201
|
Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev 1999; 13:3244-58. [PMID: 10617573 PMCID: PMC317204 DOI: 10.1101/gad.13.24.3244] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1999] [Accepted: 10/26/1999] [Indexed: 11/24/2022]
Abstract
The human tumor suppressor gene PTEN encodes a putative cytoskeleton-associated molecule with both protein phosphatase and phosphatidylinositol 3,4,5-trisphosphate (PIP3) 3-phosphatase activities. In cell culture, the lipid phosphatase activity of this protein is involved in regulating cell proliferation and survival, but the mechanism by which PTEN inhibits tumorigenesis in vivo is not fully established. Here we show that the highly evolutionarily conserved Drosophila PTEN homolog, DPTEN, suppresses hyperplastic growth in flies by reducing cell size and number. We demonstrate that DPTEN modulates tissue mass by acting antagonistically to the Drosophila Class I phosphatidylinositol 3-kinase, Dp110, and its upstream activator Chico, an insulin receptor substrate homolog. Surprisingly, although DPTEN does not generally affect cell fate determination, it does appear to regulate the subcellular organization of the actin cytoskeleton in multiple cell types. From these data, we propose that DPTEN has a complex role in regulating tissue and body size. It acts in opposition to Dp110 to control cell number and growth, while coordinately influencing events at the cell periphery via its effects on the actin cytoskeleton.
Collapse
Affiliation(s)
- D C Goberdhan
- Research School of Biosciences, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | | | | | |
Collapse
|
202
|
Magie CR, Meyer MR, Gorsuch MS, Parkhurst SM. Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development 1999; 126:5353-64. [PMID: 10556060 DOI: 10.1242/dev.126.23.5353] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rho GTPases play an important role in diverse biological processes such as actin cytoskeleton organization, gene transcription, cell cycle progression and adhesion. They are required during early Drosophila development for proper execution of morphogenetic movements of individual cells and groups of cells important for the formation of the embryonic body plan. We isolated loss-of-function mutations in the Drosophila Rho1 (Rho1) gene during a genetic screen for maternal-effect mutations, allowing us to investigate the specific roles Rho1 plays in the context of the developing organism. Here we report that Rho1 is required for many early events: loss of Rho1 function results in both maternal and embryonic phenotypes. Embryos homozygous for the Rho1 mutation exhibit a characteristic zygotic phenotype, which includes severe defects in head involution and imperfect dorsal closure. Two phenotypes are associated with reduction of maternal Rho1 activity: the actin cytoskeleton is disrupted in egg chambers, especially in the ring canals and embryos display patterning defects as a result of improper maintenance of segmentation gene expression. Despite showing imperfect dorsal closure, Rho1 does not activate downstream genes or interact genetically with members of the JNK signaling pathway, used by its relatives dRac and dCdc42 for proper dorsal closure. Consistent with its roles in regulating actin cytoskeletal organization, we find that Rho1 interacts genetically and physically with the Drosophila formin homologue, cappuccino. We also show that Rho1 interacts both genetically and physically with concertina, a G(alpha) protein involved in cell shape changes during gastrulation.
Collapse
Affiliation(s)
- C R Magie
- Division of Basic Sciences and Program in Developmental Biology, A1-162, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
203
|
Agnès F, Suzanne M, Noselli S. The Drosophila JNK pathway controls the morphogenesis of imaginal discs during metamorphosis. Development 1999; 126:5453-62. [PMID: 10556069 DOI: 10.1242/dev.126.23.5453] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Drosophila, the Jun-N-terminal Kinase-(JNK) signaling pathway is required for epithelial cell shape changes during dorsal closure of the embryo. In the absence of JNK pathway activity, as in the DJNKK/hemipterous (hep) mutant, the dorsolateral ectodermal cells fail both to elongate and move toward the dorsal midline, leading to dorsally open embryos. We show here that hep and the JNK pathway are required later in development, for correct morphogenesis of other epithelia, the imaginal discs. During metamorphosis, the imaginal discs undergo profound morphological changes, giving rise to the adult head and thoracic structures, including the cuticle and appendages. hep mutant pupae and pharate adults show severe defects in discs morphogenesis, especially in the fusion of the two lateral wing discs. We show that these defects are accompanied by a loss of expression of puckered (puc), a JNK phosphatase-encoding gene, in a subset of peripodial cells that ultimately delineates the margins of fusing discs. In further support of a role of puc in discs morphogenesis, pupal and adult hep phenotypes are suppressed by reducing puc function, indicative of a negative role of puc in disc morphogenesis. Furthermore, we show that the small GTPase Dcdc42, but not Drac1, is an activator of puc expression in a hep-dependent manner in imaginal discs. Altogether, these results demonstrate a new role for the JNK pathway in epithelial morphogenesis, and provide genetic evidence for a role of the peripodial membrane in disc morphogenesis. We discuss a general model whereby the JNK pathway regulates morphogenesis of epithelia with differentiated edges.
Collapse
Affiliation(s)
- F Agnès
- Centre de Biologie du Développement, UMR 5547, 31062 Toulouse cedex, France
| | | | | |
Collapse
|
204
|
Abstract
Cells commonly use multiprotein kinase cascades to signal information from the cell membrane to the nucleus. Several conserved signaling pathways related to the mitogen activated protein kinase (MAPK) pathway allow cells to respond to normal developmental signals as well as signals produced under stressful conditions. Genetic and molecular studies in Drosophila melanogaster over the last several years have related that components of stress signaling pathways, namely the Jun kinase (JNK) and p38 kinase signaling modules, are functionally conserved and participate in numerous processes during normal development. Specifically, the JNK pathway is required for morphogenetic movements in embryogenesis and generation of tissue polarity in the adult. The role of the p38 pathway in generation of axial polarity during oogenesis has been inferred from phenotypic analysis of mutations in the Drosophila homolog of DMKK3. In addition to their requirement for normal development, cell culture and genetic investigations point to a role for both the JNK and p38 pathways in regulation of the immune response in the fly. This review details the known components of stress signaling pathways in Drosophila and recent insights into how these pathways are used and regulated during development and homeostasis.
Collapse
Affiliation(s)
- B E Stronach
- Howard Hughes Medical Institute, Harvard Medical School, Department of Genetics, 200 Longwood Avenue, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
205
|
Ruan W, Pang P, Rao Y. The SH2/SH3 adaptor protein dock interacts with the Ste20-like kinase misshapen in controlling growth cone motility. Neuron 1999; 24:595-605. [PMID: 10595512 DOI: 10.1016/s0896-6273(00)81115-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies suggest that the SH2/SH3 adaptor Dock/Nck transduces tyrosine phosphorylation signals to the actin cytoskeleton in regulating growth cone motility. The signaling cascade linking the action of Dock/Nck to the reorganization of cytoskeleton is poorly understood. We now demonstrate that Dock interacts with the Ste20-like kinase Misshapen (Msn) in the Drosophila photoreceptor (R cell) growth cones. Loss of msn causes a failure of growth cones to stop at the target, a phenotype similar to loss of dock, whereas overexpression of msn induces pretarget growth cone termination. Physical and genetic interactions between Msn and Dock indicate a role for Msn in the Dock signaling pathway. We propose that Msn functions as a key controller of growth cone cytoskeleton in response to Dock-mediated signals.
Collapse
Affiliation(s)
- W Ruan
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University and The Montreal General Hospital, Québec, Canada
| | | | | |
Collapse
|
206
|
Byars CL, Bates KL, Letsou A. The dorsal-open group gene raw is required for restricted DJNK signaling during closure. Development 1999; 126:4913-23. [PMID: 10518507 DOI: 10.1242/dev.126.21.4913] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During dorsal closure in Drosophila melanogaster, cells of the lateral epidermis migrate over the amnioserosa to encase the embryo. At least three classes of dorsal-open group gene products are necessary for this morphogenetic movement. Class I genes code for structural proteins that effect changes in epidermal cell shape and motility. Class II and III genes code for regulatory components of closure: Class II genes encode Drosophila Jun amino (N)-terminal kinase (DJNK) signaling molecules and Class III genes encode Decapentaplegic-mediated signaling molecules. All characterized dorsal-open group gene products function in the epidermis. Here we report a molecular and genetic characterization of raw, a newly defined member of the Class II dorsal-open group genes. We show that the novel protein encoded by raw is required for restriction of DJNK signaling to leading edge epidermal cells as well as for proper development of the amnioserosa. Taken together, our results demonstrate a role for Raw in restriction of epidermal signaling during closure and suggest that this effect may be mediated via the amnioserosa.
Collapse
Affiliation(s)
- C L Byars
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. anthea.
| | | | | |
Collapse
|
207
|
Yasuda J, Whitmarsh AJ, Cavanagh J, Sharma M, Davis RJ. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 1999; 19:7245-54. [PMID: 10490659 PMCID: PMC84717 DOI: 10.1128/mcb.19.10.7245] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is mediated by a protein kinase cascade. This signaling mechanism may be coordinated by the interaction of components of the protein kinase cascade with scaffold proteins. The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates signaling by the mixed-lineage kinase (MLK)-->MAP kinase kinase 7 (MKK7)-->JNK pathway. The scaffold proteins JIP1 and JIP2 interact to form oligomeric complexes that accumulate in peripheral cytoplasmic projections extended at the cell surface. The JIP proteins function by aggregating components of a MAP kinase module (including MLK, MKK7, and JNK) and facilitate signal transmission by the protein kinase cascade.
Collapse
Affiliation(s)
- J Yasuda
- Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
208
|
Adachi-Yamada T, Gotoh T, Sugimura I, Tateno M, Nishida Y, Onuki T, Date H. De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs. Mol Cell Biol 1999; 19:7276-86. [PMID: 10490662 PMCID: PMC84720 DOI: 10.1128/mcb.19.10.7276] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is a conserved eukaryotic signaling factor that mediates various signals, cumulating in the activation of transcription factors. Extracellular signal-regulated kinase (ERK), a MAPK, is activated through phosphorylation by the kinase MAPK/ERK kinase (MEK). To elucidate the extent of the involvement of ERK in various aspects of animal development, we searched for a Drosophila mutant which responds to elevated MEK activity and herein identified a lace mutant. Mutants with mild lace alleles grow to become adults with multiple aberrant morphologies in the appendages, compound eye, and bristles. These aberrations were suppressed by elevated MEK activity. Structural and transgenic analyses of the lace cDNA have revealed that the lace gene product is a membrane protein similar to the yeast protein LCB2, a subunit of serine palmitoyltransferase (SPT), which catalyzes the first step of sphingolipid biosynthesis. In fact, SPT activity in the fly expressing epitope-tagged Lace was absorbed by epitope-specific antibody. The number of dead cells in various imaginal discs of a lace hypomorph was considerably increased, thereby ectopically activating c-Jun N-terminal kinase (JNK), another MAPK. These results account for the adult phenotypes of the lace mutant and suppression of the phenotypes by elevated MEK activity: we hypothesize that mutation of lace causes decreased de novo synthesis of sphingolipid metabolites, some of which are signaling molecules, and one or more of these changes activates JNK to elicit apoptosis. The ERK pathway may be antagonistic to the JNK pathway in the control of cell survival.
Collapse
Affiliation(s)
- T Adachi-Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
209
|
Lamka ML, Lipshitz HD. Role of the amnioserosa in germ band retraction of the Drosophila melanogaster embryo. Dev Biol 1999; 214:102-12. [PMID: 10491260 DOI: 10.1006/dbio.1999.9409] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the germ band shortens in Drosophila melanogaster embryos, cell shape changes cause segments to narrow anteroposteriorly and to lengthen dorsoventrally. One of the genes required for this retraction process is the hindsight (hnt) gene. hnt encodes a nuclear Zinc-finger protein that is expressed in the extraembryonic amnioserosa and the endodermal midgut prior to and during germ band retraction (M. L. R. Yip, M. L. Lamka, and H. D. Lipshitz, 1997, Development 124, 2129-2141). Here we show, through analysis of hnt genetic mosaic embryos, that hnt activity in the amnioserosa-particularly in those cells that are adjacent to the epidermis-is necessary for germ band retraction. In hnt mutant embryos the amnioserosa undergoes premature cell death (L. C. Frank and C. Rushlow, 1996, Development 122, 1343-1352). We demonstrate that prevention of premature apoptosis in hnt mutants does not rescue retraction. Thus, failure of this process is not an indirect consequence of premature amnioserosal apoptosis; instead, hnt must function in a pathway that controls germ band retraction. We show that the Krüppel gene is activated by hnt in the amnioserosa while the Drosophila insulin receptor (INR) functions downstream of hnt in the germ band. We present evidence against a physical model in which the amnioserosa "pushes" the germ band during retraction. Rather, it is likely that the amnioserosa functions in production, activation, or presentation of a diffusible signal required for retraction.
Collapse
Affiliation(s)
- M L Lamka
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
210
|
Abstract
Dorsal closure, a morphogenetic movement during Drosophila embryogenesis, is controlled by the Drosophila JNK pathway, D-Fos and the phosphatase Puckered (Puc). To identify principles of epithelial closure processes, we studied another cell sheet movement that we term thorax closure, the joining of the parts of the wing imaginal discs which give rise to the adult thorax during metamorphosis. In thorax closure a special row of margin cells express puc and accumulate prominent actin fibres during midline attachment. Genetic data indicate a requirement of D-Fos and the JNK pathway for thorax closure, and a negative regulatory role of Puc. Furthermore, puc expression co-localises with elevated levels of D-Fos, is reduced in a JNK or D-Fos loss-of-function background and is ectopically induced after JNK activation. This suggests that Puc acts downstream of the JNK pathway and D-Fos to mediate a negative feed-back loop. Therefore, the molecular circuitry required for thorax closure is very similar to the one directing dorsal closure in the embryo, even though the tissues are not related. This finding supports the hypothesis that the mechanism controlling dorsal closure has been co-opted for thorax closure in the evolution of insect metamorphosis and may represent a more widely used functional module for tissue closure in other species as well.
Collapse
Affiliation(s)
- J Zeitlinger
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg, Germany
| | | |
Collapse
|
211
|
Grose R, Martin P. Parallels between wound repair and morphogenesis in the embryo. Semin Cell Dev Biol 1999; 10:395-404. [PMID: 10497096 DOI: 10.1006/scdb.1999.0326] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- R Grose
- Department of Anatomy and Developmental Biology, University College London, Gower St, London, WC1E 6BT, UK.
| | | |
Collapse
|
212
|
Abstract
Epithelial cell differentiation and morphogenesis are crucial in many aspects of metazoan development. Recent genetic studies in Drosophila have revealed that the conserved Jun amino-terminal kinase (JNK) signaling pathway regulates epithelial morphogenesis during the process of embryonic dorsal closure and participates in the control of planar polarity in several tissues. Importantly, these studies have linked the JNK pathway to the decapentaplegic and Frizzled pathways in these processes, suggesting a high degree of integrative signaling during epithelial morphogenesis.
Collapse
Affiliation(s)
- S Noselli
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachussetts 02115, USA.
| | | |
Collapse
|
213
|
Sawamoto K, Winge P, Koyama S, Hirota Y, Yamada C, Miyao S, Yoshikawa S, Jin MH, Kikuchi A, Okano H. The Drosophila Ral GTPase regulates developmental cell shape changes through the Jun NH(2)-terminal kinase pathway. J Cell Biol 1999; 146:361-72. [PMID: 10427090 PMCID: PMC3206575 DOI: 10.1083/jcb.146.2.361] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Ral GTPase is activated by RalGDS, which is one of the effector proteins for Ras. Previous studies have suggested that Ral might function to regulate the cytoskeleton; however, its in vivo function is unknown. We have identified a Drosophila homologue of Ral that is widely expressed during embryogenesis and imaginal disc development. Two mutant Drosophila Ral (DRal) proteins, DRal(G20V) and DRal(S25N), were generated and analyzed for nucleotide binding and GTPase activity. The biochemical analyses demonstrated that DRal(G20V) and DRal(S25N) act as constitutively active and dominant negative mutants, respectively. Overexpression of the wild-type DRal did not cause any visible phenotype, whereas DRal(G20V) and DRal(S25N) mutants caused defects in the development of various tissues including the cuticular surface, which is covered by parallel arrays of polarized structures such as hairs and sensory bristles. The dominant negative DRal protein caused defects in the development of hairs and bristles. These phenotypes were genetically suppressed by loss of function mutations of hemipterous and basket, encoding Drosophila Jun NH(2)-terminal kinase kinase (JNKK) and Jun NH(2)-terminal kinase (JNK), respectively. Expression of the constitutively active DRal protein caused defects in the process of dorsal closure during embryogenesis and inhibited the phosphorylation of JNK in cultured S2 cells. These results indicate that DRal regulates developmental cell shape changes through the JNK pathway.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Calcium-Calmodulin-Dependent Protein Kinases/genetics
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cell Line
- Cell Size
- Cloning, Molecular
- Drosophila melanogaster/cytology
- Drosophila melanogaster/embryology
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/enzymology
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Enzyme Activation
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Genes, Insect/physiology
- In Situ Hybridization
- JNK Mitogen-Activated Protein Kinases
- Mitogen-Activated Protein Kinases
- Molecular Sequence Data
- Phenotype
- Phosphorylation
- Sense Organs/embryology
- Sense Organs/growth & development
- Sense Organs/ultrastructure
- Signal Transduction
- Wings, Animal/embryology
- Wings, Animal/growth & development
- Wings, Animal/ultrastructure
- ral GTP-Binding Proteins
Collapse
Affiliation(s)
- Kazunobu Sawamoto
- Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Per Winge
- Unigen Center for Molecular Biology, Norwegian University of Science and Technology, Trondheim N-7005, Norway
| | - Shinya Koyama
- Department of Biochemistry, University of Hiroshima School of Medicine, Hiroshima 734-8551, Japan
| | - Yuki Hirota
- Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Chiharu Yamada
- Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sachiyo Miyao
- Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shingo Yoshikawa
- Department of Molecular Neurobiology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-0006, Japan
| | - Ming-hao Jin
- Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Corporation at Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Biochemistry, University of Hiroshima School of Medicine, Hiroshima 734-8551, Japan
| | - Hideyuki Okano
- Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Corporation at Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
214
|
Böhni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 1999; 97:865-75. [PMID: 10399915 DOI: 10.1016/s0092-8674(00)80799-0] [Citation(s) in RCA: 637] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The control of growth is fundamental to the developing metazoan. Here, we show that CHICO, a Drosophila homolog of vertebrate IRS1-4, plays an essential role in the control of cell size and growth. Animals mutant for chico are less than half the size of wild-type flies, owing to fewer and smaller cells. In mosaic animals, chico homozygous cells grow slower than their heterozygous siblings, show an autonomous reduction in cell size, and form organs of reduced size. Although chico flies are smaller, they show an almost 2-fold increase in lipid levels. The similarities of the growth defects caused by mutations in chico and the insulin receptor gene in Drosophila and by perturbations of the insulin/IGF1 signaling pathway in vertebrates suggest that this pathway plays a conserved role in the regulation of overall growth by controling cell size, cell number, and metabolism.
Collapse
Affiliation(s)
- R Böhni
- Zoologisches Institut, Universität Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Lu Y, Settleman J. The Drosophila Pkn protein kinase is a Rho/Rac effector target required for dorsal closure during embryogenesis. Genes Dev 1999; 13:1168-80. [PMID: 10323867 PMCID: PMC316938 DOI: 10.1101/gad.13.9.1168] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The PKN family of PKC-related protein kinases constitutes the major Rho GTPase-associated protein kinase activities detected in mammalian tissues. However, the biological functions of these kinases are unknown. We have identified a closely related PKN homolog in Drosophila (Pkn) that binds specifically to GTP-activated Rho1 and Rac1 GTPases through distinct binding sites on Pkn. The interaction of Pkn with either of these GTPases results in increased kinase activity, suggesting that Pkn is a shared Rho/Rac effector target. Characterization of a loss-of-function mutant of Drosophila Pkn revealed that this kinase is required specifically for the epidermal cell shape changes during the morphogenetic process of dorsal closure of the developing embryo. Moreover, Pkn, as well as the Rho1 GTPase, mediate a pathway for cell shape changes in dorsal closure that is independent of the previously reported Rac GTPase-mediated Jun amino (N)-terminal kinase (JNK) cascade that regulates gene expression required for dorsal closure. Thus, it appears that distinct but coordinated Rho- and Rac-mediated signaling pathways regulate the cell shape changes required for dorsal closure and that Pkn provides a GTPase effector function for cell shape changes in vivo, which acts together with a Rac-JNK transcriptional pathway in the morphogenesis of the Drosophila embryo.
Collapse
Affiliation(s)
- Y Lu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
216
|
Tamaskovic R, Forrer P, Jaussi R. Enzyme-linked immunosorbent assay for the measurement of JNK activity in cell extracts. Biol Chem 1999; 380:569-78. [PMID: 10384963 DOI: 10.1515/bc.1999.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A colorimetric enzyme-linked immunosorbent assay (ELISA) for the measurement of kinase activity of c-Jun N-terminal kinases (JNKs) in cell extracts is described. The assay involves passive immobilisation of the substrate GST-cJun on the surface of a microtiter plate, selection of JNK protein kinases directly in substrate-coated wells, kinase reaction, and detection of substrate phosphorylation by a phosphoepitope-specific antibody. The ability of this assay to selectively measure JNK activity relies on the high-affinity interaction between JNKs and c-Jun. Accordingly, we found that JNKs could be captured on the microtiter plate surface through binding to the immobilised GST-cJun. Moreover, JNKs retained the specificity of their interaction with and phosphorylation of c-Jun with respect to the dependence on both intact docking domain and the dimerisation state of c-Jun. This novel procedure represents a marked improvement on conventional radioactive assays in terms of sensitivity, accuracy of evaluation, low time consumption, high throughput and amenability to automation. It is expected to be useful forthe acceleration and facilitation of JNK activity measurement in cell extracts, in particular for large-scale screening of clinical samples.
Collapse
Affiliation(s)
- R Tamaskovic
- Institute of Medical Radiobiology of the Paul Scherrer Institute and the University of Zürich, Villigen, Switzerland
| | | | | |
Collapse
|
217
|
Lu Y, Settleman J. The role of rho family GTPases in development: lessons from Drosophila melanogaster. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 1:87-94. [PMID: 10356356 DOI: 10.1006/mcbr.1999.0119] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has become increasingly clear in the last few years that the Rho family GTPases regulate cytoskeleton rearrangements that are essential for a variety of morphogenetic events associated with the development of multicellular organisms. In particular, Drosophila has provided an excellent in vivo system for deciphering the signaling pathways mediated by Rho GTPases, as well as establishing the role of these pathways in numerous developmental processes. Continued use of this system will undoubtedly lead to the identification of additional Rho signalling components and information regarding the function and organization of the Rho signaling pathways in tissue morphogenesis. The striking similarity between Drosophila and mammalian Rho signaling components identified thus far indicates that the Rho pathways are highly conserved in evolution. Therefore, the findings from the Drosophila system can be extrapolated to higher organisms, including humans. Combined with the rapid progress in the human and Drosophila genome projects, these findings should contribute greatly to our understanding of mammalian Rho GTPase signaling pathways and their roles in normal development and pathological conditions.
Collapse
Affiliation(s)
- Y Lu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|
218
|
Ricos MG, Harden N, Sem KP, Lim L, Chia W. Dcdc42 acts in TGF-beta signaling during Drosophila morphogenesis: distinct roles for the Drac1/JNK and Dcdc42/TGF-beta cascades in cytoskeletal regulation. J Cell Sci 1999; 112 ( Pt 8):1225-35. [PMID: 10085257 DOI: 10.1242/jcs.112.8.1225] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Drosophila embryogenesis the two halves of the lateral epidermis migrate dorsally over a surface of flattened cells, the amnioserosa, and meet at the dorsal midline in order to form the continuous sheet of the larval epidermis. During this process of epithelial migration, known as dorsal closure, signaling from a Jun-amino-terminal-kinase cascade causes the production of the secreted transforming-growth-factor-beta-like ligand, Decapentaplegic. Binding of Decapentaplegic to the putative transforming-growth-factor-beta-like receptors Thickveins and Punt activates a transforming-growth-factor-beta-like pathway that is also required for dorsal closure. Mutations in genes involved in either the Jun-amino-terminal-kinase cascade or the transforming-growth-factor-beta-like signaling pathway can disrupt dorsal closure. Our findings show that although these pathways are linked they are not equivalent in function. Signaling by the Jun-amino-terminal-kinase cascade may be initiated by the small Ras-like GTPase Drac1 and acts to assemble the cytoskeleton and specify the identity of the first row of cells of the epidermis prior to the onset of dorsal closure. Signaling in the transforming-growth-factor-beta-like pathway is mediated by Dcdc42, and acts during the closure process to control the mechanics of the migration process, most likely via its putative effector kinase DPAK.
Collapse
Affiliation(s)
- M G Ricos
- Drosophila Neurobiology Laboratory and Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore 117609, Republic of Singapore
| | | | | | | | | |
Collapse
|
219
|
Abstract
Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement.
Collapse
Affiliation(s)
- C D Nobes
- MRC Laboratory for Molecular Cell Biology, CRC Oncogene and Signal Transduction Group, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
220
|
Adachi-Yamada T, Nakamura M, Irie K, Tomoyasu Y, Sano Y, Mori E, Goto S, Ueno N, Nishida Y, Matsumoto K. p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis. Mol Cell Biol 1999; 19:2322-9. [PMID: 10022918 PMCID: PMC84024 DOI: 10.1128/mcb.19.3.2322] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p38 mitogen-activated protein kinase (p38) has been extensively studied as a stress-responsive kinase, but its role in development remains unknown. The fruit fly, Drosophila melanogaster, has two p38 genes, D-p38a and D-p38b. To elucidate the developmental function of the Drosophila p38's, we used various genetic and pharmacological manipulations to interfere with their functions: expression of a dominant-negative form of D-p38b, expression of antisense D-p38b RNA, reduction of the D-p38 gene dosage, and treatment with the p38 inhibitor SB203580. Expression of a dominant-negative D-p38b in the wing imaginal disc caused a decapentaplegic (dpp)-like phenotype and enhanced the phenotype of a dpp mutant. Dpp is a secretory ligand belonging to the transforming growth factor beta superfamily which triggers various morphogenetic processes through interaction with the receptor Thick veins (Tkv). Inhibition of D-p38b function also caused the suppression of the wing phenotype induced by constitutively active Tkv (TkvCA). Mosaic analysis revealed that D-p38b regulates the Tkv-dependent transcription of the optomotor-blind (omb) gene in non-Dpp-producing cells, indicating that the site of D-p38b action is downstream of Tkv. Furthermore, forced expression of TkvCA induced an increase in the phosphorylated active form(s) of D-p38(s). These results demonstrate that p38, in addition to its role as a transducer of emergency stress signaling, may function to modulate Dpp signaling.
Collapse
Affiliation(s)
- T Adachi-Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, and CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
Cdc42p is an essential GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases. These proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. The 11 current members of the Cdc42p family display between 75 and 100% amino acid identity and are functional as well as structural homologs. Cdc42p transduces signals to the actin cytoskeleton to initiate and maintain polarized gorwth and to mitogen-activated protein morphogenesis. In the budding yeast Saccharomyces cerevisiae, Cdc42p plays an important role in multiple actin-dependent morphogenetic events such as bud emergence, mating-projection formation, and pseudohyphal growth. In mammalian cells, Cdc42p regulates a variety of actin-dependent events and induces the JNK/SAPK protein kinase cascade, which leads to the activation of transcription factors within the nucleus. Cdc42p mediates these processes through interactions with a myriad of downstream effectors, whose number and regulation we are just starting to understand. In addition, Cdc42p has been implicated in a number of human diseases through interactions with its regulators and downstream effectors. While much is known about Cdc42p structure and functional interactions, little is known about the mechanism(s) by which it transduces signals within the cell. Future research should focus on this question as well as on the detailed analysis of the interactions of Cdc42p with its regulators and downstream effectors.
Collapse
Affiliation(s)
- D I Johnson
- Department of Microbiology & Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405,
| |
Collapse
|
222
|
Nishina H, Vaz C, Billia P, Nghiem M, Sasaki T, De la Pompa JL, Furlonger K, Paige C, Hui C, Fischer KD, Kishimoto H, Iwatsubo T, Katada T, Woodgett JR, Penninger JM. Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development 1999; 126:505-16. [PMID: 9876179 DOI: 10.1242/dev.126.3.505] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stress signaling kinase SEK1/MKK4 is a direct activator of stress-activated protein kinases (SAPKs; also called Jun-N-terminal kinases, JNKs) in response to a variety of cellular stresses, such as changes in osmolarity, metabolic poisons, DNA damage, heat shock or inflammatory cytokines. We have disrupted the sek1 gene in mice using homologous recombination. Sek1(−/−)embryos display severe anemia and die between embryonic day 10.5 (E10.5) and E12.5. Haematopoiesis from yolk sac precursors and vasculogenesis are normal in sek1(−/−)embryos. However, hepatogenesis and liver formation were severely impaired in the mutant embryos and E11.5 and E12.5 sek1(−/−)embryos had greatly reduced numbers of parenchymal hepatocytes. Whereas formation of the primordial liver from the visceral endoderm appeared normal, sek1(−/−) liver cells underwent massive apoptosis. These results provide the first genetic link between stress-responsive kinases and organogenesis in mammals and indicate that SEK1 provides a crucial and specific survival signal for hepatocytes.
Collapse
Affiliation(s)
- H Nishina
- The Amgen Institute, Ontario Cancer Institute, and Departments of Medical Biophysics and Immunology, University of Toronto, Suite 706, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Harden N, Ricos M, Ong YM, Chia W, Lim L. Participation of small GTPases in dorsal closure of the Drosophila embryo: distinct roles for Rho subfamily proteins in epithelial morphogenesis. J Cell Sci 1999; 112 ( Pt 3):273-84. [PMID: 9885281 DOI: 10.1242/jcs.112.3.273] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Rho subfamily of Ras-related small GTPases participates in a variety of cellular events including organization of the actin cytoskeleton and signalling by c-Jun N-terminal kinase and p38 kinase cascades. These functions of the Rho subfamily are likely to be required in many developmental events. We have been studying the participation of the RHO subfamily in dorsal closure of the Drosophila embryo, a process involving morphogenesis of the epidermis. We have previously shown that Drac1, a Rho subfamily protein, is required for the presence of an actomyosin contractile apparatus believed to be driving the cell shape changes essential to dorsal closure. Expression of a dominant negative Drac1 transgene causes a loss of this contractile apparatus from the leading edge of the advancing epidermis and dorsal closure fails. We now show that two other Rho subfamily proteins, Dcdc42 and RhoA, as well as Ras1 are also required for dorsal closure. Dcdc42 appears to have conflicting roles during dorsal closure: establishment and/or maintenance of the leading edge cytoskeleton versus its down regulation. Down regulation of the leading edge cytoskeleton may be controlled by the serine/threonine kinase DPAK, a potential Drac1/Dcdc42 effector. RhoA is required for the integrity of the leading edge cytoskeleton specifically in cells flanking the segment borders. We have begun to characterize the interactions of the various small GTPases in regulating dorsal closure and find no evidence for the hierarchy of Rho subfamily activity described in some mammalian cell types. Rather, our results suggest that while all Ρ subfamily p21s tested are required for dorsal closure, they act largely in parallel.
Collapse
Affiliation(s)
- N Harden
- Glaxo-IMCB and Drosophila Neurobiology Laboratories, Institute of Molecular and Cell Biology, Singapore 117609, Republic of Singapore.
| | | | | | | | | |
Collapse
|
224
|
Liu H, Su YC, Becker E, Treisman J, Skolnik EY. A Drosophila TNF-receptor-associated factor (TRAF) binds the ste20 kinase Misshapen and activates Jun kinase. Curr Biol 1999; 9:101-4. [PMID: 10021364 DOI: 10.1016/s0960-9822(99)80023-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two families of protein kinases that are closely related to Ste20 in their kinase domain have been identified - the p21-activated protein kinase (Pak) and SPS1 families [1-3]. In contrast to Pak family members, SPS1 family members do not bind and are not activated by GTP-bound p21Rac and Cdc42. We recently placed a member of the SPS1 family, called Misshapen (Msn), genetically upstream of the c-Jun amino-terminal (JNK) mitogen-activated protein (MAP) kinase module in Drosophila [4]. The failure to activate JNK in Drosophila leads to embryonic lethality due to the failure of these embryos to stimulate dorsal closure [5-8]. Msn probably functions as a MAP kinase kinase kinase kinase in Drosophila, activating the JNK pathway via an, as yet, undefined MAP kinase kinase kinase. We have identified a Drosophila TNF-receptor-associated factor, DTRAF1, by screening for Msn-interacting proteins using the yeast two-hybrid system. In contrast to the mammalian TRAFs that have been shown to activate JNK, DTRAF1 lacks an amino-terminal 'Ring-finger' domain, and overexpression of a truncated DTRAF1, consisting of only its TRAF domain, activates JNK. We also identified another DTRAF, DTRAF2, that contains an amino-terminal Ring-finger domain. Msn specifically binds the TRAF domain of DTRAF1 but not that of DTRAF2. In Drosophila, DTRAF1 is thus a good candidate for an upstream molecule that regulates the JNK pathway by interacting with, and activating, Msn. Consistent with this idea, expression of a dominant-negative Msn mutant protein blocks the activation of JNK by DTRAF1. Furthermore, coexpression of Msn with DTRAF1 leads to the synergistic activation of JNK. We have extended some of these observations to the mammalian homolog of Msn, Nck-interacting kinase (NIK), suggesting that TRAFs also play a critical role in regulating Ste20 kinases in mammals.
Collapse
Affiliation(s)
- H Liu
- Department of Pharmacology, New York University Medical Center, Skirball Institute of Biomolecular Medicine, 540 First Avenue, New York 10016, USA
| | | | | | | | | |
Collapse
|
225
|
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79:143-80. [PMID: 9922370 DOI: 10.1152/physrev.1999.79.1.143] [Citation(s) in RCA: 1963] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
Collapse
Affiliation(s)
- C Widmann
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
226
|
Le-Niculescu H, Bonfoco E, Kasuya Y, Claret FX, Green DR, Karin M. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 1999; 19:751-63. [PMID: 9858598 PMCID: PMC83932 DOI: 10.1128/mcb.19.1.751] [Citation(s) in RCA: 396] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1998] [Accepted: 10/05/1998] [Indexed: 01/19/2023] Open
Abstract
The JNK pathway modulates AP-1 activity. While in some cells it may have proliferative and protective roles, in neuronal cells it is involved in apoptosis in response to stress or withdrawal of survival signals. To understand how JNK activation leads to apoptosis, we used PC12 cells and primary neuronal cultures. In PC12 cells, deliberate JNK activation is followed by induction of Fas ligand (FasL) expression and apoptosis. JNK activation detected by c-Jun phosphorylation and FasL induction are also observed after removal of either nerve growth factor from differentiated PC12 cells or KCl from primary cerebellar granule neurons (CGCs). Sequestation of FasL by incubation with a Fas-Fc decoy inhibits apoptosis in all three cases. CGCs derived from gld mice (defective in FasL) are less sensitive to apoptosis caused by KCl removal than wild-type neurons. In PC12 cells, protection is also conferred by a c-Jun mutant lacking JNK phosphoacceptor sites and a small molecule inhibitor of p38 mitogen-activated protein kinase and JNK, which inhibits FasL induction. Hence, the JNK-to-c-Jun-to-FasL pathway is an important mediator of stress-induced neuronal apoptosis.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
227
|
Agnès F, Noselli S. [Dorsal closure in Drosophila. A genetic model for wound healing?]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:5-13. [PMID: 10047950 DOI: 10.1016/s0764-4469(99)80012-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dorsal closure (DC) is a morphogenetic movement that establishes the dorsal ectoderm of the drosophila embryo. During this process, the two lateral epithelia stretch toward the dorsal midline, the suture line of the two leading edges. Cell migration during DC relies both on cell shape change controlled by the activity of the JNK pathway in the leading edge cells and modification of cell adhesiveness, probably dependent upon activation of the Dpp (TGF-beta) pathway. Coupling of the JNK and TGF-beta pathways is essential. The sequence of the cellular and molecular events of DC highlights interesting common features with wound healing in vertebrates. Like DC, wound healing relies on the migration of epithelia bordered by leading edges controlling the direction and speed of the movement. This review summarizes recent data concerning the control of epithelial morphogenesis during DC and the bases of wound healing. The molecular and cellular events that underlie these two analogous migratory processes are detailed, discussed and compared. We suggest that DC is a good genetic model for wound healing studying.
Collapse
Affiliation(s)
- F Agnès
- Centre de biologie du développement, UMR 5547, Toulouse, France.
| | | |
Collapse
|
228
|
Crawford JM, Harden N, Leung T, Lim L, Kiehart DP. Cellularization in Drosophila melanogaster is disrupted by the inhibition of rho activity and the activation of Cdc42 function. Dev Biol 1998; 204:151-64. [PMID: 9851849 DOI: 10.1006/dbio.1998.9061] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of cytoskeletal dynamics is essential for cell shape change and morphogenesis. Drosophila melanogaster embryos offer a well-defined system for observing alterations in the cytoskeleton during the process of cellularization, a specialized form of cytokinesis. During cellularization, the actomyosin cytoskeleton forms a hexagonal array and drives invagination of the plasma membrane between the nuclei located at the cortex of the syncytial blastoderm. Rho, Rac, and Cdc42 proteins are members of the Rho subfamily of Ras-related G proteins that are involved in the formation and maintenance of the actin cytoskeleton throughout phylogeny and in D. melanogaster. To investigate how Rho subfamily activity affects the cytoskeleton during cellularization stages, embryos were microinjected with C3 exoenzyme from Clostridium botulinum or with wild-type, constitutively active, or dominant negative versions of Rho, Rac, and Cdc42 proteins. C3 exoenzyme ADP-ribosylates and inactivates Rho with high specificity, whereas constitutively active dominant mutations remain in the activated GTP-bound state to activate downstream effectors. Dominant negative mutations likely inhibit endogenous small G protein activity by sequestering exchange factors. Of the 10 agents microinjected, C3 exoenzyme, constitutively active Cdc42, and dominant negative Rho have a specific and indistinguishable effect: the actomyosin cytoskeleton is disrupted, cellularization halts, and embryogenesis arrests. Time-lapse video records of DIC imaged embryos show that nuclei in injected regions move away from the cortex of the embryo, thereby phenocopying injections of cytochalasin or antimyosin. Rhodamine phalloidin staining reveals that the actin-based hexagonal array normally seen during cellularization is disrupted in a dose-dependent fashion. Additionally, DNA stain reveals that nuclei in the microinjected embryos aggregate in regions that correspond to actin disruption. These embryos halt in cellularization and do not proceed to gastrulation. We conclude that Rho activity and Cdc42 regulation are required for cytoskeletal function in actomyosin-driven furrow canal formation and nuclear positioning.
Collapse
Affiliation(s)
- J M Crawford
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710-7599, USA
| | | | | | | | | |
Collapse
|
229
|
Abstract
c-Jun N-terminal kinases (JNKs) are intracellular stress-activated signalling molecules, which are controlled by a highly evolutionarily conserved signalling cascade. In mammalian cells, JNKs are regulated by a wide variety of cellular stresses and growth factors and have been implicated in the regulation of remarkably diverse biological processes, such as cell shape changes, immune responses and apoptosis. How can such different stimuli activate the JNK pathway and what roles does JNK play in vivo? Molecular genetic analysis of the Drosophila JNK gene has started to provide answers to these questions, confirming the role of this molecule in development and stress responses and suggesting a conserved function for JNK signalling in processes such as wound healing. Here, we review this work and discuss how future experiments in Drosophila should reveal the cell type-specific mechanisms by which JNKs perform their diverse functions.
Collapse
Affiliation(s)
- D C Goberdhan
- Research School of Biosciences, University of Kent at Canterbury, UK
| | | |
Collapse
|
230
|
Takahashi K, Matsuo T, Katsube T, Ueda R, Yamamoto D. Direct binding between two PDZ domain proteins Canoe and ZO-1 and their roles in regulation of the jun N-terminal kinase pathway in Drosophila morphogenesis. Mech Dev 1998; 78:97-111. [PMID: 9858699 DOI: 10.1016/s0925-4773(98)00151-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
During Drosophila embryogenesis, the ventral epidermis dorsally expands and the left and right epithelial sheets meet and fuse along the dorsal midline. For this dorsal closure to occur, two PDZ domain proteins, Cno and ZO-1, are required. The dorsal epidermis remains open when the expression of ZO-1 and Cno are reduced simultaneously by hypomorphic mutations in the relevant loci. ZO-1 and Cno colocalize at adherens junctions in embryonic epithelia, and form a protein complex upon binding to each other. Genetic analysis showed that Cno is involved in the Jun N-terminal kinase (JNK) pathway for dorsal closure, as a modulator acting upstream of, or in parallel with, the small GTPase Drac1. The ZO-1-Cno complex may be involved in dynamic changes in cytoskeletal organization and cell adhesion during morphogenetic events associated with dorsal closure in the Drosophila embryo.
Collapse
Affiliation(s)
- K Takahashi
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|
231
|
Flores GV, Daga A, Kalhor HR, Banerjee U. Lozenge is expressed in pluripotent precursor cells and patterns multiple cell types in the Drosophila eye through the control of cell-specific transcription factors. Development 1998; 125:3681-7. [PMID: 9716533 DOI: 10.1242/dev.125.18.3681] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the developing Drosophila eye, individual cell fates are specified when general signaling mechanisms are interpreted in the context of cell-specific transcription factors. Lozenge, a Runt/AML1/CBFA1-like transcription factor, determines the fates of a number of neuronal and non-neuronal cells by regulating the expression of multiple fate-determining transcription factors. The Lozenge protein is expressed in the nuclei of the cells that it patterns and also in their undifferentiated precursors. An enhancer element located within the second intron of the lozenge gene is responsible for its eye-specific expression. Lozenge is not itself a cell-specific transcription factor, rather it prepatterns the eye disc by positioning cell-specific factors in their appropriate locations.
Collapse
Affiliation(s)
- G V Flores
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, and Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
232
|
Su YC, Treisman JE, Skolnik EY. The Drosophila Ste20-related kinase misshapen is required for embryonic dorsal closure and acts through a JNK MAPK module on an evolutionarily conserved signaling pathway. Genes Dev 1998; 12:2371-80. [PMID: 9694801 PMCID: PMC317054 DOI: 10.1101/gad.12.15.2371] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dorsal closure in the Drosophila embryo occurs during the later stages of embryogenesis and involves changes in cell shape leading to the juxtaposition and subsequent adherence of the lateral epidermal primordia over the amnioserosa. Dorsal closure requires the activation of a conserved c-jun amino-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) module, as it is blocked by null mutations in JNK kinase [hemipterous (hep)] and JNK [basket (bsk)]. Drosophila JNK (DJNK) functions by phosphorylating and activating DJun, which in turn induces the transcription of decapentaplegic (dpp). We provide biochemical and genetic evidence that a Ste20-related kinase, misshapen (msn), functions upstream of hep and bsk to stimulate dorsal closure in the Drosophila embryo. Mammalian (NCK-interacting kinase [NIK]) and Caenorhabditis elegans (mig-15) homologs of msn have been identified; mig-15 is necessary for several developmental processes in C. elegans. These data suggest that msn, mig-15, and NIK are components of a signaling pathway that is conserved among flies, worms, and mammals to control developmentally regulated pathways.
Collapse
Affiliation(s)
- Y C Su
- Department of Pharmacology, New York University Medical Center, Skirball Institute of Biomolecular Medicine, New York, New York 10016 USA
| | | | | |
Collapse
|
233
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in transducting environmental stimuli to the transcriptional machinery in the nucleus by virtue of their ability to phosphorylate and regulate the activity of various transcription factors. Originally found to be activated in response to occupancy of cell surface receptors for polypeptide hormones, cytokines, and growth factors, MAPK cascades were recently found to be activated by a variety of stresses including ischemia reperfusion, neuronal injury, osmotic shock, and exposure to UV irradiation. Therefore, MAPK cascades are likely to be important regulatory elements in a variety of stress responses.
Collapse
Affiliation(s)
- M Karin
- Department of Pharmacology, University of California, San Diego, La Jolla 92903-0636, USA
| |
Collapse
|
234
|
Han ZS, Enslen H, Hu X, Meng X, Wu IH, Barrett T, Davis RJ, Ip YT. A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol Cell Biol 1998; 18:3527-39. [PMID: 9584193 PMCID: PMC108934 DOI: 10.1128/mcb.18.6.3527] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Accepted: 03/17/1998] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that the insect and mammalian innate immune response is mediated by homologous regulatory components. Proinflammatory cytokines and bacterial lipopolysaccharide stimulate mammalian immunity by activating transcription factors such as NF-kappaB and AP-1. One of the responses evoked by these stimuli is the initiation of a kinase cascade that leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase on Thr and Tyr within the motif Thr-Gly-Tyr, which is located within subdomain VIII. We have investigated the possible involvement of the p38 MAP kinase pathway in the Drosophila immune response. Two genes that are highly homologous to the mammalian p38 MAP kinase were molecularly cloned and characterized. Furthermore, genes that encode two novel Drosophila MAP kinase kinases, D-MKK3 and D-MKK4, were identified. D-MKK3 is an efficient activator of both Drosophila p38 MAP kinases, while D-MKK4 is an activator of D-JNK but not D-p38. These data establish that Drosophila indeed possesses a conserved p38 MAP kinase signaling pathway. We have examined the role of the D-p38 MAP kinases in the regulation of insect immunity. The results revealed that one of the functions of D-p38 is to attenuate antimicrobial peptide gene expression following exposure to lipopolysaccharide.
Collapse
Affiliation(s)
- Z S Han
- Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Yang J, New L, Jiang Y, Han J, Su B. Molecular cloning and characterization of a human protein kinase that specifically activates c-Jun N-terminal kinase. Gene 1998; 212:95-102. [PMID: 9661668 DOI: 10.1016/s0378-1119(98)00158-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The c-Jun N-terminal kinases (JNKs), also called stress-activated protein kinases (SAPKs), belong to the mitogen-activated protein kinase (MAPK) gene super-family. Like all the MAPKs, JNKs are activated through dual phosphorylation of a theronine residue and a tyrosine residue by a dual specificity kinase such as JNKK1/MKK4/SEK1. Here, we report the molecular cloning and characterization of hJNKK2 alpha, a human homolog of the recently reported murine MKK7 alpha. hJNKK2 alpha belongs to the MAPK kinase gene family and is expressed in many adult tissues. It is nearly identical to a recently reported human JNKK2 at the kinase domain but with major differences in both amino- and carboxyl-terminal sequences, suggesting that hJNKK2 alpha may be an alternative spliced form of this kinase. Expression of hJNKK2 alpha, but not its related kinases JNKK1/MKK4/SEK1, MEK1, MKK3, or MKK6, leads to strong activation of JNK in several cell lines. No activation of ERK or p38 kinases was observed with this kinase. An in-vitro kinase assay demonstrated that JNK1 activation by hJNKK2 alpha requires phosphorylation of the theronine and tyrosine residues at positions 183 and 185 in JNK1. Furthermore, hJNKK2 alpha activated the JNK-dependent signal transduction pathway in vivo by induction of c-Jun- and ATF2-mediated gene transcription. In conclusion, we have cloned the human homolog of murine MKK7 alpha, which may be an alternative spliced form of human JNKK2 involved in transducing specific upstream signals to regulate JNK activity in vivo.
Collapse
Affiliation(s)
- J Yang
- Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | |
Collapse
|
236
|
Affiliation(s)
- T S Lewis
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|
237
|
Foltz IN, Gerl RE, Wieler JS, Luckach M, Salmon RA, Schrader JW. Human mitogen-activated protein kinase kinase 7 (MKK7) is a highly conserved c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activated by environmental stresses and physiological stimuli. J Biol Chem 1998; 273:9344-51. [PMID: 9535930 DOI: 10.1074/jbc.273.15.9344] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We report the cloning of a novel human activator of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 7 (MKK7). The mRNA for MKK7 is widely expressed in humans and mice and encodes a 47-kDa protein (419 amino acids), as determined by immunoblotting endogenous MKK7 with an antibody raised against its N terminus. The kinase domain of MKK7 is closely related to a Drosophila JNK kinase dHep (69% identity) and to a newly identified ortholog from Caenorhabditis elegans (54% identity), and was more distantly related to MKK4, MKK3, and MKK6. MKK7 phosphorylated and activated JNK1 but failed to activate p38 MAPK in co-expression studies. In hematopoietic cells, endogenous MKK7 was activated by treatment with the growth factor interleukin-3 (but not interleukin-4), or by ligation of CD40, the B-cell antigen receptor, or the receptor for the Fc fragment of immunoglobulin. MKK7 was also activated when cells were exposed to heat, UV irradiation, anisomycin, hyperosmolarity or the pro-inflammatory cytokine tumor necrosis factor-alpha. Co-expression of constitutively active mutants of RAS, RAC, or CDC42 in HeLa epithelial cells or of RAC or CDC42 in Ba/F3 factor-dependent hematopoietic cells also activated MKK7, suggesting that MKK7 will be involved in many physiological pathways.
Collapse
Affiliation(s)
- I N Foltz
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
238
|
Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 1998; 10:205-19. [PMID: 9561845 DOI: 10.1016/s0955-0674(98)80143-9] [Citation(s) in RCA: 1211] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The c-Jun amino-terminal kinase (JNK) group of MAP kinases has been identified in mammals and insects. JNK is activated by exposure of cells to cytokines or environmental stress, indicating that this signaling pathway may contribute to inflammatory responses. Genetic and biochemical studies demonstrate that this signaling pathway also regulates cellular proliferation, apoptosis, and tissue morphogenesis. A functional role for JNK is therefore established in both the cellular response to stress and in many normal physiological processes.
Collapse
Affiliation(s)
- Y T Ip
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01605, USA
| | | |
Collapse
|
239
|
George SE, Simokat K, Hardin J, Chisholm AD. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 1998; 92:633-43. [PMID: 9506518 DOI: 10.1016/s0092-8674(00)81131-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mutations in the C. elegans vab-1 gene disrupt the coordinated movements of cells during two periods of embryogenesis. vab-1 mutants are defective in the movement of neuroblasts during closure of the ventral gastrulation cleft and in the movements of epidermal cells during ventral enclosure of the embryo by the epidermis. We show that vab-1 encodes a receptor tyrosine kinase of the Eph family. Disruption of the kinase domain of VAB-1 causes weak mutant phenotypes, indicating that VAB-1 may have both kinase-dependent and kinase-independent activities. VAB-1 is expressed in neurons during epidermal enclosure and is required in these cells for normal epidermal morphogenesis, demonstrating that cell-cell interactions are required between neurons and epidermal cells for epidermal morphogenesis.
Collapse
Affiliation(s)
- S E George
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | | | |
Collapse
|
240
|
Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J Neurosci 1998. [PMID: 9464996 DOI: 10.1523/jneurosci.18-05-01713.1998] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When deprived of nerve growth factor (NGF), developing sympathetic neurons die by apoptosis. This death is associated with an increase in the level of c-Jun protein and is blocked by expression of a c-Jun dominant negative mutant. Here we have investigated whether NGF withdrawal activates Jun kinases, a family of stress-activated protein kinases that can stimulate the transcriptional activity of c-Jun by phosphorylating serines 63 and 73 in the transactivation domain and which can activate c-jun gene expression. We found that sympathetic neurons contained high basal levels of Jun kinase activity that increased further after NGF deprivation. In contrast, p38 kinase, another stress-activated protein kinase that can also stimulate c-jun gene expression, was not activated after NGF withdrawal. Consistent with Jun kinase activation, we found using a phospho-c-Jun-specific antibody that c-Jun was phosphorylated on serine 63 after NGF withdrawal. Furthermore, expression of a constitutively active form of MEK kinase 1 (MEKK1), which strongly activates the Jun kinase pathway, increased c-Jun protein levels and c-Jun phosphorylation and induced apoptosis in the presence of NGF. This death could be prevented by co-expression of SEKAL, a dominant negative mutant of SAPK/ERK kinase 1 (SEK1), an activator of Jun kinase that is a target of MEKK1. In contrast, expression of SEKAL alone did not prevent c-Jun expression, increases in c-Jun phosphorylation, or cell death after NGF withdrawal. Thus, activation of Jun kinase and increases in c-Jun phosphorylation and c-Jun protein levels occur at the same time after NGF withdrawal, but c-Jun levels and phosphorylation are regulated by an SEK1-independent pathway.
Collapse
|
241
|
Martín-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, Martinez-Arias A. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev 1998; 12:557-70. [PMID: 9472024 PMCID: PMC316530 DOI: 10.1101/gad.12.4.557] [Citation(s) in RCA: 528] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/1997] [Accepted: 11/18/1997] [Indexed: 02/06/2023]
Abstract
The activation of MAPKs is controlled by the balance between MAPK kinase and MAPK phosphatase activities. The latter is mediated by a subset of phosphatases with dual specificity (VH-1 family). Here, we describe a new member of this family encoded by the puckered gene of Drosophila. Mutations in this gene lead to cytoskeletal defects that result in a failure in dorsal closure related to those associated with mutations in basket, the Drosophila JNK homolog. We show that puckered mutations result in the hyperactivation of DJNK, and that overexpression of puc mimics basket mutant phenotypes. We also show that puckered expression is itself a consequence of the activity of the JNK pathway and that during dorsal closure, JNK signaling has a dual role: to activate an effector, encoded by decapentaplegic, and an element of negative feedback regulation encoded by puckered.
Collapse
Affiliation(s)
- E Martín-Blanco
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | | | | | | | | | | |
Collapse
|
242
|
Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons. J Neurosci 1998. [PMID: 9425017 DOI: 10.1523/jneurosci.18-02-00751.1998] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebellar granule neurons die by apoptosis when deprived of survival signals. This death can be blocked by inhibitors of transcription or protein synthesis, suggesting that new gene expression is required. Here we show that c-jun mRNA and protein levels increase rapidly after survival signal withdrawal and that transfection of the neurons with an expression vector for a c-Jun dominant negative mutant protects them against apoptosis. Phosphorylation of serines 63 and 73 in the c-Jun transactivation domain is known to increase c-Jun activity. By using an antibody specific for c-Jun phosphorylated on serine 63, we show that this site is phosphorylated soon after survival signal withdrawal. To determine whether c-Jun phosphorylation is necessary for apoptosis, we have expressed c-Jun phosphorylation site mutants in granule neurons. c-Junasp, a constitutively active c-Jun mutant in which the known and potential serine and threonine phosphoacceptor sites in the transactivation domain have been mutated to aspartic acid, induces apoptosis under all conditions tested. In contrast, c-Junala, which cannot be phosphorylated because the same sites have been mutated to alanine, blocks apoptosis caused by survival signal withdrawal. Finally, we show that cerebellar granule neurons contain high levels of Jun kinase activity and low levels of p38 kinase activity, neither of which increases after survival signal withdrawal. Mitogen-activated protein kinase activity decreases under the same conditions. These results suggest that c-Jun levels and c-Jun phosphorylation may be regulated by novel mechanisms in cerebellar granule neurons.
Collapse
|
243
|
Abstract
The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of actin is thus a major goal of contemporary cell biology, with implications for health and disease. Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and furthermore, through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.
Collapse
Affiliation(s)
- A Hall
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research Campaign Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
244
|
Han SJ, Choi KY, Brey PT, Lee WJ. Molecular cloning and characterization of a Drosophila p38 mitogen-activated protein kinase. J Biol Chem 1998; 273:369-74. [PMID: 9417090 DOI: 10.1074/jbc.273.1.369] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A mitogen-activated protein kinase (MAPK) has been cloned and sequenced from a Drosophila neoplasmic l(2)mbn cell line. The cDNA sequence analysis showed that this Drosophila kinase is a homologue of mammalian p38 MAPK and the yeast HOG1 gene and thus was referred to as Dp38. A distinguishing feature of all MAPKs is the conserved sequence TGY in the activation domain. Dp38 was rapidly tyrosine 186-phosphorylated in response to osmotic stress, heat shock, serum starvation, and H2O2 in Drosophila l(2)mbn and Schneider cell lines. However, unlike mammalian p38 MAPK, the addition of lipopolysaccharide (LPS) did not significantly affect the phosphorylation of Dp38 in the LPS-responsive l(2)mbn cell line. Following osmotic stress, tyrosine 186-phosphorylated forms of Dp38 MAPK were detected exclusively in nuclear regions of Schneider cells. Yeast complementation studies demonstrated that the Saccharomyces cerevisiae HOG1 mutant strain JBY10 (hog1-Delta1) was functionally complemented by Dp38 cDNA in hyperosmolar medium. These findings demonstrate that similar osmotic stress-responsive signal transduction pathways are conserved in yeast, Drosophila, and mammalian cells, whereas LPS signal transduction pathways appear to be different.
Collapse
Affiliation(s)
- S J Han
- Laboratory of Immunology, Medical Research Center, College of Medicine, Yonsei University, CPO Box 8044, Seoul, South Korea
| | | | | | | |
Collapse
|
245
|
Affiliation(s)
- S Noselli
- Centre de Biologie du Développement, UMR 5547-CNRS, Toulouse, France.
| |
Collapse
|
246
|
Zeitlinger J, Kockel L, Peverali FA, Jackson DB, Mlodzik M, Bohmann D. Defective dorsal closure and loss of epidermal decapentaplegic expression in Drosophila fos mutants. EMBO J 1997; 16:7393-401. [PMID: 9405368 PMCID: PMC1170339 DOI: 10.1093/emboj/16.24.7393] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drosophila kayak mutant embryos exhibit defects in dorsal closure, a morphogenetic cell sheet movement during embryogenesis. Here we show that kayak encodes D-Fos, the Drosophila homologue of the mammalian proto-oncogene product, c-Fos. D-Fos is shown to act in a similar manner to Drosophila Jun: in the cells of the leading edge it is required for the expression of the TGFbeta-like Decapentaplegic (Dpp) protein, which is believed to control the cell shape changes that take place during dorsal closure. Defects observed in mutant embryos, and adults with reduced Fos expression, are reminiscent of phenotypes caused by 'loss of function' mutations in the Drosophila JNKK homologue, hemipterous. These results indicate that D-Fos is required downstream of the Drosophila JNK signal transduction pathway, consistent with a role in heterodimerization with D-Jun, to activate downstream targets such as dpp.
Collapse
|
247
|
Moriguchi T, Toyoshima F, Masuyama N, Hanafusa H, Gotoh Y, Nishida E. A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and cellular stresses. EMBO J 1997; 16:7045-53. [PMID: 9384583 PMCID: PMC1170307 DOI: 10.1093/emboj/16.23.7045] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), a member of the MAP kinase (MAPK) superfamily, is thought to play a key role in a variety of cellular responses. To date, SEK1/MKK4, one of the MAP kinase kinase (MAPKK) family of molecules, is the only SAPK/JNK kinase that has been cloned. Here we have cloned, identified and characterized a novel member of the mammalian MAPKKs, designated MKK7. MKK7 is most similar to the mediator of morphogenesis, hemipterous (hep), in Drosophila. Immunochemical studies have identified MKK7 as one of the major SAPK/JNK-activating kinases in osmotically shocked cells. While SEK1/MKK4 can activate both the SAPK/JNK and p38 subgroups of the MAPK superfamily, MKK7 is specific for the SAPK/JNK subgroup. MKK7 is activated strongly by tumour necrosis factor alpha (TNFalpha) as well as by environmental stresses, whereas SEK1/MKK4 is not activated by TNFalpha. Column fractionation studies have shown that MKK7 is a major activator for SAPK/JNK in the TNFalpha-stimulated pathway. Moreover, we have found that overexpression of MKK7 enhances transcription from an AP-1-dependent reporter construct. Thus, MKK7 is an evolutionarily conserved MAPKK isoform which is specific for SAPK/JNK, is involved in AP-1-dependent transcription and may be a crucial mediator of TNFalpha signalling.
Collapse
Affiliation(s)
- T Moriguchi
- Institute for Virus Research, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | | | | | |
Collapse
|
248
|
Wu Z, Wu J, Jacinto E, Karin M. Molecular cloning and characterization of human JNKK2, a novel Jun NH2-terminal kinase-specific kinase. Mol Cell Biol 1997; 17:7407-16. [PMID: 9372971 PMCID: PMC232596 DOI: 10.1128/mcb.17.12.7407] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
At least three mitogen-activated protein kinase (MAPK) cascades were identified in mammals, each consisting of a well-defined three-kinase module composed of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). These cascades play key roles in relaying various physiological, environmental, or pathological signals from the environment to the transcriptional machinery in the nucleus. One of these MAPKs, c-Jun N-terminal kinase (JNK), stimulates the transcriptional activity of c-Jun in response to growth factors, proinflammatory cytokines, and certain environmental stresses, such as short wavelength UV light or osmotic shock. The JNKs are directly activated by the MAPKK JNKK1/SEK1/MKK4. However, inactivation of the gene encoding this MAPKK by homologous recombination suggested the existence of at least one more JNK-activating kinase. Recently, the JNK cascade was found to be structurally and functionally conserved in Drosophila, where DJNK is activated by the MAPKK DJNKK (hep). By a database search, we identified an expressed sequence tag (EST) encoding a portion of human MAPKK that is highly related to DJNKK (hep). We used this EST to isolate a full-length cDNA clone encoding a human JNKK2. We show that JNKK2 is a highly specific JNK kinase. Unlike JNKK1, it does not activate the related MAPK, p38. Although the regulation of JNKK1 activities and that of JNKK2 activities could be very similar, the two kinases may play somewhat different regulatory roles in a cell-type-dependent manner.
Collapse
Affiliation(s)
- Z Wu
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | | | |
Collapse
|
249
|
Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:F85-104. [PMID: 9395283 DOI: 10.1016/s0304-419x(97)00018-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A Minden
- Columbia University, Biological Sciences Department, New York, NY 10027, USA.
| | | |
Collapse
|
250
|
Holland PM, Suzanne M, Campbell JS, Noselli S, Cooper JA. MKK7 is a stress-activated mitogen-activated protein kinase kinase functionally related to hemipterous. J Biol Chem 1997; 272:24994-8. [PMID: 9312105 DOI: 10.1074/jbc.272.40.24994] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exposure of mammalian cells to stressful stimuli results in activation of the c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinases (SAPKs), a family of protein kinases related to mitogen-activated protein (MAP) kinase. JNK/SAPKs are activated by specific MAP kinase kinases (MKKs), one of which, MKK4/SEK1, has been characterized extensively. In Drosophila, the JNK/SAPK Basket (Bsk) and the MKK Hemipterous (Hep), are important for embryonic development. Loss of function of either gene inhibits dorsal closure, a morphogenetic movement in which the edges of the embryonic ectoderm move together over the amnioserosa. There is evidence that the Rho GTPases Rac and Cdc42 are also required for dorsal closure, suggesting that Rac or Cdc42 may regulate Hep and Bsk. We have identified MKK7, a murine homolog of Hep. MKK7 functionally rescues hep mutant flies. In fibroblasts, MKK7 is activated by stress and by the GTPase Rac1. MKK7 directly phosphorylates and activates JNK/SAPK. Thus, MKK7 is a homolog of hep and functions in a conserved signaling pathway involving JNK/SAPK and the GTPase Rac1.
Collapse
Affiliation(s)
- P M Holland
- Fred Hutchinson Cancer Research Center, A2-025, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|