201
|
Butcher RA, Ragains JR, Clardy J. An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org Lett 2009; 11:3100-3. [PMID: 19545143 PMCID: PMC2726967 DOI: 10.1021/ol901011c] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Caenorhabditis elegans, the dauer pheromone, which consists of a number of derivatives of the 3,6-dideoxysugar ascarylose, is the primary cue for entry into the stress-resistant, "nonaging" dauer larval stage. Here, using activity-guided fractionation and NMR-based structure elucidation, a structurally novel, indole-3-carboxyl-modified ascaroside is identified that promotes dauer formation at low nanomolar concentrations but inhibits dauer formation at higher concentrations.
Collapse
Affiliation(s)
- Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
202
|
Karpac J, Hull-Thompson J, Falleur M, Jasper H. JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 2009; 8:288-95. [PMID: 19627268 PMCID: PMC2727449 DOI: 10.1111/j.1474-9726.2009.00476.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Adaptation to environmental challenges is critical for the survival of an organism. Repression of Insulin/IGF Signaling (IIS) by stress-responsive Jun-N-terminal Kinase (JNK) signaling is emerging as a conserved mechanism that allows reallocating resources from anabolic to repair processes under stress conditions. JNK activation in Insulin-producing cells (IPCs) is sufficient to repress Insulin and Insulin-like peptide (ILP) expression in rats and flies, but the significance of this interaction for adaptive responses to stress is unclear. In this study, it is shown that JNK activity in IPCs of flies is required for oxidative stress-induced repression of the Drosophila ILP2. It is found that this repression is required for growth adaptation to heat stress as well as adult oxidative stress tolerance, and that induction of stress response genes in the periphery is in part dependent on IPC-specific JNK activity. Endocrine control of IIS by JNK in IPCs is thus critical for systemic adaptation to stress.
Collapse
Affiliation(s)
| | | | - Melody Falleur
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY, 14627, USA
| | - Heinrich Jasper
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY, 14627, USA
| |
Collapse
|
203
|
Loss of the transcriptional repressor PAG-3/Gfi-1 results in enhanced neurosecretion that is dependent on the dense-core vesicle membrane protein IDA-1/IA-2. PLoS Genet 2009; 5:e1000447. [PMID: 19343207 PMCID: PMC2657203 DOI: 10.1371/journal.pgen.1000447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/06/2009] [Indexed: 01/09/2023] Open
Abstract
It is generally accepted that neuroendocrine cells regulate dense core vesicle (DCV) biogenesis and cargo packaging in response to secretory demands, although the molecular mechanisms of this process are poorly understood. One factor that has previously been implicated in DCV regulation is IA-2, a catalytically inactive protein phosphatase present in DCV membranes. Our ability to directly visualize a functional, GFP-tagged version of an IA-2 homolog in live Caenorhabditis elegans animals has allowed us to capitalize on the genetics of the system to screen for mutations that disrupt DCV regulation. We found that loss of activity in the transcription factor PAG-3/Gfi-1, which functions as a repressor in many systems, results in a dramatic up-regulation of IDA-1/IA-2 and other DCV proteins. The up-regulation of DCV components was accompanied by an increase in presynaptic DCV numbers and resulted in phenotypes consistent with increased neuroendocrine secretion. Double mutant combinations revealed that these PAG-3 mutant phenotypes were dependent on wild type IDA-1 function. Our results support a model in which IDA-1/IA-2 is a critical element in DCV regulation and reveal a novel genetic link to PAG-3-mediated transcriptional regulation. To our knowledge, this is the first mutation identified that results in increased neurosecretion, a phenotype that has clinical implications for DCV-mediated secretory disorders. Within secretory cells, hormones are packaged into vesicles (called DCVs) that are released upon stimulation. The number of DCVs is regulated to meet the secretory demands of the cell by a mechanism that is poorly understood, although a protein in the membrane of DCVs, called IA-2, is thought to play a role. A genetic screen in the nematode C. elegans is used, here, to find mutations that mis-regulate the corresponding worm protein called IDA-1. Capitalizing on the simple neuroanatomy of the nematode and its transparency, we visualize IDA-1 protein levels directly in the animal using a fluorescent tag. We find that mutations in the transcription factor PAG-3/Gfi-1 result in elevated levels of IDA-1 protein, increased numbers of presynaptic DCVs, and behaviors consistent with increased neurosecretion. Our results demonstrate that IDA-1/IA-2 protein levels correlate with the biogenesis, utilization, or stability of DCVs. We propose that PAG-3 normally down regulates the production of IDA-1, thus serving as part of the mechanism underlying DCV regulation. This is the first reported mutation that increases DCV numbers and secretion, offering insight into DCV homeostasis and a potential therapeutic target for diseases that would benefit from a boost in neuroendocrine secretion.
Collapse
|
204
|
Moussaif M, Sze JY. Intraflagellar transport/Hedgehog-related signaling components couple sensory cilium morphology and serotonin biosynthesis in Caenorhabditis elegans. J Neurosci 2009; 29:4065-75. [PMID: 19339602 PMCID: PMC2710879 DOI: 10.1523/jneurosci.0044-09.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 01/21/2023] Open
Abstract
Intraflagellar transport in cilia has been proposed as a crucial mediator of Hedgehog signal transduction during embryonic pattern formation in both vertebrates and invertebrates. Here, we show that the Hh receptor Patched-related factor DAF-6 and intraflagellar transport modulate serotonin production in Caenorhabditis elegans animals, by remodeling the architecture of dendritic cilia of a pair of ADF serotonergic chemosensory neurons. Wild-type animals under aversive environment drastically reduce DAF-6 expression in glia-like cells surrounding the cilia of chemosensory neurons, resulting in cilium structural remodeling and upregulation of the serotonin-biosynthesis enzyme tryptophan hydroxylase tph-1 in the ADF neurons. These cellular and molecular modifications are reversed when the environment improves. Mutants of daf-6 or intraflagellar transport constitutively upregulate tph-1 expression. Epistasis analyses indicate that DAF-6/intraflagellar transport and the OCR-2/OSM-9 TRPV channel act in concert, regulating two layers of activation of tph-1 in the ADF neurons. The TRPV signaling turns on tph-1 expression under favorable and aversive conditions, whereas inactivation of DAF-6 by stress results in further upregulation of tph-1 independently of OCR-2/OSM-9 activity. Behavioral analyses suggest that serotonin facilitates larval animals resuming development when the environment improves. Our study revealed the cilium structure of serotonergic neurons as a trigger of regulated serotonin production, and demonstrated that a Hedgehog-related signaling component is dynamically regulated by environment and underscores neuroplasticity of serotonergic neurons in C. elegans under stress and stress recovery.
Collapse
Affiliation(s)
- Mustapha Moussaif
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
205
|
Aballay A. Neural regulation of immunity: role of NPR-1 in pathogen avoidance and regulation of innate immunity. Cell Cycle 2009; 8:966-9. [PMID: 19270528 PMCID: PMC2838187 DOI: 10.4161/cc.8.7.8074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The nervous and immune systems consist of complex networks that have been known to be closely interrelated. However, given the complexity of the nervous and immune systems of mammals, including humans, the precise mechanisms by which the two systems influence each other remain understudied. To cut through this complexity, we used the nematode Caenorhabditis elegans as a simple system to study the relationship between the immune and nervous systems using sophisticated genetic manipulations. We found that C. elegans mutants in G-protein coupled receptors (GPCRs) expressed in the nervous system exhibit aberrant responses to pathogen infection. The use of different pathogens, different modes of infection and genome-wide microarrays highlighted the importance of the GPCR NPR-1 in avoidance to certain pathogens and in the regulation of innate immunity. The regulation of innate immunity was found to take place at least in part through a mitogen-activated protein kinase signaling pathway similar to the mammalian p38 MAPK pathway. Here, the results that support the different roles of the NPR-1 neural circuit in the regulation of C. elegans responses to pathogen infection are discussed.
Collapse
Affiliation(s)
- Alejandro Aballay
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
206
|
Karpac J, Jasper H. Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol Metab 2009; 20:100-6. [PMID: 19251431 PMCID: PMC3227503 DOI: 10.1016/j.tem.2008.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 01/04/2023]
Abstract
Metabolic adaptation to environmental changes is crucial for the long-term survival of an organism. Signaling mechanisms that govern this adaptation thus influence lifespan. One such mechanism is the insulin/insulin-like growth factor signaling (IIS) pathway, a central regulator of metabolism in metazoans. Recent studies have identified the stress-responsive Jun-N-terminal kinase (JNK) pathway as a regulator of IIS signaling, providing a link between environmental challenges and metabolic regulation. JNK inhibits IIS activity and, thus, promotes lifespan extension and stress tolerance. Interestingly, this interaction is also at the center of age-related metabolic diseases. Here, we review recent advances illuminating the mechanisms of the JNK-IIS interaction and its implications for metabolic diseases and lifespan in metazoans.
Collapse
Affiliation(s)
- Jason Karpac
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | | |
Collapse
|
207
|
Liachko N, Davidowitz R, Lee SS. Combined informatic and expression screen identifies the novel DAF-16 target HLH-13. Dev Biol 2009; 327:97-105. [PMID: 19103192 PMCID: PMC2804473 DOI: 10.1016/j.ydbio.2008.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/14/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Insulin/IGF-signaling (IIS) affects longevity, stress resistance and metabolism in worms, flies, and mammals. The Forkhead transcription factor DAF-16/FOXO is the major downstream effector of IIS and is responsible for the activation and repression of genes that mediate the diverse effects of IIS. We surveyed a set of informatically predicted conserved DAF-16/FOXO target genes and identified the novel DAF-16 direct target hlh-13. hlh-13 is the predicted homolog of the mammalian transcription factor Ptf1a, a critical determinant of pancreatic development. We found that an hlh-13 mutant exits L1 arrest and IIS-dependent dauer diapause faster than control worms, but is not involved in lifespan or resistance to a variety of stresses. Our results have identified a novel DAF-16 target gene and linked its function to known outputs of IIS. Considering the high conservation of IIS in diverse species, our results also hint at an intriguing connection of IIS and Ptf1a in mammals.
Collapse
Affiliation(s)
- Nicole Liachko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Rachel Davidowitz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
208
|
Abstract
Enormous strides in understanding aging have come from the discovery that mutations in single genes can extend healthy life-span in laboratory model organisms such as the yeast Saccharomyces, the fruit fly Drosophila melanogaster, the nematode worm Caenorhabditis elegans and the mouse. IIS [insulin/IGF (insulin-like growth factor)-like signalling] stands out as an important, evolutionarily conserved pathway involved in the determination of lifespan. The pathway has diverse functions in multicellular organisms, and mutations in IIS can affect growth, development, metabolic homoeostasis, fecundity and stress resistance, as well as lifespan. The pleiotropic nature of the pathway and the often negative effects of its disruption mean that the extent, tissue and timing of IIS manipulations are determinants of a positive effect on lifespan. One tissue of particular importance for lifespan extension in diverse organisms is the CNS (central nervous system). Although lowered IIS in the CNS can extend lifespan, IIS is also widely recognized as being neuroprotective and important for growth and survival of neurons. In the present review, we discuss our current understanding of the role of the nervous system in extension of lifespan by altered IIS, and the role of IIS in determination of neuronal function during aging. The nervous system can play both endocrine and cell-autonomous roles in extension of lifespan by IIS, and the effects of IIS on lifespan and neuronal function can be uncoupled to some extent. Tissue-specific manipulation of IIS and the cellular defence mechanisms that it regulates will better define the ways in which IIS affects neuronal and whole-organism function during aging.
Collapse
|
209
|
Butcher RA, Ragains JR, Li W, Ruvkun G, Clardy J, Mak HY. Biosynthesis of the Caenorhabditis elegans dauer pheromone. Proc Natl Acad Sci U S A 2009; 106:1875-9. [PMID: 19174521 PMCID: PMC2631283 DOI: 10.1073/pnas.0810338106] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Indexed: 11/18/2022] Open
Abstract
To sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production. Here, we show that daf-22 encodes a homolog of human sterol carrier protein SCPx, which catalyzes the final step in peroxisomal fatty acid beta-oxidation. We also show that dhs-28, which encodes a homolog of the human d-bifunctional protein that acts just upstream of SCPx, is also required for pheromone production. Long-term daf-22 and dhs-28 cultures develop dauer-inducing activity by accumulating less active, long-chain fatty acid ascaroside derivatives. Thus, daf-22 and dhs-28 are required for the biosynthesis of the short-chain fatty acid-derived side chains of the dauer pheromone and link dauer pheromone production to metabolic state.
Collapse
Affiliation(s)
- Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Weiqing Li
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Ho Yi Mak
- Stowers Institute for Medical Research, Kansas City, MO 64110; and
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
210
|
Kleemann GA, Murphy CT. The endocrine regulation of aging in Caenorhabditis elegans. Mol Cell Endocrinol 2009; 299:51-7. [PMID: 19059305 DOI: 10.1016/j.mce.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 10/13/2008] [Accepted: 10/30/2008] [Indexed: 01/29/2023]
Abstract
In recent years, there has been significant growth in our understanding of the regulation of longevity. The most notable change is the identification and detailed description of a number of molecular pathways modulating the rate of aging. A good portion of this new data has come from studies using the genetic model organism Caenorhabditis elegans. In this review, we provide an overview of physiological systems that are involved in the modulation of aging in C. elegans, then discuss the known endocrine signaling systems that are likely to couple these systems together. Finally, we present a working model describing how aging may be regulated as a coordinated system, communicating through endocrine signals.
Collapse
Affiliation(s)
- G A Kleemann
- Lewis-Sigler Institute for Integrative Genomics and Dept. of Molecular Biology, Princeton University, 148 Carl Icahn Lab, Washington Road, Princeton, NJ 08544, United States
| | | |
Collapse
|
211
|
Molecular time-course and the metabolic basis of entry into dauer in Caenorhabditis elegans. PLoS One 2009; 4:e4162. [PMID: 19129915 PMCID: PMC2612749 DOI: 10.1371/journal.pone.0004162] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 11/05/2008] [Indexed: 12/02/2022] Open
Abstract
When Caenorhabditis elegans senses dauer pheromone (daumone), signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1) and normal growth media plus liquid culture (Path 2). Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h) and is complete at S6 (72 h). Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org) that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas.
Collapse
|
212
|
Investigation of the regulation of transcriptional changes in Ancylostoma caninum larvae following serum activation, with a focus on the insulin-like signalling pathway. Vet Parasitol 2008; 159:139-48. [PMID: 19054616 DOI: 10.1016/j.vetpar.2008.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 09/30/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022]
Abstract
The exit from dauer in the free-living nematode Caenorhabditis elegans is under the control of a single amphidial neuron (ASJ) of the insulin-like signalling pathway. Mutations of this pathway have the ability to suppress entry into the dauer stage. It has been postulated that insulin-like signalling plays a significant role in the response to serum stimulation in vitro of the third-stage larvae (L3s) of the canine hookworm Ancylostoma caninum. To test for the possible involvement of the insulin-like signalling cascade in the response to serum stimulation, the effects of two signalling stimulants (8-bromo cGMP and arecoline) and four inhibitors, namely 4,7-phenanthroline, phosphoinositide-3 kinase (PI3K), Akt inhibitor IV and rapamycin on feeding and on levels of selected activation-associated mRNAs in serum-stimulated L3s were explored. L3s of A. caninum were pre-incubated with or without the appropriate inhibitor/agonist. Following serum-stimulation, the feeding activity was assessed. The transcription levels of a number of activation-associated mRNAs linked to particular expressed sequence tags (ESTs) were investigated by reverse transcription, real-time PCR (rtPCR). The treatment of worms with 4,7-phenanthroline completely suppressed feeding and significantly reduced the differential levels of most activation-associated mRNAs, whereas the treatment with cGMP resulted in the resumption of feeding in almost 85% of the L3s and yielded a specific transcriptional profile consistent with that following serum stimulation. The treatment of L3s with arecoline resulted in the resumption of feeding in approximately 85% of L3s, but did not result in a transcriptomic profile consistent with activation. A complete reduction in feeding was recorded in the presence of the PI3K inhibitor LY294002 (1mM) and resulted in a pronounced dampening of differential transcription in response to serum stimulation for the molecules examined. Akt inhibitor IV resulted in a approximately 70% reduction in feeding but had almost no effect on the level of any of the activation-associated mRNAs studied. Rapamycin was shown to have a weak effect on feeding, and several of the mRNAs studied exhibited greater than expected transcription following treatment. The complexities of activation-associated transcription could not be addressed using the current approach. A larger number of mRNAs needs to be investigated in order to predict or identify regulatory mechanisms proposed to function in the insulin-like signalling pathway in A. caninum.
Collapse
|
213
|
Styer KL, Singh V, Macosko E, Steele SE, Bargmann CI, Aballay A. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 2008; 322:460-4. [PMID: 18801967 PMCID: PMC2831475 DOI: 10.1126/science.1163673] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A large body of evidence indicates that metazoan innate immunity is regulated by the nervous system, but the mechanisms involved in the process and the biological importance of such control remain unclear. We show that a neural circuit involving npr-1, which encodes a G protein-coupled receptor (GPCR) related to mammalian neuropeptide Y receptors, functions to suppress innate immune responses. The immune inhibitory function requires a guanosine 3',5'-monophosphate-gated ion channel encoded by tax-2 and tax-4 as well as the soluble guanylate cyclase GCY-35. Furthermore, we show that npr-1- and gcy-35-expressing sensory neurons actively suppress immune responses of nonneuronal tissues. A full-genome microarray analysis on animals with altered neural function due to mutation in npr-1 shows an enrichment in genes that are markers of innate immune responses, including those regulated by a conserved PMK-1/p38 mitogen-activated protein kinase signaling pathway. These results present evidence that neurons directly control innate immunity in C. elegans, suggesting that GPCRs may participate in neural circuits that receive inputs from either pathogens or infected sites and integrate them to coordinate appropriate immune responses.
Collapse
Affiliation(s)
- Katie L Styer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
214
|
A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan. PLoS Genet 2008; 4:e1000213. [PMID: 18846209 PMCID: PMC2556084 DOI: 10.1371/journal.pgen.1000213] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/03/2008] [Indexed: 12/22/2022] Open
Abstract
For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1) stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV) channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion. Starvation is a common physiological condition encountered by most organisms in their natural environments. However, the molecular mechanisms that allow organisms to accurately sense nutrient availability and match their energetic demands accordingly are not well understood. To elucidate these mechanisms, we isolated mutants in C. elegans that survive about 50% longer than wild-type animals when starved. For one such mutant, we found that the extended survival was due to mutation in the unc-31 gene, which functions in the nervous system to mediate release of neuroendocrine signaling molecules including insulin. Although this gene is broadly expressed in the nervous system, we found that its activity is required in a small subset of sensory neurons to regulate starvation survival. These neurons have ciliated endings that function in detection of environmental cues. Disruption of these cilia, or inactivation of a TRPV channel localized to these cilia, mimicked the perception of nutrient deprivation leading to extended starvation survival, which is dependent on an insulin-regulated transcription factor. Disruption of this channel also extended adult lifespan. Taken together, our findings reveal that TRPV channels couple nutritional cues to neuroendocrine secretion, which in turn determines adult lifespan and larval starvation survival.
Collapse
|
215
|
Abstract
The role of neuropeptides in modulating behavior is slowly being elucidated. With the sequencing of the C. elegans genome, the extent of the neuropeptide genes in C. elegans can be determined. To date, 113 neuropeptide genes encoding over 250 distinct neuropeptides have been identified. Of these, 40 genes encode insulin-like peptides, 31 genes encode FMRFamide-related peptides, and 42 genes encode non-insulin, non-FMRFamide-related neuropeptides. As in other systems, C. elegans neuropeptides are derived from precursor molecules that must be post-translationally processed to yield the active peptides. These precursor molecules contain a single peptide, multiple copies of a single peptide, multiple distinct peptides, or any combination thereof. The neuropeptide genes are expressed extensively throughout the nervous system, including in sensory, motor, and interneurons. In addition, some of the genes are also expressed in non-neuronal tissues, such as the somatic gonad, intestine, and vulval hypodermis. To address the effects of neuropeptides on C. elegans behavior, animals in which the different neuropeptide genes are inactivated or overexpressed are being isolated. In a complementary approach the receptors to which the neuropeptides bind are also being identified and examined. Among the knockout animals analyzed thus far, defects in locomotion, dauer formation, egg laying, ethanol response, and social behavior have been reported. These data suggest that neuropeptides have a modulatory role in many, if not all, behaviors in C. elegans.
Collapse
Affiliation(s)
- Chris Li
- Department of Biology, City College of New York, New York, NY 10031, USA.
| | | |
Collapse
|
216
|
Butcher RA, Ragains JR, Kim E, Clardy J. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc Natl Acad Sci U S A 2008; 105:14288-92. [PMID: 18791072 PMCID: PMC2567175 DOI: 10.1073/pnas.0806676105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Indexed: 11/18/2022] Open
Abstract
In the model organism Caenorhabditis elegans, the dauer pheromone is the primary cue for entry into the developmentally arrested, dauer larval stage. The dauer is specialized for survival under harsh environmental conditions and is considered "nonaging" because larvae that exit dauer have a normal life span. C. elegans constitutively secretes the dauer pheromone into its environment, enabling it to sense its population density. Several components of the dauer pheromone have been identified as derivatives of the dideoxy sugar ascarylose, but additional unidentified components of the dauer pheromone contribute to its activity. Here, we show that an ascaroside with a 3-hydroxypropionate side chain is a highly potent component of the dauer pheromone that acts synergistically with previously identified components. Furthermore, we show that the active dauer pheromone components that are produced by C. elegans vary depending on cultivation conditions. Identifying the active components of the dauer pheromone, the conditions under which they are produced, and their mechanisms of action will greatly extend our understanding of how chemosensory cues from the environment can influence such fundamental processes as development, metabolism, and aging in nematodes and in higher organisms.
Collapse
Affiliation(s)
- Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Edward Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
217
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
218
|
Reiner DJ, Ailion M, Thomas JH, Meyer BJ. C. elegans anaplastic lymphoma kinase ortholog SCD-2 controls dauer formation by modulating TGF-beta signaling. Curr Biol 2008; 18:1101-9. [PMID: 18674914 PMCID: PMC3489285 DOI: 10.1016/j.cub.2008.06.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Different environmental stimuli, including exposure to dauer pheromone, food deprivation, and high temperature, can induce C. elegans larvae to enter the dauer stage, a developmentally arrested diapause state. Although molecular and cellular pathways responsible for detecting dauer pheromone and temperature have been defined in part, other sensory inputs are poorly understood, as are the mechanisms by which these diverse sensory inputs are integrated to achieve a consistent developmental outcome. RESULTS In this paper, we analyze a wild C. elegans strain isolated from a desert oasis. Unlike wild-type laboratory strains, the desert strain fails to respond to dauer pheromone at 25 degrees C, but it does respond at higher temperatures, suggesting a unique adaptation to the hot desert environment. We map this defect in dauer response to a mutation in the scd-2 gene, which, we show, encodes the nematode anaplastic lymphoma kinase (ALK) homolog, a proto-oncogene receptor tyrosine kinase. scd-2 acts in a genetic pathway shown here to include the HEN-1 ligand, the RTK adaptor SOC-1, and the MAP kinase SMA-5. The SCD-2 pathway modulates TGF-beta signaling, which mediates the response to dauer pheromone, but SCD-2 might mediate a nonpheromone sensory input, such as food. CONCLUSIONS Our studies identify a new sensory pathway controlling dauer formation and shed light on ALK signaling, integration of signaling pathways, and adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- David J. Reiner
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology University of California Berkeley, CA 94720
| | - Michael Ailion
- Molecular and Cellular Biology Program of the University of Washington and Fred Hutchinson Cancer Research Center Seattle, WA 98195
| | - James H. Thomas
- Molecular and Cellular Biology Program of the University of Washington and Fred Hutchinson Cancer Research Center Seattle, WA 98195
- Department of Genome Sciences University of Washington Seattle, WA 98195
| | - Barbara J. Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology University of California Berkeley, CA 94720
| |
Collapse
|
219
|
Artal-Sanz M, Tavernarakis N. Mechanisms of aging and energy metabolism in Caenorhabditis elegans. IUBMB Life 2008; 60:315-22. [PMID: 18421774 DOI: 10.1002/iub.66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging studies on diverse species ranging from yeast to man have culminated in the delineation of several signaling pathways that influence the process of senescent decline and aging. While understanding these interlinked signal-transduction cascades is becoming even more detailed and comprehensive, the cellular and biochemical processes they impinge upon to modulate the rate of senescent decline and aging have lagged considerably behind. This fundamental question is one of the most important challenges of modern aging research and has been the focus of recent research efforts. Emerging findings provide insight into the facets of cellular metabolism which can be fine-tuned by upstream signaling events to ultimately promote longevity. Here, we survey the mechanisms regulating aging in the simple nematode worm Caenorhabditis elegans, aiming to highlight recent discoveries that shed light into the interface between aging signaling pathways and cellular energy metabolism. Our objective is to review the current understanding of the processes involved and discuss mechanisms that are likely conserved in higher organisms.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | |
Collapse
|
220
|
Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Dev Biol 2008; 318:153-61. [PMID: 18436204 DOI: 10.1016/j.ydbio.2008.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
Abstract
The body wall muscles (BWMs) of nematodes are connected to motor axons by muscle membrane extensions called muscle arms. To better understand how muscle arm extension is regulated, we screened conserved receptor tyrosine kinases for muscle arm defects in Caenorhabditis elegans. We discovered that mutations in daf-2, which encodes the only insulin-like receptor tyrosine kinase, confer a supernumerary muscle arm (Sna) phenotype. The Sna phenotype of daf-2 mutants is suppressed by loss-of-function in the canonical downstream FOXO-family transcription factor DAF-16 in either the muscles or the intestine, demonstrating that insulin-like signaling can regulate muscle arm extension non-autonomously. Furthermore, supernumerary arm extension requires the B isoform of the down-stream DAF-12 nuclear hormone receptor, which lacks the DNA-binding domain, but retains the ligand-binding domain. daf-2 regulates many processes in C. elegans including entry into dauer, which is a diapause-like state that facilitates survival of harsh environmental conditions. We found that wild-type dauers are also Sna. Unlike other changes associated with dauer, however, the Sna phenotype of dauers persists in recovered adults. Finally, disruption of a TGF-beta pathway that regulates dauer formation in parallel to the insulin-like pathway also confers the Sna phenotype. We conclude that supernumerary muscle arms are a novel dauer-specific modification that may facilitate some aspect of dauer behavior.
Collapse
|
221
|
Zhang Y, Xu J, Puscau C, Kim Y, Wang X, Alam H, Hu PJ. Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity. Dev Biol 2008; 315:290-302. [PMID: 18241854 PMCID: PMC2350227 DOI: 10.1016/j.ydbio.2007.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 11/30/2022]
Abstract
Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that modulate C. elegans insulin-like signaling, we identified eak-3, which encodes a novel protein that is specifically expressed in the two endocrine XXX cells. The dauer arrest phenotype of eak-3 mutants is fully suppressed by mutations in daf-16/FoxO, which encodes the major target of C. elegans insulin-like signaling, and daf-12, which encodes a nuclear receptor regulated by steroid hormones known as dafachronic acids. eak-3 mutation does not affect DAF-16/FoxO subcellular localization but enhances expression of the direct DAF-16/FoxO target sod-3 in a daf-16/FoxO- and daf-12-dependent manner. eak-3 mutants have normal lifespans, suggesting that EAK-3 decouples insulin-like regulation of development and longevity. We propose that EAK-3 activity in the XXX cells promotes the synthesis and/or secretion of a hormone that acts in parallel to AKT-1 to inhibit the expression of DAF-16/FoxO target genes. Similar hormonal pathways may regulate FoxO target gene expression in mammals.
Collapse
Affiliation(s)
- Yanmei Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinling Xu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cristina Puscau
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongsoon Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xi Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hena Alam
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick J. Hu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Hematology/Oncology, Department of Internal Medicine, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
222
|
Iser WB, Wolkow CA. DAF-2/insulin-like signaling in C. elegans modifies effects of dietary restriction and nutrient stress on aging, stress and growth. PLoS One 2007; 2:e1240. [PMID: 18043747 PMCID: PMC2080776 DOI: 10.1371/journal.pone.0001240] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 11/07/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dietary restriction (DR) and reduced insulin/IGF-I-like signaling (IIS) are two regimens that promote longevity in a variety of organisms. Genetic analysis in C. elegans nematodes has shown that DR and IIS couple to distinct cellular signaling pathways. However, it is not known whether these pathways ultimately converge on overlapping or distinct targets to extend lifespan. PRINCIPAL FINDINGS We investigated this question by examining additional effects of DR in wildtype animals and in daf-2 mutants with either moderate or severe IIS deficits. Surprisingly, DR and IIS had opposing effects on these physiological processes. First, DR induced a stress-related change in intestinal vesicle trafficking, termed the FIRE response, which was suppressed in daf-2 mutants. Second, DR did not strongly affect expression of a daf-2- and stress-responsive transcriptional reporter. Finally, DR-related growth impairment was suppressed in daf-2 mutants. CONCLUSIONS These findings reveal that an important biological function of DAF-2/IIS is to enhance growth and survival under nutrient-limited conditions. However, we also discovered that levels of DAF-2 pathway activity modified the effects of DR on longevity. Thus, while DR and IIS clearly affect lifespan through independent targets, there may also be some prolongevity targets that are convergently regulated by these pathways.
Collapse
Affiliation(s)
- Wendy B. Iser
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Catherine A. Wolkow
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
223
|
Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 2007; 18:113-22. [DOI: 10.1101/gr.6714008] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
224
|
Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2007; 104:19046-50. [PMID: 18025456 DOI: 10.1073/pnas.0709613104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How are the rates of aging of different tissues coordinated? In Caenorhabditis elegans, decreasing insulin/IGF-1 signaling extends lifespan by activating the transcription factor DAF-16/FOXO. If DAF-16 levels are experimentally increased in one tissue, such as the intestine, DAF-16 activity in other tissues rises. Here we test the hypothesis that this "FOXO-to-FOXO" signaling occurs via feedback regulation of ins-7 insulin gene expression. We find that DAF-16 regulates ins-7 expression in the intestine, and that preventing this regulation blocks FOXO-to-FOXO signaling from the intestine to other tissues. Our findings show that feedback regulation of insulin gene expression coordinates DAF-16 activity among the tissues, and they establish the intestine, which is the animal's entire endoderm, as an important insulin-signaling center.
Collapse
|
225
|
Abstract
A dissection of longevity in Caenorhabditis elegans reveals that animal life span is influenced by genes, environment, and stochastic factors. From molecules to physiology, a remarkable degree of evolutionary conservation is seen.
Collapse
Affiliation(s)
- Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
226
|
Husson SJ, Janssen T, Baggerman G, Bogert B, Kahn-Kirby AH, Ashrafi K, Schoofs L. Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J Neurochem 2007; 102:246-60. [PMID: 17564681 DOI: 10.1111/j.1471-4159.2007.04474.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biologically active peptides are synthesized from inactive pre-proproteins or peptide precursors by the sequential actions of processing enzymes. Proprotein convertases cleave the precursor at pairs of basic amino acids, which are then removed from the carboxyl terminus of the generated fragments by a specific carboxypeptidase. Caenorhabditis elegans strains lacking proprotein convertase EGL-3 display a severely impaired neuropeptide profile (Husson et al. 2006, J. Neurochem.98, 1999-2012). In the present study, we examined the role of the C. elegans carboxypeptidase E orthologue EGL-21 in the processing of peptide precursors. More than 100 carboxy-terminally extended neuropeptides were detected in egl-21 mutant strains. These findings suggest that EGL-21 is a major carboxypeptidase involved in the processing of FMRFamide-like peptide (FLP) precursors and neuropeptide-like protein (NLP) precursors. The impaired peptide profile of egl-3 and egl-21 mutants is reflected in some similar phenotypes. They both share a severe widening of the intestinal lumen, locomotion defects, and retention of embryos. In addition, egl-3 animals have decreased intestinal fat content. Taken together, these results suggest that EGL-3 and EGL-21 are key enzymes for the proper processing of neuropeptides that control egg-laying, locomotion, fat storage and the nutritional status.
Collapse
Affiliation(s)
- Steven J Husson
- Functional Genomics and Proteomics Unit, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
227
|
Strube C, von Samson-Himmelstjerna G, Schnieder T. Genetic regulation of arrested development in nematodes: are age-1 and daf-gene orthologs present in Dictyocaulus viviparus? Parasitol Res 2007; 101:1111-5. [PMID: 17558520 DOI: 10.1007/s00436-007-0594-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
In opposite to the free-living soil nematode Caenorhabditis elegans, the genetic regulation of hypobiosis or inhibited or arrested development in parasitic nematodes is completely unknown. In C. elegans, the daf-genes or the age-1 gene are of major importance in signaling pathways regulating arrested development. To investigate if orthologs of these genes are present in the bovine lungworm Dictyocaulus viviparus, a PCR analysis with gene-specific primer combinations was performed. No orthologs of the age-1 or daf-genes could be identified in D. viviparus. The possible differences in the role of the daf-genes concerning arrested development in parasitic and free-living nematodes will be discussed.
Collapse
Affiliation(s)
- Christina Strube
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg, 17, 30559 Hannover, Germany.
| | | | | |
Collapse
|
228
|
Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007; 447:550-5. [PMID: 17476212 DOI: 10.1038/nature05837] [Citation(s) in RCA: 430] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 04/12/2007] [Indexed: 11/08/2022]
Abstract
Reduced food intake as a result of dietary restriction increases the lifespan of a wide variety of metazoans and delays the onset of multiple age-related pathologies. Dietary restriction elicits a genetically programmed response to nutrient availability that cannot be explained by a simple reduction in metabolism or slower growth of the organism. In the nematode worm Caenorhabditis elegans, the transcription factor PHA-4 has an essential role in the embryonic development of the foregut and is orthologous to genes encoding the mammalian family of Foxa transcription factors, Foxa1, Foxa2 and Foxa3. Foxa family members have important roles during development, but also act later in life to regulate glucagon production and glucose homeostasis, particularly in response to fasting. Here we describe a newly discovered, adult-specific function for PHA-4 in the regulation of diet-restriction-mediated longevity in C. elegans. The role of PHA-4 in lifespan determination is specific for dietary restriction, because it is not required for the increased longevity caused by other genetic pathways that regulate ageing.
Collapse
Affiliation(s)
- Siler H Panowski
- The Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
229
|
Husson SJ, Mertens I, Janssen T, Lindemans M, Schoofs L. Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Prog Neurobiol 2007; 82:33-55. [PMID: 17383075 DOI: 10.1016/j.pneurobio.2007.01.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/14/2006] [Accepted: 01/29/2007] [Indexed: 11/25/2022]
Abstract
The nematode Caenorhabditis elegans joins the menagerie of behavioral model systems next to the fruit fly Drosophila melanogaster, the marine snail Aplysia californica and the mouse. In contrast to Aplysia, which contains 20,000 neurons having cell bodies of hundreds of microns in diameter, C. elegans harbors only 302 tiny neurons from which the cell lineage is completely described, as is the case for all the other somatic cells. As such, this nervous system appears at first sight incommensurable with those of higher organisms, although genome-wide comparison of predicted C. elegans genes with their counterparts in vertebrates revealed many parallels. Together with its short lifespan and ease of cultivation, suitability for high-throughput genetic screenings and genome-wide RNA interference approaches, access to an advanced genetic toolkit and cell-ablation techniques, it seems that this tiny transparent organism of only 1mm in length has nothing to hide. Recently, highly exciting developments have occurred within the field of neuropeptidergic signaling in C. elegans, not only because of the availability of a sequenced genome since 1998, but especially because of state of the art post genomic technologies, that allow for molecular characterization of the signaling molecules. Here, we will focus on endogenous, bioactive (neuro)peptides and mainly discuss biosynthesis, peptide sequence information, localization and G-protein coupled receptors of the three major peptide families in C. elegans.
Collapse
Affiliation(s)
- Steven J Husson
- Functional Genomics and Proteomics Unit, Department of Biology, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
230
|
Kao G, Nordenson C, Still M, Rönnlund A, Tuck S, Naredi P. ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell 2007; 128:577-87. [PMID: 17289575 DOI: 10.1016/j.cell.2006.12.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 11/03/2006] [Accepted: 12/12/2006] [Indexed: 11/17/2022]
Abstract
C. elegans worms hatching in the absence of food show growth arrest during the first larval stage (L1). While much has been learned about the later diapause, dauer, which worms enter under adverse conditions, much less is known about the mechanisms governing L1 arrest. Here we show that worms lacking activity of the asna-1 gene arrest growth reversibly at the L1 stage even when food is abundant. asna-1 encodes an ATPase that functions nonautonomously to regulate growth. asna-1 is expressed in a restricted set of sensory neurons and in insulin-producing intestinal cells. asna-1 mutants are reduced in insulin secretion while overexpression of asna-1 mimics the effects of insulin overexpression. Human ASNA1 is highly expressed in pancreatic beta cells, but not in other pancreatic endocrine cell types, and regulates insulin secretion in cultured cells. We propose that ASNA1 is an evolutionarily conserved modulator of insulin signaling.
Collapse
Affiliation(s)
- Gautam Kao
- Umeå Center for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
231
|
Houthoofd K, Vanfleteren JR. Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 2007; 277:601-17. [PMID: 17364197 DOI: 10.1007/s00438-007-0225-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/20/2007] [Indexed: 12/18/2022]
Abstract
Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms.
Collapse
Affiliation(s)
- Koen Houthoofd
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | |
Collapse
|
232
|
Sengupta P. Generation and modulation of chemosensory behaviors in C. elegans. Pflugers Arch 2007; 454:721-34. [PMID: 17206445 DOI: 10.1007/s00424-006-0196-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
C. elegans recognizes and discriminates among hundreds of chemical cues using a relatively compact chemosensory nervous system. Chemosensory behaviors are also modulated by prior experience and contextual cues. Because of the facile genetics and genomics possible in this organism, C. elegans provides an excellent system in which to explore the generation of chemosensory behaviors from the level of a single gene to the motor output. This review summarizes the current knowledge on the molecular and neuronal substrates of chemosensory behaviors and chemosensory behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
233
|
Braendle C, Milloz J, Félix MA. Mechanisms and evolution of environmental responses in Caenorhabditis elegans. Curr Top Dev Biol 2007; 80:171-207. [PMID: 17950375 DOI: 10.1016/s0070-2153(07)80005-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We review mechanistic and evolutionary aspects of interactions between the model organism Caenorhabditis elegans and its environment. In particular, we focus on environmental effects affecting developmental mechanisms. We describe natural and laboratory environments of C. elegans and provide an overview of the different environmental responses of this organism. We then show how two developmental processes respond to changes in the environment. First, we discuss the development of alternative juvenile stages, the dauer and non-dauer larva. This example illustrates how development responds to variation in the environment to generate complex phenotypic variation. Second, we discuss the development of the C. elegans vulva. This example illustrates how development responds to variation in the environment while generating an invariant final phenotype.
Collapse
Affiliation(s)
- Christian Braendle
- Institut Jacques Monod, CNRS-Universities of Paris 6/7, Tour 43 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
234
|
Von Stetina SE, Watson JD, Fox RM, Olszewski KL, Spencer WC, Roy PJ, Miller DM. Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 2007; 8:R135. [PMID: 17612406 PMCID: PMC2323220 DOI: 10.1186/gb-2007-8-7-r135] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/13/2007] [Accepted: 07/05/2007] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND With its fully sequenced genome and simple, well-defined nervous system, the nematode Caenorhabditis elegans offers a unique opportunity to correlate gene expression with neuronal differentiation. The lineal origin, cellular morphology and synaptic connectivity of each of the 302 neurons are known. In many instances, specific behaviors can be attributed to particular neurons or circuits. Here we describe microarray-based methods that monitor gene expression in C. elegans neurons and, thereby, link comprehensive profiles of neuronal transcription to key developmental and functional properties of the nervous system. RESULTS We employed complementary microarray-based strategies to profile gene expression in the embryonic and larval nervous systems. In the MAPCeL (Microarray Profiling C. elegans cells) method, we used fluorescence activated cell sorting (FACS) to isolate GFP-tagged embryonic neurons for microarray analysis. To profile the larval nervous system, we used the mRNA-tagging technique in which an epitope-labeled mRNA binding protein (FLAG-PAB-1) was transgenically expressed in neurons for immunoprecipitation of cell-specific transcripts. These combined approaches identified approximately 2,500 mRNAs that are highly enriched in either the embryonic or larval C. elegans nervous system. These data are validated in part by the detection of gene classes (for example, transcription factors, ion channels, synaptic vesicle components) with established roles in neuronal development or function. Of particular interest are 19 conserved transcripts of unknown function that are also expressed in the mammalian brain. In addition to utilizing these profiling approaches to define stage-specific gene expression, we also applied the mRNA-tagging method to fingerprint a specific neuron type, the A-class group of cholinergic motor neurons, during early larval development. A comparison of these data to a MAPCeL profile of embryonic A-class motor neurons identified genes with common functions in both types of A-class motor neurons as well as transcripts with roles specific to each motor neuron type. CONCLUSION We describe microarray-based strategies for generating expression profiles of embryonic and larval C. elegans neurons. These methods can be applied to particular neurons at specific developmental stages and, therefore, provide an unprecedented opportunity to obtain spatially and temporally defined snapshots of gene expression in a simple model nervous system.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Joseph D Watson
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| | - Rebecca M Fox
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kellen L Olszewski
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University 246 Carl Icahn Laboratory, Princeton NJ 08544, USA
| | - W Clay Spencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Peter J Roy
- Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 1A, Canada
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| |
Collapse
|
235
|
Braeckman BP, Vanfleteren JR. Genetic control of longevity in C. elegans. Exp Gerontol 2007; 42:90-8. [PMID: 16829009 DOI: 10.1016/j.exger.2006.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 11/22/2022]
Abstract
The nematode Caenorhabditis elegans has proven to be a very useful tool for studying the genetics of longevity. Over 70 genes have been found to influence lifespan in this worm. Those related to the Ins/IGF signaling pathway are among the best studied and will be focused on in this review. The master regulator of this pathway, the forkhead transcription factor DAF-16, can activate an enhanced life maintenance program in response to environmental and gonadal inputs. DAF-16 up- and downregulates expression of many genes leading to metabolic alterations and increased stress and microbial resistance. This is generally confirmed by biochemical and physiological data. Longevity mutants are not hypometabolic and probably produce more reactive oxygen species than wild type. However, their high antioxidant capacity may result in lower oxidative damage. Enhanced molecular turnover rates may also play a role in their longevity phenotype.
Collapse
Affiliation(s)
- Bart P Braeckman
- Biology Department, Ghent University, K.L.Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | | |
Collapse
|
236
|
Kodama E, Kuhara A, Mohri-Shiomi A, Kimura KD, Okumura M, Tomioka M, Iino Y, Mori I. Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes Dev 2006; 20:2955-60. [PMID: 17079685 PMCID: PMC1620028 DOI: 10.1101/gad.1479906] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Caenorhabditis elegans exhibits a food-associated behavior that is modulated by the past cultivation temperature. Mutations in INS-1, the homolog of human insulin, caused the defect in this integrative behavior. Mutations in DAF-2/insulin receptor and AGE-1/phosphatidylinositol 3 (PI-3)-kinase partially suppressed the defect of ins-1 mutants, and a mutation in DAF-16, a forkhead-type transcriptional factor, caused a weak defect. In addition, mutations in the secretory protein HEN-1 showed synergistic effects with INS-1. Expression of AGE-1 in any of the three interneurons, AIY, AIZ, or RIA, rescued the defect characteristic of age-1 mutants. Calcium imaging revealed that starvation induced INS-1-mediated down-regulation of AIZ activity. Our results suggest that INS-1, in cooperation with HEN-1, antagonizes the DAF-2 insulin-like signaling pathway to modulate interneuron activity required for food-associated integrative behavior.
Collapse
Affiliation(s)
- Eiji Kodama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Narbonne P, Roy R. Regulation of germline stem cell proliferation downstream of nutrient sensing. Cell Div 2006; 1:29. [PMID: 17150096 PMCID: PMC1716158 DOI: 10.1186/1747-1028-1-29] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 12/06/2006] [Indexed: 11/10/2022] Open
Abstract
Stem cells have recently attracted significant attention largely due to their potential therapeutic properties, but also because of their role in tumorigenesis and their resemblance, in many aspects, to cancerous cells. Understanding how stem cells are regulated, namely with respect to the control of their proliferation and differentiation within a functional organism, is thus primordial to safely profit from their therapeutic benefits. Here, we review recent advances in the understanding of germline stem cell proliferation control by factors that respond to the nutritional status and/or insulin signaling, through studies performed in C. elegans and Drosophila. Together, these data uncover some shared fundamental features that underlie the central control of cellular proliferation within a target stem cell population in an organism. These features may indeed be conserved in higher organisms and may apply to various other stem cell populations.
Collapse
Affiliation(s)
- Patrick Narbonne
- McGill University, Department of Biology, 1205 Dr. Penfield Ave, Montréal, Québec, H3A 1B1, Canada
| | - Richard Roy
- McGill University, Department of Biology, 1205 Dr. Penfield Ave, Montréal, Québec, H3A 1B1, Canada
| |
Collapse
|
238
|
Liang B, Moussaif M, Kuan CJ, Gargus JJ, Sze JY. Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. Cell Metab 2006; 4:429-40. [PMID: 17141627 DOI: 10.1016/j.cmet.2006.11.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/10/2006] [Accepted: 11/09/2006] [Indexed: 11/26/2022]
Abstract
Stress response is a fundamental form of behavioral and physiological plasticity. Here we describe how serotonin (5HT) governs stress behavior by regulating DAF-2 insulin/IGF-1 receptor signaling to the DAF-16/FOXO transcription factor at the nexus of development, metabolism, immunity, and stress responses in C. elegans. Serotonin-deficient tph-1 mutants, like daf-2 mutants, exhibit DAF-16 nuclear accumulation and constitutive physiological stress states. Exogenous 5HT and fluoxetine (Prozac) prevented DAF-16 nuclear accumulation in wild-type animals under stresses. Genetic analyses imply that DAF-2 is a downstream target of 5HT signaling and that distinct serotonergic neurons act through distinct 5HT receptors to influence distinct DAF-16-mediated stress responses. We suggest that modulation of FOXO by 5HT represents an ancient feature of stress physiology and that the C. elegans is a genetically tractable model that can be used to delineate the molecular mechanisms and drug actions linking 5HT, neuroendocrine signaling, immunity, and mitochondrial function.
Collapse
Affiliation(s)
- Bin Liang
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
239
|
Identification of a gonadotropin-releasing hormone receptor orthologue in Caenorhabditis elegans. BMC Evol Biol 2006; 6:103. [PMID: 17134503 PMCID: PMC1762030 DOI: 10.1186/1471-2148-6-103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 11/29/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Caenorhabditis elegans genome is known to code for at least 1149 G protein-coupled receptors (GPCRs), but the GPCR(s) critical to the regulation of reproduction in this nematode are not yet known. This study examined whether GPCRs orthologous to human gonadotropin-releasing hormone receptor (GnRHR) exist in C. elegans. RESULTS Our sequence analyses indicated the presence of two proteins in C. elegans, one of 401 amino acids [GenBank: NP_491453; WormBase: F54D7.3] and another of 379 amino acids [GenBank: NP_506566; WormBase: C15H11.2] with 46.9% and 44.7% nucleotide similarity to human GnRHR1 and GnRHR2, respectively. Like human GnRHR1, structural analysis of the C. elegans GnRHR1 orthologue (Ce-GnRHR) predicted a rhodopsin family member with 7 transmembrane domains, G protein coupling sites and phosphorylation sites for protein kinase C. Of the functionally important amino acids in human GnRHR1, 56% were conserved in the C. elegans orthologue. Ce-GnRHR was actively transcribed in adult worms and immunoanalyses using antibodies generated against both human and C. elegans GnRHR indicated the presence of a 46-kDa protein, the calculated molecular mass of the immature Ce-GnRHR. Ce-GnRHR staining was specifically localized to the germline, intestine and pharynx. In the germline and intestine, Ce-GnRHR was localized specifically to nuclei as revealed by colocalization with a DNA nuclear stain. However in the pharynx, Ce-GnRHR was localized to the myofilament lattice of the pharyngeal musculature, suggesting a functional role for Ce-GnRHR signaling in the coupling of food intake with reproduction. Phylogenetic analyses support an early evolutionary origin of GnRH-like receptors, as evidenced by the hypothesized grouping of Ce-GnRHR, vertebrate GnRHRs, a molluscan GnRHR, and the adipokinetic hormone receptors (AKHRs) and corazonin receptors of arthropods. CONCLUSION This is the first report of a GnRHR orthologue in C. elegans, which shares significant similarity with insect AKHRs. In vertebrates, GnRHRs are central components of the reproductive endocrine system, and the identification of a GnRHR orthologue in C. elegans suggests the potential use of C. elegans as a model system to study reproductive endocrinology.
Collapse
|
240
|
Lans H, Jansen G. Noncell- and cell-autonomous G-protein-signaling converges with Ca2+/mitogen-activated protein kinase signaling to regulate str-2 receptor gene expression in Caenorhabditis elegans. Genetics 2006; 173:1287-99. [PMID: 16868120 PMCID: PMC1526693 DOI: 10.1534/genetics.106.058750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the sensory system of C. elegans, the candidate odorant receptor gene str-2 is strongly expressed in one of the two AWC neurons and weakly in both ASI neurons. Asymmetric AWC expression results from suppression of str-2 expression by a Ca2+/MAPK signaling pathway in one of the AWC neurons early in development. Here we show that the same Ca2+/MAPK pathway promotes str-2 expression in the AWC and ASI neurons together with multiple cell-autonomous and noncell-autonomous G-protein-signaling pathways. In first-stage larvae and adult animals, signals mediated by the Galpha subunits ODR-3, GPA-2, GPA-5, and GPA-6 and a Ca2+/MAPK pathway involving the Ca2+ channel subunit UNC-36, the CaMKII UNC-43, and the MAPKK kinase NSY-1 induce strong str-2 expression. Cell-specific rescue experiments suggest that ODR-3 and the Ca2+/MAPK genes function in the AWC neurons, but that GPA-5 and GPA-6 function in the AWA and ADL neurons, respectively. In Dauer larvae, the same network of genes promotes strong str-2 expression in the ASI neurons, but ODR-3 functions in AWB and ASH and GPA-6 in AWB. Our results reveal a complex signaling network, encompassing signals from multiple cells, that controls the level of receptor gene expression at different developmental stages.
Collapse
Affiliation(s)
- Hannes Lans
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
241
|
Lans H, Jansen G. Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabditis elegans. Dev Biol 2006; 303:474-82. [PMID: 17187771 DOI: 10.1016/j.ydbio.2006.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 11/01/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The life span of the nematode Caenorhabditis elegans is under control of sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 13 Galpha subunits and a Ggamma subunit, which are involved in the transduction and modulation of sensory signals. Here, we show that loss-of-function mutations in the Galpha subunits odr-3, gpa-1 and gpa-9, in the Ggamma subunit gpc-1 and the introduction of extra copies of the Galpha subunit gpa-11 extend the life span of C. elegans. Loss-of-function of odr-3 and extra copies of gpa-11 act synergistically and can together extend life span more than two-fold, indicating that sensory signals play an important role in regulating life span. We show that gpa-1, gpa-11, odr-3 and gpc-1 all signal via the daf-16 FOXO family transcription factor. In addition, odr-3 and gpa-11 might suppress life span extension partially independent of the insulin/IGF-1 like receptor homologue daf-2. Our results suggest that the previously unanticipated nociceptive ASH and/or ADL neurons regulate longevity. We expect that the implication of specific G proteins will eventually contribute to the identification of the sensory cues that determine the rate of aging in C. elegans.
Collapse
Affiliation(s)
- Hannes Lans
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
242
|
Husson SJ, Clynen E, Baggerman G, Janssen T, Schoofs L. Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. J Neurochem 2006; 98:1999-2012. [PMID: 16945111 DOI: 10.1111/j.1471-4159.2006.04014.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biologically active peptides are synthesized as larger inactive proprotein peptide precursors which are processed by the concerted action of a cascade of enzymes. Among the proprotein convertases, PC2 is widely expressed in neuro-endocrine tissues and has been proposed to be the major convertase involved in the biosynthesis of neuropeptides. In this study, we have examined the role of the Caenorhabditis elegans orthologue PC2/EGL-3 in the processing of proprotein peptide precursors. We recently isolated and identified 60 endogenous peptides in the nematode C. elegans by two-dimensional nanoscale liquid chromatography - quadrupole time-of-flight tandem mass spectrometry. In the present study, we compare the peptide profile of different C. elegans strains, including PC2/EGL-3 mutants. For this purpose, we used an offline approach in which HPLC fractions are analysed by a matrix-assisted laser desorption ionisation - time of flight mass spectrometer. This differential peptidomic approach unambiguously provides evidence for the role of PC2/EGL-3 in the processing of FMRFamide-like peptide (FLP) precursors and neuropeptide-like protein (NLP) precursors in nematodes.
Collapse
Affiliation(s)
- Steven J Husson
- Laboratory of Developmental Physiology, Genomics and Proteomics, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
243
|
Williams KD, Busto M, Suster ML, So AKC, Ben-Shahar Y, Leevers SJ, Sokolowski MB. Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc Natl Acad Sci U S A 2006; 103:15911-5. [PMID: 17043223 PMCID: PMC1635102 DOI: 10.1073/pnas.0604592103] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study links natural variation in a Drosophila melanogaster overwintering strategy, diapause, to the insulin-regulated phosphatidylinositol 3-kinase (PI3-kinase) gene, Dp110. Variation in diapause, a reproductive arrest, was associated with Dp110 by using Dp110 deletions and genomic rescue fragments in transgenic flies. Deletions of Dp110 increased the proportion of individuals in diapause, whereas expression of Dp110 in the nervous system, but not including the visual system, decreased it. The roles of phosphatidylinositol 3-kinase for both diapause in D. melanogaster and dauer formation in Caenorhabditis elegans suggest a conserved role for this kinase in both reproductive and developmental arrests in response to environmental stresses.
Collapse
Affiliation(s)
- Karen D. Williams
- *Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6; and
| | - Macarena Busto
- *Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6; and
| | - Maximiliano L. Suster
- *Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6; and
| | - Anthony K.-C. So
- *Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6; and
| | - Yehuda Ben-Shahar
- *Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6; and
| | - Sally J. Leevers
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, P.O. Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | - Marla B. Sokolowski
- *Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
244
|
Rottiers V, Antebi A. Control of Caenorhabditis elegans life history by nuclear receptor signal transduction. Exp Gerontol 2006; 41:904-9. [PMID: 16963217 DOI: 10.1016/j.exger.2006.06.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/19/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Caenorhabditis elegans diapause, reproductive development, and life span are influenced by the DAF-12 nuclear hormone receptor signaling pathway. Here, we describe how this nuclear receptor integrates environmental and physiologic cues and regulates developmental age, reproduction and aging.
Collapse
Affiliation(s)
- Veerle Rottiers
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
245
|
Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 2006; 51:613-25. [PMID: 16950159 DOI: 10.1016/j.neuron.2006.07.024] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/23/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
The insulin-like signaling pathway is known to regulate fat metabolism, dauer formation, and longevity in Caenorhabditis elegans. Here, we report that this pathway is also involved in salt chemotaxis learning, in which animals previously exposed to a chemoattractive salt under starvation conditions start to show salt avoidance behavior. Mutants of ins-1, daf-2, age-1, pdk-1, and akt-1, which encode the homologs of insulin, insulin/IGF-I receptor, PI 3-kinase, phosphoinositide-dependent kinase, and Akt/PKB, respectively, show severe defects in salt chemotaxis learning. daf-2 and age-1 act in the ASER salt-sensing neuron, and the activity level of the DAF-2/AGE-1 pathway in this neuron determines the extent and orientation of salt chemotaxis. On the other hand, ins-1 acts in AIA interneurons, which receive direct synaptic inputs from sensory neurons and also send synaptic outputs to ASER. These results suggest that INS-1 secreted from AIA interneurons provides feedback to ASER to generate plasticity of chemotaxis.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
246
|
Estevez AO, Cowie RH, Gardner KL, Estevez M. Both insulin and calcium channel signaling are required for developmental regulation of serotonin synthesis in the chemosensory ADF neurons of Caenorhabditis elegans. Dev Biol 2006; 298:32-44. [PMID: 16860310 DOI: 10.1016/j.ydbio.2006.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 06/04/2006] [Accepted: 06/05/2006] [Indexed: 11/18/2022]
Abstract
Proper calcium channel and insulin signaling are essential for normal brain development. Leaner mice with a mutation in the P/Q-type voltage-gated calcium channel, Cacna1a, develop cerebellar atrophy and mutations in the homologous human gene are associated with increased migraine and seizure tendency. Similarly, abnormalities in insulin signaling are associated with abnormal brain growth and migraine tendency. Previously, we have shown that in the ADF chemosensory neurons of Caenorhabditis elegans UNC-2/Ca(2+) channel function affects TGF-beta-dependent developmental regulation of tryptophan hydroxylase, the rate-limiting enzyme in serotonin synthesis. Here we show that developmental expression of a tryptophan hydroxylase: :GFP reporter construct is similarly decreased by reduction-of-function mutations in the daf-2/insulin receptor. This decreased expression of tryptophan hydroxylase observed in both the daf-2 and unc-2 mutant backgrounds is suppressible either genetically by reduction-of-function mutations in the daf-16/forkhead transcription factor, an effector of the DAF-2/insulin receptor, or pharmacologically by the serotonin receptor antagonist cyproheptadine. Overall, these data suggest that both UNC-2 and DAF-2 function are required in the developmental regulation of DAF-16 and serotonin-dependent inhibition of tryptophan hydroxylase expression.
Collapse
Affiliation(s)
- Annette O Estevez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
247
|
Hu PJ, Xu J, Ruvkun G. Two membrane-associated tyrosine phosphatase homologs potentiate C. elegans AKT-1/PKB signaling. PLoS Genet 2006; 2:e99. [PMID: 16839187 PMCID: PMC1487177 DOI: 10.1371/journal.pgen.0020099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 05/18/2006] [Indexed: 11/19/2022] Open
Abstract
Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. Insulin and insulin-like growth factor (IGF) signaling regulates critical physiological processes in a wide variety of multicellular organisms. In humans, dysregulation of IGF signaling underlies the pathogenesis of cancer and diabetes. In the nematode Caenorhabditis elegans, the DAF-2 insulin-like pathway regulates development, metabolism, and longevity. All known components of DAF-2 insulin-like signaling are structurally and functionally conserved in mammals, suggesting that insights gained from studying this pathway in C. elegans may shed light on pathogenetic mechanisms underlying cancer and diabetes. In this study, the authors describe a genetic screen designed to identify novel components of DAF-2 insulin-like signaling in C. elegans. They have characterized three genes that may encode parts of a novel multimolecular membrane-associated complex that potentiates DAF-2 insulin-like signaling in two neuroendocrine cells, the XXX cells. Two of these genes encode proteins similar to mammalian protein tyrosine phosphatases. These results suggest that protein tyrosine phosphatase–like molecules may transduce IGF signals in mammalian endocrine cells and highlight the role of endocrine circuits in the pathogenesis of cancer and diabetes.
Collapse
Affiliation(s)
- Patrick J Hu
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology/Oncology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinling Xu
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
248
|
Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A. Hormonal Control of C. elegans Dauer Formation and Life Span by a Rieske-like Oxygenase. Dev Cell 2006; 10:473-82. [PMID: 16563875 DOI: 10.1016/j.devcel.2006.02.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/30/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
C. elegans diapause, gonadal outgrowth, and life span are regulated by a lipophilic hormone, which serves as a ligand to the nuclear hormone receptor DAF-12. A key step in hormone production is catalyzed by the CYP450 DAF-9, but the extent of the biosynthetic pathway is unknown. Here, we identify a conserved Rieske-like oxygenase, DAF-36, as a component in hormone metabolism. Mutants display larval developmental and adult aging phenotypes, as well as patterns of epistasis similar to that of daf-9. Larval phenotypes are potently reversed by crude lipid extracts, 7-dehydrocholesterol, and a recently identified DAF-12 sterol ligand, suggesting that DAF-36 works early in the hormone biosynthetic pathway. DAF-36 is expressed primarily within the intestine, a major organ of metabolic and endocrine control, distinct from DAF-9. These results imply that C. elegans hormone production has multiple steps and is distributed, and that it may provide one way that tissues register their current physiological state during organismal commitments.
Collapse
Affiliation(s)
- Veerle Rottiers
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
249
|
Li C. The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 2006; 131 Suppl:S109-27. [PMID: 16569285 DOI: 10.1017/s0031182005009376] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuropeptides act as chemical signals in the nervous system to modulate behaviour. With the ongoing EST projects and DNA sequence determination of different genomes, the identification of neuropeptide genes has been made easier. Despite the relatively 'simple' repertoire of behaviours in the nematode Caenorhabditis elegans, this worm contains a surprisingly large and diverse set of neuropeptide genes. At least 109 genes encoding over 250 potential neuropeptides have been identified in C. elegans; all genes are likely to be expressed and many, if not all, of the predicted peptides are produced. The predicted peptides include: 38 insulin-like peptides, several of which are involved in development and reproductive growth, and over 70 FMRFamide-related peptides, some of which are involved in locomotion, reproduction, and social behaviour. Many of the C. elegans peptides are identical or highly similar to those isolated or predicted in parasitic nematodes, such as Ascaris suum, Haemonchus contortus, Ancylostoma caninum, Heterodera glycines and Meloidogyne arenaria, suggesting that the function of these peptides is similar across species. The challenge for the future is to determine the function of all the genes and individual peptides and to identify the receptors through which the peptides signal.
Collapse
Affiliation(s)
- C Li
- Department of Biology, City College of the City University of New York, Convent Avenue at 138th Street, New York, NY 10031, USA.
| |
Collapse
|
250
|
Massey HC, Bhopale MK, Li X, Castelletto M, Lok JB. The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans. Int J Parasitol 2006; 36:347-52. [PMID: 16442538 PMCID: PMC3638016 DOI: 10.1016/j.ijpara.2005.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to determine whether Strongyloides stercoralis FKTF-1, a transcription factor of the FOXO/FKH family and the likely output of insulin/IGF signal transduction in that parasite, has the same or similar developmental regulatory capabilities as DAF-16, its structural ortholog in Caenorhabditis elegans. To this end, both splice variants of the fktf-1 message were expressed under the control of the daf-16alpha promoter in C. elegans carrying loss of function mutations in both daf-2 (the insulin/IGF receptor kinase) and daf-16. Under well-fed culture conditions the majority (91%) of untransformed daf-2; daf-16 double mutants developed via the continuous reproductive cycle, whereas under the same conditions 100% of daf-2 single mutants formed dauers. Transgenic daf-2; daf-16 individuals expressing fktf-1b showed a reversal of the double mutant phenotype with 75% of the population forming dauers under well-fed conditions. This phenotype was even more pronounced than that of daf-2; daf-16 mutants transformed with a homologous rescuing construct, daf-16alpha::daf-16a (56% dauers under well fed conditions), indicating that S. stercoralis fktf-1b can almost fully rescue loss-of-function mutants in C. elegans daf-16. By contrast, daf-2; daf-16 mutants expressing S. stercoralis fktf-1a, encoding the second splice variant of FKTF-1, showed a predominantly continuous pattern of development identical to that of the parental double mutant stock. This indicates that, unlike FKTF-1b, the S. stercoralis transcription factor FKTF-1a cannot trigger the shift to dauer-specific gene expression in C. elegans.
Collapse
Affiliation(s)
- Holman C. Massey
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Mahendra K. Bhopale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Xinshe Li
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Michelle Castelletto
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|