201
|
Karabulut S, Korkmaz O, Kutlu P, Gozel HE, Keskin I. Effects o follicular fluid oxidative status on human mural granulosa cells, oocyte competency and ICSI parameters. Eur J Obstet Gynecol Reprod Biol 2020; 252:127-136. [PMID: 32599478 DOI: 10.1016/j.ejogrb.2020.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of the present study was to understand the molecular and genetic alterations involved in follicular fluid oxidative process by investigating human mural granulosa cells and to find possible biomarkers for oocyte competency and ICSI outcome measures. METHODS A total of 166 patients were included in the study. Total antioxidant and oxidant levels of follicular fluids were measured on the day of oocyte pick-up and oxidative status were calculated. Expression profiles of three potential target proteins in cases of oxidative stress (Hsp70, Tgf-β, Notch1), DNA status and chromatin integrity of mural granulosa cells were analyzed. RESULTS TAS levels were positively correlated with the Hsp70 and Tgf-β expression patterns of mural granulosa cells. Mature oocyte rate and fertilization rates were affected negatively by the presence of oxidative stress and a significant positive correlation was found with the oxidative status and the fertilization rate, whereas no correlation with the remaining ICSI parameters in the overall group. CONCLUSIONS Oxidative stress detected in follicular fluid adversely affects fertilization rates post-ICSI however no effect on the remaining parameters including embryo quality, pregnancy, and implantation rates. DNA damage, chromatin integrity were increased, whereas Hsp70 and Tgf-ß were decreased in mural granulosa cells in cases of oxidative stress which may indirectly reflect the oocyte competency and may be used as biomarkers for ICSI outcome measures.
Collapse
Affiliation(s)
- Seda Karabulut
- Istanbul Medipol University, International School of Medicine, Histology and Embryology Department, İstanbul, Turkey; Medipol University, School of Medicine, Kavacık, İstanbul, REMER (Regenerative and Restorative Medicine Research Center), Kavacık Mah. Ekinciler Cad. No.19 Kavacık Kavşağı 34810 Beykoz, İstanbul, Turkey.
| | - Oya Korkmaz
- Istanbul Medipol University, International School of Medicine, Histology and Embryology Department, İstanbul, Turkey; Medipol University, School of Medicine, Kavacık, İstanbul, REMER (Regenerative and Restorative Medicine Research Center), Kavacık Mah. Ekinciler Cad. No.19 Kavacık Kavşağı 34810 Beykoz, İstanbul, Turkey
| | - Pelin Kutlu
- Medicana Çamlıca Hospital, IVF Center, İstanbul, Turkey
| | - Hilal Eren Gozel
- Istanbul Medipol University, International School of Medicine, Histology and Embryology Department, İstanbul, Turkey; Medipol University, School of Medicine, Kavacık, İstanbul, REMER (Regenerative and Restorative Medicine Research Center), Kavacık Mah. Ekinciler Cad. No.19 Kavacık Kavşağı 34810 Beykoz, İstanbul, Turkey
| | - Ilknur Keskin
- Istanbul Medipol University, International School of Medicine, Histology and Embryology Department, İstanbul, Turkey; Medipol University, School of Medicine, Kavacık, İstanbul, REMER (Regenerative and Restorative Medicine Research Center), Kavacık Mah. Ekinciler Cad. No.19 Kavacık Kavşağı 34810 Beykoz, İstanbul, Turkey
| |
Collapse
|
202
|
Moura MT, Paula-Lopes FF. Thermoprotective molecules to improve oocyte competence under elevated temperature. Theriogenology 2020; 156:262-271. [PMID: 32784066 DOI: 10.1016/j.theriogenology.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
Heat stress is an environmental factor that challenges livestock by disturbing animal homeostasis. Despite the broad detrimental effects of heat stress on reproductive function, the germline and the early preimplantation embryo are particularly prone. There is extensive evidence that elevated temperature reduces oocyte developmental competence through a series of cellular and molecular damages. Further research revealed that the oocyte respond to stress by activating cellular mechanisms such as heat shock response, unfolded protein response and autophagy to improve survival under heat shock. Such knowledge paved the way for the identification of thermoprotective molecules that alleviate heat-induced oocyte oxidative stress, organelle damage, and apoptosis. Therefore, this review depicts the deleterious effects of heat shock on oocyte developmental competence, heat-induced cellular and molecular changes, outlines pro-survival cellular mechanisms and explores thermoprotective molecules to improve oocyte competence.
Collapse
Affiliation(s)
- Marcelo T Moura
- Department of Biological Sciences, Federal University of São Paulo - UNIFESP, Diadema, SP, Brazil
| | - Fabíola F Paula-Lopes
- Department of Biological Sciences, Federal University of São Paulo - UNIFESP, Diadema, SP, Brazil.
| |
Collapse
|
203
|
Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 2020; 25:224-242. [PMID: 30608586 PMCID: PMC6390169 DOI: 10.1093/humupd/dmy047] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] and glial cell line-derived neurotrophic factor (GDNF) are soluble polypeptide growth factors that are widely recognized for their roles in promoting cell growth, survival and differentiation in several classes of neurons. Outside the nervous system, neurotrophin (NT) and GDNF signaling events have substantial roles in various non-neural tissues, including the ovary. OBJECTIVE AND RATIONALE The molecular mechanisms that promote and regulate follicular development and oocyte maturation have been extensively investigated. However, most information has been obtained from animal models. Even though the fundamental process is highly similar across species, the paracrine regulation of ovarian function in humans remains poorly characterized. Therefore, this review aims to summarize the expression and functional roles of NTs and GDNF in human ovarian biology and disorders, and to describe and propose the development of novel strategies for diagnosing, treating and preventing related abnormalities. SEARCH METHODS Relevant literature in the English language from 1990 to 2018 describing the role of NTs and GDNF in mammalian ovarian biology and phenotypes was comprehensively selected using PubMed, MEDLINE and Google Scholar. OUTCOMES Studies have shown that the neurotrophins NGF, BDNF, NT-3 and NT-4 as well as GDNF and their functional receptors are expressed in the human ovary. Recently, gathered experimental data suggest putative roles for NT and GDNF signaling in the direct control of ovarian function, including follicle assembly, activation of the primordial follicles, follicular growth and development, oocyte maturation, steroidogenesis, ovulation and corpus luteum formation. Additionally, crosstalk occurs between these ovarian regulators and the endocrine signaling system. Dysregulation of the NT system may negatively affect ovarian function, leading to reproductive pathology (decreased ovarian reserve, polycystic ovary syndrome and endometriosis), female infertility and even epithelial ovarian cancers. WIDER IMPLICATIONS A comprehensive understanding of the expression, actions and underlying molecular mechanisms of the NT/GDNF system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in ovarian diseases and to develop more safe, effective methods of inducing ovulation in ART in the treatment of female infertility.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
204
|
Tscharke M, Kind K, Kelly J, Kleemann D, Len J. The Phosphodiesterase Inhibitor, Isobutyl-1-Methylxanthine Prevents the Sudden Drop in Cyclic Adenosine Monophosphate Concentration and Modulates Glucose Metabolism of Equine Cumulus-Oocyte Complexes Matured in Vitro. J Equine Vet Sci 2020; 91:103112. [PMID: 32684257 DOI: 10.1016/j.jevs.2020.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023]
Abstract
Spontaneous nuclear maturation of mammalian oocytes can occur when physically removed from the ovarian follicle during in vitro oocyte maturation (IVM), largely because of a decrease in cyclic adenosine monophosphate (cAMP) concentration. Modulation of oocyte cAMP during IVM by using phosphodiesterase inhibitors has been shown to maintain elevated oocyte cAMP concentrations and control meiotic resumption of bovine and ovine oocytes. This study determined the effect of inclusion of isobutyl-1-methylxanthine (IBMX) during collection and the first 12 hours of incubation of equine oocytes on cAMP concentration and glucose metabolism of cumulus-oocyte complexes (COCs). Abattoir-derived COCs were collected in aspiration medium with (Asp-IBMX) or without (Asp) IBMX. Cumulus-oocyte complexes were then incubated for 12 hours in IVM medium with (Mat-IBMX) or without (Mat) IBMX, followed by additional 24 hours in Mat medium. The cAMP concentration, glucose consumption, lactate production, and metaphase II rates of the COCs were assessed. Cumulus-oocyte complexes aspirated into Asp-IBMX (62.2 ± 2.6 fmol per COC) medium had higher cAMP concentration than Asp (31.8 ± 2.8 fmol per COC) control group (P < .05). Likewise, at 12 hours of IVM, Mat-IBMX group (33.2 ± 2.1 fmol per COC) had higher cAMP concentration than the Mat group (7.68 ± 0.5 fmol per COC; P < .05). Glucose consumption and lactate production were lower during the first 12 hours of incubation in COCs cultured in Mat-IBMX (P < .05). Isobutyl-1-methylxanthine prevented the rapid drop in cAMP concentration and altered metabolism of glucose by the COC. Preventing the sudden drop in cAMP prevents the premature nuclear maturation of in vitro-matured oocytes causing poor developmental competence.
Collapse
Affiliation(s)
- Megan Tscharke
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Karen Kind
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Jennifer Kelly
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, Australia
| | - Dave Kleemann
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, Australia
| | - Jose Len
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| |
Collapse
|
205
|
Li Y, Liu YD, Chen SL, Chen X, Ye DS, Zhou XY, Zhe J, Zhang J. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Mol Hum Reprod 2020; 25:17-29. [PMID: 30371869 DOI: 10.1093/molehr/gay045] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Is there a specific mechanism underlying the association between lung adenocarcinoma transcript 1 (MALAT1) and endometriosis-related infertility? SUMMARY ANSWER The down-regulation of MALAT1 in endometriosis granulosa cells (GCs) may have an adverse effect on the growth and development of oocytes by inhibiting GC proliferation, due to cell cycle-dependent mechanisms that enhance P21 expression through activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. WHAT IS KNOWN ALREADY The association between endometriosis and infertility is well supported throughout the literature, and endometriosis per se and its surgical treatment have an adverse effect on the ovarian reserve and on oocyte development. MALAT1, one of the most extensively expressed and evolutionarily conserved transcripts, has been implicated to play a role in human development and many diseases. However, little is known about the role of MALAT1 long non-coding RNA (lncRNA) in endometriosis and its associated infertility. STUDY DESIGN, SIZE, DURATION We measured MALAT1 lncRNA expression levels in GCs from 52 endometriosis patients and 52 controls. Also, MALAT1 was knocked down in a human GC tumor-derived cell line, KGN, to investigate the role of MALAT1 and its molecular mechanism in cell proliferation. PARTICIPANTS/MATERIALS, SETTING, METHODS GCs were collected from women with or without endometriosis undergoing IVF or ICSI treatment. All endometriosis patients were diagnosed by laparoscopy or laparotomy, and control patients were limited to male factor or tubal disease and had a normal ovarian reserve. Quantitative real-time PCR (qRT-PCR) was used to measure the differential expression levels of MALAT1 lncRNA between endometriosis patients and controls. The receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic values of MALAT1 in endometriosis. In the KGN cell line, MALAT1 was knocked down with locked nucleic acid GapmeRs. Cell counting kit-8 assays, ethynyl-2-deoxyuridine assays and flow cytometry were used to study the role of MALAT1 in cell proliferation and cell-cycle progression, and western blotting was performed to detect the potential underlying mechanism. MAIN RESULTS AND THE ROLE OF CHANCE We first found that MALAT1 lncRNA was significantly down-regulated in endometriosis GCs and was associated with the antral follicle count (R = 0.376, P < 0.001 versus control). In addition, MALAT1 lncRNA levels were significantly lower in the GCs of infertile women with advanced stages of endometriosis (P = 0.01 versus control). The ROC curves illustrated strong separation between all the endometriosis patients and the control group (AUC: 0.705; 95% CI: 0.606-0.804; P < 0.001), Stage I-II and control group (AUC: 0.651; 95% CI: 0.536-0.767; P = 0.016), and Stage III-IV and control group (AUC: 0.827; 95% CI: 0.718-0.936; P < 0.001). MALAT1 lncRNA was primarily localized in the nuclei of GCs. We found a negative correlation between MALAT1 lncRNA and P21 mRNA in the GCs from patients (R = -0.628; P < 0.001). MALAT1 knockdown in KGN cells inhibited cell proliferation and cell-cycle progression. In addition, MALAT1 knockdown induced an increase in both the mRNA and protein levels of P21, and of P53, phosphorylated ERK1/2 (p-ERK1/2) and phosphorylated c-Jun N-terminal protein kinase (p-JNK) protein levels, as well as causing a decrease in cyclin dependent kinase 2 (CDK2), cyclin D1 and p-P38 MAPK protein levels. Furthermore, inhibition of the ERK/MAPK pathway with U0126, the up-regulation of p-ERK1/2, P21 and P53, and the down-regulation of CDK2 and cyclin D1 by the knockdown of MALAT1 were all attenuated by MALAT1 knockdown. Therefore, MALAT1 may regulate GC proliferation through P21/P53-dependent control of the cell cycle, and the ERK/MAPK pathway participates in this process. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION The hormonal treatment used in IVF and surgical removal of endometriotic lesions may have altered MALAT1 expression in GCs. The ovarian granulosa-like tumor cell line, KGN, was used for further functional and mechanistic studies due to the difficulties in obtaining human GCs in sizable amounts and maintaining primary cultures. WIDER IMPLICATIONS OF THE FINDINGS Our finding represents the first example of an lncRNA-based mechanism in endometriosis GCs. Women with endometriosis show altered MALAT1 expression levels in GCs that may impair fertility by regulating the function of GCs. Therefore, analysis of MALAT1 and its molecular mechanisms of action provide new insights into the pathogenesis of endometriosis and its associated infertility. STUDY FUNDING/COMPETING INTEREST(s) This work was supported by the National Natural Science Foundation of China (grant number: 81671524) and the National key research and development program of China (grant number: 2017YFC1001100). The authors declare there is no conflict of interest.
Collapse
Affiliation(s)
- Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xin Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - De-Sheng Ye
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jing Zhe
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
206
|
Xing Q, Wang R, Chen B, Li L, Pan H, Li T, Ma X, Cao Y, Wang B. Rare homozygous mutation in TUBB8 associated with oocyte maturation defect-2 in a consanguineous mating family. J Ovarian Res 2020; 13:42. [PMID: 32316999 PMCID: PMC7175565 DOI: 10.1186/s13048-020-00637-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 11/10/2022] Open
Abstract
Purpose Variations in many genes may lead to the occurrence of oocyte maturation defects. To investigate the genetic basis of oocyte maturation defects, we performed clinical and genetic analysis of a pedigree. Methods The proband with oocyte maturation defect-2 receiving ovulation induction therapy and her parents were selected for clinical detection, whole exome sequencing and Sanger sequencing. One unrelated healthy woman received ovulation induction therapy as control. Mutations were assessed after frequency screening of public exome databases. Then homozygous variants shared by the proband and her parents were selected. Results Arrest of oocytes maturation was observed. A new missense mutation in TUBB8 (TUBB8: NM_177,987: exon 2: c. C161T: p. A54V) was identified, which was shown to be rare compared with public databases. The variant was highly conserved among primates, and was suggested to be deleterious by online software prediction. Conclusions The homozygote of this variant (TUBB8: NM_ 177,987: exon 2:c.C161T: p.A54V) might affect spindle assembly, cause arrest of oocyte maturation and lead to oocyte maturation defect-2.
Collapse
Affiliation(s)
- Qiong Xing
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan, Hefei, 230022, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Hefei, China.,Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, P.R. China
| | - Ruyi Wang
- Graduate School of Peking Union Medical College, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan, Hefei, 230022, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Hefei, China.,Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, P.R. China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Yaojiayuan Road 251, Chaoyang, Beijing, 100026, China
| | - Hong Pan
- Graduate School of Peking Union Medical College, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Xu Ma
- Graduate School of Peking Union Medical College, Beijing, China. .,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan, Hefei, 230022, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Hefei, China. .,Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, P.R. China.
| | - Binbin Wang
- Graduate School of Peking Union Medical College, Beijing, China. .,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China.
| |
Collapse
|
207
|
Abstract
We have previously presented a stereological analysis of organelle distribution in human prophase I oocytes. In the present study, using a similar stereological approach, we quantified the distribution of organelles in human metaphase I (MI) oocytes also retrieved after ovarian stimulation. Five MI oocytes were processed for transmission electron microscopy and a classical manual stereological technique based on point-counting with an adequate stereological grid was used. Kruskal-Wallis and Mann-Whitney U-tests with Bonferroni correction were used to compare the means of relative volumes (Vv) occupied by organelles. In all oocyte regions, the most abundant organelles were mitochondria and smooth endoplasmic reticulum (SER) elements. No significant differences were observed in Vv of mitochondria, dictyosomes, lysosomes, or SER small and medium vesicles, tubular aggregates and tubules. Significant differences were observed in other organelle distributions: cortical vesicles presented a higher Vv (P = 0.004) in the cortex than in the subcortex (0.96% vs 0.1%) or inner cytoplasm (0.96% vs 0.1%), vesicles with dense granular contents had a higher Vv (P = 0.005) in the cortex than in the subcortex (0.1% vs 0%), and SER large vesicles exhibited a higher Vv (P = 0.011) in the inner cytoplasm than in the subcortex (0.2% vs 0%). Future stereological analysis of metaphase II oocytes and a combined quantitative data of mature and immature oocytes, will enable a better understanding of oocyte organelle distribution during in vivo maturation. Combined with molecular approaches, this may help improve stimulation protocols and in vitro maturation methods.
Collapse
|
208
|
Gupta A, Chaube SK. Cilostamide and rolipram prevent spontaneous meiotic resumption from diplotene arrest in rat oocytes cultured in vitro. Eur J Pharmacol 2020; 878:173115. [PMID: 32302597 DOI: 10.1016/j.ejphar.2020.173115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022]
Abstract
The involvement of specific phosphodiesterases (PDEs) in the modulation of cAMP and thereby spontaneous meiotic resumption remains poorly understood. This work aims to evaluate the effects of cilostamide and rolipram (PDE 3A and PDE 4D inhibitors) on spontaneous meiotic resumption from diplotene arrest in rat oocytes cultured in vitro. For this purpose, diplotene-arrested cumulus oocyte complexes (COCs) were collected from rat ovary. The COCs and denuded oocytes were exposed to various concentrations of cilostamide (0.0, 2.5, 5.0 and 10 μM) and rolipram (0, 10, 50 and 100 μM) for various times (0, 3, 5, 7, 14, 16, 18, 20, 22 and 24 h). Cilostamide inhibited spontaneous meiotic resumption in a concentration- and time-dependent manner in COCs and denuded oocytes. Although rolipram showed inhibition of spontaneous meiotic resumption up to some extent, cilostamide was more potent to prevent spontaneous meiotic resumption in both COCs and denuded oocytes. Cilostamide significantly reduced PDE 3A expression, increased cAMP level and prevented spontaneous meiotic resumption in COCs and denuded oocytes. Although rolipram inhibited PDE 4D expression in cumulus cells, increased cAMP level but was not sufficient to prevent spontaneous meiotic resumption. We conclude that both drugs prevent spontaneous resumption from diplotene-arrest through PDE 3A/PDE 4D-cAMP mediated pathway. However, as compare to rolipram, cilostamide was more potent in preventing spontaneous resumption from diplotene-arrest in rat oocytes cultured in vitro. Thus, cilostamide could be used as a potential candidate for the development of female contraceptive drug in future.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
209
|
Carvalho KF, Machado TS, Garcia BM, Zangirolamo AF, Macabelli CH, Sugiyama FHC, Grejo MP, Augusto Neto JD, Tostes K, Ribeiro FKS, Sarapião FD, Pandey AK, Nociti RP, Tizioto P, Coutinho LL, Meirelles FV, Guimarães FEG, Pernas L, Seneda MM, Chiaratti MR. Mitofusin 1 is required for oocyte growth and communication with follicular somatic cells. FASEB J 2020; 34:7644-7660. [PMID: 32281181 DOI: 10.1096/fj.201901761r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 03/03/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
Mitochondrial function, largely regulated by the dynamics of this organelle, is inextricably linked to the oocyte health. In comparison with most somatic cells, mitochondria in oocytes are smaller and rounder in appearance, suggesting limited fusion. The functional implications of this distinct morphology, and how changes in the mitochondrial shape translate to mitochondrial function in oogenesis is little understood. We, therefore, asked whether the pro-fusion proteins mitofusins 1 (MFN1) and 2 (MFN2) are required for the oocyte development. Here we show that oocyte-specific deletion of Mfn1, but not Mfn2, prevents the oocyte growth and ovulation due to a block in folliculogenesis. We pinpoint the loss of oocyte growth and ovulation to impaired PI3K-Akt signaling and disrupted oocyte-somatic cell communication. In support, the double loss of Mfn1 and Mfn2 partially rescues the impaired PI3K-Akt signaling and defects in oocyte development secondary to the single loss of Mfn1. Together, this work demonstrates that the mitochondrial function influences the cellular signaling during the oocyte development, and highlights the importance of distinct, nonredundant roles of MFN1 and MFN2 in oogenesis.
Collapse
Affiliation(s)
- Karen F Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Thiago S Machado
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna M Garcia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Amanda F Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| | - Carolina H Macabelli
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fabrícia H C Sugiyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Mateus P Grejo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - J Djaci Augusto Neto
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Katiane Tostes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fernanda K S Ribeiro
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fabiana D Sarapião
- National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| | - Anand K Pandey
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.,College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Ricardo P Nociti
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | | | - Luiz Lehman Coutinho
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Flávio V Meirelles
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.,Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | | | - Lena Pernas
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Marcelo M Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
210
|
Satué K, Fazio E, Medica P. Can the Presence of Ovarian Corpus Luteum Modify the Hormonal Composition of Follicular Fluid in Mares? Animals (Basel) 2020; 10:E646. [PMID: 32283596 PMCID: PMC7222794 DOI: 10.3390/ani10040646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
The hypothesis of this study was to investigate if the presence of corpus luteum (CL) in one ovary could modify the hormonal content of follicular fluid (FF) in the follicles. Sixty ovaries were taken after the slaughter of 30 clinically healthy mares. In relation to the sizes, the follicles were classified into three different categories, as small (20-30 mm), medium (31-40 mm) and large (≥41 mm). Blood samples were collected from the jugular vein of mares before their slaughter, and then the FF samplings were extracted from each single follicle. The ovaries that were collected were classified into two groups, according to the presence (CL-bearing) or absence (non-CL-bearing) of CL. The serum and FF samples were analysed for progesterone (P4), oestradiol-17β (E2), testosterone (T), androstenedione (A4) and dehydroepiandrosterone (DHEA). Intrafollicular P4 concentrations in large follicles of CL-bearing groups were lower than for non-CL-bearing ones. Intrafollicular E2 concentrations increased with the increase of the follicle diameter in both groups, CL-bearing and non-CL-bearing. However, in the FF with a large and medium follicle size, E2 concentrations were significantly higher in non-CL-bearing groups than in CL-bearing groups. T and A4 significantly increased in the large and medium follicle sizes when compared to the small follicle sizes in both groups, but higher concentrations in the non-CL-bearing group were obtained. Intrafollicular DHEA significantly decreased with the increase of the follicular diameter in both groups. Steroid hormones in FF dynamically changed, according to the presence or not of CL in the ovary. This study brings new knowledge on the role of the CL in the follicular hormonal composition in mares.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, 46115 Valencia, Spain
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy; (E.F.); (P.M.)
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy; (E.F.); (P.M.)
| |
Collapse
|
211
|
Okutman Ö, Demirel C, Tülek F, Pfister V, Büyük U, Muller J, Charlet-Berguerand N, Viville S. Homozygous Splice Site Mutation in ZP1 Causes Familial Oocyte Maturation Defect. Genes (Basel) 2020; 11:genes11040382. [PMID: 32244758 PMCID: PMC7231235 DOI: 10.3390/genes11040382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
In vitro fertilization (IVF) involves controlled ovarian hyperstimulation using hormones to produce large numbers of oocytes. The success of IVF is tightly linked to the availability of mature oocytes. In most cases, about 70% to 80% of the oocytes are mature at the time of retrieval, however, in rare instances, all of them may be immature, implying that they were not able to reach the metaphase II (MII) stage. The failure to obtain any mature oocytes, despite a well conducted ovarian stimulation in repeated cycles is a very rare cause of primary female infertility, for which the underlying suspected genetic factors are still largely unknown. In this study, we present the whole exome sequencing analysis of a consanguineous Turkish family comprising three sisters with a recurrent oocyte maturation defect. Analysis of the data reveals a homozygous splice site mutation (c.1775-3C>A) in the zona pellucida glycoprotein 1 (ZP1) gene. Minigene experiments show that the mutation causes the retention of the intron 11 sequence between exon 11 and exon 12, resulting in a frameshift and the likely production of a truncated protein.
Collapse
Affiliation(s)
- Özlem Okutman
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle (IPPTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France;
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l’infertilité, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Cem Demirel
- Memorial Atasehir Hospital, In Vitro Fertilization (IVF) Andrology and Genetics Center, Kucukbakkalkoy mh.Vedat Gunyol cd No:28-30, 34758 Atasehir/Istanbul, Turkey; (C.D.); (F.T.)
| | - Firat Tülek
- Memorial Atasehir Hospital, In Vitro Fertilization (IVF) Andrology and Genetics Center, Kucukbakkalkoy mh.Vedat Gunyol cd No:28-30, 34758 Atasehir/Istanbul, Turkey; (C.D.); (F.T.)
| | - Veronique Pfister
- Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404 Illkirch, France; (V.P.); (N.C.-B.)
| | - Umut Büyük
- Hibrigen Biotechnology R&D Industry and Trade Ltd. Co.,Tubitak MAM Teknoloji Serbest Bolgesi, Baris SB Mh 5002.sk Yeni Tek. Binasi ABlok 4, A/101 Gebze/Kocaeli, Turkey;
| | - Jean Muller
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Laboratoire de Génétique Médicale, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Nicolas Charlet-Berguerand
- Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404 Illkirch, France; (V.P.); (N.C.-B.)
| | - Stéphane Viville
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle (IPPTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France;
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l’infertilité, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|
212
|
Totorikaguena L, Olabarrieta E, Lolicato F, Romero‐Aguirregomezcorta J, Smitz J, Agirregoitia N, Agirregoitia E. The endocannabinoid system modulates the ovarian physiology and its activation can improve in vitro oocyte maturation. J Cell Physiol 2020; 235:7580-7591. [DOI: 10.1002/jcp.29663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and NursingUPV/EHU Leioa Bizkaia Spain
| | - Estibaliz Olabarrieta
- Department of Physiology, Faculty of Medicine and NursingUPV/EHU Leioa Bizkaia Spain
| | | | | | - Johan Smitz
- Laboratory of Follicular Biology (FOBI), UZ Brussel Brussels Belgium
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and NursingUPV/EHU Leioa Bizkaia Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and NursingUPV/EHU Leioa Bizkaia Spain
| |
Collapse
|
213
|
Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS One 2020; 15:e0229043. [PMID: 32182244 PMCID: PMC7077809 DOI: 10.1371/journal.pone.0229043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Oocyte in vitro maturation can be improved by mimicking the intra-follicular environment. Oocyte, cumulus cells, granulosa cells, and circulating factors act as meiotic regulators in follicles and maintain oocyte in the meiotic phase until oocyte becomes competent and ready to be ovulated. In a randomized experimental design, an ovine model was used to optimize the standard in vitro maturation media by Granulosa secreted factors. At first, the development capacity of oocyte derived from medium (>4 to 6 mm) and small (2 to ≤4 mm) size follicles was determined. Differential gene expression of granulosa secreted factors and their receptors were compared between the cumulus cells of the two groups. Then, the best time and concentration for arresting oocytes at the germinal vesicle stage by natriuretic peptide type C (CNP) were determined by nuclear staining in both groups. Oocyte quality was further confirmed by calcein uptake and gene expression. The developmental competence of cumulus oocyte complexes derived from small size follicles that were cultured in the presence of CNP in combination with amphiregulin (AREG) and prostaglandin E2 (PGE2) for 24 h was determined. Finally, embryo quality was specified by assessing expressions of NANOG, SOX2, CDX2, OCT4, and TET1. The cumulus oocyte complexes derived from small size follicles had a lower capacity to form blastocyst in comparison with cumulus oocyte complexes derived from medium size follicles. Prostaglandin E receptor 2 and prostaglandin-endoperoxide synthase 2 had significantly lower expression in cumulus cells derived from small size follicles in comparison with cumulus cells derived from medium size follicles. Natriuretic peptide type C increased the percentage of cumulus oocyte complexes arresting at the germinal vesicle stage in both oocytes derived from medium and small follicles. Gap junction communication was also improved in the presence of natriuretic peptide type C. In oocytes derived from small size follicles; best blastocyst rates were achieved by sequential exposure of cumulus oocyte complexes in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)] and [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. Increased SOX2 expression was observed in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)], while decreased OCT4 expression was observed in [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. It seems that the natriuretic peptide type C modulates meiotic progression, and oocyte development is probably mediated by amphiregulin and prostaglandin E2. These results may provide an alternative IVM method to optimize in vitro embryo production in sheep and subsequently for humans.
Collapse
|
214
|
Leon K, Hennebold JD, Fei SS, Young KA. Transcriptome analysis during photostimulated recrudescence reveals distinct patterns of gene regulation in Siberian hamster ovaries†. Biol Reprod 2020; 102:539-559. [PMID: 31724051 PMCID: PMC7068109 DOI: 10.1093/biolre/ioz210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/13/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
In Siberian hamsters, exposure to short days (SDs, 8 h light:16 h dark) reduces reproductive function centrally by decreasing gonadotropin secretion, whereas subsequent transfer of photoinhibited hamsters to stimulatory long days (LDs, 16 L:8 D) promotes follicle stimulating hormone (FSH) release inducing ovarian recrudescence. Although differences between SD and LD ovaries have been investigated, a systematic investigation of the ovarian transcriptome across photoperiod groups to identify potentially novel factors that contribute to photostimulated restoration of ovarian function had not been conducted. Hamsters were assigned to one of four photoperiod groups: LD to maintain ovarian cyclicity, SD to induce ovarian regression, or post transfer (PT), where females housed in SD for 14-weeks were transferred to LD for 2-days or 1-week to reflect photostimulated ovaries prior to (PTd2) and following (PTw1) the return of systemic FSH. Ovarian RNA was extracted to create RNA-sequencing libraries and short-read sequencing Illumina assays that mapped and quantified the ovarian transcriptomes (n = 4/group). Ovarian and uterine masses, plasma FSH, and numbers of antral follicles and corpora lutea decreased in SD as compared to LD ovaries (P < 0.05). When reads were aligned to the mouse genome, 18 548 genes were sufficiently quantified. Most of the differentially expressed genes noted between functional LD ovaries and regressed SD ovaries; however, five main expression patterns were identified across photoperiod groups. These results, generally corroborated by select protein immunostaining, provide a map of photoregulated ovary function and identify novel genes that may contribute to the photostimulated resumption of ovarian activity.
Collapse
Affiliation(s)
- Kathleen Leon
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Suzanne S Fei
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| |
Collapse
|
215
|
Shen Q, Chen M, Zhao X, Liu Y, Ren X, Zhang L. Versican expression level in cumulus cells is associated with human oocyte developmental competence. Syst Biol Reprod Med 2020; 66:176-184. [PMID: 32138539 DOI: 10.1080/19396368.2020.1725685] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To study the relationship between the expression of 10 selected genes in cumulus cells and the corresponding oocyte development competence, and the effect of patient age and body mass index on gene expression of cumulus cells, we collected 354 cumulus cell masses associated with individual oocyte from 48 women. The expression levels of the genes involved in glucose metabolism (PFKP, PKM2, LDHA and GFPT) and expansion (HAS2, VCAN, TNFAIP6, PTGS2, PTX3 and SDC4) in cumulus cells were detected by reverse transcription polymerase chain reaction. These were compared among oocyte maturity, fertilization, embryo morphology and implantation, and analyzed the effect of the subject's age and body mass index. Cumulus cell PFKP expression from mature oocytes was higher than those from immature oocytes (P = 0.014), and VCAN expression was higher from oocytes that developed into high-quality embryos (P = 0.024). TNFAIP6 expression in cumulus cells from fertilized oocytes was lower than that from unfertilized oocytes (P = 0.044). The levels of VCAN, TNFAIP6, PTX3 and SDC4 were changed significantly as a function of the subject's age and body mass index. In conclusion, the level of VCAN expression in cumulus cells is positively correlated with the early embryo morphology score, and with further development could perhaps be used to evaluate oocyte developmental competence to complement embryonic morphological assessment. ABBREVIATIONS CCs: cumulus cells; GDF9: growth differentiation factor 9; BMP15: bone morphogenetic protein 15; PTGS2: prostaglandin synthase 2; HAS2: hyaluronic acid synthase 2; VCAN: versican; GREM1: gremlin 1; PFKP: phosphofructokinase, platelet; PKM2: pyruvate kinase isozyme type M2; LDHA: lactic dehydrogenase; GFPT: glucosaminefructo-6-phosphate transaminase; TNFAIP6: tumor necrosis factor 6 protein; PTX3: penetrin 3; SDC4: syndecan-4; BMI: body mass index; MD: median values; IQR: interquartile range; FSH: follicle-stimulating hormone; LH: luteinizing hormone; HCG: human chorionic gonadotropin; ICSI: intracytoplasmic sperm injection; GnRH: gonadotropin-releasing hormone; hMG: human menopausal gonadotropin; GV: germinal vesicle; M I: metaphase I; M II: metaphase II; cDNA: complementary DNA; SD: standard deviation.
Collapse
Affiliation(s)
- Qiuzi Shen
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, P. R. China
| | - Mei Chen
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, P. R. China
| | - Xue Zhao
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, P. R. China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, P. R. China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, P. R. China
| | - Ling Zhang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, P. R. China
| |
Collapse
|
216
|
Zhang K, Gao G, Zhao X, Li Q, Zhong H, Xie Y, Wang Q. The direct effects of gonadotropin-releasing hormone on proliferation of granulosa cells and development of follicles in goose. Br Poult Sci 2020; 61:242-250. [PMID: 32019334 DOI: 10.1080/00071668.2020.1724877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The study objectives were to determine the direct effects of gonadotropin-releasing hormone (GnRH) on the proliferation of ovarian granulosa cells (GCs) and the development of follicles in geese (Anser cygnoides) by colorimetry and ethynyl-2'-deoxyuridine (EdU) cell proliferation assays, in which primary GCs were treated with different concentrations of GnRH agonist (alarelin acetate) and an antagonist (cetrorelix acetate). Differently expressed genes (DEGs) were identified by RNA-sequencing and validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting. 2. The EdU assays showed that the proliferation of GCs was affected by the GnRH agonist and antagonist in a dose-dependent manner. The effect of treatment on cell proliferation was statistically significant at the concentrations of 10-5 mol/l alarelin and 1 mg/l cetrorelix acetate. A total of 134 DEGs (76 downregulated and 58 upregulated for alarelin treatment) and 226 DEGs (90 downregulated and 136 upregulated for cetrorelix) were identified by RNA-sequencing analysis, respectively. Enrichment analysis indicated that DEGs were enriched in the GO terms of cell-cell signalling and cell junctions. The pathways that regulate the development of follicles were identified, including the biological progress of cAMP accumulation, ovulation cycle and vasculature that are essential to follicular selection. 3. The results suggested that GnRH might directly regulate GC proliferation via autocrine or paracrine pathways related to cell junctions. In particular, it was confirmed that the mRNA and protein expression levels of the oestrogen receptor 2 (ESR2) gene, a negative transcription factor involved in follicular maturation and ovulation, were affected by GnRH agonist or antagonist in GCs. 4. In conclusion, GnRH might play an important role in follicular development by changing the expression of genes that participate in cAMP accumulation, ovulation cycle and cell junctions in ovarian GCs.
Collapse
Affiliation(s)
- K Zhang
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - G Gao
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - X Zhao
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Q Li
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - H Zhong
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Y Xie
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Q Wang
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| |
Collapse
|
217
|
Braga DPDAF, Zanetti BF, Setti AS, Iaconelli A, Borges E. Immature oocyte incidence: Contributing factors and effects on mature sibling oocytes in intracytoplasmic sperm injection cycles. JBRA Assist Reprod 2020; 24:70-76. [PMID: 31589389 PMCID: PMC6993156 DOI: 10.5935/1518-0557.20190056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective The aim of this study was to investigate which factors contribute to the incidence of immature oocytes (germinal vesicle -GV- and metaphase I -MI-) and how they impact the intracytoplasmic sperm injection (ICSI) outcomes of sibling mature oocytes. Methods Data from 3,920 cycles performed from June/2010 to August/2016 in a private university-affiliated IVF center were evaluated for the influence of controlled ovarian stimulation protocol (COS) on immature oocytes incidence and its effects on ICSI outcomes. Results MI (p=0.004) and GV (p=0.029) number were negatively correlated with gonadotropin dose. Patients stimulated by rFSH had increased GV/oocyte rate in both GnRH agonists (p<0.001) and antagonist (p=0.042) protocols, in comparison to rFSH associated with rLH protocol. MI and GV/oocyte rates were negatively correlated to fertilization (p<0.001), high-quality embryo on da p<0.001; GV/oocyte p=0.033) and pregnancy (MI/oocyte p=0.002; GV/oocyte p=0.013) rates. Cycles above a 10.5% MI/oocyte cut-off were correlated to higher response to ovarian stimulation, poor embryo development and almost two times lower pregnancy rate. Immature oocyte incidence is affected by COS and impacts on ICSI outcomes. Conclusion Our evidence suggests that oocytes derived from a cohort with high incidence of maturation fail may have detrimental clinical outcomes.
Collapse
Affiliation(s)
- Daniela Paes de Almeida Ferreira Braga
- Fertility Medical Group, São Paulo, SP - Brazil.,Instituto Sapientiae - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo, SP - Brazil
| | - Bianca Ferrarini Zanetti
- Fertility Medical Group, São Paulo, SP - Brazil.,Instituto Sapientiae - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo, SP - Brazil
| | - Amanda Souza Setti
- Fertility Medical Group, São Paulo, SP - Brazil.,Instituto Sapientiae - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo, SP - Brazil
| | - Assumpto Iaconelli
- Fertility Medical Group, São Paulo, SP - Brazil.,Instituto Sapientiae - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo, SP - Brazil
| | - Edson Borges
- Fertility Medical Group, São Paulo, SP - Brazil.,Instituto Sapientiae - Centro de Estudos e Pesquisa em Reprodução Humana Assistida, São Paulo, SP - Brazil
| |
Collapse
|
218
|
IMD/ADM2 1-47, a factor that improves embryo quality. Theriogenology 2020; 146:1-13. [PMID: 32035360 DOI: 10.1016/j.theriogenology.2020.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 11/22/2022]
Abstract
Starting in vitro fertilization process with competent oocytes that may endure first cellular divisions is a critical step for obtaining an embryo. To obtain in vitro competent oocytes, culture conditions should emulate the in vivo microenvironment as close as possible. With the aim of improving the in vitro culture medium, the present study evaluated the IMD/ADM21-47 peptide as a factor that promotes oocyte competence and improves embryo quality in bovine systems. The culture supplemented with 153 μg/mL of IMD/ADM21-47 was correlated with the production of healthy oocytes in metaphase II (MII) stage in compacted cumulus-oocyte complexes (COC) with a decrease of BAX/BCL-2 to mRNA ratio and a reduction of late apoptosis by TUNEL in MII oocytes. In addition to this, treatment with IMD/ADM21-47 caused cAMPi level to be constant over time, and the cAMPi level kept increasing until 6 h. COC supplementation with 153 μg/mL of IMD/ADM21-47 increased the blastocyst production rate two-fold in comparison with control conditions. Only embryos from COC treatment with this peptide were capable of developing blastocysts in stage-6 grade I; compared with the control culture, it was the treatment with the greater number of blastocysts stage-5; these are characteristics of good quality blastocysts.
Collapse
|
219
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|
220
|
Li Y, Liu YD, Zhou XY, Chen SL, Chen X, Zhe J, Zhang J, Zhang QY, Chen YX. MiR-29a regulates the proliferation, aromatase expression, and estradiol biosynthesis of human granulosa cells in polycystic ovary syndrome. Mol Cell Endocrinol 2019; 498:110540. [PMID: 31421163 DOI: 10.1016/j.mce.2019.110540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility in reproductive-aged women; however, its etiology remains poorly understood. This study aimed to reveal the role of miR-29a in PCOS. MiR-29a levels were measured in the granulosa cells (GCs) of forty-seven PCOS patients and forty-seven controls. A receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic value of miR-29a in non-hyperandrogenism PCOS. MiR-29a was overexpressed in KGN and COV434 cells to examine its roles in proliferation, cell-cycle progression, and steroidogenesis. MiR-29a was significantly down-regulated in PCOS patients, and associated with an increased antral follicle count. The ROC curve showed a major separation between PCOS patients and controls. MiR-29a overexpression in KGN and COV434 cells inhibited cell proliferation, arrested cell-cycle progression, and decreased aromatase expression and estradiol production. These findings suggest that miR-29a is involved in GC proliferation and steroidogenesis, providing insights into PCOS pathogenesis.
Collapse
Affiliation(s)
- Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Xin Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jing Zhe
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qing-Yan Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ying-Xue Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
221
|
Greenblatt EJ, Obniski R, Mical C, Spradling AC. Prolonged ovarian storage of mature Drosophila oocytes dramatically increases meiotic spindle instability. eLife 2019; 8:49455. [PMID: 31755866 PMCID: PMC6905857 DOI: 10.7554/elife.49455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/17/2019] [Indexed: 12/21/2022] Open
Abstract
Human oocytes frequently generate aneuploid embryos that subsequently miscarry. In contrast, Drosophila oocytes from outbred laboratory stocks develop fully regardless of maternal age. Since mature Drosophila oocytes are not extensively stored in the ovary under laboratory conditions like they are in the wild, we developed a system to investigate how storage affects oocyte quality. The developmental capacity of stored mature Drosophila oocytes decays in a precise manner over 14 days at 25°C. These oocytes are transcriptionally inactive and persist using ongoing translation of stored mRNAs. Ribosome profiling revealed a progressive 2.3-fold decline in average translational efficiency during storage that correlates with oocyte functional decay. Although normal bipolar meiotic spindles predominate during the first week, oocytes stored for longer periods increasingly show tripolar, monopolar and other spindle defects, and give rise to embryos that fail to develop due to aneuploidy. Thus, meiotic chromosome segregation in mature Drosophila oocytes is uniquely sensitive to prolonged storage. Our work suggests the chromosome instability of human embryos could be mitigated by reducing the period of time mature human oocytes are stored in the ovary prior to ovulation.
Collapse
Affiliation(s)
- Ethan J Greenblatt
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution for Science, Baltimore, United States
| | - Rebecca Obniski
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution for Science, Baltimore, United States
| | - Claire Mical
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution for Science, Baltimore, United States
| | - Allan C Spradling
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution for Science, Baltimore, United States
| |
Collapse
|
222
|
Tilia L, Chapman M, Kilani S, Cooke S, Venetis C. Oocyte meiotic spindle morphology is a predictive marker of blastocyst ploidy-a prospective cohort study. Fertil Steril 2019; 113:105-113.e1. [PMID: 31739977 DOI: 10.1016/j.fertnstert.2019.08.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate oocyte meiotic spindle (OMS) morphology at intracytoplasmic sperm injection (ICSI) as a predictor of blastocyst ploidy and whether OMS morphology could aid standard morphology-based blastocyst selection. DESIGN Prospective cohort study. SETTING In vitro fertilization clinic. PATIENT(S) Patients undergoing ICSI cycles with an intention to perform preimplantation genetic testing for aneuploidy (PGT-A) from October 2014 to December 2017. INTERVENTION(S) The OMS was visualized with the use of polarized light microscopy at the time of ICSI and the morphology classified as normal, dysmorphic, translucent, not visible, or in telophase. Blastocyst biopsy for PGT-A was performed on embryos with suitable development. MAIN OUTCOME MEASURE(S) The association of OMS morphology with the resulting blastocyst ploidy was evaluated on an "intention-to-treat" (ITT) and an "as-treated analysis" (ATA) basis. RESULT(S) The morphology of 2,056 OMSs were classified. A strong association of OMS morphology with fertilization, cleavage to at least 6 cells on day 3, and good/top-quality blastocyst formation was present. Normal OMS was positively associated with blastocyst euploidy compared with all other OMS types combined, per either ITT or ATA. Even after controlling for female age, blastocyst quality, and developmental stage, the presence of a normal OMS was strongly associated with the probability of blastocyst euploidy. CONCLUSION(S) OMS morphology is a predictive marker of blastocyst ploidy and can potentially aid standard morphology-based blastocyst selection.
Collapse
Affiliation(s)
- Liza Tilia
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia; IVF Australia, Sydney, New South Wales, Australia.
| | - Michael Chapman
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia; IVF Australia, Sydney, New South Wales, Australia
| | - Suha Kilani
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia; IVF Australia, Sydney, New South Wales, Australia
| | - Simon Cooke
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia; IVF Australia, Sydney, New South Wales, Australia
| | - Christos Venetis
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia; Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia; IVF Australia, Sydney, New South Wales, Australia
| |
Collapse
|
223
|
Ochratoxin A exposure causes meiotic failure and oocyte deterioration in mice. Theriogenology 2019; 148:236-248. [PMID: 31735432 DOI: 10.1016/j.theriogenology.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi and occurs naturally in various foodstuffs and some animal-derived products. This mycotoxin can cause deleterious effects on kidney, liver, central nervous, and immune system. However, potential mechanisms regarding how OTA disrupts the mammalian oocyte quality have not been clearly defined. In this study, we proved that OTA weakened oocyte quality by impairing oocyte meiotic maturation. We found that female mice treated with 1 mg/kg body weight OTA by intraperitoneal (IP) injection for 7 days displayed ovarian dysfunction and decreased offspring number. We also found that OTA treatment at 7.5 μM for 16 h decreased the rate of first polar body extrusion by disrupting spindle and chromosome alignment. In addition, OTA caused oxidative stress by inducing the accumulation of reactive oxygen species and consumption of antioxidants during meiosis, consequently resulting in oocytes apoptosis. Mitochondrial damage and insufficient energy supply were also observed in OTA-pretreated oocytes, which led to the meiotic failure of oocyte. Moreover, the epigenetic modifications were also affected, showing with altered 5 mC, 5hmC, H3K9ac, and H3K9me3 levels in mice oocytes. In summary, these results showed that OTA could decrease oocyte maturation and fertility by inducing oxidative stress and epigenetic changes.
Collapse
|
224
|
Piersanti RL, Santos JEP, Sheldon IM, Bromfield JJ. Lipopolysaccharide and tumor necrosis factor-alpha alter gene expression of oocytes and cumulus cells during bovine in vitro maturation. Mol Reprod Dev 2019; 86:1909-1920. [PMID: 31663199 DOI: 10.1002/mrd.23288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Communication between the oocyte and cumulus facilitates oocyte growth, cell cycle regulation, and metabolism. This communication is mediated by direct contact between oocytes and cumulus cells, and soluble secreted molecules. Secreted molecules involved in this process are known inflammatory mediators. Lipopolysaccharide (LPS) is detected in follicular fluid and is associated with reduced fertility, whereas accumulation of inflammatory mediators in follicular fluid, including tumor necrosis factor-α (TNF-α), is associated with female infertility. Maturation of oocytes in the presence of LPS or TNF-α reduces meiotic maturation and the capacity to develop to the blastocyst. Here we evaluated the abundance of 92 candidate genes involved immune function, epigenetic modifications, embryo development, oocyte secreted factors, apoptosis, cell cycle, and cell signaling in bovine cumulus cells or zona-free oocytes after exposure to LPS or TNF-α during in vitro maturation. We hypothesize that LPS or TNF-α will alter the abundance of transcripts in oocytes and cumulus cell in a cell type dependent manner. Exposure to LPS altered abundance of 31 transcripts in oocytes (including ACVR1V, BMP15, DNMT3A) and 12 transcripts in cumulus cells (including AREG, FGF4, PIK3IP1). Exposure to TNF-α altered 1 transcript in oocytes (IGF2) and 4 transcripts in cumulus cells (GJA1, PLD2, PTGER4, STAT1). Cumulus expansion was reduced after exposure to LPS or TNF-α. Exposing COCs to LPS had a marked effect on expression of targeted transcripts in oocytes. We propose that altered oocyte transcript abundance is associated with reduced meiotic maturation and embryo development observed in oocytes cultured in LPS or TNF-α.
Collapse
Affiliation(s)
- Rachel L Piersanti
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - José E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - I Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
225
|
Dubeibe Marin DF, da Costa NN, di Paula Bessa Santana P, de Souza EB, Ohashi OM. Importance of lipid metabolism on oocyte maturation and early embryo development: Can we apply what we know to buffalo? Anim Reprod Sci 2019; 211:106220. [PMID: 31785645 DOI: 10.1016/j.anireprosci.2019.106220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The knowledge about the biological events that regulate lipid metabolism in oocytes and embryos in buffalo is scarce. Lipogenesis, lipolysis, transport and oxidation of fatty acids (FAs) occur in gametes and embryonic cells of all mammalian species, as an intrinsic component of energy metabolism. In oocytes and cumulus cells, degradation of lipids is responsible for the production of ATP that is essential for the metabolic processes that lead to oocyte maturation in in vivo and in vitro culture conditions. Similarly, throughout embryo development, blastomeres have the capacity to use exogenous and/or endogenous lipid reserves to serve as an energy source necessary for early embryonic development. In addition, supplementation of culture media with L-carnitine to promote lipid metabolism during in vitro oocyte maturation and early embryonic development leads to an improved embryo quality. The limited scientific evidence available in buffalo indicates there is relatively greater oocyte lipid content as compared with many other species that undergoes a dynamic distribution during folliculogenesis and follicle maturation and that has a positive effect on oocyte maturation and embryo development when there is L-carnitine supplementation of the media. Advances in the understanding of the biological peculiarities of lipid metabolism, and the consequences of its alteration on the quality of buffalo gametes and embryos, therefore, are necessary to design specific culture media and laboratory procedures as a strategy to increase in vitro-derived embryo production rates.
Collapse
Affiliation(s)
- Diego Fernando Dubeibe Marin
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil.
| | - Nathalia Nogueira da Costa
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| | | | - Eduardo Baia de Souza
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| | - Otavio Mitio Ohashi
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| |
Collapse
|
226
|
Li Q, Hu S, Wang Y, Deng Y, Yang S, Hu J, Li L, Wang J. mRNA and miRNA Transcriptome Profiling of Granulosa and Theca Layers From Geese Ovarian Follicles Reveals the Crucial Pathways and Interaction Networks for Regulation of Follicle Selection. Front Genet 2019; 10:988. [PMID: 31708963 PMCID: PMC6820619 DOI: 10.3389/fgene.2019.00988] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Follicle development is characterized by the recruitment, growth, selection, and dominance of follicles, and follicle selection determines the lifetime reproductive performance. However, in birds, the molecular mechanisms underlying follicle selection still remain elusive. This study analyzed genome-wide changes in the mRNA and miRNA expression profiles in both the granulosa and theca layers of geese ovarian follicles before selection (4–6- and 8–10-mm follicles) and after selection (F5). The sequencing results showed that a higher number of both differentially expressed (DE) mRNAs and DE miRNAs were identified between 8–10-mm and F5 follicles compared with those between the 4–6- and 8–10-mm follicles, especially in the granulosa layer. Moreover, a Short Time-series Expression Miner analysis identified a large number of DE mRNAs and DE miRNAs that are associated with follicle selection. The functional enrichment analysis showed that DE genes in the granulosa layer during follicle selection were mainly enriched in five pathways related to junctional adhesion and two pathways associated with lipid metabolism. Additionally, an interaction network was constructed to visualize interactions among protein-coding genes, which identified 53 junctional adhesion- and 15 lipid regulation-related protein-coding genes. Then, a co-expression network between mRNAs and miRNAs in relation to junctional adhesion was also visualized and mainly included acy-miR-2954, acy-miR-218, acy-miR-2970, acy-miR-100, acy-miR-1329, acy-miR-199, acy-miR-425, acy-miR-181, and acy-miR-147. Furthermore, miRNA–mRNA interaction pairs related to lipid regulation were constructed including acy-miR-107, acy-miR-138, acy-miR-130, acy-miR-128, and acy-miR-101 during follicular selection. In summary, these data highlight the key roles of junctional adhesion and lipid metabolism during follicular selection and contribute to a better understanding of the mechanisms underlying follicle selection in birds.
Collapse
Affiliation(s)
- Qin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Poultry Science Institute, Chongqing Academy of Animal Science, Chongqing, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuang Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
227
|
Toxicological evaluation of 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole through the bovine oocyte in vitro maturation model. Toxicol In Vitro 2019; 62:104678. [PMID: 31629896 DOI: 10.1016/j.tiv.2019.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
The development of new bioactive molecules based on the molecular hybridization has been widely explored. In line with this, reliable tests should be employed to give information about the toxicology of these new molecules. In this sense, the use of in vitro tests is a valuable tool, especially the in vitro maturation of oocytes (IVM), which is an efficient resource to discover the potential toxicity of synthetic molecules. Thus, the aim of the present study was to evaluate the toxicological effects of the selenium-containing indolyl compound 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole (CMI), on different quality parameters of bovine oocytes through the IVM. Different concentrations of the CMI compound (0, 25, 50, 100, 200 μM) were supplemented during the in vitro maturation process. After, the oocyte maturation rate, glutathione (GSH) levels, reactive oxygen species (ROS) levels, membrane, and mitochondrial integrity were evaluated. The results showed that the lowest concentration of CMI induced the highest GSH production (P < 0.05), an important marker of cytoplasmic quality and maturation. All treatments increased ROS production in relation to non-supplementation (P < 0.05). In addition, oocyte maturation was reduced only with the highest concentration of CMI (P < 0.05). Supplementation with CMI did not impact mitochondrial activity, integrity and cell membrane. To our knowledge, this is the first study that evaluates CMI on the oocyte in vitro maturation process. Importantly, our results did not find any toxic effect of CMI on bovine oocytes. CMI was efficient for cytoplasmic maturation by promoting an increase in the intracellular levels of glutathione.
Collapse
|
228
|
Tiosano D, Mears JA, Buchner DA. Mitochondrial Dysfunction in Primary Ovarian Insufficiency. Endocrinology 2019; 160:2353-2366. [PMID: 31393557 PMCID: PMC6760336 DOI: 10.1210/en.2019-00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined by the loss or dysfunction of ovarian follicles associated with amenorrhea before the age of 40. Symptoms include hot flashes, sleep disturbances, and depression, as well as reduced fertility and increased long-term risk of cardiovascular disease. POI occurs in ∼1% to 2% of women, although the etiology of most cases remains unexplained. Approximately 10% to 20% of POI cases are due to mutations in a single gene or a chromosomal abnormality, which has provided considerable molecular insight into the biological underpinnings of POI. Many of the genes for which mutations have been associated with POI, either isolated or syndromic cases, function within mitochondria, including MRPS22, POLG, TWNK, LARS2, HARS2, AARS2, CLPP, and LRPPRC. Collectively, these genes play roles in mitochondrial DNA replication, gene expression, and protein synthesis and degradation. Although mutations in these genes clearly implicate mitochondrial dysfunction in rare cases of POI, data are scant as to whether these genes in particular, and mitochondrial dysfunction in general, contribute to most POI cases that lack a known etiology. Further studies are needed to better elucidate the contribution of mitochondria to POI and determine whether there is a common molecular defect in mitochondrial function that distinguishes mitochondria-related genes that when mutated cause POI vs those that do not. Nonetheless, the clear implication of mitochondrial dysfunction in POI suggests that manipulation of mitochondrial function represents an important therapeutic target for the treatment or prevention of POI.
Collapse
Affiliation(s)
- Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa, Israel
- Rappaport Family Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Jason A Mears
- Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
- Research Institute for Children’s Health, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
229
|
Li Y, Liu H, Wu K, Liu H, Huang T, Chen ZJ, Zhao S, Ma J, Zhao H. Melatonin promotes human oocyte maturation and early embryo development by enhancing clathrin-mediated endocytosis. J Pineal Res 2019; 67:e12601. [PMID: 31361919 DOI: 10.1111/jpi.12601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/06/2019] [Accepted: 07/21/2019] [Indexed: 01/02/2023]
Abstract
Embryo development potential and reproductive clinical outcomes are all deeply rooted in oocyte maturation. Melatonin has been reported to promote oocyte maturation as an antioxidant in nonprimate species. Its antioxidative functions also help reduce plasma membrane rigidity, which facilitates clathrin-mediated endocytosis (CME). Whether melatonin has effects on human oocyte maturation by regulating CME is worthy of exploration. In this study, we found that the optimal melatonin concentration for human oocyte maturation was 10-11 M, and the maturation rate of this group was 71.9% (P = .03). The metaphase II (MII) stage oocytes obtained by in vitro maturation with 10-11 M melatonin had a significantly higher fertilization rate (81.4% vs 61.4%, respectively, P = .017) and blastocyst rate (32.2% vs 15.8%, respectively, P = .039) compared to controls. During maturation, antioxidative melatonin greatly enhanced CME and decreased intra-oocyte cAMP level. The former was evidenced by the increasing numbers of coated pits and vesicles, and the upregulated expression of two major CME markers-clathrin and adaptor protein-2 (AP2). CME inhibitor dynasore increased intra-oocyte cAMP level and blocked oocyte maturation, and melatonin could partly rescue oocyte maturation and significantly elevate the expression of clathrin and AP2 in the presence of dynasore. Therefore, we conclude that melatonin could promote human oocyte maturation and early embryo development through enhancing CME.
Collapse
Affiliation(s)
- Yue Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Hui Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| |
Collapse
|
230
|
Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, Krueger F, Segonds-Pichon A, De Vos M, Andrews S, Smitz J, Kelsey G, Anckaert E. DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum Reprod 2019; 34:1640-1649. [PMID: 31398248 DOI: 10.1093/humrep/dez121] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2023] Open
Abstract
STUDY QUESTION Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients? SUMMARY ANSWER No significant differences in imprinted DNA methylation and gene expression were detected between COS and CAPA-IVM blastocysts. WHAT IS KNOWN ALREADY Animal models have revealed alterations in DNA methylation maintenance at imprinted germline differentially methylated regions (gDMRs) after use of ARTs. This effect increases as more ART interventions are applied to oocytes or embryos. IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for patients. CAPA-IVM is an improved IVM system that includes a pre-maturation step (CAPA), followed by an IVM step, both in the presence of physiological compounds that promote oocyte developmental capacity. STUDY DESIGN, SIZE, DURATION For DNA methylation analysis 20 CAPA-IVM blastocysts were compared to 12 COS blastocysts. For RNA-Seq analysis a separate set of 15 CAPA-IVM blastocysts were compared to 5 COS blastocysts. PARTICIPANTS/MATERIALS, SETTING, METHODS COS embryos originated from 12 patients with PCOS (according to Rotterdam criteria) who underwent conventional ovarian stimulation. For CAPA-IVM 23 women were treated for 3-5 days with highly purified hMG (HP-hMG) and no hCG trigger was given before oocyte retrieval. Oocytes were first cultured in pre-maturation medium (CAPA for 24 h containing C-type natriuretic peptide), followed by an IVM step (30 h) in medium containing FSH and Amphiregulin. After ICSI, Day 5 or 6 embryos in both groups were vitrified and used for post-bisulphite adaptor tagging (PBAT) DNA methylation analysis or RNA-seq gene expression analysis of individual embryos. Data from specific genes and gDMRs were extracted from the PABT and RNA-seq datasets. MAIN RESULTS AND THE ROLE OF CHANCE CAPA-IVM blastocysts showed similar rates of methylation and gene expression at gDMRs compared to COS embryos. In addition, expression of major epigenetic regulators was similar between the groups. LIMITATIONS, REASONS FOR CAUTION The embryos from the COS group were generated in a range of culture media. The CAPA-IVM embryos were all generated using the same sperm donor. The DNA methylation level of gDMRs in purely in vivo-derived human blastocysts is not known. WIDER IMPLICATIONS OF THE FINDINGS A follow-up of children born after CAPA-IVM is important as it is for other new ARTs, which are generally introduced into clinical practice without prior epigenetic safety studies on human blastocysts. CAPA-IVM opens new perspectives for patient-friendly ART in PCOS. STUDY FUNDING/COMPETING INTEREST(S) IVM research at the Vrije Universiteit Brussel has been supported by grants from the Institute for the Promotion of Innovation by Science and Technology in Flanders (Agentschap voor Innovatie door Wetenschap en Technologie-IWT, project 110680), the Fund for Research Flanders (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen-FWO-AL 679 project, project G.0343.13), the Belgian Foundation Against Cancer (HOPE project, Dossier C69Ref Nr 2016-119) and the Vrije Universiteit Brussel (IOF Project 4R-ART Nr 2042). Work in G.K.'s laboratory is supported by the UK Biotechnology and Biological Sciences Research Council and Medical Research Council. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- M D Saenz-de-Juano
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Switzerland
| | - E Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - S Romero
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Reproductive Biology and Fertility Preservation, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - F Lolicato
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Fertilab Barcelona, Via Augusta, 237-239, Barcelona 08021, Spain
| | - F Sánchez
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Reproductive Biology and Fertility Preservation, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - H Van Ranst
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - F Krueger
- Bioinformatics Unit, The Babraham Institute, Cambridge, UK
| | | | - M De Vos
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Centre for Reproductive Medicine, UZ Brussel, Brussels 1090, Belgium
| | - S Andrews
- Bioinformatics Unit, The Babraham Institute, Cambridge, UK
| | - J Smitz
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - G Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - E Anckaert
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
231
|
He YT, Yang LL, Luo SM, Shen W, Yin S, Sun QY. PAK4 Regulates Actin and Microtubule Dynamics during Meiotic Maturation in Mouse Oocyte. Int J Biol Sci 2019; 15:2408-2418. [PMID: 31595158 PMCID: PMC6775323 DOI: 10.7150/ijbs.34718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022] Open
Abstract
Meiotic maturation of oocyte is an important process for successful fertilization, in which cytoskeletal integrality takes a significant role. The p-21 activated kinases (PAKs) belong to serine/threonine kinases that affect wide range of processes that are crucial for cell motility, survival, cell cycle, and proliferation. In this study, we used a highly selective inhibitor of PAK4, PF-3758309, to investigate the functions of PAK4 during meiotic maturation of mouse oocytes. We found that PAK4 inhibition resulted in meiotic arrest by inducing abnormal microfilament and microtubule dynamics. PAK4 inhibition impaired the microtubule stability and led to the defective kinetochore-microtubule (K-M) attachment which inevitably resulted in aneuploidy. Also, PAK4 inhibition induced abnormal acentriolar centrosome assembly during meiotic maturation. In conclusion, all these combined results suggest that PAK4 is necessary for the oocyte meiosis maturation as a regulator of cytoskeleton.
Collapse
Affiliation(s)
- Ya-Ting He
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei-Lei Yang
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shi-Ming Luo
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shen Yin
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing-Yuan Sun
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
232
|
He YT, Wang W, Shen W, Sun QY, Yin S. Melatonin protects against Fenoxaprop-ethyl exposure-induced meiotic defects in mouse oocytes. Toxicology 2019; 425:152241. [DOI: 10.1016/j.tox.2019.152241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
|
233
|
Barros FDDA, Adona PR, Guemra S, Damião BCM. Oxidative homeostasis in oocyte competence for in vitro embryo development. Anim Sci J 2019; 90:1343-1349. [PMID: 31469477 DOI: 10.1111/asj.13256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
The objective of this study was to evaluate the levels of reactive oxygen species (ROS) and glutathione (GSH) in oocytes from follicles of different diameters and their relevance in the in vitro production of embryos (IVPE). Bovine ovaries were aspirated according to the diameter of the follicle [2-8 (general), 4-8 (large), and 2 < 4 mm (small)]. The oocytes were evaluated for levels of ROS, GSH, in vitro maturation, and IVPE. Higher levels of ROS and GSH were observed (p < 0.05) in oocytes of the large group (85.6 ± 7.2 and 140.0 ± 9.6) followed by those in the general (81.1 ± 10.5 and 134.3 ± 7.8) and small (73.5 ± 10.1 and 125.0 ± 10.6) groups. However, the proportion of ROS/GSH did not differ (p > 0.05) between the general, large, and small groups. The maturation was higher (p < 0.05) in the large group (87.8 ± 3.0%) than in the small group (72.2 ± 5.8%), but both were similar (p > 0.05) to that in the general group (82.2 ± 2.5%), whereas the IVPE of the large group (57.3 ± 3.0%) was higher (p < 0.05) than those in the general (44.7 ± 4.4%) and small (34.0 ± 4.0%) groups. We report that oocytes from large follicles are more competent for IVPE, whereas higher levels of ROS and GSH appear to be correlated with oocyte competence, as long as oxidative homeostasis is retained.
Collapse
Affiliation(s)
| | | | - Samuel Guemra
- Unopar, Saúde e Produção de Ruminantes, Arapongas, PR, Brazil
| | | |
Collapse
|
234
|
Pimentel RN, Navarro PA, Wang F, Robinson LG, Cammer M, Liang F, Kramer Y, Keefe DL. Amyloid-like substance in mice and human oocytes and embryos. J Assist Reprod Genet 2019; 36:1877-1890. [PMID: 31332596 DOI: 10.1007/s10815-019-01530-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To identify and characterize amyloid-like substance (ALS) in human and mouse oocytes and preimplantation embryos. METHODS An experimental prospective pilot study. A total of 252 mouse oocytes and preimplantation embryos and 50 immature and in vitro matured human oocytes and parthenogenetic human embryos, from 11 consenting fertility patients, ages 18-45. Fluorescence intensity from immunofluorescent staining and data from confocal microscopy were quantified. Data were compared by one-way analysis of variance, with the least square-MEANS post-test, Pearson correlation coefficients (r), and bivariate analyses (t tests). ALS morphology was verified using transmission electron microscopy. RESULTS Immunostaining for ALS appears throughout the zona pellucida, as well as in the cytoplasm and nucleus of mouse and human oocytes, polar bodies, and parthenogenetic embryos, and mouse preimplantation embryos. In mouse, 2-cell embryos exhibited the highest level of ALS (69000187.4 ± 6733098.07). Electron microscopy confirmed the presence of ALS. In humans, fresh germinal vesicle stage oocytes exhibited the highest level of ALS (4164.74088 ± 1573.46) followed by metaphase I and II stages (p = 0.008). There was a significant negative association between levels of ALS and patient body mass index, number of days of ovarian stimulation, dose of gonadotropin used, time between retrieval and fixation, and time after the hCG trigger. Significantly higher levels of ALS were found in patients with AMH between 1 and 3 ng/ml compared to < 1 ng/ml. CONCLUSION We demonstrate for the first time the presence, distribution, and change in ALS throughout some stages of mouse and human oocyte maturation and embryonic development. We also determine associations between ALS in human oocytes with clinical characteristics.
Collapse
Affiliation(s)
- Ricardo N Pimentel
- Research Scientist from the Department of Obstetrics and Gynecology, New York University School of Medicine, 550 First Avenue, NBV 9N1, New York, NY, USA.,Human Reproduction Division, Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paula A Navarro
- Human Reproduction Division, Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fang Wang
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - LeRoy G Robinson
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - Michael Cammer
- DART Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Fengxia Liang
- DART Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Yael Kramer
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - David Lawrence Keefe
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
235
|
Casalechi M, Dias JA, Pinto LV, Lobach VN, Pereira MT, Cavallo IK, Reis AM, Dela Cruz C, Reis FM. C-type natriuretic peptide signaling in human follicular environment and its relation with oocyte maturation. Mol Cell Endocrinol 2019; 492:110444. [PMID: 31075302 DOI: 10.1016/j.mce.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Abstract
Studies in mice have shown that C-type natriuretic peptide (CNP) is produced by granulosa cells and contributes to ovarian follicle growth and oocyte meiotic arrest until the preovulatory LH surge. In humans, the relationship between intraovarian CNP levels and oocyte meiotic resumption is unknown. The aim of this study was to investigate whether CNP and its receptor NPR2 are expressed in human ovarian follicles and if their levels change according to the meiotic phase of oocytes. We collected follicular fluid (FF) and luteinized granulosa cells (LGC) from follicle pools (n = 47), and FF, LGC and cumulus cells (CC) from individual follicles (n = 96) during oocyte pickup for in vitro fertilization. There was a positive linear correlation between CNP levels in FF pools and basal antral follicle counting (rs = 0.458; p = 0.002), number of preovulatory follicles >16 mm (rs = 0.361; p = 0.016) and number of oocytes retrieved (rs = 0,378; p = 0.011) and a negative correlation between CNP levels in FF pools and the percentage of mature (MII) oocytes retrieved (rs = -0.39; p = 0.033). FF CNP levels in follicles containing MII oocytes were significantly lower than in follicles containing immature (MI) oocytes (median = 0.44 vs. 0.57 ng/mL, p < 0.05). Accordingly, the CNP precursor gene NPPC was 50% less expressed in LGC from follicles containing MII oocytes than in follicles containing MI oocytes (p < 0.01). In addition, NPR2 mRNA was down-regulated in CC surrounding MII oocytes (60% reduction, p < 0.01). CNP signaling is downregulated in human ovarian follicles containing mature oocytes. Further studies should clarify whether CNP signaling is essential to keep oocyte meiotic arrest in humans.
Collapse
Affiliation(s)
- Maíra Casalechi
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Júlia A Dias
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Lorena V Pinto
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Verônica N Lobach
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Maria T Pereira
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Ines K Cavallo
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Adelina M Reis
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil.
| |
Collapse
|
236
|
Lavrentyeva EA, Shishova KV, Zatsepina OV. Differences in Nuclear Dynamics in Mouse GV Oocytes with a Diverse Chromatin Configuration. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
237
|
Moura MT, Badaraco J, Sousa RV, Lucci CM, Rumpf R. Improved functional oocyte enucleation by actinomycin D for bovine somatic cell nuclear transfer. Reprod Fertil Dev 2019; 31:1321-1329. [PMID: 30986366 DOI: 10.1071/rd18164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) allows animal cloning but remains technically challenging. This study investigated limitations to functional oocyte enucleation by actinomycin D (AD) as a means of making SCNT easier to perform. Denuding oocytes or inhibiting transcription before AD treatment revealed that the toxicity of this compound during bovine oocyte maturation is mediated by cumulus cells. Exposure of denuded oocytes to higher concentrations of AD (5-20μgmL-1 ) and stepwise reductions of the incubation period (from 14.0 to 0.25h) led to complete inhibition of parthenogenetic development. Bovine SCNT using this improved AD enucleation protocol (NT(AD)) restored cleavage rates compared with rates in the parthenogenetic and SCNT controls (P(CTL) and NT(CTL) respectively). However, NT(AD) was associated with increased caspase-3 activity in cleavage stage embryos and did not recover blastocyst rates. The removal of AD-treated oocyte spindle before reconstruction (NT(AD+SR)) improved embryo development and reduced caspase-3 activity to levels similar to those in the P(CTL) and NT(CTL) groups. Furthermore, mid-term pregnancies were achieved using NT(AD+SR) blastocysts. In conclusion, improvements in AD functional enucleation for bovine SCNT circumvents most cellular roadblocks to early embryonic development and future investigations must focus on restoring blastocyst formation.
Collapse
Affiliation(s)
- Marcelo T Moura
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil; and Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil; and Present address: Laboratório de Biologia Celular, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil; and Corresponding author
| | - Jeferson Badaraco
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil
| | - Regivaldo V Sousa
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil
| | - Carolina M Lucci
- Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil
| | - Rodolfo Rumpf
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), CP 02372, CEP 70770-900, Brasília, DF, Brazil; and Departamento de Agronomia e Medicina Veterinária, Universidade de Brasília, Instituto Central de Ciências Sul, Campus Universitário Darci Ribeiro, CEP 70297-400, Brasília, DF, Brazil; and Present address: Geneal Biotecnologia, Rodovia BR-050, Km 184, CEP 38038-050, Uberaba, MG, Brazil
| |
Collapse
|
238
|
Clarke H. Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment. Results Probl Cell Differ 2019; 63:17-41. [PMID: 28779312 DOI: 10.1007/978-3-319-60855-6_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of animal germ cells depends critically on continuous contact and communication with the somatic compartment of the gonad. In females, each oocyte is enclosed within a follicle, whose somatic cells supply nutrients that sustain basal metabolic activity of the oocyte and send signals that regulate its differentiation. This maternal microenvironment thus plays an indispensable role in ensuring the production of fully differentiated oocytes that can give rise to healthy embryos. The granulosa cells send signals, likely membrane-associated Kit ligand, which trigger oocytes within resting-stage primordial follicles to initiate growth. During growth, the granulosa cells feed amino acids, nucleotides, and glycolytic substrates to the oocyte. These factors are necessary for the oocyte to complete its growth and are delivered via gap junctions that couple the granulosa cells to the oocyte. In a complementary manner, growing oocytes also release growth factors, notably growth-differentiation factor 9 and bone morphogenetic protein 15, which are necessary for proper differentiation of the granulosa cells and for these cells to support oocyte growth. During the late stages of oocyte growth, cyclic GMP that is synthesized by the granulosa cells and diffuses into the oocyte is required to prevent its precocious entry into meiotic maturation. Finally, at the early stages of maturation, granulosa cell signals promote the synthesis of a subset of proteins within the oocyte that enhance their ability to develop as embryos. Thus, the maternal legacy of the follicular microenvironment is witnessed by the fertilization of the ovulated oocyte and subsequent birth of healthy offspring.
Collapse
Affiliation(s)
- Hugh Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Room E.M0.2218, Glen Research Building, 100 Boul Decarie, Montreal, QC, Canada, H4A 3J1.
| |
Collapse
|
239
|
Colombo M, Morselli MG, Tavares MR, Apparicio M, Luvoni GC. Developmental Competence of Domestic Cat Vitrified Oocytes in 3D Enriched Culture Conditions. Animals (Basel) 2019; 9:E329. [PMID: 31181674 PMCID: PMC6616943 DOI: 10.3390/ani9060329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/20/2023] Open
Abstract
Cryoinjuries severely affect the competence of vitrified oocytes (VOs) to develop into embryos after warming. The use of culture conditions that provide physical and chemical support and resemble the in vivo microenvironment in which oocytes develop, such as 3D scaffolds and coculture systems, might be useful to improve VOs outcomes. In this study, an enriched culture system of 3D barium alginate microcapsules was employed for the in vitro embryo production of domestic cat VOs. Cryotop vitrified-warmed oocytes were in vitro matured for 24 h in the 3D system with or without fresh cumulus-oocyte complexes (COCs) in coculture, whereas a control group of VOs was cultured in traditional 2D microdrops of medium. After in vitro fertilization, presumptive embryos were cultured in 3D or 2D systems according to the maturation conditions. Vitrified oocytes were able to mature and develop into embryos in 3D microcapsules (17.42 ± 11.83%) as well as in 2D microdrops (14.96 ± 8.80%), but the coculture with companion COCs in 3D resulted in similar proportions of VOs embryo development (18.39 ± 16.67%; p = 1.00), although COCs presence allowed for blastocyst formation (0.95 ± 2.52%). In conclusion, embryos until late developmental stages were obtained from cat VOs, and 3D microcapsules were comparable to 2D microdrops, but improvements in post-warming conditions are still needed.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| | - Maria Giorgia Morselli
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| | - Mariana Riboli Tavares
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil.
| | - Maricy Apparicio
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil.
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| |
Collapse
|
240
|
Gheldof A, Mackay DJG, Cheong Y, Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J Med Genet 2019; 56:271-282. [PMID: 30728173 PMCID: PMC6581078 DOI: 10.1136/jmedgenet-2018-105513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
During reproductive age, approximately one in seven couples are confronted with fertility problems. While the aetiology is diverse, including infections, metabolic diseases, hormonal imbalances and iatrogenic effects, it is becoming increasingly clear that genetic factors have a significant contribution. Due to the complex nature of infertility that often hints at a multifactorial cause, the search for potentially causal gene mutations in idiopathic infertile couples has remained difficult. Idiopathic infertility patients with a suspicion of an underlying genetic cause can be expected to have mutations in genes that do not readily affect general health but are only essential in certain processes connected to fertility. In this review, we specifically focus on genes involved in meiosis and maternal-effect processes, which are of critical importance for reproduction and initial embryonic development. We give an overview of genes that have already been linked to infertility in human, as well as good candidates which have been described in other organisms. Finally, we propose a phenotypic range in which we expect an optimal diagnostic yield of a meiotic/maternal-effect gene panel.
Collapse
Affiliation(s)
- Alexander Gheldof
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Deborah J G Mackay
- Faculty of Medicine, University of Southampton, Southampton University Hospital, Southampton, UK
| | - Ying Cheong
- Complete Fertility, Human Development of Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Willem Verpoest
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
241
|
He YT, Yang LL, Zhao Y, Shen W, Yin S, Sun QY. Fenoxaprop-ethyl affects mouse oocyte quality and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2019; 75:844-851. [PMID: 30152098 DOI: 10.1002/ps.5190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Fenoxaprop-ethyl (FE) is an active ingredient of commercially available herbicide formulations. Its overuse has caused much damage to the environment, livestock breeding, agricultural crops and humans. However, little is known about the effects of FE exposure on female reproductive health and the mechanisms underlying those effects. In this study, we investigated the toxic effects of FE on oocyte quality and their underlying mechanisms in mice fed a diet containing FE. RESULTS Ovary weight and numbers of oocytes were reduced in FE-treated mice. Moreover, oocyte quality was seriously impaired, as shown by the reduced rate of first polar body extrusion and fertilization ability in vivo. In FE-treated mice, oocytes presented reduced actin expression and abnormal meiotic spindle morphology, which indicate that cytoskeletal integrality is disrupted. Also, FE induced mitochondrial dysfunction, reflected by the accumulation of reactive oxygen species (ROS), apoptosis and autophagy, as revealed by fluorescent staining analysis and real-time polymerase chain reaction (qPCR). Finally, FE led to changes in epigenetic modifications such as histone H3K27me3 and H3K9me2 in oocytes. CONCLUSIONS Our results indicate that FE has adverse effects on oocyte quality as assessed by maturation and fertilization potential, due to disrupted cytoskeletal integrality, and mitochondrial dysfunction leading to ROS accumulation, apoptosis and autophagy. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya-Ting He
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qing-Yuan Sun
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
242
|
Wu L, Chen H, Li D, Song D, Chen B, Yan Z, Lyu Q, Wang L, Kuang Y, Li B, Sang Q. Novel mutations in PATL2: expanding the mutational spectrum and corresponding phenotypic variability associated with female infertility. J Hum Genet 2019; 64:379-385. [PMID: 30765866 DOI: 10.1038/s10038-019-0568-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 01/20/2019] [Indexed: 01/09/2023]
Abstract
Oocyte maturation arrest results in primary female infertility, but the genetic etiology of this phenotype remains largely unknown. Previously, we and other groups have reported that biallelic mutations in PATL2 are mainly responsible for human oocyte germinal vesicle-stage arrest and that the specific phenotype varies for different mutations. Here, we identified four novel missense mutations (p.V260M, p.Q300*, p.T425P, and p.D293Y), a novel frameshift mutation (p.N239Tfs*9), and a reported splicing mutation (p.R75Vfs*21) in PATL2 in seven affected individuals from five unrelated families, showing a multiplicity of phenotypes in oocyte maturation arrest, fertilization failure, or embryonic developmental arrest, which further expands the mutational and phenotypic spectrum in patients with PALTL2 mutations. This work further indicates the critical role of PATL2 in oocyte maturation and early embryo development and will provide a basis for pursuing the determination of genetic variation in PALT2 as an additional criterion for evaluating the quality of oocytes and embryos for assisted reproduction techniques.
Collapse
Affiliation(s)
- Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Chen
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 20032, China
| | - Da Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Di Song
- Reproductive Medicine Centre, Second Military Medical University, Shanghai Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Biaobang Chen
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Qing Sang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
243
|
Haraguchi H, Hirota Y, Saito-Fujita T, Tanaka T, Shimizu-Hirota R, Harada M, Akaeda S, Hiraoka T, Matsuo M, Matsumoto L, Hirata T, Koga K, Wada-Hiraike O, Fujii T, Osuga Y. Mdm2-p53-SF1 pathway in ovarian granulosa cells directs ovulation and fertilization by conditioning oocyte quality. FASEB J 2019; 33:2610-2620. [PMID: 30260703 DOI: 10.1096/fj.201801401r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functions of tumor suppressor p53 and its negative regulator mouse double minute 2 homolog (Mdm2) in ovarian granulosa cells remain to be elucidated, and the current study aims at clarifying this issue. Mice with Mdm2 deficiency in ovarian granulosa cells [ Mdm2-loxP/ progesterone receptor ( Pgr)-Cre mice] were infertile as a result of impairment of oocyte maturation, ovulation, and fertilization, and those with Mdm2/p53 double deletion in granulosa cells ( Mdm2-loxP/ p53-loxP/ Pgr-Cre mice) showed normal fertility, suggesting that p53 induction in the ovarian granulosa cells is detrimental to ovarian function by disturbing oocyte quality. Another model of Mdm2 deletion in ovarian granulosa cells ( Mdm2-loxP/ anti-Mullerian hormone type 2 receptor-Cre mice) also showed subfertility as a result of the failure of ovulation and fertilization, indicating critical roles of ovarian Mdm2 in ovulation and fertilization. Mdm2-p53 pathway in cumulus granulosa cells transcriptionally controlled an orphan nuclear receptor steroidogenic factor 1 (SF1), a key regulator of ovarian function. Importantly, MDM2 and SF1 levels in human cumulus granulosa cells were positively associated with the outcome of oocyte maturation and fertilization in patients undergoing infertility treatment. These findings suggest that the Mdm2-p53-SF1 axis in ovarian cumulus granulosa cells directs ovarian function by affecting their neighboring oocyte quality.-Haraguchi, H., Hirota, Y., Saito-Fujita, T., Tanaka, T., Shimizu-Hirota, R., Harada, M., Akaeda, S., Hiraoka, T., Matsuo, M., Matsumoto, L., Hirata, T., Koga, K., Wada-Hiraike, O., Fujii, T., Osuga, Y. Mdm2-p53-SF1 pathway in ovarian granulosa cells directs ovulation and fertilization by conditioning oocyte quality.
Collapse
Affiliation(s)
- Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Precursory Research for Innovative Medical Care, Japan Agency for Medical Research and Development, Tokyo, Japan; and
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Leona Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
244
|
Camargo LSA, Munk M, Sales JN, Wohlres-Viana S, Quintão CCR, Viana JHM. Differential gene expression between in vivo and in vitro maturation: a comparative study with bovine oocytes derived from the same donor pool. JBRA Assist Reprod 2019; 23:7-14. [PMID: 30614236 PMCID: PMC6364282 DOI: 10.5935/1518-0557.20180084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: In vitro maturation has been shown to influence gene
expression in oocytes, but a common shortcoming in reports on the matter has
been the use of different donors in each experimental group thus
disregarding donor effects. This study aimed to investigate the abundance of
mRNA in oocytes matured in vivo and in
vitro obtained from the same group of donors. Methods: A bovine model was used to assess the relative abundance of specific
transcripts in in vitro-matured (IN VITRO-OPU) and in
vivo-matured (IN VIVO-OPU) oocytes collected from the same donors
by transvaginal ovum pick-up (OPU). Transcript abundance in oocytes from the
IN VIVO-OPU group and oocytes matured in vitro but
retrieved from different cows slaughtered at a commercial abattoir (IN
VITRO-Abattoir group) was also compared. Total RNA was extracted from
denuded oocytes and cDNA was produced via reverse transcription using an
oligo(dT) primer for relative quantification of eight target transcripts by
real-time PCR. Results: Oocytes in the IN VITRO-OPU group had lower (p<0.05)
abundance of peroxiredoxin 1 (Prdx1), heat shock protein
70.1 (Hsp70.1), growth and differentiation factor 9
(Gdf9), and maternal antigen that embryo requires
(Mater) transcripts than the oocytes in the IN VIVO-OPU
group, all obtained from the same pool of donor cows. Similar results were
seen in the comparisons involving the IN VIVO-OPU and IN VITRO-Abattoir
groups (p<0.05). Conclusion: In vitro maturation affected the abundance of polyadenylated
transcripts in the oocyte cytoplasm when compared to in
vivo maturation induced by exogenous hormones in oocytes
collected from the same donor pool.
Collapse
Affiliation(s)
| | - Michele Munk
- Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | | | | | |
Collapse
|
245
|
Wang Q, Tang SB, Song XB, Deng TF, Zhang TT, Yin S, Luo SM, Shen W, Zhang CL, Ge ZJ. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Hum Reprod 2019; 33:474-481. [PMID: 29377995 DOI: 10.1093/humrep/dey006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION What are the effects of high-glucose concentrations on DNA methylation of human oocytes? SUMMARY ANSWER High-glucose concentrations altered DNA methylation levels of Peg3 and Adiponectin in human in vitro maturation oocytes. WHAT IS KNOWN ALREADY Maternal diabetes has a detrimental influence on oocyte quality including epigenetic modifications, as shown in non-human mammalian species. STUDY DESIGN, SIZE, DURATION Immature metaphase I (MI) stage oocytes of good quality were retrieved from patients who had normal ovarian potential and who underwent ICSI in the Reproductive Medicine Center of People's Hospital of Zhengzhou University. MI oocytes were cultured in medium with different glucose concentrations (control, 10 mM and 15 mM) in vitro and 48 h later, oocytes with first polar body extrusion were collected to check the DNA methylation levels. PARTICIPANTS/MATERIALS, SETTING, METHODS MI oocytes underwent in vitro maturation (IVM) at 37°C with 5% mixed gas for 48 h. Then the mature oocytes were treated with bisulfite buffer. Target sequences were amplified using nested or half-nested PCR and the DNA methylation status was tested using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing (BS). MAIN RESULTS AND THE ROLE OF CHANCE High-glucose concentrations significantly decreased the first polar body extrusion rate. Compared to controls, the DNA methylation levels of Peg3 in human IVM oocytes were significantly higher in 10 mM (P < 0.001) and 15 mM (P < 0.001) concentrations of glucose. But the DNA methylation level of H19 was not affected by high-glucose concentrations in human IVM oocytes. We also found that there was a decrease in DNA methylation levels in the promoter of adiponectin in human IVM oocytes between controls and oocytes exposed to 10 mM glucose (P = 0.028). LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION It is not clear whether the alterations are beneficial or not for the embryo development and offspring health. The effects of high-glucose concentrations on the whole process of oocyte maturation are still not elucidated. Another issue is that the number of oocytes used in this study was limited. WIDER IMPLICATIONS OF THE FINDINGS This is the first time that the effects of high-glucose concentration on DNA methylation of human oocytes have been elucidated. Our result indicates that in humans, the high risk of chronic diseases in offspring from diabetic mothers may originate from abnormal DNA modifications in oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the fund of National Natural Science Foundation of China (81401198) and Doctor Foundation of Qingdao Agricultural University (1116008).The authors declare that there are no potential conflicts of interest relevant to this article.
Collapse
Affiliation(s)
- Qian Wang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Shou-Bin Tang
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| | - Xiao-Bing Song
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Teng-Fei Deng
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Ting-Ting Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Shen Yin
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| | - Shi-Ming Luo
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| | - Wei Shen
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| | - Cui-Lian Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Zhao-Jia Ge
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| |
Collapse
|
246
|
Wang W, Luo SM, Ma JY, Shen W, Yin S. Cytotoxicity and DNA Damage Caused from Diazinon Exposure by Inhibiting the PI3K-AKT Pathway in Porcine Ovarian Granulosa Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:19-31. [PMID: 30525588 DOI: 10.1021/acs.jafc.8b05194] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Organophosphorus insecticide diazinon (DZN) is diffusely used in agriculture, home gardening, and crop peats. Much work so far has focused on the link between DZN exposure and the occurrence of neurological diseases, while little is known on the reproductive toxicological assessment on DZN exposure. This research aimed to investigate the underlying mechanisms of toxic hazards for DZN exposure on cultured porcine ovarian granulosa cells. We analyzed the oxidative stress, energy metabolism, DNA damage, apoptosis, and autophagy by using high-throughput RNA-seq, immunofluorescence, Western blotting, and real-time PCR. The combined data demonstrated that DZN exposure could cause excessive ROS and DNA damage, which induced apoptosis and autophagy by inhibiting the PI3K-AKT pathway. The down-regulated CYP19A1 protein and granulosa cell deaths increase the risk for developing premature ovarian failure and follicular atresia. In conclusion, DZN exposure has obvious reproductive toxicity by induction of granulosa cell death through pathways connected to DNA damage and oxidative stress by inhibiting the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Shi-Ming Luo
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Jun-Yu Ma
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| |
Collapse
|
247
|
Ishigaki M, Hoshino Y, Ozaki Y. Phosphoric acid and phosphorylation levels are potential biomarkers indicating developmental competence of matured oocytes. Analyst 2019; 144:1527-1534. [DOI: 10.1039/c8an01589a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We identified biomarkers for mice oocyte maturation in metaphase II in vivo and in situ using Raman spectroscopy.
Collapse
Affiliation(s)
- Mika Ishigaki
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
- Center for Promotion of Project Research
| | - Yumi Hoshino
- Graduate School of Biosphere Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Yukihiro Ozaki
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
| |
Collapse
|
248
|
Morphokinetic characteristics of embryos derived from in-vitro-matured oocytes and their in-vivo-matured siblings after ovarian stimulation. Reprod Biomed Online 2019; 38:7-11. [DOI: 10.1016/j.rbmo.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
|
249
|
Son WY, Henderson S, Cohen Y, Dahan M, Buckett W. Immature Oocyte for Fertility Preservation. Front Endocrinol (Lausanne) 2019; 10:464. [PMID: 31379739 PMCID: PMC6650526 DOI: 10.3389/fendo.2019.00464] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
In vitro maturation (IVM) of human immature oocytes has been offered to women who are at risk of developing ovarian hyperstimulation syndrome (OHSS) caused by gonadotropin stimulation, such as PCO(S) patients or who have poor ovarian reserve. Cryopreservation of oocytes matured in vivo obtained in IVF cycles has improved after implementing the vitrification method and many successful results have been reported. Now, this procedure can be successfully offered to fertility preservation programs for patients who are in danger of losing their ovarian function due to medical or social reasons, and to oocyte donation programs. This vitrification technique has also been applied to cryopreserve oocytes obtained from IVM program. Some advantages of oocytes vitrification related with IVM are: (1) eliminating costly drugs and frequent monitoring; (2) completing treatment within 2 to 10 days (3) avoiding the use of hormones in cancer patients with hormone-sensitive tumors; and (4) retrieving oocytes at any point in menstrual cycle, even in the luteal phase. In addition, immature oocytes can also be collected from extracorporeal ovarian biopsy specimens or ovaries during caesarian section. Theoretically, there are two possible approaches for preserving immature oocytes: oocyte cryopreservation at the mature stage (after IVM) and oocyte cryopreservation at the Germinal Vesicle (GV)-stage (before IVM). Both vitrification of immature oocyte before/after IVM is not currently satisfactory. Nevertheless, many IVF centers worldwide are doing IVM oocyte cryopreservation as one of the options to preserve fertility for female cancer. Therefore, more studies are urgently required to improve IVM- and vitrification method to successfully preserve oocytes collected from cancer patients. In this review, present oocyte maturation mechanisms and recent progress of human IVM cycles will be discussed first, followed by some studies of the vitrification of human IVM oocyte.
Collapse
|
250
|
Wu X, Shen W, Zhang B, Meng A. The genetic program of oocytes can be modified in vivo in the zebrafish ovary. J Mol Cell Biol 2018; 10:479-493. [PMID: 30060229 DOI: 10.1093/jmcb/mjy044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022] Open
Abstract
Oocytes, the irreplaceable gametes for generating a new organism, are matured in the ovary of living female animals. It is unknown whether any genetic manipulations can be applied to immature oocytes inside the living ovaries. As a proof-of-concept, we here demonstrate genetic amendments of zebrafish immature oocytes within the ovary. Oocyte microinjection in situ (OMIS) stimulates tissue repair responses, but some of the microinjected immature oocytes are matured, ovulated and fertilizable. By OMIS-mediated Cas9 approach, ntla and gata5 loci of oocytes arrested at prophase I of meiosis are successfully edited before fertilization. Through OMIS, high efficiency of biallelic mutations in single or multiple loci using Cas9/gRNAs allows immediate manifestation of mutant phenotypes in F0 embryos and multiple transgenes can co-express the reporters in F0 embryos with patterns similar to germline transgenic embryos. Furthermore, maternal knockdown of dnmt1 by antisense morpholino via OMIS results in a dramatic decrease of global DNA methylation level at the dome stage and causes embryonic lethality prior to segmentation period. Therefore, OMIS opens a door to efficiently modify the genome and provides a possibility to repair genetically abnormal oocytes in situ.
Collapse
Affiliation(s)
- Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|