, and expandable autologous antigen-specific T cells with the characteristics needed to enable in vivo effectiveness. Cancer Res; 76(12); 3473-83. ©2016 AACR.
Collapse
Affiliation(s)
- Hidehito Saito
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Alfred E Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Fumito Ito
- Department of Surgery, University of Michigan, Ann Arbor, Michigan. Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York. Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
247
|
Li S, Yang Z, Shen J, Shan J, Qian C. Adoptive therapy with CAR redirected T cells for hematological malignancies. SCIENCE CHINA-LIFE SCIENCES 2016; 59:370-8. [DOI: 10.1007/s11427-016-5036-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/26/2016] [Indexed: 01/01/2023]
|
248
|
Suzuki T, Kishimoto H, Abe R. Requirement of interleukin 7 signaling for anti-tumor immune response under lymphopenic conditions in a murine lung carcinoma model. Cancer Immunol Immunother 2016; 65:341-54. [PMID: 26880265 PMCID: PMC11028809 DOI: 10.1007/s00262-016-1808-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
Induction of lymphopenia before adoptive transfer of T cells was followed by lymphopenia-induced proliferation (LIP) and generated a potent anti-tumor immune response in rodents and in a clinical setting. Previously, we reported that CD28 signaling is essential for the differentiation of functional effector cytotoxic T lymphocytes (CTLs) under lymphopenic conditions and sequential LIP of T cells. In this study, to clarify the correlation between LIP and the anti-tumor effect, LIP was inhibited with interleukin 7 (IL7) receptor blockade at various stages, and the anti-tumor effect then assessed. We confirmed that IL7 signaling at the start of LIP is crucial for the anti-tumor immune response. In contrast, continuous IL7 signaling was not required for tumor regression, although LIP of naïve CD8+ T cells is usually regulated by IL7. The expansion and migration of CTLs in lymphopenic hosts depend on IL7 signaling during the induction phase. Here, we propose that IL7 signaling and subsequent LIP of T cells have distinct roles in the induction of T cell immunity during lymphopenia.
Collapse
Affiliation(s)
- Toshihiro Suzuki
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan
| | - Hidehiro Kishimoto
- Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan.
| |
Collapse
|
249
|
Andersen BM, Xia J, Epstein AL, Ohlfest JR, Chen W, Blazar BR, Pennell CA, Olin MR. Monomeric annexin A2 is an oxygen-regulated toll-like receptor 2 ligand and adjuvant. J Immunother Cancer 2016; 4:11. [PMID: 26885373 PMCID: PMC4755027 DOI: 10.1186/s40425-016-0112-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Annexin A2 (ANXA2) is a pleiotropic, calcium-dependent, phospholipid-binding protein with a broad tissue distribution. It can be intracellular, membrane-bound, or secreted, and it exists as a monomer or heterotetramer. The secreted ANXA2 heterotetramer signals human and murine macrophages to produce IL-1, IL-6, and TNF-α through TLR4/MyD88- and TRIF-dependent pathways. METHODS GL261 glioma cells were cultured in 5 % or 20 % O2. Monomeric ANXA2 (ANXA2m) was identified as a TLR2-binding protein enriched in 5 % O2 by mass spectrometry. Purified ANXA2m and ANXA2-derived peptides were added to TLR2-expressing reporter cells and immature dendritic cells (DCs) cells in vitro. ANXA2m was then mixed with chicken ovalbumin (OVA) for vaccination of TLR2 (+/+) and TLR2 (-/-) mice for subsequent quantification of antigen-specific CD8(+) T cell responses. The TLR2-binding region of ANXA2m was determined using various peptides derived from the ANXA2 amino terminus on TLR2 reporter cells and in vaccinated mice. RESULTS ANXA2m is overexpressed by murine glioblastoma GL261 cells grown under 5 % O2, but not atmospheric 20 % O2, and acts as an adjuvant by inducing murine and human DC maturation through TLR2. ANXA2m upregulates CD80 and CD86 expression, enhances antigen cross-presentation, and induces the secretion of IL-12p70, TNF-α, and IFN-γ. The amino-terminal 15 amino acids of ANXA2m are necessary and sufficient for TLR2 binding and DC activation. CONCLUSION This novel finding adds to the known functions of ANXA2 and suggests ways to exploit it as a vaccine adjuvant. ANXA2-antigen fusion peptides could be developed for patients as "off-the-shelf" agents containing common tumor antigens. Alternatively, they could be "personalized" and synthesized after tumor sequencing to identify immunogenic tumor-specific neo-antigens. As the amino terminal 15 amino acids of ANXA2 are required to stimulate TLR2 activity, a fusion peptide could be as short as 30 amino acids if one or two CD8 T cell epitopes are fused to the ANXA2 amino terminal portion. Future work will address the efficacy of ANXA2 peptide fusions alone and in combination with established TLR agonists to induce synergy in preclinical models of glioma as observed in other vaccines.
Collapse
Affiliation(s)
- Brian M. Andersen
- />Department of Neurology, New York-Presbyterian/Weill Cornell Medical Center, 525 Ease 68th St, room F-610, New York, NY 10065 USA
| | - Junzhe Xia
- />Department of Neurosurgery, Hospital Number 1 of China Medical University, Shenyang, China
| | - Alan L. Epstein
- />Department of Pathology, University of Southern California, Los Angeles, CA USA
| | - John R. Ohlfest
- />Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Wei Chen
- />Department of Pediatrics and the Masonic Cancer Center, 8366A, 420 Delaware St SE University of Minnesota, Minneapolis, MN 55455 USA
| | - Bruce R. Blazar
- />Department of Pediatrics and the Masonic Cancer Center, 8366A, 420 Delaware St SE University of Minnesota, Minneapolis, MN 55455 USA
| | - Christopher A. Pennell
- />Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Michael R. Olin
- />Department of Pediatrics and the Masonic Cancer Center, 3-136 CCRB, 2231 6th St SE, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
250
|
Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T, Wolchok JD. Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine 2016; 6:50-58. [PMID: 27211548 PMCID: PMC4856741 DOI: 10.1016/j.ebiom.2016.02.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/21/2022] Open
Abstract
Tumor indoleamine 2,3-dioxygenase (IDO) promotes immunosuppression by direct action on effector T cells and Tregs and through recruitment, expansion and activation of myeloid-derived suppressor cells (MDSCs). Targeting of MDSCs is clinically being explored as a therapeutic strategy, though optimal targeting strategies and biomarkers predictive of response are presently unknown. Maturation and tumor recruitment of MDSCs are dependent on signaling through the receptor tyrosine kinase CSF-1R on myeloid cells. Here, we show that MDSCs are the critical cell population in IDO-expressing B16 tumors in mediating accelerated tumor outgrowth and resistance to immunotherapy. Using a clinically relevant drug, we show that inhibition of CSF-1R signaling can functionally block tumor-infiltrating MDSCs and enhance anti-tumor T cell responses. Furthermore, inhibition of CSF-1R sensitizes IDO-expressing tumors to immunotherapy with T cell checkpoint blockade, and combination of CSF-1R blockade with IDO inhibitors potently elicits tumor regression. These findings provide evidence for a critical and functional role for MDSCs on the in vivo outcome of IDO-expressing tumors. Tumor-infiltrating MDSCs promote accelerated outgrowth of IDO-expressing tumors. MDSCs infiltrating IDO-expressing tumors mediate resistance to immunotherapy. Combination of CSF-1R blockade with IDO inhibitors potently elicits tumor regression. CSF-1R blockade sensitizes tumors to the effects of immune checkpoint blockade.
Our data demonstrate that therapy with CSF-1R-blocking agents offers therapeutic benefit as a single agent and potentiates the effect of immunotherapeutic agents in IDO-expressing tumors infiltrated with CSF-1R-expressing MDSCs. These findings provide important insights into basic mechanisms underlying IDO mediated immune suppression and resistance to immunotherapies. In addition, it provides a strong rationale for therapeutic combinations with CSF-1R inhibitors in tumors expressing elevated IDO and highly infiltrated with MDSCs as predictive biomarkers.
Collapse
Affiliation(s)
- Rikke B Holmgaard
- Swim Across America/Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dmitriy Zamarin
- Swim Across America/Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States; Weill Cornell Medical College, New York, NY 10065, United States; Graduate School of Medical Sciences of Cornell University, New York, NY 10065, United States
| | - Alexander Lesokhin
- Swim Across America/Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States; Weill Cornell Medical College, New York, NY 10065, United States; Graduate School of Medical Sciences of Cornell University, New York, NY 10065, United States
| | - Taha Merghoub
- Swim Across America/Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jedd D Wolchok
- Swim Across America/Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States; Weill Cornell Medical College, New York, NY 10065, United States; Graduate School of Medical Sciences of Cornell University, New York, NY 10065, United States.
| |
Collapse
|