201
|
Zhang Y, Wu D, Fan Z, Li J, Gao L, Wang Y, Wang L. Microcystin-LR induces ferroptosis in intestine of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112610. [PMID: 34365207 DOI: 10.1016/j.ecoenv.2021.112610] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Previous studies provide comprehensive evidence of the environmental hazards and intestinal toxicity of microcystin-LR (MC-LR) exposure. However, little is known about the mechanisms underlying the injury of intestine exposed to MC-LR. Juvenile common carp (Cyprinus carpio) were exposed to MC-LR (0 and 10 μg/L) for 15 days. The results suggest that organic anion-transporting polypeptides 3a1, 4a1, 2b1, and 1d1 mediate MC-LR entry into intestinal tissues. Lesion morphological features (vacuolization, deformation and dilation of the endoplasmic reticulum [ER], absence of mitochondrial cristae in mid-intestine), up-regulated mRNA expressions of ER stress (eukaryotic translation initiation factor 2-alpha kinase 3, endoplasmic reticulum to nucleus signaling 1, activating transcription factor [ATF] 6, ATF4, DNA damage-inducible transcript 3), iron accumulation, and down-regulated activity of glutathione peroxidase (GPx) and glutathione (GSH) content were all typical characteristics of ferroptosis in intestinal tissue following MC-LR exposure. GSH levels in intestinal tissue corroborated as the most influential GSH/GPx 4- related metabolic pathway in response to MC-LR exposure. Verrucomicrobiota, Planctomycetes, Bdellovibrionota, Firmicutes and Cyanobacteria were correlated with the ferroptosis-related GSH following MC-LR exposure. These findings provide new perspectives of the ferroptosis mechanism of MC-LR-induced intestinal injury in the common carp.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Lei Gao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Yu'e Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
202
|
Histochrome Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Ferroptosis-Induced Cardiomyocyte Death. Antioxidants (Basel) 2021; 10:antiox10101624. [PMID: 34679760 PMCID: PMC8533175 DOI: 10.3390/antiox10101624] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Reactive oxygen species (ROS) and intracellular iron levels are critical modulators of lipid peroxidation that trigger iron-dependent non-apoptotic ferroptosis in myocardial ischemia-reperfusion (I/R) injury. Histochrome (HC), with a potent antioxidant moiety and iron-chelating capacity, is now available in clinical practice. However, limited data are available about the protective effects of HC on ferroptotic cell death in myocardial I/R injury. In this study, we investigated whether the intravenous administration of HC (1 mg/kg) prior to reperfusion could decrease myocardial damage by reducing ferroptosis. Rats undergoing 60 min of ischemia and reperfusion were randomly divided into three groups as follows: (1) Sham, (2) I/R control, and (3) I/R + HC. Serial echocardiography up to four weeks after I/R injury showed that intravenous injection of HC significantly improved cardiac function compared to the I/R controls. In addition, the hearts of rats who received intravenous injection of HC exhibited significantly lower cardiac fibrosis and higher capillary density. HC treatment decreased intracellular and mitochondrial ROS levels by upregulating the expression of nuclear factor erythroid 2-related factor (Nrf2) and its downstream genes. HC also inhibited erastin- and RSL3-induced ferroptosis in rat neonatal cardiomyocytes by maintaining the intracellular glutathione level and through upregulated activity of glutathione peroxidase 4. These findings suggest that early intervention with HC before reperfusion rescued myocardium from I/R injury by preventing ferroptotic cell death. Therefore, HC is a promising therapeutic option to provide secondary cardioprotection in patients who undergo coronary reperfusion therapy.
Collapse
|
203
|
Li X, Zou Y, Fu YY, Xing J, Wang KY, Wan PZ, Zhai XY. A-Lipoic Acid Alleviates Folic Acid-Induced Renal Damage Through Inhibition of Ferroptosis. Front Physiol 2021; 12:680544. [PMID: 34630132 PMCID: PMC8493959 DOI: 10.3389/fphys.2021.680544] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/20/2021] [Indexed: 01/31/2023] Open
Abstract
Folic acid (FA)-induced acute kidney injury (AKI) is characterized by the disturbance of redox homeostasis, resulting in massive tubular necrosis and inflammation. Α-lipoic acid (LA), as an antioxidant, has been reported to play an important role in renal protection, but the underlying mechanism remains poorly explored. The aim of this study is to investigate the protective effect of LA on FA-induced renal damage. Our findings showed that LA could ameliorate renal dysfunction and histopathologic damage induced by FA overdose injection. Moreover, FA injection induced severe inflammation, indicated by increased release of pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-1β, as well as infiltration of macrophage, which can be alleviated by LA supplementation. In addition, LA not only reduced the cellular iron overload by upregulating the expressions of Ferritin and ferroportin (FPN), but also mitigated reactive oxygen species (ROS) accumulation and lipid peroxidation by increasing the levels of antioxidant glutathione (GSH) and glutathione peroxidase-4 (GPX4). More importantly, we found that LA supplementation could reduce the number of Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive tubular cells caused by FA, indicating that the tubular cell death mediated by ferroptosis may be inhibited. Further study demonstrated that LA supplementation could reverse the decreased expression of cystine/glutamate antiporter xCT (SLC7A11), which mediated GSH synthesis. What is more, mechanistic study indicated that p53 activation was involved in the inhibitory effect of SLC7A11 induced by FA administration, which could be suppressed by LA supplementation. Taken together, our findings indicated that LA played the protective effect on FA-induced renal damage mainly by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Xue Li
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Zou
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yuan-Yuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Kai-Yue Wang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Peng-Zhi Wan
- Department of Nephrology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Institute of Nephropathology, China Medical University, Shenyang, China
| |
Collapse
|
204
|
Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1098970. [PMID: 34630843 PMCID: PMC8494591 DOI: 10.1155/2021/1098970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron-dependent regulated necrosis characterized by the peroxidation damage of lipid molecular containing unsaturated fatty acid long chain on the cell membrane or organelle membrane after cellular deactivation restitution system, resulting in the cell membrane rupture. Ferroptosis is biochemically and morphologically distinct and disparate from other forms of regulated cell death. Recently, mounting studies have investigated the mechanism of ferroptosis, and numerous proteins play vital roles in regulating ferroptosis. With detailed studies, emerging evidence indicates that ferroptosis is found in multiple lung diseases, demonstrating that ferroptosis appears to be particularly important for lung diseases. The mounting interest in ferroptosis drugs specifically targeting the ferroptosis mechanism holds substantial therapeutic promise in lung diseases. The present review emphatically summarizes the functions and integrated molecular mechanisms of ferroptosis in various lung diseases, proposing that multiangle regulation of ferroptosis might be a promising strategy for the clinical treatment of lung diseases.
Collapse
|
205
|
Ahmad P, Raja V, Ashraf M, Wijaya L, Bajguz A, Alyemeni MN. Jasmonic acid (JA) and gibberellic acid (GA 3) mitigated Cd-toxicity in chickpea plants through restricted cd uptake and oxidative stress management. Sci Rep 2021; 11:19768. [PMID: 34611203 PMCID: PMC8492619 DOI: 10.1038/s41598-021-98753-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
Cadmium stress is one of the chief environmental cues that can substantially reduce plant growth. In the present research, we studied the effect of jasmonic acid (JA) and gibberellic acid (GA3) applied individually and/or in combination to chickpea (Cicer arietinum) plants exposed to 150 µM cadmium sulphate. Cadmium stress resulted in reduced plant growth and pigment contents. Moreover, chickpea plants under cadmium contamination displayed higher levels of electrolytic leakage, H2O2, and malonaldehyde, as well as lower relative water content. Plants primed with JA (1 nM) and those foliar-fed with GA3 (10-6 M) showed improved metal tolerance by reducing the accumulation of reactive oxygen species, malonaldehyde and electrolytic leakage, and increasing relative water content. . Osmoprotectants like proline and glycinebetaine increased under cadmium contamination. Additionally, the enzymatic activities and non-enzymatic antioxidant levels increased markedly under Cd stress, but application of JA as well as of GA3 further improved these attributes. Enzymes pertaining to the ascorbate glutathione and glyoxylase systems increased significantly when the chickpea plants were exposed to Cd. However, JA and GA3 applied singly or in combination showed improved enzymatic activities as well as nutrient uptake, whereas they reduced the metal accumulation in chickpea plants. Taken together, our findings demonstrated that JA and GA3 are suitable agents for regulating Cd stress resistance in chickpea plants.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- grid.56302.320000 0004 1773 5396Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia ,Department of Botany, S.P. College, Srinagar, Jammu and Kashmir India
| | - Vaseem Raja
- grid.412997.00000 0001 2294 5433Government Degree College for Women, Pulwama, Jammu and Kashmir 192301 India
| | - Muhammed Ashraf
- grid.413016.10000 0004 0607 1563University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Leonard Wijaya
- grid.56302.320000 0004 1773 5396Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Andrzej Bajguz
- grid.25588.320000 0004 0620 6106Department of Biology and Ecology of Plants, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Mohammed Nasser Alyemeni
- grid.56302.320000 0004 1773 5396Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
206
|
Zhong X, Zhang Z, Shen H, Xiong Y, Shah YM, Liu Y, Fan X, Rui L. Hepatic NF-κB-Inducing Kinase and Inhibitor of NF-κB Kinase Subunit α Promote Liver Oxidative Stress, Ferroptosis, and Liver Injury. Hepatol Commun 2021; 5:1704-1720. [PMID: 34558831 PMCID: PMC8485893 DOI: 10.1002/hep4.1757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced hepatotoxicity limits development of new effective medications. Drugs and numerous endogenous/exogenous agents are metabolized/detoxified by hepatocytes, during which reactive oxygen species (ROS) are generated as a by-product. ROS has broad adverse effects on liver function and integrity, including damaging hepatocyte proteins, lipids, and DNA and promoting liver inflammation and fibrosis. ROS in concert with iron overload drives ferroptosis. Hepatic nuclear factor kappa B (NF-κB)-inducing kinase (NIK) is aberrantly activated in a broad spectrum of liver disease. NIK phosphorylates and activates inhibitor of NF-κB kinase subunit alpha (IKKα), and the hepatic NIK/IKKα cascade suppresses liver regeneration. However, the NIK/IKKα pathway has not been explored in drug-induced liver injury. Here, we identify hepatic NIK as a previously unrecognized mediator for acetaminophen (APAP)-induced acute liver failure. APAP treatment increased both NIK transcription and NIK protein stability in primary hepatocytes as well as in liver in mice. Hepatocyte-specific overexpression of NIK augmented APAP-induced liver oxidative stress in mice and increased hepatocyte death and mortality in a ROS-dependent manner. Conversely, hepatocyte-specific ablation of NIK or IKKα mitigated APAP-elicited hepatotoxicity and mortality. NIK increased lipid peroxidation and cell death in APAP-stimulated primary hepatocytes. Pretreatment with antioxidants or ferroptosis inhibitors blocked NIK/APAP-induced hepatocyte death. Conclusion: We unravel a previously unrecognized NIK/IKKα/ROS/ferroptosis axis engaged in liver disease progression.
Collapse
Affiliation(s)
- Xiao Zhong
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Infectious DiseasesHunan Key Laboratory of Viral HepatitisXiangya HospitalCentral South UniversityChangshaChina
| | - Zhiguo Zhang
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Hong Shen
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Yi Xiong
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Yatrik M. Shah
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Yong Liu
- College of Life SciencesInstitute for Advanced StudiesWuhan UniversityWuhanChina
| | - Xue‐Gong Fan
- Department of Infectious DiseasesHunan Key Laboratory of Viral HepatitisXiangya HospitalCentral South UniversityChangshaChina
| | - Liangyou Rui
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
207
|
Kar S, Mai HJ, Khalouf H, Ben Abdallah H, Flachbart S, Fink-Straube C, Bräutigam A, Xiong G, Shang L, Panda SK, Bauer P. Comparative Transcriptomics of Lowland Rice Varieties Uncovers Novel Candidate Genes for Adaptive Iron Excess Tolerance. PLANT & CELL PHYSIOLOGY 2021; 62:624-640. [PMID: 33561287 PMCID: PMC8462385 DOI: 10.1093/pcp/pcab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 05/19/2023]
Abstract
Iron (Fe) toxicity is a major challenge for plant cultivation in acidic waterlogged soil environments, where lowland rice is a major staple food crop. Only few studies have addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance. Out of 16 lowland rice varieties, we identified a pair of contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. The two lines differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation and Fe and metal contents. These responses were likely due to genetic origin as they were mirrored by differential gene expression patterns, obtained through RNA sequencing, and corresponding gene ontology term enrichment in tolerant vs. susceptible lines. Thirty-five genes of the metal homeostasis category, mainly root expressed, showed differential transcriptomic profiles suggestive of an induced tolerance mechanism. Twenty-two out of these 35 metal homeostasis genes were present in selection sweep genomic regions, in breeding signatures, and/or differentiated during rice domestication. These findings suggest that Fe excess tolerance is an important trait in the domestication of lowland rice, and the identified genes may further serve to design the targeted Fe tolerance breeding of rice crops.
Collapse
Affiliation(s)
- Saradia Kar
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Hadeel Khalouf
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Heithem Ben Abdallah
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Samantha Flachbart
- Institute of Plant Biochemistry, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| | | | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Universitätsstr. 27, Bielefeld 33615, Germany
| | - Guosheng Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lianguang Shang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
208
|
Li C, Wang X, Qin R, Zhong Z, Sun C. Identification of a Ferroptosis Gene Set That Mediates the Prognosis of Squamous Cell Carcinoma of the Head and Neck. Front Genet 2021; 12:698040. [PMID: 34539737 PMCID: PMC8446460 DOI: 10.3389/fgene.2021.698040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 01/23/2023] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is one of the six most common malignancies. HNSCC has both a high incidence and poor prognosis, and its prognostic factors remain unclear. Ferroptosis is a newly discovered form of programmed cell death that is iron-dependent. Increasing evidence indicates that targeting ferroptosis may present a new form of anti-tumor treatment. However, the prognostic value of ferroptosis-related genes (FRGs) in HNSCC is unclear. This study was designed to identify molecular markers associated with ferroptosis that influence prognosis in patients with HNSCC. We used HNSCC tumor and normal data from The Cancer Genome Atlas (TCGA) to identify prognosis-related FRGs. An FRG-based prognostic risk score was constructed, and its prognostic value for patients with HNSCC was evaluated using receiver operating characteristic curve (ROC) and nomogram analyses. The model was validated using the Gene Expression Omnibus (GEO) database. Univariate Cox regression analysis in patients with HNSCC revealed 11 FRGs that were significantly associated with overall survival (OS). We constructed a ferroptosis risk score model based on five genes and divided the patients into different risk groups based on its median value. Kaplan-Meier curve analysis showed that patients with a higher ferroptosis risk score had shorter OS (TCGA training set: P < 0.001, TCGA validation set: P < 0.05,GEO validation set: P < 0.001), and Gene Expression Profiling Interactive Analysis (GEPIA) further verified the relationships between these five genes and prognosis in patients with HNSCC. Multivariate Cox regression analysis showed that the risk score remained an independent predictor of OS after the exclusion of clinical confounders (HR > 1, P < 0.01). Significant differences in gene function enrichment analysis and immune cell infiltration status were identified between the two groups. The prognostic model can be used to predict the prognosis of patients with HNSCC. Moreover, the five FRGs may affect ferroptosis in HNSCC and thereby represent potential treatment targets. These results provide new directions for HNSCC treatment.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Xuemin Wang
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Rujia Qin
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Zhaoming Zhong
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China.,Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chuanzheng Sun
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
209
|
Wang X, Wang Z, Cao J, Dong Y, Chen Y. Ferroptosis Mechanisms Involved in Hippocampal-Related Diseases. Int J Mol Sci 2021; 22:ijms22189902. [PMID: 34576065 PMCID: PMC8472822 DOI: 10.3390/ijms22189902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ferroptosis is a newly recognized type of cell death that is different from traditional forms of cell death, such as apoptosis, autophagy, and necrosis. It is caused by the accumulation of intracellular iron, promoting lipid peroxidation and leading to cell death. Iron is essential as a redox metal in several physiological functions. The brain is one of the organs known to be affected by iron homeostatic balance disruption. An increased concentration of iron in the central nervous system has been associated with oxidative stress, lipid peroxidation of proteins, and cell death. The hippocampus is an important brain region for learning, memory, and emotional responses, and is also a sensitive part of the brain to the dysfunctional homeostasis of transition metals. Damage of hippocampal structure and function are intimately involved in the pathogenic mechanisms underlying neurodegenerative diseases. Currently, ferroptosis is playing an increasingly important role in treatment areas of central nervous system diseases. Thus, we provide an overview of ferroptosis regulatory mechanisms, such as lipid metabolism, glutathione metabolism, and iron metabolism in this review. We also highlight the role of ferroptosis in hippocampal-related diseases and investigate a theoretical basis for further research on the role of ferroptosis in nervous system disease treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-62733778; Fax: +86-10-62733199
| |
Collapse
|
210
|
Dong S, Li X, Jiang W, Chen Z, Zhou W. Current understanding of ferroptosis in the progression and treatment of pancreatic cancer. Cancer Cell Int 2021; 21:480. [PMID: 34503532 PMCID: PMC8427874 DOI: 10.1186/s12935-021-02166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a highly malignant tumour of the digestive tract. Despite advances in treatment, its 5-year survival rate remains low, and its prognosis is the worst among all cancers; innovative therapeutic methods are needed. Ferroptosis is a form of regulatory cell death driven by iron accumulation and lipid peroxidation. Recent studies have found that ferroptosis plays an important role in the development and treatment response of tumours, particularly pancreatic cancer. This article reviews the current understanding of the mechanism of ferroptosis and ferroptosis-related treatment in pancreatic cancer.
Collapse
Affiliation(s)
- Shi Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenkai Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Gansu Province, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou City, 730000, China.
| |
Collapse
|
211
|
Dar HH, Anthonymuthu TS, Ponomareva LA, Souryavong AB, Shurin GV, Kapralov AO, Tyurin VA, Lee JS, Mallampalli RK, Wenzel SE, Bayir H, Kagan VE. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO • sabotage of theft-ferroptosis. Redox Biol 2021; 45:102045. [PMID: 34167028 PMCID: PMC8227829 DOI: 10.1016/j.redox.2021.102045] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023] Open
Abstract
Ferroptosis is a redox-driven type of regulated cell death program arising from maladaptation of three metabolic pathways: glutathione homeostasis, iron handling and lipid peroxidation. Though GSH/Gpx4 is the predominant system detoxifying phospholipid hydroperoxides (PLOOH) in mammalian cells, recently Gpx4-independent regulators of ferroptosis like ferroptosis suppressor protein 1 (FSP1) in resistant cancer lines and iNOS/NO• in M1 macrophages have been discovered. We previously reported that Pseudomonas aeruginosa (PA) utilizes its 15- lipoxygenase (pLoxA) to trigger ferroptotic death in epithelial cells by oxidizing the host arachidonoyl-phosphatidylethanolamine (ETE-PE) into pro-ferroptotic 15-hydroperoxy- arachidonyl-PE (15-HpETE-PE). Here we demonstrate that PA degrades the host GPx4 defense by activating the lysosomal chaperone-mediated autophagy (CMA). In response, the host stimulates the iNOS/NO•-driven anti-ferroptotic mechanism to stymie lipid peroxidation and protect GPx4/GSH-deficient cells. By using a co-culture model system, we showed that macrophage-produced NO• can distantly prevent PA stimulated ferroptosis in epithelial cells as an inter-cellular mechanism. We further established that suppression of ferroptosis in epithelial cells by NO• is enabled through the suppression of phospholipid peroxidation, particularly the production of pro-ferroptotic 15-HpETE-PE signals. Pharmacological targeting of iNOS (NO• generation) attenuated its anti-ferroptotic function. In conclusion, our findings define a new inter-cellular ferroptosis suppression mechanism which may represent a new strategy of the host against P. aeruginosa induced theft-ferroptosis.
Collapse
Affiliation(s)
- Haider H Dar
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liubov A Ponomareva
- Institute for Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Austin B Souryavong
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Galina V Shurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandr O Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Asthma Institute, University of Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Institute for Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia; Departments of Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, PA, USA.
| |
Collapse
|
212
|
Bagayoko S, Leon-Icaza SA, Pinilla M, Hessel A, Santoni K, Péricat D, Bordignon PJ, Moreau F, Eren E, Boyancé A, Naser E, Lefèvre L, Berrone C, Iakobachvili N, Metais A, Rombouts Y, Lugo-Villarino G, Coste A, Attrée I, Frank DW, Clevers H, Peters PJ, Cougoule C, Planès R, Meunier E. Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathog 2021; 17:e1009927. [PMID: 34516571 PMCID: PMC8460005 DOI: 10.1371/journal.ppat.1009927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/23/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.
Collapse
Affiliation(s)
- Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Audrey Hessel
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - David Péricat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Pierre-Jean Bordignon
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Flavie Moreau
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Level 3 Biosafety Animal Core facility, Anexplo platform, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Elif Eren
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Aurélien Boyancé
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Emmanuelle Naser
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Cytometry & Imaging Core facility, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Lise Lefèvre
- RESTORE institute, University of Toulouse, CNRS, Toulouse, France
| | - Céline Berrone
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Level 3 Biosafety Animal Core facility, Anexplo platform, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Nino Iakobachvili
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Arnaud Metais
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Yoann Rombouts
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Agnès Coste
- RESTORE institute, University of Toulouse, CNRS, Toulouse, France
| | - Ina Attrée
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Netherlands
| | - Peter J. Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| |
Collapse
|
213
|
Cai J, Li C, Li H, Wang X, Zhou Y. Establishment of a ferroptosis-related gene signature for prognosis in lung adenocarcinoma patients. PeerJ 2021; 9:e11931. [PMID: 34434660 PMCID: PMC8351575 DOI: 10.7717/peerj.11931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Lung cancer is the most common malignancy worldwide and exhibits both high morbidity and mortality. In recent years, scientists have made substantial breakthroughs in the early diagnosis and treatment of lung adenocarcinoma (LUAD), however, patient prognosis still shows vast individual differences. In this study, bioinformatics methods were used to identify and analyze ferroptosis-related genes to establish an effective signature for predicting prognosis in LUAD patients. Methods The gene expression profiles of LUAD patients with complete clinical and follow-up information were downloaded from two public databases, univariate Cox regression and multivariate Cox regression analysis were used to obtain ferroptosis-related genes for constructing the prognos tic risk model, AUC and calibration plot were used to evaluate the predictive accuracy of the FRGS and nomogram. Results A total of 74 ferroptosis-related differentially expressed genes (DEGs) were identi fied between LUAD and normal tissues from The Cancer Genome Atlas (TCGA) database. A five-gene panel for prediction of LUAD prognosis was established by multivariate regression and was verified using the GSE68465 cohort from the Gene Expression Omnibus (GEO) database. Patients were divided into two different risk groups according to the median risk score of the five genes. Based on Kaplan-Meier (KM) analysi, the OS rate of the high-risk group was markedly worse than that of the low-risk group. We also found that risk score was an independent prognostic indicator. The receiver operating characteristic ROC curve showed that the proposed model had good prediction ability. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses indicated that risk score was prominently enriched in ferroptosis processes. Moreover, at the score of immune-associated gene sets, significant differences were found between the two risk groups. Conclusions This study demonstrated that ferroptosis-related gene signatures can be used as a potential predictor for the prognosis of LUAD, thus providing a novel strategy for individualized treatment in LUAD patients.
Collapse
Affiliation(s)
- Jingjing Cai
- Molecular Diagnostics Center, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Chunyan Li
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Hongsheng Li
- Molecular Diagnostics Center, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Xiaoxiong Wang
- Molecular Diagnostics Center, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yongchun Zhou
- Molecular Diagnostics Center, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, Yunnan, China
| |
Collapse
|
214
|
Devkota R, Kaper D, Bodhicharla R, Henricsson M, Borén J, Pilon M. A genetic titration of membrane composition in Caenorhabditis elegans reveals its importance for multiple cellular and physiological traits. Genetics 2021; 219:iyab093. [PMID: 34125894 PMCID: PMC9335940 DOI: 10.1093/genetics/iyab093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Communicating editor: B. Grant The composition and biophysical properties of cellular membranes must be tightly regulated to maintain the proper functions of myriad processes within cells. To better understand the importance of membrane homeostasis, we assembled a panel of five Caenorhabditis elegans strains that show a wide span of membrane composition and properties, ranging from excessively rich in saturated fatty acids (SFAs) and rigid to excessively rich in polyunsaturated fatty acids (PUFAs) and fluid. The genotypes of the five strain are, from most rigid to most fluid: paqr-1(tm3262); paqr-2(tm3410), paqr-2(tm3410), N2 (wild-type), mdt-15(et14); nhr-49(et8), and mdt-15(et14); nhr-49(et8); acs-13(et54). We confirmed the excess SFA/rigidity-to-excess PUFA/fluidity gradient using the methods of fluorescence recovery after photobleaching (FRAP) and lipidomics analysis. The five strains were then studied for a variety of cellular and physiological traits and found to exhibit defects in: permeability, lipid peroxidation, growth at different temperatures, tolerance to SFA-rich diets, lifespan, brood size, vitellogenin trafficking, oogenesis, and autophagy during starvation. The excessively rigid strains often exhibited defects in opposite directions compared to the excessively fluid strains. We conclude that deviation from wild-type membrane homeostasis is pleiotropically deleterious for numerous cellular/physiological traits. The strains introduced here should prove useful to further study the cellular and physiological consequences of impaired membrane homeostasis.
Collapse
Affiliation(s)
- Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Delaney Kaper
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-405 30, Sweden
| |
Collapse
|
215
|
Bartolacci C, Andreani C, El-Gammal Y, Scaglioni PP. Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Front Mol Biosci 2021; 8:706650. [PMID: 34485382 PMCID: PMC8415548 DOI: 10.3389/fmolb.2021.706650] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
HRAS, NRAS and KRAS, collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux in vitro and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.
Collapse
Affiliation(s)
| | | | | | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
216
|
Haddad M, Hervé V, Ben Khedher MR, Rabanel JM, Ramassamy C. Glutathione: An Old and Small Molecule with Great Functions and New Applications in the Brain and in Alzheimer's Disease. Antioxid Redox Signal 2021; 35:270-292. [PMID: 33637005 DOI: 10.1089/ars.2020.8129] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Glutathione (GSH) represents the most abundant and the main antioxidant in the body with important functions in the brain related to Alzheimer's disease (AD). Recent Advances: Oxidative stress is one of the central mechanisms in AD. We and others have demonstrated the alteration of GSH levels in the AD brain, its important role in the detoxification of advanced glycation end-products and of acrolein, a by-product of lipid peroxidation. Recent in vivo studies found a decrease of GSH in several areas of the brain from control, mild cognitive impairment, and AD subjects, which are correlated with cognitive decline. Critical Issues: Several strategies were developed to restore its intracellular level with the l-cysteine prodrugs or the oral administration of γ-glutamylcysteine to prevent alterations observed in AD. To date, no benefit on GSH level or on oxidative biomarkers has been reported in clinical trials. Thus, it remains uncertain if GSH could be considered a potential preventive or therapeutic approach or a biomarker for AD. Future Directions: We address how GSH-coupled nanocarriers represent a promising approach for the functionalization of nanocarriers to overcome the blood/brain barrier (BBB) for the brain delivery of GSH while avoiding cellular toxicity. It is also important to address the presence of GSH in exosomes for its potential intercellular transfer or its shuttle across the BBB under certain conditions. Antioxid. Redox Signal. 35, 270-292.
Collapse
Affiliation(s)
- Mohamed Haddad
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | | | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| |
Collapse
|
217
|
Gan B. Mitochondrial regulation of ferroptosis. J Cell Biol 2021; 220:212523. [PMID: 34328510 PMCID: PMC8329737 DOI: 10.1083/jcb.202105043] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Ferroptosis is a form of iron-dependent regulated cell death driven by uncontrolled lipid peroxidation. Mitochondria are double-membrane organelles that have essential roles in energy production, cellular metabolism, and cell death regulation. However, their role in ferroptosis has been unclear and somewhat controversial. In this Perspective, I summarize the diverse metabolic processes in mitochondria that actively drive ferroptosis, discuss recently discovered mitochondria-localized defense systems that detoxify mitochondrial lipid peroxides and protect against ferroptosis, present new evidence for the roles of mitochondria in regulating ferroptosis, and outline outstanding questions on this fascinating topic for future investigations. An in-depth understanding of mitochondria functions in ferroptosis will have important implications for both fundamental cell biology and disease treatment.
Collapse
Affiliation(s)
- Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
218
|
Inhibition of miR-214-3p Protects Endothelial Cells from ox-LDL-Induced Damage by Targeting GPX4. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9919729. [PMID: 34327240 PMCID: PMC8277498 DOI: 10.1155/2021/9919729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
It is generally believed that excessive production of reactive oxygen species (ROS) during cardiovascular diseases impairs endothelial function. In this study, we aimed to investigate whether miR-214-3p is involved in the endothelial dysfunction induced by oxidized low-density lipoprotein (ox-LDL). In cultured vascular endothelial cells (VECs), the effects of miR-214-3p on endothelial injury induced by 100 mg/L ox-LDL were evaluated by knockdown of miR-214-3p. Western blotting was used to determine the expression of glutathione peroxidase 4 (GPX4) and endothelial nitric oxide synthase (eNOS) in VECs under different conditions. A luciferase reporter assay was used to identify GPX4 as the target of miR-214-3p. Our data showed that 100 mg/L ox-LDL significantly decreased the expression of GPX4 and eNOS, which was associated with increases in ROS levels and impairments of VEC viability and migration. Knockdown of miR-214-3p could partially reduce the increase in ROS, restore the decreased expression of GPX4 and eNOS, and thus rescue the impaired endothelial function caused by ox-LDL. Our data demonstrated that ox-LDL could induce upregulation of miR-214-3p and result in suppression of GPX4 in VECs. Downregulation of miR-214-3p could protect VECs from ROS-induced endothelial dysfunction by reversing its inhibitory effect on GPX4 expression.
Collapse
|
219
|
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, Zhang X, Khan NUH, Wang L, Zhou J. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res 2021; 40:206. [PMID: 34162423 PMCID: PMC8223374 DOI: 10.1186/s13046-021-02012-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ferroptosis is a newly defined form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxidation and is involved in various pathophysiological conditions, including cancer. Targeting ferroptosis is considered to be a novel anti-cancer strategy. The identification of FDA-approved drugs as ferroptosis inducers is proposed to be a new promising approach for cancer treatment. Despite a growing body of evidence indicating the potential efficacy of the anti-diabetic metformin as an anti-cancer agent, the exact mechanism underlying this efficacy has not yet been fully elucidated. METHODS The UFMylation of SLC7A11 is detected by immunoprecipitation and the expression of UFM1 and SLC7A11 in tumor tissues was detected by immunohistochemical staining. The level of ferroptosis is determined by the level of free iron, total/lipid Ros and GSH in the cells and the morphological changes of mitochondria are observed by transmission electron microscope. The mechanism in vivo was verified by in situ implantation tumor model in nude mice. RESULTS Metformin induces ferroptosis in an AMPK-independent manner to suppress tumor growth. Mechanistically, we demonstrate that metformin increases the intracellular Fe2+ and lipid ROS levels. Specifically, metformin reduces the protein stability of SLC7A11, which is a critical ferroptosis regulator, by inhibiting its UFMylation process. Furthermore, metformin combined with sulfasalazine, the system xc- inhibitor, can work in a synergistic manner to induce ferroptosis and inhibit the proliferation of breast cancer cells. CONCLUSIONS This study is the first to demonstrate that the ability of metformin to induce ferroptosis may be a novel mechanism underlying its anti-cancer effect. In addition, we identified SLC7A11 as a new UFMylation substrate and found that targeting the UFM1/SLC7A11 pathway could be a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Shuduo Xie
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Aihua Huang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China
| | | | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
220
|
Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol 2021; 45:102056. [PMID: 34229160 PMCID: PMC8264218 DOI: 10.1016/j.redox.2021.102056] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is primarily triggered by a failure of the glutathione (GSH)-glutathione peroxidase 4 (GPX4) reductive system and associated overwhelming lipid peroxidation, in which enzymes regulating polyunsaturated fatty acid (PUFA) metabolism, and in particular acyl-CoA synthetase long chain family member 4 (ACSL4), are central. Here, we found that exogenous oxygen radicals generated by photodynamic therapy (PDT) can directly peroxidize PUFAs and initiate lipid autoxidation, coinciding with cellular GSH depletion. Different from canonical ferroptosis induced by RSL3 or erastin, PDT-initiated lipid peroxidation and ferroptotis-like cell death is independent of lipoxygenase (ALOXs) and ACSL4. Especially, this form of cell death modality can be triggered in malignant cells insensitive to or acquired resistance to canonical ferroptosis inducers. We also observed a distinct iron metabolism pathway in this PDT-triggered cell death modality, in which cytosolic labile iron is decreased probably due to its relocation to mitochondria. Inhibition of the mitochondrial Ca2+ and Fe2+ uniporter (MCU) effectively prevented PDT-triggered lipid peroxidation and subsequent cell death. Therefore, we tentatively term this distinct ferroptosis-like cell death as liperoptosis. Moreover, using the clinically approved photosensitizer Verteporfin, PDT inhibited tumor growth through inducing prevailing ferroptosis-like cell death in a mouse xenograft model. With its site-specific advantages, these findings highlight the value of using PDT to trigger lipid peroxidation and ferroptosis-like cell death in vivo, and will benefit exploring the exact molecular mechanism of immunological effects of PDT in cancer treatment.
Collapse
Affiliation(s)
- Sufang Shui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zenglu Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
221
|
Soriano-Castell D, Liang Z, Maher P, Currais A. The search for anti-oxytotic/ferroptotic compounds in the plant world. Br J Pharmacol 2021; 178:3611-3626. [PMID: 33931859 DOI: 10.1111/bph.15517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Oxytosis/ferroptosis is a form of non-apoptotic regulated cell death characterized by glutathione (GSH) depletion and dysregulated production of mitochondrial ROS that results in lethal lipid peroxidation. As the significance of oxytosis/ferroptosis to age-associated human diseases is now beginning to be appreciated, the development of innovative approaches to identify novel therapeutics that target the oxytosis/ferroptosis pathway could not be more timely. Due to their sessile nature, plants are exposed to a variety of stresses that trigger physiological changes similar to those found in oxytosis/ferroptosis. As such, they have evolved a rich array of chemical strategies to deal with those challenging conditions. This review details a drug discovery approach for identifying potent inhibitors of oxytosis/ferroptosis from plants for the treatment of Alzheimer's disease and related dementias, thereby highlighting the tremendous potential of plant-based research for developing new medicines while simultaneously being a catalyst for sustainability.
Collapse
Affiliation(s)
- David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
222
|
Li X, Li W, Yang P, Zhou H, Zhang W, Ma L. Anticancer effects of Cryptotanshinone against lung cancer cells through ferroptosis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
223
|
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of Regulated Cell Death: Current Perspectives. Vet Pathol 2021; 58:596-623. [PMID: 34039100 DOI: 10.1177/03009858211005537] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Balancing cell survival and cell death is fundamental to development and homeostasis. Cell death is regulated by multiple interconnected signaling pathways and molecular mechanisms. Regulated cell death (RCD) is implicated in fundamental processes such as organogenesis and tissue remodeling, removal of unnecessary structures or cells, and regulation of cell numbers. RCD can also be triggered by exogenous perturbations of the intracellular or extracellular microenvironment when the adaptive processes that respond to stress fail. During the past few years, many novel forms of non-apoptotic RCD have been identified, and the characterization of RCD mechanisms at a molecular level has deepened our understanding of diseases encountered in human and veterinary medicine. Given the complexity of these processes, it has become clear that the identification of RCD cannot be based simply on morphologic characteristics and that descriptive and diagnostic terms presently used by pathologists-such as individual cell apoptosis or necrosis-appear inadequate and possibly misleading. In this review, the current understanding of the molecular machinery of each type of non-apoptotic RCD mechanisms is outlined. Due to the continuous discovery of new mechanisms or nuances of previously described processes, the limitations of the terms apoptosis and necrosis to indicate microscopic findings are also reported. In addition, the need for a standard panel of biomarkers and functional tests to adequately characterize the underlying RCD and its role as a mechanism of disease is considered.
Collapse
Affiliation(s)
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | - James C Tarrant
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | | | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
224
|
Lin Z, Liu J, Kang R, Yang M, Tang D. Lipid Metabolism in Ferroptosis. Adv Biol (Weinh) 2021; 5:e2100396. [PMID: 34015188 DOI: 10.1002/adbi.202100396] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Lipid metabolism is a complex biochemical process that participates in the regulation of cell survival and death. Ferroptosis is a form of iron-dependent regulated cell death driven by abnormal lipid metabolism, leading to lipid peroxidation and subsequent plasma membrane rupture. A variety of antioxidant systems and membrane repair pathways can diminish oxidative damage, enabling survival and growth in response to ferroptotic signals. Such impairment of ferroptosis machinery is implicated in various pathological conditions and diseases, especially cancer and tissue damage. It is discussed here how lipid metabolism pathways, including lipid synthesis, degradation, storage, transformation, and utilization, modulate ferroptosis sensitivity or tolerance in different models, especially cancer.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510600, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
225
|
Sparvero LJ, Tian H, Amoscato AA, Sun W, Anthonymuthu TS, Tyurina YY, Kapralov O, Javadov S, He R, Watkins SC, Winograd N, Kagan VE, Bayır H. Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam Secondary Ion Mass Spectrometry (GCIB‐SIMS). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louis J. Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Hua Tian
- Department of Chemistry Pennsylvania State University University Park State College PA 16802 USA
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Wan‐Yang Sun
- College of Pharmacy Jinan University Guangzhou Guangdong 510632 China
| | - Tamil S. Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Oleksandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Sabzali Javadov
- Department of Physiology School of Medicine University of Puerto Rico San Juan PR 00936-5067 USA
| | - Rong‐Rong He
- College of Pharmacy and School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong 510632 China
| | - Simon C. Watkins
- Department of Cell Biology and Center for Biological Imaging University of Pittsburgh Pittsburgh PA 15261 USA
| | - Nicholas Winograd
- Department of Chemistry Pennsylvania State University University Park State College PA 16802 USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| |
Collapse
|
226
|
Sparvero LJ, Tian H, Amoscato AA, Sun WY, Anthonymuthu TS, Tyurina YY, Kapralov O, Javadov S, He RR, Watkins SC, Winograd N, Kagan VE, Bayır H. Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam Secondary Ion Mass Spectrometry (GCIB-SIMS). Angew Chem Int Ed Engl 2021; 60:11784-11788. [PMID: 33684237 PMCID: PMC8243396 DOI: 10.1002/anie.202102001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Peroxidized phosphatidylethanolamine (PEox) species have been identified by liquid chromatography mass spectrometry (LC-MS) as predictive biomarkers of ferroptosis, a new program of regulated cell death. However, the presence and subcellular distribution of PEox in specific cell types and tissues have not been directly detected by imaging protocols. By applying gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) imaging with a 70 keV (H2 O)n+ (n>28 000) cluster ion beam, we were able to map PEox with 1.2 μm spatial resolution at the single cell/subcellular level in ferroptotic H9c2 cardiomyocytes and cortical/hippocampal neurons after traumatic brain injury. Application of this protocol affords visualization of physiologically relevant levels of very low abundance (20 pmol μmol-1 lipid) peroxidized lipids in subcellular compartments and their accumulation in disease conditions.
Collapse
Affiliation(s)
- Louis J. Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Hua Tian
- Department of Chemistry, Pennsylvania State University University Park, State College, PA 16802 (USA)
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Wan-Yang Sun
- College of Pharmacy, Jinan University Guangzhou, Guangdong 510632 (China)
| | - Tamil S. Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Oleksandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Sabzali Javadov
- Department of Physiology, School of Medicine University of Puerto Rico, San Juan, PR 00936-5067 (USA)
| | - Rong-Rong He
- College of Pharmacy and School of Traditional Chinese Medicine Jinan University, Guangzhou, Guangdong 510632 (China)
| | - Simon C. Watkins
- Department of Cell Biology and Center for Biological Imaging University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University University Park, State College, PA 16802 (USA)
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| |
Collapse
|
227
|
Ren JX, Li C, Yan XL, Qu Y, Yang Y, Guo ZN. Crosstalk between Oxidative Stress and Ferroptosis/Oxytosis in Ischemic Stroke: Possible Targets and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643382. [PMID: 34055196 PMCID: PMC8133868 DOI: 10.1155/2021/6643382] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/23/2021] [Indexed: 01/21/2023]
Abstract
Oxidative stress is a key cause of ischemic stroke and an initiator of neuronal dysfunction and death, mainly through the overproduction of peroxides and the depletion of antioxidants. Ferroptosis/oxytosis is a unique, oxidative stress-induced cell death pathway characterized by lipid peroxidation and glutathione depletion. Both oxidative stress and ferroptosis/oxytosis have common molecular pathways. This review summarizes the possible targets and the mechanisms underlying the crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke. This knowledge might help to further understand the pathophysiology of ischemic stroke and open new perspectives for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jia-Xin Ren
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Chao Li
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Xiu-Li Yan
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Yang Qu
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Yi Yang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| | - Zhen-Ni Guo
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| |
Collapse
|
228
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
229
|
Zhang XJ, Zhou L, Lu WJ, Du WX, Mi XY, Li Z, Li XY, Wang ZW, Wang Y, Duan M, Gui JF. Comparative transcriptomic analysis reveals an association of gibel carp fatty liver with ferroptosis pathway. BMC Genomics 2021; 22:328. [PMID: 33952209 PMCID: PMC8101161 DOI: 10.1186/s12864-021-07621-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fatty liver has become a main problem that causes huge economic losses in many aquaculture modes. It is a common physiological or pathological phenomenon in aquaculture, but the causes and occurring mechanism are remaining enigmatic. METHODS Each three liver samples from the control group of allogynogenetic gibel carp with normal liver and the overfeeding group with fatty liver were collected randomly for the detailed comparison of histological structure, lipid accumulation, transcriptomic profile, latent pathway identification analysis (LPIA), marker gene expression, and hepatocyte mitochondria analyses. RESULTS Compared to normal liver, larger hepatocytes and more lipid accumulation were observed in fatty liver. Transcriptomic analysis between fatty liver and normal liver showed a totally different transcriptional trajectory. GO terms and KEGG pathways analyses revealed several enriched pathways in fatty liver, such as lipid biosynthesis, degradation accumulation, peroxidation, or metabolism and redox balance activities. LPIA identified an activated ferroptosis pathway in the fatty liver. qPCR analysis confirmed that gpx4, a negative regulator of ferroptosis, was significantly downregulated while the other three positively regulated marker genes, such as acsl4, tfr1 and gcl, were upregulated in fatty liver. Moreover, the hepatocytes of fatty liver had more condensed mitochondria and some of their outer membranes were almost ruptured. CONCLUSIONS We reveal an association between ferroptosis and fish fatty liver for the first time, suggesting that ferroptosis might be activated in liver fatty. Therefore, the current study provides a clue for future studies on fish fatty liver problems.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Yuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
230
|
Iuchi K, Takai T, Hisatomi H. Cell Death via Lipid Peroxidation and Protein Aggregation Diseases. BIOLOGY 2021; 10:399. [PMID: 34064409 PMCID: PMC8147787 DOI: 10.3390/biology10050399] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Lipid peroxidation of cellular membranes is a complicated cellular event, and it is both the cause and result of various diseases, such as ischemia-reperfusion injury, neurodegenerative diseases, and atherosclerosis. Lipid peroxidation causes non-apoptotic cell death, which is associated with cell fate determination: survival or cell death. During the radical chain reaction of lipid peroxidation, various oxidized lipid products accumulate in cells, followed by organelle dysfunction and the induction of non-apoptotic cell death. Highly reactive oxidized products from unsaturated fatty acids are detected under pathological conditions. Pathological protein aggregation is the general cause of these diseases. The cellular response to misfolded proteins is well-known as the unfolded protein response (UPR) and it is partially concomitant with the response to lipid peroxidation. Moreover, the association between protein aggregation and non-apoptotic cell death by lipid peroxidation is attracting attention. The link between lipid peroxidation and protein aggregation is a matter of concern in biomedical fields. Here, we focus on lethal protein aggregation in non-apoptotic cell death via lipid peroxidation. We reviewed the roles of protein aggregation in the initiation and execution of non-apoptotic cell death. We also considered the relationship between protein aggregation and oxidized lipid production. We provide an overview of non-apoptotic cell death with a focus on lipid peroxidation for therapeutic targeting during protein aggregation diseases.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo 180-8633, Japan; (T.T.); (H.H.)
| | | | | |
Collapse
|
231
|
Geng Z, Guo Z, Guo R, Ye R, Zhu W, Yan B. Ferroptosis and traumatic brain injury. Brain Res Bull 2021; 172:212-219. [PMID: 33932492 DOI: 10.1016/j.brainresbull.2021.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a worldwide health problem contributing to significant economic burden. TBI is difficult to treat partly due to incomplete understanding of pathophysiology. Ferroptosis is a type of iron-dependent programmed cell death which has gained increasing attention due to its possible role in TBI. Current studies have demonstrated that ferroptosis is related to the pathology of TBI, and inhibition of ferroptosis may improve long term outcomes of TBI. Therefore, clarification of the exact association between ferroptosis and traumatic brain injury is necessary and may provide new targets for treatment. This review describes (1) the ferroptosis pathways following traumatic brain injury, (2) the role of ferroptosis during the chronic phase of traumatic brain injury, and (3) potential therapies targeting the ferroptosis pathways.
Collapse
Affiliation(s)
- Zhiwen Geng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Zhiliang Guo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China.
| | - Ruibing Guo
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Bernard Yan
- Department of Neurology, Neurointervention Service, Royal Melbourne Hospital, Australia; Melbourne Brain Centre @ RMH, Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
232
|
DeRosa A, Leftin A. The Iron Curtain: Macrophages at the Interface of Systemic and Microenvironmental Iron Metabolism and Immune Response in Cancer. Front Immunol 2021; 12:614294. [PMID: 33986740 PMCID: PMC8110925 DOI: 10.3389/fimmu.2021.614294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages fulfill central functions in systemic iron metabolism and immune response. Infiltration and polarization of macrophages in the tumor microenvironment is associated with differential cancer prognosis. Distinct metabolic iron and immune phenotypes in tumor associated macrophages have been observed in most cancers. While this prompts the hypothesis that macroenvironmental manifestations of dysfunctional iron metabolism have direct associations with microenvironmental tumor immune response, these functional connections are still emerging. We review our current understanding of the role of macrophages in systemic and microenvironmental immune response and iron metabolism and discuss these functions in the context of cancer and immunometabolic precision therapy approaches. Accumulation of tumor associated macrophages with distinct iron pathologies at the invasive tumor front suggests an "Iron Curtain" presenting as an innate functional interface between systemic and microenvironmental iron metabolism and immune response that can be harnessed therapeutically to further our goal of treating and eliminating cancer.
Collapse
Affiliation(s)
- Angela DeRosa
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Avigdor Leftin
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
233
|
Beatty A, Singh T, Tyurina YY, Tyurin VA, Samovich S, Nicolas E, Maslar K, Zhou Y, Cai KQ, Tan Y, Doll S, Conrad M, Subramanian A, Bayır H, Kagan VE, Rennefahrt U, Peterson JR. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun 2021; 12:2244. [PMID: 33854057 PMCID: PMC8046803 DOI: 10.1038/s41467-021-22471-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is associated with lipid hydroperoxides generated by the oxidation of polyunsaturated acyl chains. Lipid hydroperoxides are reduced by glutathione peroxidase 4 (GPX4) and GPX4 inhibitors induce ferroptosis. However, the therapeutic potential of triggering ferroptosis in cancer cells with polyunsaturated fatty acids is unknown. Here, we identify conjugated linoleates including α-eleostearic acid (αESA) as ferroptosis inducers. αESA does not alter GPX4 activity but is incorporated into cellular lipids and promotes lipid peroxidation and cell death in diverse cancer cell types. αESA-triggered death is mediated by acyl-CoA synthetase long-chain isoform 1, which promotes αESA incorporation into neutral lipids including triacylglycerols. Interfering with triacylglycerol biosynthesis suppresses ferroptosis triggered by αESA but not by GPX4 inhibition. Oral administration of tung oil, naturally rich in αESA, to mice limits tumor growth and metastasis with transcriptional changes consistent with ferroptosis. Overall, these findings illuminate a potential approach to ferroptosis, complementary to GPX4 inhibition.
Collapse
Affiliation(s)
| | - Tanu Singh
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Svetlana Samovich
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kristen Maslar
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Sebastian Doll
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | | | | |
Collapse
|
234
|
Lu D, Xia Q, Yang Z, Gao S, Sun S, Luo X, Li Z, Zhang X, Han S, Li X, Cao M. ENO3 promoted the progression of NASH by negatively regulating ferroptosis via elevation of GPX4 expression and lipid accumulation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:661. [PMID: 33987359 PMCID: PMC8106050 DOI: 10.21037/atm-21-471] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background ENO3 expression is upregulated in Non-alcoholic fatty liver disease (NAFLD) patient tissues, demonstrated that ENO3 might play crucial roles in NAFLD. However, the mechanism of ENO3 in NAFLD remains unclear. Therefore, this study aimed to investigate the regulatory mechanism of ENO3 in the progression of non-alcoholic steatohepatitis (NASH) in vivo and vitro NASH model. Methods In vivo and vitro NASH model were established by methionine-choline deficient (MCD)-diet feeding and high free fatty acid (HFFA) induction in L02 cells. Loss and gain function of ENO3 and GPX4 was performed to study the mechanism in NASH. Western blot was used to detect the expression of ENO3 and GPX4. Hematoxylin and eosin (H&E), picrosirius Red and Oil Red O staining was used to evaluate histopathology of liver in NASH model. Ferroptosis indicators were measured by assay kits according to the manufacturer's instructions. Results NASH mouse model was successfully established induced by MCD diet with steatosis, inflammatory infiltration, ballooning and fibrosis observed in the liver tissue. The expression of ENO3 and GPX4 was significantly elevated while ferroptosis was inhibited in NASH mice and cell model. Upregulation of both ENO3 and GPX4 could promote the lipid accumulation in L02 cells. In addition, overexpressed ENO3 attenuated the status of ferroptosis. Conclusions In the present study, we demonstrate that ENO3 promoted the progression of NASH by negatively regulating ferroptosis via elevating GPX4 expression and lipid accumulation. These findings provided solid foundation for the mechanism of ferroptosis on the progression of NASH regulated by ENO3, suggesting that ENO3 may be a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Di Lu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Zhiyu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Suofeng Sun
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xiaoying Luo
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Zhen Li
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiulei Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Mingbo Cao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
235
|
Ye Y, Dai Q, Li S, He J, Qi H. A Novel Defined Risk Signature of the Ferroptosis-Related Genes for Predicting the Prognosis of Ovarian Cancer. Front Mol Biosci 2021; 8:645845. [PMID: 33869286 PMCID: PMC8047312 DOI: 10.3389/fmolb.2021.645845] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is an iron-dependent, regulated form of cell death, and the process is complex, consisting of a variety of metabolites and biological molecules. Ovarian cancer (OC) is a highly malignant gynecologic tumor with a poor survival rate. However, the predictive role of ferroptosis-related genes in ovarian cancer prognosis remains unknown. In this study, we demonstrated that the 57 ferroptosis-related genes were expressed differently between ovarian cancer and normal ovarian tissue, and based on these genes, all OC cases can be well divided into 2 subgroups by applying consensus clustering. We utilized the least absolute shrinkage and selection operator (LASSO) cox regression model to develop a multigene risk signature from the TCGA cohort and then validated it in an OC cohort from the GEO database. A 5-gene signature was built and reveals a favorable predictive efficacy in both TCGA and GEO cohort (P < 0.001 and P = 0.03). The GO and KEGG analysis revealed that the differentially expressed genes (DEGs) between the low- and high-risk subgroup divided by our risk model were associated with tumor immunity, and lower immune status in the high-risk group was discovered. In conclusion, ferroptosis-related genes are vital factors predicting the prognosis of OC and could be a novel potential treatment target.
Collapse
Affiliation(s)
- Ying Ye
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Qinjin Dai
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuhong Li
- The Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie He
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| |
Collapse
|
236
|
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants (Basel) 2021; 10:550. [PMID: 33916168 PMCID: PMC8065843 DOI: 10.3390/antiox10040550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions.
Collapse
Affiliation(s)
- Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Torsten Plösch
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
237
|
Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases. Redox Biol 2021; 41:101947. [PMID: 33774476 PMCID: PMC8027773 DOI: 10.1016/j.redox.2021.101947] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Mitochondrial dysfunction is linked to oxidative stress and reactive oxygen species (ROS) in neurotoxicity during AD. Impaired mitochondrial metabolism has been associated with mitochondrial dysfunction in brain damage of AD. While the role of NADPH oxidase 4 (NOX4), a major source of ROS, has been identified in brain damage, the mechanism by which NOX4 regulates ferroptosis of astrocytes in AD remains unclear. Here, we show that the protein levels of NOX4 were significantly elevated in impaired astrocytes of cerebral cortex from patients with AD and APP/PS1 double-transgenic mouse model of AD. The levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), a marker of oxidative stress-induced lipid peroxidation, were significantly also elevated in impaired astrocytes of patients with AD and mouse AD. We demonstrate that the over-expression of NOX4 significantly increases the impairment of mitochondrial metabolism by inhibition of mitochondrial respiration and ATP production via the reduction of five protein complexes in the mitochondrial ETC in human astrocytes. Moreover, the elevation of NOX4 induces oxidative stress by mitochondrial ROS (mtROS) production, mitochondrial fragmentation, and inhibition of cellular antioxidant process in human astrocytes. Furthermore, the elevation of NOX4 increased ferroptosis-dependent cytotoxicity by the activation of oxidative stress-induced lipid peroxidation in human astrocytes. These results suggest that NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in AD.
Collapse
Affiliation(s)
- Min Woo Park
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Hyeon Woo Cha
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Jung Han Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Haesung Yang
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Sunmi Yoon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Napissara Boonpraman
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, Republic of Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
238
|
Xiaofei J, Mingqing S, Miao S, Yizhen Y, Shuang Z, Qinhua X, Kai Z. Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway. Biochem Biophys Res Commun 2021; 545:81-88. [PMID: 33548628 DOI: 10.1016/j.bbrc.2021.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Cervical cancer remains the leading cause of cancerous death among women worldwide. Oleanolic acid (OA) is a substance that occurs naturally in the leaves, fruits, and rhizomes of plants and has anti-cancer activity. In this study, tumor-bearing mice were used as the animal model and Hela cells were used as cellular model. In vivo experiments have showed that OA significantly reduced the size and mass of cervical cancer tumors in mice. In vitro experiments have showed that OA significantly reduced the viability and proliferative capacity of Hela cells. In both in vivo and in vitro assays, OA increased the oxidative stress levels and Fe2+ content, and increased the expression of ferroptosis-related proteins. We found that ACSL4 was highly expressed in both xenograft models and cervical carcinoma cells with OA treatment. Further use of siRNA to interfere with ACSL4 expression in cervical cancer cells revealed that the inhibitory effect of OA on cell viability and proliferative capacity was counteracted, while a decrease in ROS levels and GPX4 was detected, suggesting that OA activated ferroptosis in Hela cells by promoting ACSL4 expression, thereby reducing the survival rate of Hela cells. Therefore, promotion of ACSL4-dependent ferroptosis by OA may be a potential approach for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jiang Xiaofei
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Shi Mingqing
- Department of Obstetrics and Gynecology, Lishui Hospital of Chinese Medicine, Lishui, Zhejiang, 323000, China
| | - Sui Miao
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Yuan Yizhen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zhang Shuang
- Zhangjiagang Hospital of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| | - Xia Qinhua
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Zhao Kai
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China.
| |
Collapse
|
239
|
Lipid peroxidation products as a mediator of toxicity and adaptive response - The regulatory role of selenoprotein and vitamin E. Arch Biochem Biophys 2021; 703:108840. [PMID: 33744199 DOI: 10.1016/j.abb.2021.108840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Lipid peroxidation and its products have been investigated extensively and their biological importance, particularly in relation to physiological and pathophysiological conditions, has received considerable attention. Lipids are oxidized by three distinct mechanisms, i.e., enzymatic oxidation, nonenzymatic, free radical-mediated oxidation, and nonenzymatic, nonradical-mediated oxidation, which respectively yield specific products. Lipid hydroperoxides are the major primary products formed and are reduced to the corresponding hydroxides by antioxidative enzymes such as selenoproteins, and/or undergo secondary oxidation, generating various products with electrophilic properties, such as 4-hydroxy-2-nonenal. Lipid peroxidation induces a loss of fine structure and natural function of lipids, and can produce cytotoxicity and/or novel biological activity. This review broadly discusses the mechanisms of lipid peroxidation and its products, its utility as a biomarker for oxidative stress, the biological effects of lipid peroxidation products, including their action as a mediator of the adaptive response, and the role of the antioxidant system, particularly selenoproteins and vitamin E, in preventing lipid peroxidation and ferroptosis.
Collapse
|
240
|
Distéfano AM, López GA, Setzes N, Marchetti F, Cainzos M, Cascallares M, Zabaleta E, Pagnussat GC. Ferroptosis in plants: triggers, proposed mechanisms, and the role of iron in modulating cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2125-2135. [PMID: 32918080 DOI: 10.1093/jxb/eraa425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
241
|
Rainfall Alters Permafrost Soil Redox Conditions, but Meta-Omics Show Divergent Microbial Community Responses by Tundra Type in the Arctic. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil anoxia is common in the annually thawed surface (‘active’) layer of permafrost soils, particularly when soils are saturated, and supports anaerobic microbial metabolism and methane (CH4) production. Rainfall contributes to soil saturation, but can also introduce oxygen, causing soil oxidation and altering anoxic conditions. We simulated a rainfall event in soil mesocosms from two dominant tundra types, tussock tundra and wet sedge tundra, to test the impacts of rainfall-induced soil oxidation on microbial communities and their metabolic capacity for anaerobic CH4 production and aerobic respiration following soil oxidation. In both types, rainfall increased total soil O2 concentration, but in tussock tundra there was a 2.5-fold greater increase in soil O2 compared to wet sedge tundra due to differences in soil drainage. Metagenomic and metatranscriptomic analyses found divergent microbial responses to rainfall between tundra types. Active microbial taxa in the tussock tundra community, including bacteria and fungi, responded to rainfall with a decline in gene expression for anaerobic metabolism and a concurrent increase in gene expression for cellular growth. In contrast, the wet sedge tundra community showed no significant changes in microbial gene expression from anaerobic metabolism, fermentation, or methanogenesis following rainfall, despite an initial increase in soil O2 concentration. These results suggest that rainfall induces soil oxidation and enhances aerobic microbial respiration in tussock tundra communities but may not accumulate or remain in wet sedge tundra soils long enough to induce a community-wide shift from anaerobic metabolism. Thus, rainfall may serve only to maintain saturated soil conditions that promote CH4 production in low-lying wet sedge tundra soils across the Arctic.
Collapse
|
242
|
Jalali S, Shi J, Ahsan N, Wellik L, Serres M, Buko A, Paludo J, Kim H, Tang X, Yang ZZ, Novak A, Kyle R, Ansell S. Progression from Monoclonal gammopathy of undetermined significance of the immunoglobulin M class (IgM-MGUS) to Waldenstrom Macroglobulinemia is associated with an alteration in lipid metabolism. Redox Biol 2021; 41:101927. [PMID: 33690107 PMCID: PMC7941163 DOI: 10.1016/j.redox.2021.101927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023] Open
Abstract
The molecular events that modulate the progression of monoclonal gammopathy of undetermined significance of the immunoglobulin M class (IgM-MGUS) to Waldenstrom Macroglobulinemia (WM) are mostly unknown. We implemented comparative proteomics and metabolomics analyses on patient serum samples to identify differentially expressed molecules crucial to the progression from IgM-MGUS to WM. Our data identified altered lipid metabolism as a discriminating factor between MGUS, WM, and matched normal controls. Levels of many fatty acids, including polyunsaturated fatty acids and dicarboxylic acids, were significantly downregulated in WM sera when compared to MGUS. These reductions were associated with diminished 15-LOX and PPAR protein expression and increased 5-LOX and GPX4 expression in WM versus MGUS patients’ samples. Furthermore, WM serum samples showed increased lipid peroxidation compared to MGUS. Treatment with IL-6 or TNFα, upstream regulators of differentially expressed proteins between MGUS and WM, increased lipid absorption and lipid peroxidation in WM cell lines. Knock-down of 15-LOX expression increased WM cell survival, an effect accompanied by increased 5-LOX and GPX4 expression. In summary, our data show that reduced fatty acid and lipid metabolite levels in the serum of the WM patients are associated with increased lipid peroxidation and that downregulation of 15-LOX increases the survival of WM cells. These data are highly significant in identifying the biomarkers of disease progression and designing targeted therapeutic intervention.
Collapse
Affiliation(s)
- Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Jie Shi
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA; Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, USA; Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - LindaE Wellik
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - MaKayla Serres
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alex Buko
- Human Metabolome Technologies (HMT) America, Boston, MA, USA
| | - Jonas Paludo
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - HyoJin Kim
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - XinYi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zhi-Zhang Yang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - AnneJ Novak
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - RobertA Kyle
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - StephenM Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
243
|
Luo LF, Guan P, Qin LY, Wang JX, Wang N, Ji ES. Astragaloside IV inhibits adriamycin-induced cardiac ferroptosis by enhancing Nrf2 signaling. Mol Cell Biochem 2021; 476:2603-2611. [PMID: 33656642 DOI: 10.1007/s11010-021-04112-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Astragaloside IV (AsIV), an active ingredient isolated from traditional Chinese medicine astragalus membranaceus, is beneficial to cardiovascular health. This study aimed to characterize the functional role of AsIV against adriamycin (ADR)-induced cardiomyopathy. Here, healthy rats were treated with ADR and/or AsIV for 35 days. We found that AsIV protected the rats against ADR-induced cardiomyopathy characterized by myocardial fibrosis and cardiac dysfunction. Meanwhile, ADR increased type I and III collagens, TGF-β, NOX2, and NOX4 expression and SMAD2/3 activity in the left ventricles of rats, while those effects were countered by AsIV through suppressing oxidative stress. Moreover, ADR was found to promote cardiac ferroptosis, whereas administration of AsIV attenuated the process via activating Nrf2 signaling pathway and the subsequent GPx4 expression increasing. These results suggest that AsIV might play a protective role against ADR-induced myocardial fibrosis, which may partly attribute to its anti-ferroptotic action by enhancing Nrf2 signaling.
Collapse
Affiliation(s)
- Li-Fei Luo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Lu-Yun Qin
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jian-Xin Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
244
|
Lee JY, Kim WK, Bae KH, Lee SC, Lee EW. Lipid Metabolism and Ferroptosis. BIOLOGY 2021; 10:biology10030184. [PMID: 33801564 PMCID: PMC8000263 DOI: 10.3390/biology10030184] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary Ferroptosis is a type of cell death, which is morphologically and mechanistically distinct from other type of cell death pathways such as apoptosis and necroptosis. Lipid peroxidation is a hallmark of ferroptosis and directly destroys cellular membranes, thereby causing ferroptosis. Since lipid peroxidation, which induces ferroptosis, occurs in polyunsaturated fatty acid on specific phospholipids, various lipid metabolic pathways are involved in lipid peroxidation and ferroptosis. Besides, various metabolic and signaling pathways directly and indirectly regulate lipid peroxidation and ferroptosis. Since ferroptosis is associated with a variety of human diseases such as cancer, myocardial infarction, atherosclerosis, kidney diseases, liver diseases, and neuronal diseases, a better understanding of the regulatory mechanisms of ferroptosis can provide insights and treatment strategies for related diseases. Abstract Ferroptosis is a type of iron-dependent regulated necrosis induced by lipid peroxidation that occurs in cellular membranes. Among the various lipids, polyunsaturated fatty acids (PUFAs) associated with several phospholipids, such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), are responsible for ferroptosis-inducing lipid peroxidation. Since the de novo synthesis of PUFAs is strongly restricted in mammals, cells take up essential fatty acids from the blood and lymph to produce a variety of PUFAs via PUFA biosynthesis pathways. Free PUFAs can be incorporated into the cellular membrane by several enzymes, such as ACLS4 and LPCAT3, and undergo lipid peroxidation through enzymatic and non-enzymatic mechanisms. These pathways are tightly regulated by various metabolic and signaling pathways. In this review, we summarize our current knowledge of how various lipid metabolic pathways are associated with lipid peroxidation and ferroptosis. Our review will provide insight into treatment strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Correspondence: (S.C.L.); (E.-W.L.)
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-Y.L.); (W.K.K.); (K.-H.B.)
- Correspondence: (S.C.L.); (E.-W.L.)
| |
Collapse
|
245
|
|
246
|
Stamenkovic A, O'Hara KA, Nelson DC, Maddaford TG, Edel AL, Maddaford G, Dibrov E, Aghanoori M, Kirshenbaum LA, Fernyhough P, Aliani M, Pierce GN, Ravandi A. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2021; 320:H1170-H1184. [PMID: 33513080 DOI: 10.1152/ajpheart.00237.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury increases the generation of oxidized phosphatidylcholines (OxPCs), which results in cell death. However, the mechanism by which OxPCs mediate cell death and cardiac dysfunction is largely unknown. The aim of this study was to determine the mechanisms by which OxPC triggers cardiomyocyte cell death during reperfusion injury. Adult rat ventricular cardiomyocytes were treated with increasing concentrations of various purified fragmented OxPCs. Cardiomyocyte viability, bioenergetic response, and calcium transients were determined in the presence of OxPCs. Five different fragmented OxPCs resulted in a decrease in cell viability, with 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC) having the most potent cardiotoxic effect in both a concentration and time dependent manner (P < 0.05). POVPC and PONPC also caused a significant decrease in Ca2+ transients and net contraction in isolated cardiomyocytes compared to vehicle treated control cells (P < 0.05). PONPC depressed maximal respiration rate (P < 0.01; 54%) and spare respiratory capacity (P < 0.01; 54.5%). Notably, neither caspase 3 activation or TUNEL staining was observed in cells treated with either POVPC or PONPC. Further, cardiac myocytes treated with OxPCs were indistinguishable from vehicle-treated control cells with respect to nuclear high-mobility group box protein 1 (HMGBP1) activity. However, glutathione peroxidase 4 activity was markedly suppressed in cardiomyocytes treated with POVPC and PONPC coincident with increased ferroptosis. Importantly, cell death induced by OxPCs could be suppressed by E06 Ab, directed against OxPCs or by ferrostatin-1, which bound the sn-2 aldehyde of POVPC during I/R. The findings of the present study demonstrate that oxidation of phosphatidylcholines during I/R generate bioactive phospholipid intermediates that disrupt mitochondrial bioenergetics and calcium transients and provoke wide spread cell death through ferroptosis. Neutralization of OxPC with E06 or with ferrostatin-1 prevents cell death during reperfusion. Our study demonstrates a novel signaling pathway that operationally links generation of OxPC during cardiac I/R to ferroptosis. Interventions designed to target OxPCs may prove beneficial in mitigating ferroptosis during I/R injury in individuals with ischemic heart disease.NEW & NOTEWORTHY Oxidized phosphatidylcholines (OxPC) generated during reperfusion injury are potent inducers of cardiomyocyte death. Our studies have shown that OxPCs exert this effect through a ferroptotic process that can be attenuated. A better understanding of the OxPC cell death pathway can prove a novel strategy for prevention of cell death during myocardial reperfusion injury.
Collapse
Affiliation(s)
- Aleksandra Stamenkovic
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kimberley A O'Hara
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - David C Nelson
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Thane G Maddaford
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Andrea L Edel
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Graham Maddaford
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - MohamadReza Aghanoori
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
247
|
Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol 2021; 23:e13317. [PMID: 33550697 DOI: 10.1111/cmi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
Collapse
Affiliation(s)
- Ye Mon Soe
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
248
|
Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunol Rev 2021; 301:62-83. [PMID: 33565103 PMCID: PMC8248113 DOI: 10.1111/imr.12951] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter‐strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long‐lasting infection. Counteracting these mycobacteria‐induced host modifying mechanisms can be accomplished by host‐directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug‐resistant and drug‐susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host‐pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host‐pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
249
|
Ruiz M, Palmgren H, Henricsson M, Devkota R, Jaiswal H, Maresca M, Bohlooly-Y M, Peng XR, Borén J, Pilon M. Extensive transcription mis-regulation and membrane defects in AdipoR2-deficient cells challenged with saturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158884. [PMID: 33444759 DOI: 10.1016/j.bbalip.2021.158884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
How cells maintain vital membrane lipid homeostasis while obtaining most of their constituent fatty acids from a varied diet remains largely unknown. Here, we used transcriptomics, lipidomics, growth and respiration assays, and membrane property analyses in human HEK293 cells or human umbilical vein endothelial cells (HUVEC) to show that the function of AdipoR2 is to respond to membrane rigidification by regulating many lipid metabolism genes. We also show that AdipoR2-dependent membrane homeostasis is critical for growth and respiration in cells challenged with saturated fatty acids. Additionally, we found that AdipoR2 deficiency causes transcriptome and cell physiological defects similar to those observed in SREBP-deficient cells upon SFA challenge. Finally, we compared several genes considered important for lipid homeostasis, namely AdipoR2, SCD, FADS2, PEMT and ACSL4, and found that AdipoR2 and SCD are the most important among these to prevent membrane rigidification and excess saturation when human cells are challenged with exogenous SFAs. We conclude that AdipoR2-dependent membrane homeostasis is one of the primary mechanisms that protects against exogenous SFAs.
Collapse
Affiliation(s)
- Mario Ruiz
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden
| | - Henrik Palmgren
- Metabolism Bioscience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcus Henricsson
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ranjan Devkota
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden
| | - Himjyot Jaiswal
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden; CellinkAB, Arvid Wallgrens Backe 20, 413 46 Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Xiao-Rong Peng
- Metabolism Bioscience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jan Borén
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 405 30 Gothenburg, Sweden
| | - Marc Pilon
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
250
|
Thayyullathil F, Cheratta AR, Alakkal A, Subburayan K, Pallichankandy S, Hannun YA, Galadari S. Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis. Cell Death Dis 2021; 12:26. [PMID: 33414455 PMCID: PMC7791123 DOI: 10.1038/s41419-020-03297-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
Ferroptosis is a type of regulated cell death characterized by ROS accumulation and devastating lipid peroxidation (LPO). The role of acid sphingomyelinase (ASM), a key enzyme in sphingolipid metabolism, in the induction of apoptosis has been studied; however, to date its role in ferroptosis is unclear. In this study, we report that ASM plays a hitherto unanticipated role in promoting ferroptosis. Mechanistically, Erastin (Era) treatment results in the activation of ASM and generation of ceramide, which are required for the Era-induced reactive oxygen species (ROS) generation and LPO. Inhibition of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) or removal of intracellular ROS, significantly reduced Era-induced ASM activation, suggesting that NADPH oxidase-derived ROS regulated ASM-initiated redox signaling in a positive feedback manner. Moreover, ASM-mediated activation of autophagy plays a critical role in ferroptosis inducers (FINs)-induced glutathione peroxidase 4 (GPX4) degradation and ferroptosis activation. Genetic or pharmacological inhibition of ASM diminishes Era-induced features of autophagy, GPX4 degradation, LPO, and subsequent ferroptosis. Importantly, genetic activation of ASM increases ferroptosis in cancer cells induced by various FINs. Collectively, these findings reveal that ASM plays a novel role in ferroptosis that could be exploited to improve pathological conditions that link to ferroptosis.
Collapse
Affiliation(s)
- Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Ameer Alakkal
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Yusuf A Hannun
- Departments of Medicine and Biochemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE.
| |
Collapse
|