201
|
Gheysen L, Maes L, Famaey N, Segers P. Pulse wave velocity: A clinical measure to aid material parameter estimation in computational arterial biomechanics. J Biomech 2023; 149:111482. [PMID: 36791516 DOI: 10.1016/j.jbiomech.2023.111482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Determining proper material parameters from clinical data remains a large, though unavoidable, challenge in patient-specific computational cardiovascular modeling. In an attempt to couple the clinical and modelling practice, this study investigated whether pulse wave velocity (PWV), a clinical arterial stiffness measure, can guide in determining appropriate parameter values for the Gasser-Ogden-Holzapfel (GOH) constitutive model. The reduction and uncertainty analysis was demonstrated on a cylindrical descending thoracic aorta model. Starting from discretized ranges of GOH parameters and using a full factorial design, the parameter sets yielding a physiological PWV (3.5-12.5 m/s) at diastolic pressure (80 mmHg; PWV80) were selected and their PWV at dicrotic notch pressure (110 mmHg; PWV110) was determined. These PWV measures were applied to determine the reduction of the 7D GOH parameter space, the 2D subspaces and the remaining uncertainty in case only PWV80 or both measurements are available. The resulting 12,032 parameter sets lead to a 7D parameter space reduction of ≥ 82.5 % using PWV80, which increased to 96.0 % when including PWV110, in particular at 3.5-8.5 m/s. A similar trend was observed for the remaining uncertainty and the 2D subspaces comprised of medial collagen fiber parameters, while scarce reductions were found for the adventitial and elastin parameters. In conclusion, PWV80 and PWV110 are complementary measures with the potential to reduce the GOH parameter space in arterial models, in particular for media- and collagen-related parameters. Moreover, this approach has the advantage that it allows the estimation of the remaining uncertainty after parameter space reduction.
Collapse
Affiliation(s)
- Lise Gheysen
- Institute for Biomedical Engineering and Technology, Department of Electronics and Information Systems, Ghent University, Belgium
| | - Lauranne Maes
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Belgium
| | - Patrick Segers
- Institute for Biomedical Engineering and Technology, Department of Electronics and Information Systems, Ghent University, Belgium
| |
Collapse
|
202
|
Pensalfini M, Tepole AB. Mechano-biological and bio-mechanical pathways in cutaneous wound healing. PLoS Comput Biol 2023; 19:e1010902. [PMID: 36893170 PMCID: PMC10030043 DOI: 10.1371/journal.pcbi.1010902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/21/2023] [Accepted: 01/27/2023] [Indexed: 03/10/2023] Open
Abstract
Injuries to the skin heal through coordinated action of fibroblast-mediated extracellular matrix (ECM) deposition, ECM remodeling, and wound contraction. Defects involving the dermis result in fibrotic scars featuring increased stiffness and altered collagen content and organization. Although computational models are crucial to unravel the underlying biochemical and biophysical mechanisms, simulations of the evolving wound biomechanics are seldom benchmarked against measurements. Here, we leverage recent quantifications of local tissue stiffness in murine wounds to refine a previously-proposed systems-mechanobiological finite-element model. Fibroblasts are considered as the main cell type involved in ECM remodeling and wound contraction. Tissue rebuilding is coordinated by the release and diffusion of a cytokine wave, e.g. TGF-β, itself developed in response to an earlier inflammatory signal triggered by platelet aggregation. We calibrate a model of the evolving wound biomechanics through a custom-developed hierarchical Bayesian inverse analysis procedure. Further calibration is based on published biochemical and morphological murine wound healing data over a 21-day healing period. The calibrated model recapitulates the temporal evolution of: inflammatory signal, fibroblast infiltration, collagen buildup, and wound contraction. Moreover, it enables in silico hypothesis testing, which we explore by: (i) quantifying the alteration of wound contraction profiles corresponding to the measured variability in local wound stiffness; (ii) proposing alternative constitutive links connecting the dynamics of the biochemical fields to the evolving mechanical properties; (iii) discussing the plausibility of a stretch- vs. stiffness-mediated mechanobiological coupling. Ultimately, our model challenges the current understanding of wound biomechanics and mechanobiology, beside offering a versatile tool to explore and eventually control scar fibrosis after injury.
Collapse
Affiliation(s)
- Marco Pensalfini
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Institute for Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
203
|
D'Andrea L, Cardamone M, Bogoni F, Forzinetti E, Enei V, Valle F, Giordano G, Gastaldi D, Vena P. Anisotropic Mechanical Response of Bovine Pericardium Membrane Through Bulge Test and In-Situ Confocal-Laser Scanning. J Biomech Eng 2023; 145:1152325. [PMID: 36472464 DOI: 10.1115/1.4056398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
In this work, we present a new experimental setup for the assessment of the anisotropic properties of Bovine Pericardium (BP) membranes. The chemically fixed BP samples have been subjected to a bulge test with in situ confocal laser scanning at increasing applied pressure. The high resolution topography provided by the confocal laser scanning has allowed to obtain a quantitative measure of the bulge displacement; after polynomial fitting, principal curvatures have been obtained and a degree of anisotropy (DA) has been defined as the normalized difference between the maximum and minimum principal curvatures. The experiments performed on the BP membranes have allowed us to obtain pressure-displacement data which clearly exhibit distinct principal curvatures indicating an anisotropic response. A comparison with curvatures data obtained on isotropic Nitrile Buthadiene Rubber (NBR) samples has confirmed the effectiveness of the experimental setup for this specific purpose. Numerical simulations of the bulge tests have been performed with the purpose of identifying a range of constitutive parameters which well describes the obtained range of DA on the BP membranes. The DA values have been partially validated with biaxial tests available in literature and with suitably performed uni-axial tensile tests.
Collapse
Affiliation(s)
- Luca D'Andrea
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Maddalena Cardamone
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Francesca Bogoni
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Elisa Forzinetti
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Viviana Enei
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | | | | | - Dario Gastaldi
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Pasquale Vena
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| |
Collapse
|
204
|
Dwivedi KK, Lakhani P, Sihota P, Tikoo K, Kumar S, Kumar N. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomater 2023; 158:324-346. [PMID: 36565785 DOI: 10.1016/j.actbio.2022.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In type 2 diabetes mellitus (T2DM), elevated glucose level impairs the biochemistry of the skin which may result in alteration of its mechanical and structural properties. The several aspects of structural and mechanical changes in skin due to T2DM remain poorly understood. To fill these research gaps, we developed a non-obese T2DM rat (Sprague Dawley (SD)) model for investigating the effect of T2DM on the in vivo strain stress state, mechanical and structural properties of skin. In vivo strain and mechanical anisotropy of healthy and T2DM skin were measured using the digital imaging correlation (DIC) technique and DIC coupled bulge experiment, respectively. Fluorescence microscopy and histology were used to assess the collagen and elastin fibers microstructure whereas nanoscale structure was captured through atomic force microscopy (AFM). Based on the microstructural observations, skin was modeled as a multilayer membrane where in and out of plane distribution of collagen fibers and planar distribution of elastin fibers were cast in constitutive model. Further, the state of in vivo stresses of healthy and T2DM were measured using model parameters and in vivo strain in the constitutive model. The results showed that T2DM causes significant loss in in vivo stresses (p < 0.01) and increase in anisotropy (p < 0.001) of skin. These changes were found in good correlation with T2DM associated alteration in skin microstructure. Statistical analysis emphasized that increase in blood glucose concentration (HbA1c) was the main cause of impaired biomechanical properties of skin. The presented data in this study can help to understand the skin pathology and to simulate the skin related clinical procedures. STATEMENT OF SIGNIFICANCE: Our study is significant as it presents findings related to the effect of T2DM on the physiologic stress strain, structural and mechanical response of SD rat skin. In this study, we developed a non-obese T2DM SD rat model which mimics the phenotype of Asian type 2 diabetics (non-obese). Several structural and mechanical characterization techniques were explored for multiscale characterization of healthy and T2DM skin. Further, based on microstructural information, we presented the constitutive models that incorporate the real microstructure of skin. The presented results can be helpful to simulate the realistic mechanical response of skin during various clinical trials.
Collapse
Affiliation(s)
- Krashn Kr Dwivedi
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India; Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| |
Collapse
|
205
|
Hanly A, Johnston RD, Lemass C, Jose A, Tornifoglio B, Lally C. Phosphotungstic acid (PTA) preferentially binds to collagen- rich regions of porcine carotid arteries and human atherosclerotic plaques observed using contrast enhanced micro-computed tomography (CE-µCT). Front Physiol 2023; 14:1057394. [PMID: 36818446 PMCID: PMC9932683 DOI: 10.3389/fphys.2023.1057394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims: Atherosclerotic plaque rupture in the carotid artery can cause small emboli to travel to cerebral arteries, causing blockages and preventing blood flow leading to stroke. Contrast enhanced micro computed tomography (CEμCT) using a novel stain, phosphotungstic acid (PTA) can provide insights into the microstructure of the vessel wall and atherosclerotic plaque, and hence their likelihood to rupture. Furthermore, it has been suggested that collagen content and orientation can be related to mechanical integrity. This study aims to build on existing literature and establish a robust and reproducible staining and imaging technique to non-destructively quantify the collagen content within arteries and plaques as an alternative to routine histology. Methods: Porcine carotid arteries and human atherosclerotic plaques were stained with a concentration of 1% PTA staining solution and imaged using MicroCT to establish the in situ architecture of the tissue and measure collagen content. A histological assessment of the collagen content was also performed from picrosirius red (PSR) staining. Results: PTA stained arterial samples highlight the reproducibility of the PTA staining and MicroCT imaging technique used with a quantitative analysis showing a positive correlation between the collagen content measured from CEμCT and histology. Furthermore, collagen-rich areas can be clearly visualised in both the vessel wall and atherosclerotic plaque. 3D reconstruction was also performed showing that different layers of the vessel wall and various atherosclerotic plaque components can be differentiated using Hounsfield Unit (HU) values. Conclusion: The work presented here is unique as it offers a quantitative method of segmenting the vessel wall into its individual components and non-destructively quantifying the collagen content within these tissues, whilst also delivering a visual representation of the fibrous structure using a single contrast agent.
Collapse
Affiliation(s)
- A. Hanly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R. D. Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - C. Lemass
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A. Jose
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - B. Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - C. Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland,*Correspondence: C. Lally,
| |
Collapse
|
206
|
Biomechanics of keratoconus: Two numerical studies. PLoS One 2023; 18:e0278455. [PMID: 36730305 PMCID: PMC9894483 DOI: 10.1371/journal.pone.0278455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/16/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The steep cornea in keratoconus can greatly impair eyesight. The etiology of keratoconus remains unclear but early injury that weakens the corneal stromal architecture has been implicated. To explore keratoconus mechanics, we conducted two numerical simulation studies. METHODS A finite-element model describing the five corneal layers and the heterogeneous mechanical behaviors of the ground substance and lamellar collagen-fiber architecture in the anterior and posterior stroma was developed using the Holzapfel-Gasser-Ogden constitutive model. The geometry was from a healthy subject. Its stroma was divided into anterior, middle, and posterior layers to assess the effect of changing regional mechanical parameters on corneal displacement and maximum principal stress under intraocular pressure. Specifically, the effect of softening an inferocentral corneal button, the collagen-based tissues throughout the whole cornea, or specific stromal layers in the button was examined. The effect of simply disorganizing the orthogonally-oriented posterior stromal fibers in the button was also assessed. The healthy cornea was also subjected to eye rubbing-like loading to identify the corneal layer(s) that experienced the most tensional stress. RESULTS Conical deformation and corneal thinning emerged when the corneal button or the mid-posterior stroma of the button underwent gradual softening or when the collagen fibers in the mid-posterior stroma of the button were dispersed. Softening the anterior layers of the button or the whole cornea did not evoke conical deformation. Button softening greatly increased and disrupted the stress on Bowman's membrane while mid-posterior stromal softening increased stress in the anterior layers. Eye rubbing profoundly stressed the deep posterior stroma while other layers were negligibly affected. DISCUSSION These observations suggest that keratoconus could be initiated, at least partly, by mechanical instability/damage in the mid-posterior stroma that then imposes stress on the anterior layers. This may explain why subclinical keratoconus is marked by posterior but not anterior elevation on videokeratoscopy.
Collapse
|
207
|
Kakaletsis S, Lejeune E, Rausch MK. Can machine learning accelerate soft material parameter identification from complex mechanical test data? Biomech Model Mechanobiol 2023; 22:57-70. [PMID: 36229697 PMCID: PMC11048729 DOI: 10.1007/s10237-022-01631-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
Identifying the constitutive parameters of soft materials often requires heterogeneous mechanical test modes, such as simple shear. In turn, interpreting the resulting complex deformations necessitates the use of inverse strategies that iteratively call forward finite element solutions. In the past, we have found that the cost of repeatedly solving non-trivial boundary value problems can be prohibitively expensive. In this current work, we leverage our prior experimentally derived mechanical test data to explore an alternative approach. Specifically, we investigate whether a machine learning-based approach can accelerate the process of identifying material parameters based on our mechanical test data. Toward this end, we pursue two different strategies. In the first strategy, we replace the forward finite element simulations within an iterative optimization framework with a machine learning-based metamodel. Here, we explore both Gaussian process regression and neural network metamodels. In the second strategy, we forgo the iterative optimization framework and use a stand alone neural network to predict the entire material parameter set directly from experimental results. We first evaluate both approaches with simple shear experiments on blood clot, an isotropic, homogeneous material. Next, we evaluate both approaches against simple shear and uniaxial loading experiments on right ventricular myocardium, an anisotropic, heterogeneous material. We find that replacing the forward finite element simulations with metamodels significantly accelerates the parameter identification process with excellent results in the case of blood clot, and with satisfying results in the case of right ventricular myocardium. On the other hand, we find that replacing the entire optimization framework with a neural network yielded unsatisfying results, especially for right ventricular myocardium. Overall, the importance of our work stems from providing a baseline example showing how machine learning can accelerate the process of material parameter identification for soft materials from complex mechanical data, and from providing an open access experimental and simulation dataset that may serve as a benchmark dataset for others interested in applying machine learning techniques to soft tissue biomechanics.
Collapse
Affiliation(s)
- Sotirios Kakaletsis
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Manuel K Rausch
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
208
|
de Lucio M, Leng Y, Hans A, Bilionis I, Brindise M, Ardekani AM, Vlachos PP, Gomez H. Modeling large-volume subcutaneous injection of monoclonal antibodies with anisotropic porohyperelastic models and data-driven tissue layer geometries. J Mech Behav Biomed Mater 2023; 138:105602. [PMID: 36529050 DOI: 10.1016/j.jmbbm.2022.105602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has become one of the fastest-growing fields in the pharmaceutical industry. The transport and mechanical processes behind large volume injections are poorly understood. Here, we leverage a large-deformation poroelastic model to study high-dose, high-speed subcutaneous injection. We account for the anisotropy of subcutaneous tissue using of a fibril-reinforced porohyperelastic model. We also incorporate the multi-layer structure of the skin tissue, generating data-driven geometrical models of the tissue layers using histological data. We analyze the impact of handheld autoinjectors on the injection dynamics for different patient forces. Our simulations show the importance of considering the large deformation approach to model large injection volumes. This work opens opportunities to better understand the mechanics and transport processes that occur in large-volume subcutaneous injections of mAbs.
Collapse
Affiliation(s)
- Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Atharva Hans
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Ilias Bilionis
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Melissa Brindise
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA.
| |
Collapse
|
209
|
Aggarwal A, Hudson LT, Laurence DW, Lee CH, Pant S. A Bayesian constitutive model selection framework for biaxial mechanical testing of planar soft tissues: Application to porcine aortic valves. J Mech Behav Biomed Mater 2023; 138:105657. [PMID: 36634438 PMCID: PMC10226148 DOI: 10.1016/j.jmbbm.2023.105657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
A variety of constitutive models have been developed for soft tissue mechanics. However, there is no established criterion to select a suitable model for a specific application. Although the model that best fits the experimental data can be deemed the most suitable model, this practice often can be insufficient given the inter-sample variability of experimental observations. Herein, we present a Bayesian approach to calculate the relative probabilities of constitutive models based on biaxial mechanical testing of tissue samples. Forty-six samples of porcine aortic valve tissue were tested using a biaxial stretching setup. For each sample, seven ratios of stresses along and perpendicular to the fiber direction were applied. The probabilities of eight invariant-based constitutive models were calculated based on the experimental data using the proposed model selection framework. The calculated probabilities showed that, out of the considered models and based on the information available through the utilized experimental dataset, the May-Newman model was the most probable model for the porcine aortic valve data. When the samples were further grouped into different cusp types, the May-Newman model remained the most probable for the left- and right-coronary cusps, whereas for non-coronary cusps two models were found to be equally probable: the Lee-Sacks model and the May-Newman model. This difference between cusp types was found to be associated with the first principal component analysis (PCA) mode, where this mode's amplitudes of the non-coronary and right-coronary cusps were found to be significantly different. Our results show that a PCA-based statistical model can capture significant variations in the mechanical properties of soft tissues. The presented framework is applicable to other tissue types, and has the potential to provide a structured and rational way of making simulations population-based.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom.
| | - Luke T Hudson
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, 73019, OK, United States of America
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, 73019, OK, United States of America
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, 73019, OK, United States of America
| | - Sanjay Pant
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, Wales, United Kingdom
| |
Collapse
|
210
|
Aggarwal A, Jensen BS, Pant S, Lee CH. Strain energy density as a Gaussian process and its utilization in stochastic finite element analysis: application to planar soft tissues. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2023; 404:115812. [PMID: 37235184 PMCID: PMC10208436 DOI: 10.1016/j.cma.2022.115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Data-based approaches are promising alternatives to the traditional analytical constitutive models for solid mechanics. Herein, we propose a Gaussian process (GP) based constitutive modeling framework, specifically focusing on planar, hyperelastic and incompressible soft tissues. The strain energy density of soft tissues is modeled as a GP, which can be regressed to experimental stress-strain data obtained from biaxial experiments. Moreover, the GP model can be weakly constrained to be convex. A key advantage of a GP-based model is that, in addition to the mean value, it provides a probability density (i.e. associated uncertainty) for the strain energy density. To simulate the effect of this uncertainty, a non-intrusive stochastic finite element analysis (SFEA) framework is proposed. The proposed framework is verified against an artificial dataset based on the Gasser-Ogden-Holzapfel model and applied to a real experimental dataset of a porcine aortic valve leaflet tissue. Results show that the proposed framework can be trained with limited experimental data and fits the data better than several existing models. The SFEA framework provides a straightforward way of using the experimental data and quantifying the resulting uncertainty in simulation-based predictions.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Bjørn Sand Jensen
- School of Computing Science, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Sanjay Pant
- Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, SA18EP, Wales, United Kingdom
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, 73019, OK, United States of America
| |
Collapse
|
211
|
Importance of experimental evaluation of structural parameters for constitutive modelling of aorta. J Mech Behav Biomed Mater 2023; 138:105615. [PMID: 36512975 DOI: 10.1016/j.jmbbm.2022.105615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The study compares stresses and strains in the aortic wall derived using different constitutive models for various stress-strain conditions. Structure-based constitutive models with two fibre families with (GOH) and without (HGO) dispersion of collagen fibres are compared. The constitutive models were fitted to data from equibiaxial tension tests of two separated layers of the porcine aortic wall. The initial fit was evaluated with unrestricted parameters and subsequently, the mean angles of the fibre families and the angular dispersion were fixed to the values obtained from histology. Surprisingly, none of the tested models was capable to provide a good quality fit with histologically obtained structural parameters. Fitting the HGO model to experimental data resulted in two fibre families under angles close to ±45°, while the GOH model resulted in a nearly isotropic fibre distribution. These results indicate that both of these models suffer from the absence of isotropic strain stiffening. After having modified both models with corresponding additional members based on the Yeoh model of matrix, we obtained a perfect fit to the measured data while keeping the structural histology-based parameters. Finally, significant differences in compliance and resulting stresses and strains between different models are shown by means of simulations of uniaxial tension test, equibiaxial tension tests and inflation of the aorta.
Collapse
|
212
|
Computational analysis of ventricular mechanics in hypertrophic cardiomyopathy patients. Sci Rep 2023; 13:958. [PMID: 36653468 PMCID: PMC9849405 DOI: 10.1038/s41598-023-28037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is associated with many pathological features, such as a reduction in global longitudinal strain (GLS), myofiber disarray and hypertrophy. The effects of these features on left ventricle (LV) function are, however, not clear in two phenotypes of HCM, namely, obstructive and non-obstructive. To address this issue, we developed patient-specific computational models of the LV using clinical measurements from 2 female HCM patients and a control subject. Left ventricular mechanics was described using an active stress formulation and myofiber disarray was described using a structural tensor in the constitutive models. Unloaded LV configuration for each subject was first determined from their respective end-diastole LV geometries segmented from the cardiac magnetic resonance images, and an empirical single-beat estimation of the end-diastolic pressure volume relationship. The LV was then connected to a closed-loop circulatory model and calibrated using the clinically measured LV pressure and volume waveforms, peak GLS and blood pressure. Without consideration of myofiber disarray, peak myofiber tension was found to be lowest in the obstructive HCM subject (60 kPa), followed by the non-obstructive subject (242 kPa) and the control subject (375 kPa). With increasing myofiber disarray, we found that peak tension has to increase in the HCM models to match the clinical measurements. In the obstructive HCM patient, however, peak tension was still depressed (cf. normal subject) at the largest degree of myofiber disarray found in the clinic. The computational modeling workflow proposed here can be used in future studies with more HCM patient data.
Collapse
|
213
|
Derycke L, Avril S, Millon A. Patient-Specific Numerical Simulations of Endovascular Procedures in Complex Aortic Pathologies: Review and Clinical Perspectives. J Clin Med 2023; 12:jcm12030766. [PMID: 36769418 PMCID: PMC9917982 DOI: 10.3390/jcm12030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The endovascular technique is used in the first line treatment in many complex aortic pathologies. Its clinical outcome is mostly determined by the appropriate selection of a stent-graft for a specific patient and the operator's experience. New tools are still needed to assist practitioners with decision making before and during procedures. For this purpose, numerical simulation enables the digital reproduction of an endovascular intervention with various degrees of accuracy. In this review, we introduce the basic principles and discuss the current literature regarding the use of numerical simulation for endovascular management of complex aortic diseases. Further, we give the future direction of everyday clinical applications, showing that numerical simulation is about to revolutionize how we plan and carry out endovascular interventions.
Collapse
Affiliation(s)
- Lucie Derycke
- Department of Cardio-Vascular and Vascular Surgery, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Centre CIS, Mines Saint-Etienne, Université Jean Monnet Saint-Etienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| | - Stephane Avril
- Centre CIS, Mines Saint-Etienne, Université Jean Monnet Saint-Etienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| | - Antoine Millon
- Department of Vascular and Endovascular Surgery, Hospices Civils de Lyon, Louis Pradel University Hospital, F-69500 Bron, France
- Correspondence:
| |
Collapse
|
214
|
Yousefi-Mashouf H, Bailly L, Orgéas L, Henrich Bernardoni N. Mechanics of gelatin-based hydrogels during finite strain tension, compression and shear. Front Bioeng Biotechnol 2023; 10:1094197. [PMID: 36714620 PMCID: PMC9877534 DOI: 10.3389/fbioe.2022.1094197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Among the biopolymers used to make hydrogels, gelatin is very attractive due to its biocompatibility, biodegradability and versatile physico-chemical properties. A proper and complete characterization of the mechanical behavior of these hydrogels is critical to evaluate the relevance of one formulation over another for a targeted application, and to optimise their processing route accordingly. Methods: In this work, we manufactured neat gelatin and gelatin covalently cross-linked with glutaraldehyde at various concentrations, yielding to hydrogels with tunable mechanical properties that we characterized under finite strain, cyclic tension, compression and shear loadings. Results and Discussion: The role of both the chemical formulation and the kinematical path on the mechanical performances of the gels is highlighted. As an opening towards biomedical applications, the properties of the gels are confronted to those of native soft tissues particularly complicated to restore, the human vocal folds. A specific cross-linked hydrogel is selected to mimic vocal-fold fibrous tissues.
Collapse
Affiliation(s)
- Hamid Yousefi-Mashouf
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, 3SR, Grenoble, France,University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, GIPSA-lab, Grenoble, France
| | - Lucie Bailly
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, 3SR, Grenoble, France,*Correspondence: Lucie Bailly,
| | - Laurent Orgéas
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, 3SR, Grenoble, France
| | - Nathalie Henrich Bernardoni
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, GIPSA-lab, Grenoble, France
| |
Collapse
|
215
|
Kanda H, Oya K, Irisawa T, Wahyudiono, Goto M. Tensile strength of ostrich carotid artery decellularized with liquefied dimethyl ether and DNase: An effort in addressing religious and cultural concerns. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
216
|
Snyder W, McGuire JA, Mou C, Dillard DA, Iliescu T, De Vita R. Data-driven variational multiscale reduced order modeling of vaginal tissue inflation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3660. [PMID: 36333869 DOI: 10.1002/cnm.3660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/04/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The vagina undergoes large finite deformations and has complex geometry and microstructure, resulting in material and geometric nonlinearities, complicated boundary conditions, and nonhomogeneities within finite element (FE) simulations. These nonlinearities pose a significant challenge for numerical solvers, increasing the computational time by several orders of magnitude. Simplifying assumptions can reduce the computational time significantly, but this usually comes at the expense of simulation accuracy. This study proposed the use of reduced order modeling (ROM) techniques to capture experimentally measured displacement fields of rat vaginal tissue during inflation testing in order to attain both the accuracy of higher-fidelity models and the speed of simpler simulations. The proper orthogonal decomposition (POD) method was used to extract the significant information from FE simulations generated by varying the luminal pressure and the parameters that introduce the anisotropy in the selected constitutive model. A new data-driven (DD) variational multiscale (VMS) ROM framework was extended to obtain the displacement fields of rat vaginal tissue under pressure. For comparison purposes, we also investigated the classical Galerkin ROM (G-ROM). In our numerical study, both the G-ROM and the DD-VMS-ROM decreased the FE computational cost by orders of magnitude without a significant decrease in numerical accuracy. Furthermore, the DD-VMS-ROM improved the G-ROM accuracy at a modest computational overhead. Our numerical investigation showed that ROM has the potential to provide efficient and accurate computational tools to describe vaginal deformations, with the ultimate goal of improving maternal health.
Collapse
Affiliation(s)
- William Snyder
- STRETCH Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Jeffrey A McGuire
- STRETCH Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Changhong Mou
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, USA
| | - David A Dillard
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Traian Iliescu
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, USA
| | - Raffaella De Vita
- STRETCH Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
217
|
Petuchova A, Maknickas A, Kostenko E, Stonkus R. Experimental and theoretical investigation of aortic wall tissue in tensile tests. Technol Health Care 2023; 31:2411-2421. [PMID: 37955068 DOI: 10.3233/thc-235007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND Understanding the mechanical properties of aortic tissue is essential for developing numerical computation tools and assessing the risk of aortic aneurysm fractures. Tensile tests using aortic wall specimens allow for the determination of stress and strain depending on the location and direction of the sample. OBJECTIVE The aim of this study was to perform a mechanical tensile test using canine aorta samples and create a numerical model of aortic tissue tension from the processed data. METHODS Dogbone-shaped samples were dissected from canine aortic segments. The initial measurements were made at zero tension and the tensile tests were conducted at 10 mm/min until rupture. Force and stretch data were used to obtain engineering and true stress-strain curves. The true stress-strain curves were taken until the maximum strength was obtained, after which they were smoothed and fitted using a logistic function with three coefficients. These curves were then used as material mechanical properties for a numerical model of the aortic tissue tension. A simplified rectangle form was used to mimic the middle of the dogbone-shaped portion of the tissue specimen. Experimental displacement data were collected for the boundary conditions of the finite element 3D model. RESULTS The experimental data processing revealed that the logistic function described the nonlinear behaviour of the aorta soft tissue with an accuracy of 95% from the start of the tension to the media layer rupture. By applying numerical simulations, we obtained a correspondence of the load curve with an RMSE = 0.069 for the theoretical and experimental external tension data. CONCLUSION The numerical investigation confirmed that the non-linear soft tissue was validated by applying a logistic function approach to the mechanical properties of the aortic wall.
Collapse
Affiliation(s)
- Aleksandra Petuchova
- Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Algirdas Maknickas
- Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Laboratory of Numerical Simulation, Institute of Mechanics, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Ernest Kostenko
- Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Veterinary Department, Faculty of Agrotechnology, Vilnius College, Vilnius, Lithuania
| | - Rimantas Stonkus
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
218
|
Mukherjee A, Fok PW. A new approach to calculating fiber fields in 2D vessel cross sections using conformal maps. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3610-3623. [PMID: 36899595 DOI: 10.3934/mbe.2023168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An arterial vessel has three layers, namely, the intima, the media and the adventitia. Each of these layers is modeled to have two families of strain-stiffening collagen fibers that are transversely helical. In an unloaded configuration, these fibers are coiled up. In the case of a pressurized lumen, these fibers stretch and start to resist further outward expansion. As the fibers elongate, they stiffen, affecting the mechanical response. Having a mathematical model of vessel expansion is crucial in cardiovascular applications such as predicting stenosis and simulating hemodynamics. Thus, to study the mechanics of the vessel wall under loading, it is important to calculate the fiber configurations in the unloaded configuration. The aim of this paper is to introduce a new technique of using conformal maps to numerically calculate the fiber field in a general arterial cross-section. The technique relies on finding a rational approximation of the conformal map. First, points on the physical cross section are mapped to points on a reference annulus using a rational approximation of the forward conformal map. Next, we find the angular unit vectors at the mapped points, and finally a rational approximation of the inverse conformal map is used to map the angular unit vectors back to vectors on the physical cross section. We have used MATLAB software packages to achieve these goals.
Collapse
Affiliation(s)
- Avishek Mukherjee
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
| | - Pak-Wing Fok
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
219
|
Rasheed B, Ayyalasomayajula V, Schaarschmidt U, Vagstad T, Schaathun HG. Region- and layer-specific investigations of the human menisci using SHG imaging and biaxial testing. Front Bioeng Biotechnol 2023; 11:1167427. [PMID: 37143602 PMCID: PMC10151675 DOI: 10.3389/fbioe.2023.1167427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
In this paper, we examine the region- and layer-specific collagen fiber morphology via second harmonic generation (SHG) in combination with planar biaxial tension testing to suggest a structure-based constitutive model for the human meniscal tissue. Five lateral and four medial menisci were utilized, with samples excised across the thickness from the anterior, mid-body, and posterior regions of each meniscus. An optical clearing protocol enhanced the scan depth. SHG imaging revealed that the top samples consisted of randomly oriented fibers with a mean fiber orientation of 43.3 o . The bottom samples were dominated by circumferentially organized fibers, with a mean orientation of 9.5 o . Biaxial testing revealed a clear anisotropic response, with the circumferential direction being stiffer than the radial direction. The bottom samples from the anterior region of the medial menisci exhibited higher circumferential elastic modulus with a mean value of 21 MPa. The data from the two testing protocols were combined to characterize the tissue with an anisotropic hyperelastic material model based on the generalized structure tensor approach. The model showed good agreement in representing the material anisotropy with a mean r 2 = 0.92.
Collapse
Affiliation(s)
- Bismi Rasheed
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
- Ålesund Biomechanics Lab, Ålesund General Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway
- *Correspondence: Bismi Rasheed,
| | - Venkat Ayyalasomayajula
- Division of Biomechanics, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ute Schaarschmidt
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
| | - Terje Vagstad
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
- Ålesund Biomechanics Lab, Ålesund General Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway
- Department of Orthopaedic Surgery, Medi3, Ålesund, Norway
| | - Hans Georg Schaathun
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
| |
Collapse
|
220
|
Caballero R, Martínez MÁ, Peña E. Coronary artery properties in atherosclerosis: A deep learning predictive model. Front Physiol 2023; 14:1162436. [PMID: 37089419 PMCID: PMC10113490 DOI: 10.3389/fphys.2023.1162436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
In this work an Artificial Neural Network (ANN) was developed to help in the diagnosis of plaque vulnerability by predicting the Young modulus of the core (E core ) and the plaque (E plaque ) of atherosclerotic coronary arteries. A representative in silico database was constructed to train the ANN using Finite Element simulations covering the ranges of mechanical properties present in the bibliography. A statistical analysis to pre-process the data and determine the most influential variables was performed to select the inputs of the ANN. The ANN was based on Multilayer Perceptron architecture and trained using the developed database, resulting in a Mean Squared Error (MSE) in the loss function under 10-7, enabling accurate predictions on the test dataset for E core and E plaque . Finally, the ANN was applied to estimate the mechanical properties of 10,000 realistic plaques, resulting in relative errors lower than 3%.
Collapse
Affiliation(s)
- Ricardo Caballero
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Miguel Ángel Martínez
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Estefanía Peña
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Madrid, Spain
- *Correspondence: Estefanía Peña,
| |
Collapse
|
221
|
Momot KI. Hydrated Collagen: Where Physical Chemistry, Medical Imaging, and Bioengineering Meet. J Phys Chem B 2022; 126:10305-10316. [PMID: 36473185 DOI: 10.1021/acs.jpcb.2c06217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well-known that collagen is the most abundant protein in the human body; however, what is not often appreciated is its fascinating physical chemistry and molecular physics. In this Perspective, we aim to expose some of the physicochemical phenomena associated with the hydration of collagen and to examine the role collagen's hydration water plays in determining its biological function as well as applications ranging from radiology to bioengineering. The main focus is on the Magic-Angle Effect, a phenomenon observed in Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) of anisotropic collagenous tissues such as articular cartilage and tendon. While the effect has been known in NMR and MRI for decades, its exact molecular mechanism remains a topic of debate and continuing research in scientific literature. We survey some of the latest research aiming to develop a comprehensive molecular-level model of the Magic-Angle Effect. We also touch on other fields where understanding of collagen hydration is important, particularly nanomechanics and mechanobiology, biomaterials, and piezoelectric sensors.
Collapse
Affiliation(s)
- Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
222
|
Xu Z, Li Y, Rao J, Jin Y, Huang Y, Xu X, Liu Y, Tian S. Biomechanical assessment of disease outcome in surgical interventions for medial meniscal posterior root tears: a finite element analysis. BMC Musculoskelet Disord 2022; 23:1093. [PMID: 36517757 PMCID: PMC9749342 DOI: 10.1186/s12891-022-06069-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The adverse consequences of medial meniscus posterior root tears have become increasingly familiar to surgeons, and treatment strategies have become increasingly abundant. In this paper, the finite element gait analysis method was used to explore the differences in the biomechanical characteristics of the knee joint under different conditions. METHODS Based on CT computed tomography and MR images, (I) an intact knee (IK) model with bone, cartilage, meniscus and main ligaments was established. Based on this model, the posterior root of the medial meniscus was resected, and (ii) the partial tear (PT) model, (iii) the entire radial tear (ERT) model, and (iv) the entire oblique tear (EOT) model were established according to the scope and degree of resection. Then, the (v) meniscus repair (MR) model and (vi) partial meniscectomy (PM) model were developed according to the operation method. The differences in stress, displacement and contact area among different models were evaluated under ISO gait loading conditions. RESULTS Under gait loading, there was no significant difference in the maximum stress of the medial and lateral tibiofemoral joints among the six models. Compared with the medial tibiofemoral joint stress of the IK model, the stress of the PM model increased by 8.3%, while that of the MR model decreased by 18.9%; at the same time, the contact stress of the medial tibiofemoral joint of the ERT and EOT models increased by 17.9 and 25.3%, respectively. The displacement of the medial meniscus in the ERT and EOT models was significantly larger than that in the IK model (P < 0.05), and the tibial and femoral contact areas of these two models were lower than those of the IK model (P < 0.05). CONCLUSIONS The integrity of the posterior root of the medial meniscus plays an important role in maintaining normal tibial-femoral joint contact mechanics. Partial meniscectomy is not beneficial for improving the tibial-thigh contact situation. Meniscal repair has a positive effect on restoring the normal biomechanical properties of the medial meniscus.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Orthopaedics, Zhangjiagang Fifth People’s Hospital, Zhangjiagang, 215600 Jiangsu China ,grid.267139.80000 0000 9188 055XCollege of Continuing Education, University of Shanghai for Science and Technology, Shanghai, 200000 China
| | - Yuwan Li
- grid.411642.40000 0004 0605 3760Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing, 100191 China
| | - Jingcheng Rao
- grid.428392.60000 0004 1800 1685Department of Orthopaedics, Suqian Hospital of Nanjing Drum Tower Hospital Group, Suqian, 223800 Jiangsu China
| | - Ying Jin
- grid.413390.c0000 0004 1757 6938Department of Orthopaedics, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563000 Guizhou China
| | - Yushun Huang
- Department of Orthopaedics, Jen Ching memorial Hospital, Kunshan, 215300 Jiangsu China
| | - Xing Xu
- Department of Medicine, Zhijin People’s Hospital, Zhijin, 552100 Guizhou China
| | - Yi Liu
- grid.413390.c0000 0004 1757 6938Department of Orthopaedics, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563000 Guizhou China
| | - Shoujin Tian
- grid.460159.fDepartment of Orthopaedics, Zhangjiagang First People’s Hospital, No.68 Jiyang West Road, Zhangjiagang, 215600 Jiangsu China
| |
Collapse
|
223
|
Song G, An J, Tepole AB, Lee T. Bayesian Inference With Gaussian Process Surrogates to Characterize Anisotropic Mechanical Properties of Skin From Suction Tests. J Biomech Eng 2022; 144:121003. [PMID: 35788269 PMCID: PMC9445318 DOI: 10.1115/1.4054929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Indexed: 11/08/2022]
Abstract
One of the intrinsic features of skin and other biological tissues is the high variation in the mechanical properties across individuals and different demographics. Mechanical characterization of skin is still a challenge because the need for subject-specific in vivo parameters prevents us from utilizing traditional methods, e.g., uniaxial tensile test. Suction devices have been suggested as the best candidate to acquire mechanical properties of skin noninvasively, but capturing anisotropic properties using a circular probe opening-which is the conventional suction device-is not possible. On the other hand, noncircular probe openings can drive different deformations with respect to fiber orientation and therefore could be used to characterize the anisotropic mechanics of skin noninvasively. We propose the use of elliptical probe openings and a methodology to solve the inverse problem of finding mechanical properties from suction measurements. The proposed probe is tested virtually by solving the forward problem of skin deformation by a finite element (FE) model. The forward problem is a function of the material parameters. In order to solve the inverse problem of determining skin properties from suction data, we use a Bayesian framework. The FE model is an expensive forward function, and is thus substituted with a Gaussian process metamodel to enable the Bayesian inference problem.
Collapse
Affiliation(s)
- Gyohyeon Song
- Department of Mechanical Engineering, Myongji University, Yongin 17058, South Korea
| | - Jaehee An
- Department of Mechanical Engineering, Myongji University, Yongin 17058, South Korea
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Taeksang Lee
- Department of Mechanical Engineering, Myongji University, Yongin 17058, South Korea
| |
Collapse
|
224
|
Chetoui MA, Ambard D, Canãdas P, Kouyoumdjian P, Royer P, Le Floc'h S. Impact of extracellular matrix and collagen network properties on the cervical intervertebral disc response to physiological loads: A parametric study. Med Eng Phys 2022; 110:103908. [PMID: 36564135 DOI: 10.1016/j.medengphy.2022.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Current intervertebral disc finite element models are hard to validate since they describe multi-physical phenomena and contain a huge number of material properties. This work aims to simplify numerical validation/identification studies by prioritizing the sensitivity of intervertebral disc behavior to mechanical properties. A 3D fiber-reinforced hyperelastic model of a C6-C7 intervertebral disc is used to carry out the parametric study. 10 parameters describing the extracellular matrix and the collagen network behaviors are included in the parametric study. The influence of varying these parameters on the disc response is estimated during physiological movements of the head, including compression, lateral bending, flexion, and axial rotation. The obtained results highlight the high sensitivity of the disc behavior to the stiffness of the annulus fibrosus extracellular matrix for all the studied loads with a relative increase in the disc apparent stiffness by 67% for compression and by 57% for axial rotation when the annulus stiffness increases from 0.4 to 2 MPa. It is also shown that varying collagen network orientation, stiffness, and stiffening in the studied configuration range have a noticeable effect on rotational motions with a relative apparent stiffness difference reaching 6.8%, 10%, and 22%, respectively, in lateral bending. However, the collagen orientation does not affect disc response to axial load.
Collapse
Affiliation(s)
| | | | - Patrick Canãdas
- LMGC UMR5508, Univ. of Montpellier, CNRS, Montpellier, France
| | - Pascal Kouyoumdjian
- Orthopedic Surgery and Trauma Service, Spine Surgery, CHRU of Nîmes, Nîmes, France
| | - Pascale Royer
- LMGC UMR5508, Univ. of Montpellier, CNRS, Montpellier, France
| | - Simon Le Floc'h
- LMGC UMR5508, Univ. of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
225
|
O'Rourke D, Surman TL, Abrahams JM, Edwards J, Reynolds KJ. Predicting rupture locations of ascending aortic aneurysms using CT-based finite element models. J Biomech 2022; 145:111351. [PMID: 36334320 DOI: 10.1016/j.jbiomech.2022.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Accurate rupture risk assessment of ascending aortic aneurysms is important for reducing aneurysm-related mortality. More recently, computational models have been shown to better predict rupture risk than diameter-based measurements. However, it remains unclear whether finite element (FE) models of the ascending aorta can predict rupture location, and over what timeframe those predictions are reliable. The aim of this study was to evaluate FE models of the ascending aorta generated from computed tomography (CT) scans in predicting rupture location. Pre- and post-rupture CT scans were obtained of 12 patients who underwent emergency surgical repair for ascending aorta rupture with varying time intervals between scans (20 days - 6 years). A rigid iterative closest point (ICP) registration was used to overlay post-rupture aortic geometries with pre-rupture FE models and directly compare predicted regions of high equivalent strain with actual rupture. The FE model predicted the rupture location in the 5 patients with the shortest time intervals between the pre- and post-rupture scans (20 days - 2 years, 3 months). However, rupture location was not predicted in the 4/5 patients with greater than 3 years between scans. Achieving a physiological equivalent strain distribution in the FE model was highly dependent on the resolution of the pre-rupture scan and whether contrast agent was present. The results suggest there may be a time interval beyond which FE predictions of rupture location may not be reliable. The results in this study may help clinical validation of FE models of ascending aortic aneurysms predicting rupture risk.
Collapse
Affiliation(s)
- Dermot O'Rourke
- Medical Device Research Institute, College of Science and Engineering, Flinders University. Australia.
| | - Timothy L Surman
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - John M Abrahams
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, Adelaide, Australia
| | - James Edwards
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Karen J Reynolds
- Medical Device Research Institute, College of Science and Engineering, Flinders University. Australia
| |
Collapse
|
226
|
Yeditepe spine mesh: Finite element modeling and validation of a parametric CAD model of lumbar spine. Med Eng Phys 2022; 110:103911. [PMID: 36564136 DOI: 10.1016/j.medengphy.2022.103911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Finite element analysis is a powerful tool that is often used to study the biomechanical response of the spine. The primary objective of this study was to illustrate the mechanical behavior of a previously proposed parametric CAD spine model in comparison with a segmented FSU model and the literature. In this study, two finite element models of the L4-L5 spinal level were developed from the same patient's CT scan data. The first was developed using well-known segmentation methods, whereas the second was developed from the new by using a novel parametric CAD model. Both models were subjected to the same loading and boundary conditions to perform flexion, extension, lateral bending and axial rotation motions. The segmented finite element model was observed to be in good agreement with the literature. The parametric finite element model results were also observed to be in good agreement with the segmented finite element model and with the literature except under extension.
Collapse
|
227
|
Nagasaka K, Watanabe S, Ito S, Ichimaru H, Nishiguchi A, Otsuka H, Taguchi T. Enhanced burst strength of catechol groups-modified Alaska pollock-derived gelatin-based surgical adhesive. Colloids Surf B Biointerfaces 2022; 220:112946. [DOI: 10.1016/j.colsurfb.2022.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
228
|
Manjunatha K, Behr M, Vogt F, Reese S. A multiphysics modeling approach for in-stent restenosis: Theoretical aspects and finite element implementation. Comput Biol Med 2022; 150:106166. [PMID: 36252366 DOI: 10.1016/j.compbiomed.2022.106166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
Abstract
Development of in silico models that capture progression of diseases in soft biological tissues are intrinsic in the validation of the hypothesized cellular and molecular mechanisms involved in the respective pathologies. In addition, they also aid in patient-specific adaptation of interventional procedures. In this regard, a fully-coupled high-fidelity Lagrangian finite element framework is proposed within this work which replicates the pathology of in-stent restenosis observed post stent implantation in a coronary artery. Advection-reaction-diffusion equations are set up to track the concentrations of the platelet-derived growth factor, the transforming growth factor-β, the extracellular matrix, and the density of the smooth muscle cells. A continuum mechanical description of volumetric growth involved in the restenotic process, coupled to the evolution of the previously defined vessel wall constituents, is presented. Further, the finite element implementation of the model is discussed, and the behavior of the computational model is investigated via suitable numerical examples. Qualitative validation of the computational model is presented by emulating a stented artery. Patient-specific data are intended to be integrated into the model to predict the risk of in-stent restenosis, and thereby assist in the tuning of stent implantation parameters to mitigate the risk.
Collapse
Affiliation(s)
- Kiran Manjunatha
- Institute of Applied Mechanics, RWTH Aachen University, Germany.
| | - Marek Behr
- Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany
| | - Felix Vogt
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, RWTH Aachen University, Germany
| | - Stefanie Reese
- Institute of Applied Mechanics, RWTH Aachen University, Germany
| |
Collapse
|
229
|
Corti A, De Paolis A, Grossman P, Dinh PA, Aikawa E, Weinbaum S, Cardoso L. The effect of plaque morphology, material composition and microcalcifications on the risk of cap rupture: A structural analysis of vulnerable atherosclerotic plaques. Front Cardiovasc Med 2022; 9:1019917. [PMID: 36277774 PMCID: PMC9583261 DOI: 10.3389/fcvm.2022.1019917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background The mechanical rupture of an atheroma cap may initiate a thrombus formation, followed by an acute coronary event and death. Several morphology and tissue composition factors have been identified to play a role on the mechanical stability of an atheroma, including cap thickness, lipid core stiffness, remodeling index, and blood pressure. More recently, the presence of microcalcifications (μCalcs) in the atheroma cap has been demonstrated, but their combined effect with other vulnerability factors has not been fully investigated. Materials and methods We performed numerical simulations on 3D idealized lesions and a microCT-derived human coronary atheroma, to quantitatively analyze the atheroma cap rupture. From the predicted cap stresses, we defined a biomechanics-based vulnerability index (VI) to classify the impact of each risk factor on plaque stability, and developed a predictive model based on their synergistic effect. Results Plaques with low remodeling index and soft lipid cores exhibit higher VI and can shift the location of maximal wall stresses. The VI exponentially rises as the cap becomes thinner, while the presence of a μCalc causes an additional 2.5-fold increase in vulnerability for a spherical inclusion. The human coronary atheroma model had a stable phenotype, but it was transformed into a vulnerable plaque after introducing a single spherical μCalc in its cap. Overall, cap thickness and μCalcs are the two most influential factors of mechanical rupture risk. Conclusions Our findings provide supporting evidence that high risk lesions are non-obstructive plaques with softer (lipid-rich) cores and a thin cap with μCalcs. However, stable plaques may still rupture in the presence of μCalcs.
Collapse
Affiliation(s)
- Andrea Corti
- Department of Biomedical Engineering, City College, City University of New York, New York, NY, United States
| | - Annalisa De Paolis
- Department of Biomedical Engineering, City College, City University of New York, New York, NY, United States
| | - Pnina Grossman
- Department of Biomedical Engineering, City College, City University of New York, New York, NY, United States
| | - Phuc A. Dinh
- Department of Biomedical Engineering, City College, City University of New York, New York, NY, United States
| | - Elena Aikawa
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, City College, City University of New York, New York, NY, United States
| | - Luis Cardoso
- Department of Biomedical Engineering, City College, City University of New York, New York, NY, United States,*Correspondence: Luis Cardoso,
| |
Collapse
|
230
|
Tac V, Sree VD, Rausch MK, Tepole AB. Data-driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue. ENGINEERING WITH COMPUTERS 2022; 38:4167-4182. [PMID: 38031587 PMCID: PMC10686525 DOI: 10.1007/s00366-022-01733-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2023]
Abstract
Closed-form constitutive models are the standard to describe soft tissue mechanical behavior. However, inherent pitfalls of an explicit functional form include poor fits to the data, non-uniqueness of fit, and sensitivity to parameters. Here we design deep neural networks (DNN) that satisfy desirable physics constraints in order to replace expert models of tissue mechanics. To guarantee stress-objectivity, the DNN takes strain (pseudo)-invariants as inputs, and outputs the strain energy and its derivatives. Polyconvexity of strain energy is enforced through the loss function. Direct prediction of both energy and derivative functions enables the computation of the elasticity tensor needed for a finite element implementation. We showcase the DNN ability to learn the anisotropic mechanical behavior of porcine and murine skin from biaxial test data. A multi-fidelity scheme that combines high fidelity experimental data with a low fidelity analytical approximation yields the best performance. Finite element simulations of tissue expansion with the DNN model illustrate the potential of this method to impact medical device design for skin therapeutics. We expect that the open data and software from this work will broaden the use of data-driven constitutive models of tissue mechanics.
Collapse
Affiliation(s)
- Vahidullah Tac
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Vivek D Sree
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Manuel K Rausch
- Department of Aerospace Engineering and Engineering Mechanics, the University of Texas at Austin, Austin, TX, USA
| | - Adrian B Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
231
|
Pukaluk A, Wolinski H, Viertler C, Regitnig P, Holzapfel GA, Sommer G. Changes in the microstructure of the human aortic medial layer under biaxial loading investigated by multi-photon microscopy. Acta Biomater 2022; 151:396-413. [PMID: 35970481 DOI: 10.1016/j.actbio.2022.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
Abstract
Understanding the correlation between tissue architecture, health status, and mechanical properties is essential for improving material models and developing tissue engineering scaffolds. Since structural-based material models are state of the art, there is an urgent need for experimentally obtained structural parameters. For this purpose, the medial layer of nine human abdominal aortas was simultaneously subjected to equibiaxial loading and multi-photon microscopy. At each loading interval of 0.02, collagen and elastin fibers were imaged based on their second-harmonic generation signal and two-photon excited autofluorescence, respectively. The structural alterations in the fibers were quantified using the parameters of orientation, diameter, and waviness. The results of the mechanical tests divided the sample cohort into the ruptured and non-ruptured, and stiff and non-stiff groups, which were covered by the findings from histological investigations. The alterations in structural parameters provided an explanation for the observed mechanical behavior. In addition, the waviness parameters of both collagen and elastin fibers showed the potential to serve as indicators of tissue strength. The data provided address deficiencies in current material models and bridge multiscale mechanisms in the aortic media. STATEMENT OF SIGNIFICANCE: Available material models can reproduce, but cannot predict, the mechanical behavior of human aortas. This deficiency could be overcome with the help of experimentally validated structural parameters as provided in this study. Simultaneous multi-photon microscopy and biaxial extension testing revealed the microstructure of human aortic media at different stretch levels. Changes in the arrangement of collagen and elastin fibers were quantified using structural parameters such as orientation, diameter and waviness. For the first time, structural parameters of human aortic tissue under continuous loading conditions have been obtained. In particular, the waviness parameters at the reference configuration have been associated with tissue stiffness, brittleness, and the onset of atherosclerosis.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria; Field of Excellence BioHealth - University of Graz, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University of Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria.
| |
Collapse
|
232
|
Shin J, Choi EY, Kwon HM, Rhee K. Estimation of viscoelasticity of a carotid artery from ultrasound cine images and brachial pressure waveforms: Viscous parameters as a new index of detecting low plaque burden. Med Eng Phys 2022; 108:103886. [DOI: 10.1016/j.medengphy.2022.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
|
233
|
Nambiar MH, Liechti L, Müller F, Bernau W, Studer H, Roy AS, Seiler TG, Büchler P. Orientation and depth dependent mechanical properties of the porcine cornea: Experiments and parameter identification. Exp Eye Res 2022; 224:109266. [PMID: 36179857 DOI: 10.1016/j.exer.2022.109266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The porcine cornea is a standard animal model in ophthalmic research, making its biomechanical characterization and modeling important to develop novel treatments such as crosslinking and refractive surgeries. In this study, we present a numerical model of the porcine cornea based on experimental measurements that captures both the depth dependence and orientation dependence of the mechanical response. The mechanical parameters of the established anisotropic hyperelastic material models of Gasser, Holzapfel and Ogden (HGO) and Markert were determined using tensile tests. Corneas were cut with a femtosecond laser in the anterior (100 μm), central (350 μm), and posterior (600 μm) regions into nasal-temporal, superior-inferior, and diagonal strips of 150 μm thickness. These uniformly thick strips were tested at a low speed using a single-axis testing machine. The results showed that the corneal mechanical properties remained constant in the anterior half of the cornea regardless of orientation, but that the material softened in the posterior layer. These results are consistent with the circular orientation of collagen observed in porcine corneas using X-ray scattering. In addition, the parameters obtained for the HGO model were able to reproduce the published inflation tests, indicating that it is suitable for simulating the mechanical response of the entire cornea. Such a model constitutes the basis for in silico platforms to develop new ophthalmic treatments. In this way, researchers can match their experimental surrogate porcine model with a numerical counterpart and validate the prediction of their algorithms in a complete and accessible environment.
Collapse
Affiliation(s)
- Malavika H Nambiar
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland.
| | - Layko Liechti
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland.
| | - Fabian Müller
- Ziemer Ophthalmic Systems AG, Allmendstrasse 11, 2562, Port, Switzerland.
| | - Werner Bernau
- Ziemer Ophthalmic Systems AG, Allmendstrasse 11, 2562, Port, Switzerland.
| | - Harald Studer
- Optimo Medical, Robert-Walser-Platz 7, 2503, Biel, Switzerland.
| | - Abhijit S Roy
- Narayana Nethralaya Eye Clinic, Bengaluru, Karnataka, 560010, India.
| | - Theo G Seiler
- IROC AG, Institut für Refraktive und Ophthalmo-Chirurgie, Stockerstrasse 37, 8002, Zürich, Switzerland; Universitätsklinik für Augenheilkunde, Inselspital Bern, Freiburgstrasse 15, 3010, Bern, Switzerland; Universitätsklinikum Düsseldorf, Germany.
| | - Philippe Büchler
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland.
| |
Collapse
|
234
|
Gacek E, Mahutga RR, Barocas VH. Hybrid Discrete-Continuum Multiscale Model of Tissue Growth and Remodeling. Acta Biomater 2022; 163:7-24. [PMID: 36155097 DOI: 10.1016/j.actbio.2022.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Tissue growth and remodeling (G&R) is often central to disease etiology and progression, so understanding G&R is essential for understanding disease and developing effective therapies. While the state-of-the-art in this regard is animal and cellular models, recent advances in computational tools offer another avenue to investigate G&R. A major challenge for computational models is bridging from the cellular scale (at which changes are actually occurring) to the macroscopic, geometric-scale (at which physiological consequences arise). Thus, many computational models simplify one scale or another in the name of computational tractability. In this work, we develop a discrete-continuum modeling scheme for analyzing G&R, in which we apply changes directly to the discrete cell and extracellular matrix (ECM) architecture and pass those changes up to a finite-element macroscale geometry. We demonstrate the use of the model in three case-study scenarios: the media of a thick-walled artery, and the media and adventitia of a thick-walled artery, and chronic dissection of an arterial wall. We analyze each case in terms of the new and insightful data that can be gathered from this technique, and we compare our results from this model to several others. STATEMENT OF SIGNIFICANCE: This work is significant in that it provides a framework for combining discrete, microstructural- and cellular-scale models to the growth and remodeling of large tissue structures (such as the aorta). It is a significant advance in that it couples the microscopic remodeling with an existing macroscopic finite element model, making it relatively easy to use for a wide range of conceptual models. It has the potential to improve understanding of many growth and remodeling processes, such as organ formation during development and aneurysm formation, growth, and rupture.
Collapse
Affiliation(s)
- Elizabeth Gacek
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455
| | - Ryan R Mahutga
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455.
| |
Collapse
|
235
|
Image-Based Finite Element Modeling Approach for Characterizing In Vivo Mechanical Properties of Human Arteries. J Funct Biomater 2022; 13:jfb13030147. [PMID: 36135582 PMCID: PMC9505727 DOI: 10.3390/jfb13030147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanical properties of the arterial walls could provide meaningful information for the diagnosis, management and treatment of cardiovascular diseases. Classically, various experimental approaches were conducted on dissected arterial tissues to obtain their stress-stretch relationship, which has limited value clinically. Therefore, there is a pressing need to obtain biomechanical behaviors of these vascular tissues in vivo for personalized treatment. This paper reviews the methods to quantify arterial mechanical properties in vivo. Among these methods, we emphasize a novel approach using image-based finite element models to iteratively determine the material properties of the arterial tissues. This approach has been successfully applied to arterial walls in various vascular beds. The mechanical properties obtained from the in vivo approach were compared to those from ex vivo experimental studies to investigate whether any discrepancy in material properties exists for both approaches. Arterial tissue stiffness values from in vivo studies generally were in the same magnitude as those from ex vivo studies, but with lower average values. Some methodological issues, including solution uniqueness and robustness; method validation; and model assumptions and limitations were discussed. Clinical applications of this approach were also addressed to highlight their potential in translation from research tools to cardiovascular disease management.
Collapse
|
236
|
Toaquiza Tubon JD, Moreno-Flores O, Sree VD, Tepole AB. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics. Biomech Model Mechanobiol 2022; 21:1-16. [PMID: 36057750 DOI: 10.1007/s10237-022-01624-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
The analysis of tissue mechanics in biomedical applications demands nonlinear constitutive models able to capture the energy dissipation mechanisms, such as damage, that occur during tissue deformation. Furthermore, implementation of sophisticated material models in finite element models is essential to improve medical devices and diagnostic tools. Building on previous work toward microstructure-driven models of collagenous tissue, here we show a constitutive model based on fiber orientation and waviness distributions for skin that captures not only the anisotropic strain-stiffening response of this and other collagen-based tissues, but, additionally, accounts for tissue damage directly as a function of changes in the microstructure, in particular changes in the fiber waviness distribution. The implementation of this nonlinear constitutive model as a user subroutine in the popular finite element package Abaqus enables large-scale finite element simulations for biomedical applications. We showcase the performance of the model in fracture simulations during pure shear tests, as well as simulations of needle insertion into skin relevant to auto-injector design.
Collapse
Affiliation(s)
| | - Omar Moreno-Flores
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Vivek D Sree
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Adrian B Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA. .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
237
|
van Asten JGM, Ristori T, Nolan DR, Lally C, Baaijens FPT, Sahlgren CM, Loerakker S. Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension. J Mech Behav Biomed Mater 2022; 133:105325. [PMID: 35839633 PMCID: PMC7613661 DOI: 10.1016/j.jmbbm.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
Arteries grow and remodel in response to mechanical stimuli. Hypertension, for example, results in arterial wall thickening. Cell-cell Notch signaling between vascular smooth muscle cells (VSMCs) is known to be involved in this process, but the underlying mechanisms are still unclear. Here, we investigated whether Notch mechanosensitivity to strain may regulate arterial thickening in hypertension. We developed a multiscale computational framework by coupling a finite element model of arterial mechanics, including residual stress, to an agent-based model of mechanosensitive Notch signaling, to predict VSMC phenotypes as an indicator of growth and remodeling. Our simulations revealed that the sensitivity of Notch to strain at mean blood pressure may be a key mediator of arterial thickening in hypertensive arteries. Further simulations showed that loss of residual stress can have synergistic effects with hypertension, and that changes in the expression of Notch receptors, but not Jagged ligands, may be used to control arterial growth and remodeling and to intensify or counteract hypertensive thickening. Overall, we identify Notch mechanosensitivity as a potential mediator of vascular adaptation, and we present a computational framework that can facilitate the testing of new therapeutic and regenerative strategies.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David R Nolan
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
238
|
Guo Y, Mofrad MRK, Tepole AB. On modeling the multiscale mechanobiology of soft tissues: Challenges and progress. BIOPHYSICS REVIEWS 2022; 3:031303. [PMID: 38505274 PMCID: PMC10903412 DOI: 10.1063/5.0085025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 03/21/2024]
Abstract
Tissues grow and remodel in response to mechanical cues, extracellular and intracellular signals experienced through various biological events, from the developing embryo to disease and aging. The macroscale response of soft tissues is typically nonlinear, viscoelastic anisotropic, and often emerges from the hierarchical structure of tissues, primarily their biopolymer fiber networks at the microscale. The adaptation to mechanical cues is likewise a multiscale phenomenon. Cell mechanobiology, the ability of cells to transform mechanical inputs into chemical signaling inside the cell, and subsequent regulation of cellular behavior through intra- and inter-cellular signaling networks, is the key coupling at the microscale between the mechanical cues and the mechanical adaptation seen macroscopically. To fully understand mechanics of tissues in growth and remodeling as observed at the tissue level, multiscale models of tissue mechanobiology are essential. In this review, we summarize the state-of-the art modeling tools of soft tissues at both scales, the tissue level response, and the cell scale mechanobiology models. To help the interested reader become more familiar with these modeling frameworks, we also show representative examples. Our aim here is to bring together scientists from different disciplines and enable the future leap in multiscale modeling of tissue mechanobiology.
Collapse
Affiliation(s)
- Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mohammad R. K. Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
239
|
Hejazi M, Phani AS. On growth, buckling, and rupture of aneurysms in cylindrical tubes. J Biomech 2022; 144:111313. [DOI: 10.1016/j.jbiomech.2022.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/20/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
|
240
|
Navarrete Á, Varela P, López M, García-Herrera CM, Celentano DJ, Krause B. Characterization of the active response of a guinea pig carotid artery. Front Bioeng Biotechnol 2022; 10:924019. [PMID: 36091433 PMCID: PMC9458959 DOI: 10.3389/fbioe.2022.924019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
This work presents a characterization of the active response of the carotid artery of guinea pig fetuses through a methodology that encompasses experiments, modeling and numerical simulation. To this end, the isometric contraction test is carried out in ring samples subjected to different levels of KCl concentrations and pre-stretching. Then, a coupled mechanochemical model, aimed at describing the smooth cell behavior and its influence on the passive and active mechanical response of the vascular tissue, is calibrated from the experimental measurements. Due to the complex stress and strain fields developed in the artery, a finite element numerical simulation of the test is performed to fit the model parameters, where those related to the phosphorylation and dephosphorylation activity along with the load-bearing capacity of the myosin cross-bridges are found to be the most predominant when sensitizing the active response. The main strengths of the model are associated with the prediction of the stationary state of the active mechanical response of the tissue through a realistic description of the mechanochemical process carried out at its cellular level.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo Varela
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Miguel López
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio M. García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Claudio M. García-Herrera,
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo Krause
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| |
Collapse
|
241
|
Hoppstädter M, Püllmann D, Seydewitz R, Kuhl E, Böl M. Correlating the microstructural architecture and macrostructural behaviour of the brain. Acta Biomater 2022; 151:379-395. [PMID: 36002124 DOI: 10.1016/j.actbio.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
The computational simulation of pathological conditions and surgical procedures, for example the removal of cancerous tissue, can contribute crucially to the future of medicine. Especially for brain surgery, these methods can be important, as the ultra-soft tissue controls vital functions of the body. However, the microstructural interactions and their effects on macroscopic material properties remain incompletely understood. Therefore, we investigated the mechanical behaviour of brain tissue under three different deformation modes, axial tension, compression, and semi-confined compression, in different anatomical regions, and for varying axon orientation. In addition, we characterised the underlying microstructure in terms of myelin, cells, glial cells and neuron area fraction, and density. The correlation of these quantities with the material parameters of the anisotropic Ogden model reveals a decrease in shear modulus with increasing myelin area fraction. Strikingly, the tensile shear modulus correlates positively with cell and neuronal area fraction (Spearman's correlation coefficient of rs=0.40 and rs=0.33), whereas the compressive shear modulus decreases with increasing glial cell area (rs=-0.33). Our study finds that tissue non-linearity significantly depends on the myelin area fraction (rs=0.47), cell density (rs=0.41) and glial cell area (rs=0.49). Our results provide an important step towards understanding the micromechanical load transfer that leads to the non-linear macromechanical behaviour of the brain. STATEMENT OF SIGNIFICANCE: Within this article, we investigate the mechanical behaviour of brain tissue under three different deformation modes, in different anatomical regions, and for varying axon orientation. Further, we characterise the underlying microstructure in terms of various constituents. The correlation of these quantities with the material parameters of the anisotropic Ogden model reveals a decrease in shear modulus with increasing myelin area fraction. Strikingly, the tensile shear modulus correlates positively with cell and neuronal area fraction, whereas the compressive shear modulus decreases with increasing glial cell area. Our study finds that tissue non-linearity significantly depends on the myelin area fraction, cell density, and glial cell area. Our results provide an important step towards understanding the micromechanical load transfer that leads to the non-linear macromechanical behaviour of the brain.
Collapse
Affiliation(s)
- Mayra Hoppstädter
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Denise Püllmann
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Robert Seydewitz
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Ellen Kuhl
- Departments of Mechanical Engineering and Bioengineering, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| |
Collapse
|
242
|
Cheng H, Li G, Dai J, Zhang K, Xu T, Wei L, Zhang X, Ding D, Hou J, Li J, Zhuang J, Tan K, Guo R. A fluid-structure interaction model accounting arterial vessels as a key part of the blood-flow engine for the analysis of cardiovascular diseases. Front Bioeng Biotechnol 2022; 10:981187. [PMID: 36061431 PMCID: PMC9438578 DOI: 10.3389/fbioe.2022.981187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
According to the classical Windkessel model, the heart is the only power source for blood flow, while the arterial system is assumed to be an elastic chamber that acts as a channel and buffer for blood circulation. In this paper we show that in addition to the power provided by the heart for blood circulation, strain energy stored in deformed arterial vessels in vivo can be transformed into mechanical work to propel blood flow. A quantitative relationship between the strain energy increment and functional (systolic, diastolic, mean and pulse blood pressure) and structural (stiffness, diameter and wall thickness) parameters of the aorta is described. In addition, details of blood flow across the aorta remain unclear due to changes in functional and other physiological parameters. Based on the arterial strain energy and fluid-structure interaction theory, the relationship between physiological parameters and blood supply to organs was studied, and a corresponding mathematical model was developed. The findings provided a new understanding about blood-flow circulation, that is, cardiac output allows blood to enter the aorta at an initial rate, and then strain energy stored in the elastic arteries pushes blood toward distal organs and tissues. Organ blood supply is a key factor in cardio-cerebrovascular diseases (CCVD), which are caused by changes in blood supply in combination with multiple physiological parameters. Also, some physiological parameters are affected by changes in blood supply, and vice versa. The model can explain the pathophysiological mechanisms of chronic diseases such as CCVD and hypertension among others, and the results are in good agreement with epidemiological studies of CCVD.
Collapse
Affiliation(s)
- Heming Cheng
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Heming Cheng, ; Ke Zhang,
| | - Gen Li
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jifeng Dai
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Ke Zhang
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
- Department of Hydraulic Engineering, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Heming Cheng, ; Ke Zhang,
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Liuchuang Wei
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Xue Zhang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Dongfang Ding
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jie Hou
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jianyun Li
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Jiangping Zhuang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Kaijun Tan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Ran Guo
- Department of Mechanics, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
243
|
Shutov A, Rodionov A, Ponomarev D, Nekrasova Y. Computationally Efficient Concept of Representative Directions for Anisotropic Fibrous Materials. Polymers (Basel) 2022; 14:3314. [PMID: 36015572 PMCID: PMC9416447 DOI: 10.3390/polym14163314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The concept of representative directions allows for automatic generation of multi-axial constitutive equations, starting from simplified uni-axial material models. In this paper, a modification of the concept is considered suitable for the analysis of fibrous polymeric materials, which are anisotropic in the as-received state. The modification of the concept incorporates an orientation probability density function (OPDF), which explicitly accounts for the material anisotropy. Two versions of the concept are available. The first version utilizes the homogeneous distribution of the representative directions, with the entire anisotropy being contained in the weighting factors. The second encapsulates the anisotropy in the distribution of the representative directions. Due to its nature, the second version allows for a more efficient use of computational power. To promote this efficient version of the concept, we present new algorithms generating required sets of representative directions that match a given OPDF. These methods are based (i) on the minimization of a potential energy, (ii) on the equilibration method, and (iii) on the use of Voronoi cells. These three methods are tested and compared in terms of various OPDFs. The applicability of the computationally efficient modeling method to mechanical behavior of an anisotropic polymeric material is demonstrated. In particular, a calibration procedure is suggested for the practically important case when the OPDF is not known a-priori.
Collapse
Affiliation(s)
- Alexey Shutov
- Lavrentyev Institute of Hydrodynamics, Pr. Lavrentyeva 15, 630090 Novosibirsk, Russia
| | - Alexander Rodionov
- Saint Petersburg State Marine Technical University, Ul. Lotsmanskaya 3, 190121 Saint Petersburg, Russia
| | - Dmitri Ponomarev
- Saint Petersburg State Marine Technical University, Ul. Lotsmanskaya 3, 190121 Saint Petersburg, Russia
| | - Yana Nekrasova
- Lavrentyev Institute of Hydrodynamics, Pr. Lavrentyeva 15, 630090 Novosibirsk, Russia
| |
Collapse
|
244
|
McQueen A, Escuer J, Schmidt AF, Aggarwal A, Kennedy S, McCormick C, Oldroyd K, McGinty S. An intricate interplay between stent drug dose and release rate dictates arterial restenosis. J Control Release 2022; 349:992-1008. [PMID: 35921913 DOI: 10.1016/j.jconrel.2022.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Since the introduction of percutaneous coronary intervention (PCI) for the treatment of obstructive coronary artery disease (CAD), patient outcomes have progressively improved. Drug eluting stents (DES) that employ anti-proliferative drugs to limit excess tissue growth following stent deployment have proved revolutionary. However, restenosis and a need for repeat revascularisation still occurs after DES use. Over the last few years, computational models have emerged that detail restenosis following the deployment of a bare metal stent (BMS), focusing primarily on contributions from mechanics and fluid dynamics. However, none of the existing models adequately account for spatiotemporal delivery of drug and the influence of this on the cellular processes that drive restenosis. In an attempt to fill this void, a novel continuum restenosis model coupled with spatiotemporal drug delivery is presented. Our results indicate that the severity and time-course of restenosis is critically dependent on the drug delivery strategy. Specifically, we uncover an intricate interplay between initial drug loading, drug release rate and restenosis, indicating that it is not sufficient to simply ramp-up the drug dose or prolong the time course of drug release to improve stent efficacy. Our model also shows that the level of stent over-expansion and stent design features, such as inter-strut spacing and strut thickness, influence restenosis development, in agreement with trends observed in experimental and clinical studies. Moreover, other critical aspects of the model which dictate restenosis, including the drug binding site density are investigated, where comparisons are made between approaches which assume this to be either constant or proportional to the number of smooth muscle cells (SMCs). Taken together, our results highlight the necessity of incorporating these aspects of drug delivery in the pursuit of optimal DES design.
Collapse
Affiliation(s)
- Alistair McQueen
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Javier Escuer
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Keith Oldroyd
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK.
| |
Collapse
|
245
|
Giannokostas K, Dimakopoulos Y, Tsamopoulos J. Shear stress and intravascular pressure effects on vascular dynamics: two-phase blood flow in elastic microvessels accounting for the passive stresses. Biomech Model Mechanobiol 2022; 21:1659-1684. [PMID: 35962247 DOI: 10.1007/s10237-022-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
We study the steady hemodynamics in physiological elastic microvessels proposing an advanced fluid-structure interaction model. The arteriolar tissue is modeled as a two-layer fiber-reinforced hyperelastic material representing its Media and Adventitia layers. The constitutive model employed (Holzapfel et al. in J Elast 61:1-48, 2000) is parametrized via available data on stress-strain experiments for arterioles. The model is completed by simulating the blood/plasma flow in the lumen, using the thixotropic elasto-viscoplastic model in its core, and the linear Phan-Thien and Tanner viscoelastic model in its annular part. The Cell-Free Layer (CFL) and the Fåhraeus and Fåhraeus-Lindqvist effects are considered via analytical expressions based on experimental data (Giannokostas et al. in Materials (Basel) 14:367, 2021b). The coupling between tissue deformation and blood flow is achieved through the experimentally verified pressure-shear hypothesis (Pries et al. Circ Res 77:1017-1023, 1995). Our calculations confirm that the increase in the reference inner radius produces larger expansion. Also, by increasing the intraluminal pressure, the thinning of the walls is more pronounced and it may reach 40% of the initial thickness. Comparing our predictions with those in rigid-wall microtubes, we conclude that apart from the vital importance of vasodilation, there is an up to 25% reduction in wall shear stress. The passive vasodilation contributes to the decrease in the tissue stress fields and affects the hemodynamic features such as the CFL thickness, reducing the plasma layer when blood flows in vessels with elastic walls, in quantitative agreement with previous experiments. Our calculations verify the correctness of the pressure-shear hypothesis but not that of the Laplace law.
Collapse
Affiliation(s)
- K Giannokostas
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Y Dimakopoulos
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece.
| | - J Tsamopoulos
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece
| |
Collapse
|
246
|
Marcé-Nogué J. One step further in biomechanical models in palaeontology: a nonlinear finite element analysis review. PeerJ 2022; 10:e13890. [PMID: 35966920 PMCID: PMC9373974 DOI: 10.7717/peerj.13890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 01/19/2023] Open
Abstract
Finite element analysis (FEA) is no longer a new technique in the fields of palaeontology, anthropology, and evolutionary biology. It is nowadays a well-established technique within the virtual functional-morphology toolkit. However, almost all the works published in these fields have only applied the most basic FEA tools i.e., linear materials in static structural problems. Linear and static approximations are commonly used because they are computationally less expensive, and the error associated with these assumptions can be accepted. Nonetheless, nonlinearities are natural to be used in biomechanical models especially when modelling soft tissues, establish contacts between separated bones or the inclusion of buckling results. The aim of this review is to, firstly, highlight the usefulness of non-linearities and secondly, showcase these FEA tool to researchers that work in functional morphology and biomechanics, as non-linearities can improve their FEA models by widening the possible applications and topics that currently are not used in palaeontology and anthropology.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Department of Mechanical Engineering, Universitat Rovira i Virgili Tarragona, Tarragona, Catalonia, Spain
- Institut Català de Paleontologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
247
|
Jodko D, Jeckowski M, Tyfa Z. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3630. [PMID: 35593678 PMCID: PMC9542585 DOI: 10.1002/cnm.3630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/11/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this paper is to demonstrate the importance of a compliant wall approach in modeling of non-Newtonian and non-physiological blood flows. A case study of a stenosed and symptomatic carotid bifurcation was considered to show the influence of the wall-resilience assumption on the flow parameters obtained with numerical simulations. Patient-specific data concerning the geometry and flow conditions were collected and used to carry out two-way coupled fluid structure interaction simulations of the pulsatile blood flow through carotid artery. The wall compliance was considered separately as related to the wall-elasticity and as associated with the reaction of the loose connective tissue surrounding the carotid bifurcation. The obtained hemodynamic parameters were compared to those which were found in rigid-wall simulations. The difference between the results obtained for rigid-wall and compliant-wall approaches for the peak-systolic area-averaged wall shear stress achieved 35%, whereas the difference between the time-averaged local vorticity and shear strain reached, respectively, 42% and 43%. The influence of the highly resilient wall on the monitored hemodynamic parameters was significant even if time-averaged values are compared, which suggests that these metrics are considerably overestimated if the wall compliance is not considered. Moreover, the findings show that the mechanical response of the loose connective tissue cannot be neglected in blood flow simulations. Additionally, this study indicates that stiffening of the arterial wall due to atherosclerosis significantly rises hemodynamic parameters. This explains the therapeutic benefits of surgical removal of plaque lesions formed in the carotid bifurcation (endarterectomy).
Collapse
Affiliation(s)
- Daniel Jodko
- Institute of TurbomachineryLodz University of TechnologyLodzPoland
| | - Mateusz Jeckowski
- Department of Experimental SurgeryMedical University of LodzLodzPoland
| | - Zbigniew Tyfa
- Institute of TurbomachineryLodz University of TechnologyLodzPoland
| |
Collapse
|
248
|
Tac V, Sahli Costabal F, Tepole AB. Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 398:115248. [PMID: 38045634 PMCID: PMC10691864 DOI: 10.1016/j.cma.2022.115248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Data-driven methods are becoming an essential part of computational mechanics due to their advantages over traditional material modeling. Deep neural networks are able to learn complex material response without the constraints of closed-form models. However, data-driven approaches do not a priori satisfy physics-based mathematical requirements such as polyconvexity, a condition needed for the existence of minimizers for boundary value problems in elasticity. In this study, we use a recent class of neural networks, neural ordinary differential equations (N-ODEs), to develop data-driven material models that automatically satisfy polyconvexity of the strain energy. We take advantage of the properties of ordinary differential equations to create monotonic functions that approximate the derivatives of the strain energy with respect to deformation invariants. The monotonicity of the derivatives guarantees the convexity of the energy. The N-ODE material model is able to capture synthetic data generated from closed-form material models, and it outperforms conventional models when tested against experimental data on skin, a highly nonlinear and anisotropic material. We also showcase the use of the N-ODE material model in finite element simulations of reconstructive surgery. The framework is general and can be used to model a large class of materials, especially biological soft tissues. We therefore expect our methodology to further enable data-driven methods in computational mechanics.
Collapse
Affiliation(s)
- Vahidullah Tac
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Adrian B Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
249
|
Bazzi MS, Balouchzadeh R, Pavey SN, Quirk JD, Yanagisawa H, Vedula V, Wagenseil JE, Barocas VH. Experimental and Mouse-Specific Computational Models of the Fbln4 SMKO Mouse to Identify Potential Biomarkers for Ascending Thoracic Aortic Aneurysm. Cardiovasc Eng Technol 2022; 13:558-572. [PMID: 35064559 PMCID: PMC9304450 DOI: 10.1007/s13239-021-00600-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE To use computational methods to explore geometric, mechanical, and fluidic biomarkers that could correlate with mouse lifespan in the Fbln4SMKO mouse. Mouse lifespan was used as a surrogate for risk of a severe cardiovascular event in cases of ascending thoracic aortic aneurysm. METHODS Image-based, mouse-specific fluid-structure-interaction models were developed for Fbln4SMKO mice (n = 10) at ages two and six months. The results of the simulations were used to quantify potential biofluidic biomarkers, complementing the geometrical biomarkers obtained directly from the images. RESULTS Comparing the different geometrical and biofluidic biomarkers to the mouse lifespan, it was found that mean oscillatory shear index (OSImin) and minimum time-averaged wall shear stress (TAWSSmin) at six months showed the largest correlation with lifespan (r2 = 0.70, 0.56), with both correlations being positive (i.e., mice with high OSImean and high TAWSSmin tended to live longer). When change between two and six months was considered, the change in TAWSSmin showed a much stronger correlation than OSImean (r2 = 0.75 vs. 0.24), and the correlation was negative (i.e., mice with increasing TAWSSmin over this period tended to live less long). CONCLUSION The results highlight potential biomarkers of ATAA outcomes that can be obtained through noninvasive imaging and computational simulations, and they illustrate the potential synergy between small-animal and computational models.
Collapse
Affiliation(s)
- Marisa S Bazzi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ramin Balouchzadeh
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - Shawn N Pavey
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
250
|
Meador WD, Mathur M, Kakaletsis S, Lin CY, Bersi MR, Rausch MK. Biomechanical phenotyping of minuscule soft tissues: An example in the rodent tricuspid valve. EXTREME MECHANICS LETTERS 2022; 55:101799. [PMID: 39474062 PMCID: PMC11521389 DOI: 10.1016/j.eml.2022.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The biomechanical phenotype of soft tissues - i.e., the sum of spatially- and directionally-varying mechanical properties - is a critical marker of tissue health and disease. While biomechanical phenotyping is always challenging, it is particularly difficult with miniscule tissues. For example, tissues from small animal models are often only millimeters in size, which prevents the use of traditional test methods, such as uniaxial tensile testing. To overcome this challenge, our current work describes and tests a novel experimental and numerical pipeline. First, we introduce a micro-bulge test device with which we pressurize and inflate miniscule soft tissues. We combine this microbulge device with an optical coherence tomography device to also image the samples during inflation. Based on pressure data and images we then perform inverse finite element simulations to identify our tissues' unknown material parameters. For validation, we identify the material parameters of a thin sheet of latex rubber via both uniaxial tensile testing and via our novel pipeline. Next, we demonstrate our pipeline against anterior tricuspid valve leaflets from rats. The resulting material parameters for these tissues compare excellently with data collected in sheep via standard planar biaxial testing. Additionally, we show that our device is compatible with other imaging modalities such as 2-Photon microscopy. To this end, we image the in-situ microstructural changes of the leaflets during inflation using second harmonic generation imaging. In summary, we introduce a novel pipeline to biomechanically phenotype miniscule soft tissues and demonstrate its value by phenotyping the biomechanics of the anterior tricuspid valve leaflets from rats.
Collapse
Affiliation(s)
- William D Meador
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Mrudang Mathur
- University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Sotirios Kakaletsis
- University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX, United States of America
| | - Chien-Yu Lin
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Matthew R Bersi
- Washington University in St. Louis, Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, St. Louis, 63130, MO, United States of America
| | - Manuel K Rausch
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
- University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
- University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX, United States of America
| |
Collapse
|