201
|
Strickfaden H, Tolsma TO, Sharma A, Underhill DA, Hansen JC, Hendzel MJ. Condensed Chromatin Behaves like a Solid on the Mesoscale In Vitro and in Living Cells. Cell 2020; 183:1772-1784.e13. [PMID: 33326747 DOI: 10.1016/j.cell.2020.11.027] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The association of nuclear DNA with histones to form chromatin is essential for temporal and spatial control of eukaryotic genomes. In this study, we examined the physical state of condensed chromatin in vitro and in vivo. Our in vitro studies demonstrate that self-association of nucleosomal arrays under a wide range of solution conditions produces supramolecular condensates in which the chromatin is physically constrained and solid-like. By measuring DNA mobility in living cells, we show that condensed chromatin also exhibits solid-like behavior in vivo. Representative heterochromatin proteins, however, display liquid-like behavior and coalesce around the solid chromatin scaffold. Importantly, euchromatin and heterochromatin show solid-like behavior even under conditions that produce limited interactions between chromatin fibers. Our results reveal that condensed chromatin exists in a solid-like state whose properties resist external forces and create an elastic gel and provides a scaffold that supports liquid-liquid phase separation of chromatin binding proteins.
Collapse
Affiliation(s)
- Hilmar Strickfaden
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas O Tolsma
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ajit Sharma
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - D Alan Underhill
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
202
|
No Easy Way Out for EZH2: Its Pleiotropic, Noncanonical Effects on Gene Regulation and Cellular Function. Int J Mol Sci 2020; 21:ijms21249501. [PMID: 33327550 PMCID: PMC7765048 DOI: 10.3390/ijms21249501] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) plays critical roles in a range of biological processes including organ development and homeostasis, epigenomic and transcriptomic regulation, gene repression and imprinting, and DNA damage repair. A widely known function of EZH2 is to serve as an enzymatic subunit of Polycomb repressive complex 2 (PRC2) and catalyze trimethylation of histone H3 lysine 27 (H3K27me3) for repressing target gene expression. However, an increasing body of evidence demonstrates that EZH2 has many "non-conventional" functions that go beyond H3K27 methylation as a Polycomb factor. First, EZH2 can methylate a number of nonhistone proteins, thereby regulating cellular processes in an H3K27me3-independent fashion. Furthermore, EZH2 relies on both methyltransferase-dependent and methyltransferase-independent mechanisms for modulating gene-expression programs and/or epigenomic patterns of cells. Importantly, independent of PRC2, EZH2 also forms physical interactions with a number of DNA-binding factors and transcriptional coactivators to context-dependently influence gene expression. The purpose of this review is to detail the complex, noncanonical roles of EZH2, which are generally less appreciated in gene and (epi)genome regulation. Because EZH2 deregulation is prevalent in human diseases such as cancer, there is increased dependency on its noncanonical function, which shall have important implications in developing more effective therapeutics.
Collapse
|
203
|
Grosch M, Ittermann S, Shaposhnikov D, Drukker M. Chromatin-Associated Membraneless Organelles in Regulation of Cellular Differentiation. Stem Cell Reports 2020; 15:1220-1232. [PMID: 33217325 PMCID: PMC7724471 DOI: 10.1016/j.stemcr.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane-free intracellular biocondensates are enclosures of proteins and nucleic acids that form by phase separation. Extensive ensembles of nuclear "membraneless organelles" indicate their involvement in genome regulation. Indeed, nuclear bodies have been linked to regulation of gene expression by formation of condensates made of chromatin and RNA processing factors. Important questions pertain to the involvement of membraneless organelles in determining cell identity through their cell-type-specific composition and function. Paraspeckles provide a prism to these questions because they exhibit striking cell-type-specific patterns and since they are crucial in embryogenesis. Here, we outline known interactions between paraspeckles and chromatin, and postulate how such interactions may be important in regulation of cell fate transitions. Moreover, we propose long non-coding RNAs (lncRNAs) as candidates for similar regulation because many form foci that resemble biocondensates and exhibit dynamic patterns during differentiation. Finally, we outline approaches that could ascertain how chromatin-associated membraneless organelles regulate cellular differentiation.
Collapse
Affiliation(s)
- Markus Grosch
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Sebastian Ittermann
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Dmitry Shaposhnikov
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC RA Leiden, The Netherlands.
| |
Collapse
|
204
|
Fan H, Lu J, Guo Y, Li D, Zhang ZM, Tsai YH, Pi WC, Ahn JH, Gong W, Xiang Y, Allison DF, Geng H, He S, Diao Y, Chen WY, Strahl BD, Cai L, Song J, Wang GG. BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. Nat Genet 2020; 52:1384-1396. [PMID: 33139953 PMCID: PMC8330957 DOI: 10.1038/s41588-020-00729-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
Trimethylated histone H3 lysine 27 (H3K27me3) regulates gene repression, cell-fate determination and differentiation. We report that a conserved bromo-adjacent homology (BAH) module of BAHCC1 (BAHCC1BAH) 'recognizes' H3K27me3 specifically and enforces silencing of H3K27me3-demarcated genes in mammalian cells. Biochemical, structural and integrated chromatin immunoprecipitation-sequencing-based analyses demonstrate that direct readout of H3K27me3 by BAHCC1 is achieved through a hydrophobic trimethyl-L-lysine-binding 'cage' formed by BAHCC1BAH, mediating colocalization of BAHCC1 and H3K27me3-marked genes. BAHCC1 is highly expressed in human acute leukemia and interacts with transcriptional corepressors. In leukemia, depletion of BAHCC1, or disruption of the BAHCC1BAH-H3K27me3 interaction, causes derepression of H3K27me3-targeted genes that are involved in tumor suppression and cell differentiation, leading to suppression of oncogenesis. In mice, introduction of a germline mutation at Bahcc1 to disrupt its H3K27me3 engagement causes partial postnatal lethality, supporting a role in development. This study identifies an H3K27me3-directed transduction pathway in mammals that relies on a conserved BAH 'reader'.
Collapse
Affiliation(s)
- Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yu Xiang
- Department of Cell Biology and Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David F Allison
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shenghui He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yarui Diao
- Department of Cell Biology and Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
205
|
Kim Y, Yu H. Shaping of the 3D genome by the ATPase machine cohesin. Exp Mol Med 2020; 52:1891-1897. [PMID: 33268833 PMCID: PMC8080590 DOI: 10.1038/s12276-020-00526-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
The spatial organization of the genome is critical for fundamental biological processes, including transcription, genome replication, and segregation. Chromatin is compacted and organized with defined patterns and proper dynamics during the cell cycle. Aided by direct visualization and indirect genome reconstruction tools, recent discoveries have advanced our understanding of how interphase chromatin is dynamically folded at the molecular level. Here, we review the current understanding of interphase genome organization with a focus on the major regulator of genome structure, the cohesin complex. We further discuss how cohesin harnesses the energy of ATP hydrolysis to shape the genome by extruding chromatin loops.
Collapse
Affiliation(s)
- Yoori Kim
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
206
|
Tsang B, Pritišanac I, Scherer SW, Moses AM, Forman-Kay JD. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell 2020; 183:1742-1756. [DOI: 10.1016/j.cell.2020.11.050] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
|
207
|
Villaseñor R, Baubec T. Regulatory mechanisms governing chromatin organization and function. Curr Opin Cell Biol 2020; 70:10-17. [PMID: 33276273 DOI: 10.1016/j.ceb.2020.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
Nucleosomes, the basic structures used to package genetic information into chromatin, are subject to a diverse array of chemical modifications. A large number of these marks serve as interaction hubs for many nuclear proteins and provide critical structural features for protein recruitment. Dynamic deposition and removal of chromatin modifications by regulatory proteins ensure their correct deposition to the genome, which is essential for DNA replication, transcription, chromatin compaction, or DNA damage repair. The spatiotemporal regulation and maintenance of chromatin marks relies on coordinated activities of writer, eraser, and reader enzymes and often depends on complex multicomponent regulatory circuits. In recent years, the field has made enormous advances in uncovering the mechanisms that regulate chromatin modifications. Here, we discuss well-established and emerging concepts in chromatin biology ranging from cooperativity and multivalent interactions to regulatory feedback loops and increased local concentration of chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Rodrigo Villaseñor
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
208
|
Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 2020; 52:1271-1281. [PMID: 33257899 DOI: 10.1038/s41588-020-00736-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Histone-modifying enzymes are implicated in the control of diverse DNA-templated processes including gene expression. Here, we outline historical and current thinking regarding the functions of histone modifications and their associated enzymes. One current viewpoint, based largely on correlative evidence, posits that histone modifications are instructive for transcriptional regulation and represent an epigenetic 'code'. Recent studies have challenged this model and suggest that histone marks previously associated with active genes do not directly cause transcriptional activation. Additionally, many histone-modifying proteins possess non-catalytic functions that overshadow their enzymatic activities. Given that much remains unknown regarding the functions of these proteins, the field should be cautious in interpreting loss-of-function phenotypes and must consider both cellular and developmental context. In this Perspective, we focus on recent progress relating to the catalytic and non-catalytic functions of the Trithorax-COMPASS complexes, Polycomb repressive complexes and Clr4/Suv39 histone-modifying machineries.
Collapse
|
209
|
Razin SV, Ulianov SV. Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells 2020; 9:cells9112480. [PMID: 33203115 PMCID: PMC7696541 DOI: 10.3390/cells9112480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The functioning of a cell at various organizational levels is determined by the interactions between macromolecules that promote cellular organelle formation and orchestrate metabolic pathways via the control of enzymatic activities. Although highly specific and relatively stable protein-protein, protein-DNA, and protein-RNA interactions are traditionally suggested as the drivers for cellular function realization, recent advances in the discovery of weak multivalent interactions have uncovered the role of so-called macromolecule condensates. These structures, which are highly divergent in size, composition, function, and cellular localization are predominantly formed by liquid-liquid phase separation (LLPS): a physical-chemical process where an initially homogenous solution turns into two distinct phases, one of which contains the major portion of the dissolved macromolecules and the other one containing the solvent. In a living cell, LLPS drives the formation of membrane-less organelles such as the nucleolus, nuclear bodies, and viral replication factories and facilitates the assembly of complex macromolecule aggregates possessing regulatory, structural, and enzymatic functions. Here, we discuss the role of LLPS in the spatial organization of eukaryotic chromatin and regulation of gene expression in normal and pathological conditions.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-9787
| |
Collapse
|
210
|
Geng Z, Gao Z. Mammalian PRC1 Complexes: Compositional Complexity and Diverse Molecular Mechanisms. Int J Mol Sci 2020; 21:E8594. [PMID: 33202645 PMCID: PMC7697839 DOI: 10.3390/ijms21228594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Polycomb group (PcG) proteins function as vital epigenetic regulators in various biological processes, including pluripotency, development, and carcinogenesis. PcG proteins form multicomponent complexes, and two major types of protein complexes have been identified in mammals to date, Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The PRC1 complexes are composed in a hierarchical manner in which the catalytic core, RING1A/B, exclusively interacts with one of six Polycomb group RING finger (PCGF) proteins. This association with specific PCGF proteins allows for PRC1 to be subdivided into six distinct groups, each with their own unique modes of action arising from the distinct set of associated proteins. Historically, PRC1 was considered to be a transcription repressor that deposited monoubiquitylation of histone H2A at lysine 119 (H2AK119ub1) and compacted local chromatin. More recently, there is increasing evidence that demonstrates the transcription activation role of PRC1. Moreover, studies on the higher-order chromatin structure have revealed a new function for PRC1 in mediating long-range interactions. This provides a different perspective regarding both the transcription activation and repression characteristics of PRC1. This review summarizes new advancements regarding the composition of mammalian PRC1 and accompanying explanations of how diverse PRC1-associated proteins participate in distinct transcription regulation mechanisms.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
211
|
Enhancer-promoter communication: hubs or loops? Curr Opin Genet Dev 2020; 67:5-9. [PMID: 33202367 DOI: 10.1016/j.gde.2020.10.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
There has been a sea change in our view of transcription regulation during the past decade (Fukaya et al., 2016, Lim et al., 2018, Hnisz et al., 2017 [3], Liu et al., 2018 [4], Kato et al., 2012). Classical models of enhancer-promoter interactions and the stepwise assembly of individual RNA Polymerase II (Pol II) complexes have given way to the realization that active transcription foci contain clusters-hubs-of transcriptional activators and Pol II. Here we summarize recent findings pointing to the occurrence of transcription hubs and the implications of such hubs on the regulation of gene activity.
Collapse
|
212
|
MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat Genet 2020; 52:1397-1411. [PMID: 33169020 PMCID: PMC7610431 DOI: 10.1038/s41588-020-00724-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depend on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood. By interrogating the effect of KMT2D (also known as MLL4) haploinsufficiency in Kabuki syndrome, we found that mixed lineage leukemia 4 (MLL4) contributes to the assembly of transcriptional condensates through liquid-liquid phase separation. MLL4 loss of function impaired Polycomb-dependent chromatin compartmentalization, altering the nuclear architecture. By releasing the nuclear mechanical stress through inhibition of the mechanosensor ATR, we re-established the mechanosignaling of mesenchymal stem cells and their commitment towards chondrocytes both in vitro and in vivo. This study supports the notion that, in Kabuki syndrome, the haploinsufficiency of MLL4 causes an altered functional partitioning of chromatin, which determines the architecture and mechanical properties of the nucleus.
Collapse
|
213
|
Phillips RE, Soshnev AA, Allis CD. Epigenomic Reprogramming as a Driver of Malignant Glioma. Cancer Cell 2020; 38:647-660. [PMID: 32916125 PMCID: PMC8248764 DOI: 10.1016/j.ccell.2020.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are central nervous system tumors and remain among the most treatment-resistant cancers. Exome sequencing has revealed significant heterogeneity and important insights into the molecular pathogenesis of gliomas. Mutations in chromatin modifiers-proteins that shape the epigenomic landscape through remodeling and regulation of post-translational modifications on chromatin-are very frequent and often define specific glioma subtypes. This suggests that epigenomic reprogramming may be a fundamental driver of glioma. Here, we describe the key chromatin regulatory pathways disrupted in gliomas, delineating their physiological function and our current understanding of how their dysregulation may contribute to gliomagenesis.
Collapse
Affiliation(s)
- Richard E Phillips
- Department of Neurology and Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
214
|
Seif E, Kang JJ, Sasseville C, Senkovich O, Kaltashov A, Boulier EL, Kapur I, Kim CA, Francis NJ. Phase separation by the polyhomeotic sterile alpha motif compartmentalizes Polycomb Group proteins and enhances their activity. Nat Commun 2020; 11:5609. [PMID: 33154383 PMCID: PMC7644731 DOI: 10.1038/s41467-020-19435-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Polycomb Group (PcG) proteins organize chromatin at multiple scales to regulate gene expression. A conserved Sterile Alpha Motif (SAM) in the Polycomb Repressive Complex 1 (PRC1) subunit Polyhomeotic (Ph) has been shown to play an important role in chromatin compaction and large-scale chromatin organization. Ph SAM forms helical head to tail polymers, and SAM-SAM interactions between chromatin-bound Ph/PRC1 are believed to compact chromatin and mediate long-range interactions. To understand the underlying mechanism, here we analyze the effects of Ph SAM on chromatin in vitro. We find that incubation of chromatin or DNA with a truncated Ph protein containing the SAM results in formation of concentrated, phase-separated condensates. Ph SAM-dependent condensates can recruit PRC1 from extracts and enhance PRC1 ubiquitin ligase activity towards histone H2A. We show that overexpression of Ph with an intact SAM increases ubiquitylated H2A in cells. Thus, SAM-induced phase separation, in the context of Ph, can mediate large-scale compaction of chromatin into biochemical compartments that facilitate histone modification.
Collapse
Affiliation(s)
- Elias Seif
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Jin Joo Kang
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Charles Sasseville
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, 19555N. 59th St., Glendale, AZ, 85308, USA
| | - Alexander Kaltashov
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Elodie L Boulier
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Ibani Kapur
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Chongwoo A Kim
- Department of Biochemistry and Molecular Genetics, Midwestern University, 19555N. 59th St., Glendale, AZ, 85308, USA
| | - Nicole J Francis
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Département de biochimie et médecine moléculaire Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
215
|
Jiang S, Fagman JB, Chen C, Alberti S, Liu B. Protein phase separation and its role in tumorigenesis. eLife 2020; 9:60264. [PMID: 33138914 PMCID: PMC7609067 DOI: 10.7554/elife.60264] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, but the precise pathological mechanisms underlying tumorigenesis often remain to be elucidated. In recent years, condensates formed by phase separation have emerged as a new principle governing the organization and functional regulation of cells. Increasing evidence links cancer-related mutations to aberrantly altered condensate assembly, suggesting that condensates play a key role in tumorigenesis. In this review, we summarize and discuss the latest progress on the formation, regulation, and function of condensates. Special emphasis is given to emerging evidence regarding the link between condensates and the initiation and progression of cancers.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bourghardt Fagman
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changyan Chen
- Department of Oncology at the Department of Clinical Sciences, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Center for Large-scale cell-based screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
216
|
Sabari BR, Dall'Agnese A, Young RA. Biomolecular Condensates in the Nucleus. Trends Biochem Sci 2020; 45:961-977. [PMID: 32684431 PMCID: PMC7572565 DOI: 10.1016/j.tibs.2020.06.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022]
Abstract
Nuclear processes such as DNA replication, transcription, and RNA processing each depend on the concerted action of many different protein and RNA molecules. How biomolecules with shared functions find their way to specific locations has been assumed to occur largely by diffusion-mediated collisions. Recent studies have shown that many nuclear processes occur within condensates that compartmentalize and concentrate the protein and RNA molecules required for each process, typically at specific genomic loci. These condensates have common features and emergent properties that provide the cell with regulatory capabilities beyond canonical molecular regulatory mechanisms. We describe here the shared features of nuclear condensates, the components that produce locus-specific condensates, elements of specificity, and the emerging understanding of mechanisms regulating these compartments.
Collapse
Affiliation(s)
- Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA; Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142 USA.
| | | | - Richard A Young
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142 USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA.
| |
Collapse
|
217
|
Thakur J, Henikoff S. Architectural RNA in chromatin organization. Biochem Soc Trans 2020; 48:1967-1978. [PMID: 32897323 PMCID: PMC7609026 DOI: 10.1042/bst20191226] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
RNA plays a well-established architectural role in the formation of membraneless interchromatin nuclear bodies. However, a less well-known role of RNA is in organizing chromatin, whereby specific RNAs have been found to recruit chromatin modifier proteins. Whether or not RNA can act as an architectural molecule for chromatin remains unclear, partly because dissecting the architectural role of RNA from its regulatory role remains challenging. Studies that have addressed RNA's architectural role in chromatin organization rely on in situ RNA depletion using Ribonuclease A (RNase A) and suggest that RNA plays a major direct architectural role in chromatin organization. In this review, we will discuss these findings, candidate chromatin architectural long non-coding RNAs and possible mechanisms by which RNA, along with RNA binding proteins might be mediating chromatin organization.
Collapse
Affiliation(s)
- Jitendra Thakur
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| |
Collapse
|
218
|
Emenecker RJ, Holehouse AS, Strader LC. Emerging Roles for Phase Separation in Plants. Dev Cell 2020; 55:69-83. [PMID: 33049212 PMCID: PMC7577370 DOI: 10.1016/j.devcel.2020.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
The plant cell internal environment is a dynamic, intricate landscape composed of many intracellular compartments. Cells organize some cellular components through formation of biomolecular condensates-non-stoichiometric assemblies of protein and/or nucleic acids. In many cases, phase separation appears to either underly or contribute to the formation of biomolecular condensates. Many canonical membraneless compartments within animal cells form in a manner that is at least consistent with phase separation, including nucleoli, stress granules, Cajal bodies, and numerous additional bodies, regulated by developmental and environmental stimuli. In this Review, we examine the emerging roles for phase separation in plants. Further, drawing on studies carried out in other organisms, we identify cellular phenomenon in plants that might also arise via phase separation. We propose that plants make use of phase separation to a much greater extent than has been previously appreciated, implicating phase separation as an evolutionarily ancient mechanism for cellular organization.
Collapse
Affiliation(s)
- Ryan J Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA; Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA.
| | - Lucia C Strader
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA; Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
219
|
Kent S, Brown K, Yang CH, Alsaihati N, Tian C, Wang H, Ren X. Phase-Separated Transcriptional Condensates Accelerate Target-Search Process Revealed by Live-Cell Single-Molecule Imaging. Cell Rep 2020; 33:108248. [PMID: 33053359 PMCID: PMC7593837 DOI: 10.1016/j.celrep.2020.108248] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Compartmentalization by liquid-liquid phase separation is implicated in transcription. It remains unclear whether and how transcriptional condensates accelerate the search of transcriptional regulatory factors for their target sites. Furthermore, the molecular mechanisms by which regulatory factors nucleate on chromatin to assemble transcriptional condensates remain incompletely understood. The CBX-PRC1 complexes compartmentalize key developmental regulators for repression through phase-separated condensates driven by the chromobox 2 (CBX2) protein. Here, by using live-cell single-molecule imaging, we show that CBX2 nucleates on chromatin independently of H3K27me3 and CBX-PRC1. The interactions between CBX2 and DNA are essential for nucleating CBX-PRC1 on chromatin to assemble condensates. The assembled condensates shorten 3D diffusion time and reduce trials for finding specific sites through revisiting the same or adjacent sites repetitively, thereby accelerating CBX2 in searching for target sites. Overall, our data suggest a generic mechanism by which transcriptional regulatory factors nucleate to assemble condensates that accelerate their target-search process. Kent et al. demonstrate that CBX2 phase separates to assemble Polycomb condensates on chromatin through CBX2 interactions with DNA rather than H3K27me3. The assembled condensates accelerate the search of CBX2 for its cognate binding sites by revisiting the same or adjacent sites repetitively, thereby enhancing the genomic occupancy of CBX2.
Collapse
Affiliation(s)
- Samantha Kent
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Kyle Brown
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Chou-Hsun Yang
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Njood Alsaihati
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Christina Tian
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA.
| |
Collapse
|
220
|
Wang W, Chen Y, Xu A, Cai M, Cao J, Zhu H, Yang B, Shao X, Ying M, He Q. Protein phase separation: A novel therapy for cancer? Br J Pharmacol 2020; 177:5008-5030. [PMID: 32851637 DOI: 10.1111/bph.15242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, phase separation has been increasingly reported to play a pivotal role in a wide range of biological processes. Due to the close relationships between cancer and disorders in intracellular physiological function, the identification of new mechanisms involved in intracellular regulation has been regarded as a new direction for cancer therapy. Introducing the concept of phase separation into complex descriptions of disease mechanisms may provide many different insights. Here, we review the recent findings on the phase separation of cancer-related proteins, describing the possible relationships between phase separation and key proteins associated with cancer and indicate possible regulatory modalities, especially drug candidates for phase separation, which may provide more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minyi Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
221
|
Penagos-Puig A, Furlan-Magaril M. Heterochromatin as an Important Driver of Genome Organization. Front Cell Dev Biol 2020; 8:579137. [PMID: 33072761 PMCID: PMC7530337 DOI: 10.3389/fcell.2020.579137] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Heterochromatin is a constituent of eukaryotic genomes with functions spanning from gene expression silencing to constraining DNA replication and repair. Inside the nucleus, heterochromatin segregates spatially from euchromatin and is localized preferentially toward the nuclear periphery and surrounding the nucleolus. Despite being an abundant nuclear compartment, little is known about how heterochromatin regulates and participates in the mechanisms driving genome organization. Here, we review pioneer and recent evidence that explores the functional role of heterochromatin in the formation of distinct chromatin compartments and how failure of the molecular mechanisms forming heterochromatin leads to disarray of genome conformation and disease.
Collapse
Affiliation(s)
- Andrés Penagos-Puig
- Department of Molecular Genetics, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Department of Molecular Genetics, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
222
|
Abstract
Pioneer transcription factors have the intrinsic biochemical ability to scan partial DNA sequence motifs that are exposed on the surface of a nucleosome and thus access silent genes that are inaccessible to other transcription factors. Pioneer factors subsequently enable other transcription factors, nucleosome remodeling complexes, and histone modifiers to engage chromatin, thereby initiating the formation of an activating or repressive regulatory sequence. Thus, pioneer factors endow the competence for fate changes in embryonic development, are essential for cellular reprogramming, and rewire gene networks in cancer cells. Recent studies with reconstituted nucleosomes in vitro and chromatin binding in vivo reveal that pioneer factors can directly perturb nucleosome structure and chromatin accessibility in different ways. This review focuses on our current understanding of the mechanisms by which pioneer factors initiate gene network changes and will ultimately contribute to our ability to control cell fates at will.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA;
| |
Collapse
|
223
|
Ong JY, Torres JZ. Phase Separation in Cell Division. Mol Cell 2020; 80:9-20. [PMID: 32860741 DOI: 10.1016/j.molcel.2020.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Cell division requires the assembly and organization of a microtubule spindle for the proper separation of chromosomes in mitosis and meiosis. Phase separation is an emerging paradigm for understanding spatial and temporal regulation of a variety of cellular processes, including cell division. Phase-separated condensates have been recently discovered at many structures during cell division as a possible mechanism for properly localizing, organizing, and activating proteins involved in cell division. Here, we review how these condensates play roles in regulating microtubule density and organization and spindle assembly and function and in activating some of the key players in cell division. We conclude with perspectives on areas of future research for this exciting and rapidly advancing field.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
224
|
Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D, Tek AL, Dvořáčková M, Liu C, Fransz P, Rosa S, Farrona S. Tidying-up the plant nuclear space: domains, functions, and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5160-5178. [PMID: 32556244 PMCID: PMC8604271 DOI: 10.1093/jxb/eraa282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova
de Lisboa, Oeiras, Portugal
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, Versailles, France
| | - Iva Mozgová
- Biology Centre of the Czech Academy of Sciences, České
Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de
Perpignan Via Domitia, Perpignan, France
| | - Daniel Schubert
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Ahmet L Tek
- Agricultural Genetic Engineering Department, Niğde Ömer Halisdemir
University, Niğde, Turkey
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of
Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart,
Germany
| | - Paul Fransz
- University of Amsterdam, Amsterdam, The
Netherlands
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway,
Galway, Ireland
| |
Collapse
|
225
|
Giner-Laguarda N, Vidal M. Functions of Polycomb Proteins on Active Targets. EPIGENOMES 2020; 4:17. [PMID: 34968290 PMCID: PMC8594714 DOI: 10.3390/epigenomes4030017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin regulators of the Polycomb group of genes are well-known by their activities as transcriptional repressors. Characteristically, their presence at genomic sites occurs with specific histone modifications and sometimes high-order chromatin structures correlated with silencing of genes involved in cell differentiation. However, evidence gathered in recent years, on flies and mammals, shows that in addition to these sites, Polycomb products bind to a large number of active regulatory regions. Occupied sites include promoters and also intergenic regions, containing enhancers and super-enhancers. Contrasting with occupancies at repressed targets, characteristic histone modifications are low or undetectable. Functions on active targets are dual, restraining gene expression at some targets while promoting activity at others. Our aim here is to summarize the evidence available and discuss the convenience of broadening the scope of research to include Polycomb functions on active targets.
Collapse
Affiliation(s)
| | - Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| |
Collapse
|
226
|
Singh PB, Belyakin SN, Laktionov PP. Biology and Physics of Heterochromatin- Like Domains/Complexes. Cells 2020; 9:E1881. [PMID: 32796726 PMCID: PMC7465696 DOI: 10.3390/cells9081881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories where they regulate chromatin template-dependent processes. Domains are more than 100 kb in size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission yeast to human, with an expansion in size and number in mammals. Some of the likely functions of domains/complexes include silencing of the donor mating type region in fission yeast, preservation of DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift away from the monomer as the "unit of incompatibility" that determines the sign and magnitude of the Flory-Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal "clutch", consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of "clutches" in a domain/complex. Our approach could provide an additional tool for understanding the biophysics of the 3D genome.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, Nur-Sultan City 010000, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Stepan N. Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| | - Petr P. Laktionov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| |
Collapse
|
227
|
Zhang Y, Li Z, Chen N, Huang Y, Huang S. Phase separation of Arabidopsis EMB1579 controls transcription, mRNA splicing, and development. PLoS Biol 2020; 18:e3000782. [PMID: 32692742 PMCID: PMC7413564 DOI: 10.1371/journal.pbio.3000782] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/07/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
Tight regulation of gene transcription and mRNA splicing is essential for plant growth and development. Here we demonstrate that a plant-specific protein, EMBRYO DEFECTIVE 1579 (EMB1579), controls multiple growth and developmental processes in Arabidopsis. We demonstrate that EMB1579 forms liquid-like condensates both in vitro and in vivo, and the formation of normal-sized EMB1579 condensates is crucial for its cellular functions. We found that some chromosomal and RNA-related proteins interact with EMB1579 compartments, and loss of function of EMB1579 affects global gene transcription and mRNA splicing. Using floral transition as a physiological process, we demonstrate that EMB1579 is involved in FLOWERING LOCUS C (FLC)-mediated repression of flowering. Interestingly, we found that EMB1579 physically interacts with a homologue of Drosophila nucleosome remodeling factor 55-kDa (p55) called MULTIPLE SUPPRESSOR OF IRA 4 (MSI4), which has been implicated in repressing the expression of FLC by forming a complex with DNA Damage Binding Protein 1 (DDB1) and Cullin 4 (CUL4). This complex, named CUL4-DDB1MSI4, physically associates with a CURLY LEAF (CLF)-containing Polycomb Repressive Complex 2 (CLF-PRC2). We further demonstrate that EMB1579 interacts with CUL4 and DDB1, and EMB1579 condensates can recruit and condense MSI4 and DDB1. Furthermore, emb1579 phenocopies msi4 in terms of the level of H3K27 trimethylation on FLC. This allows us to propose that EMB1579 condensates recruit and condense CUL4-DDB1MSI4 complex, which facilitates the interaction of CUL4-DDB1MSI4 with CLF-PRC2 and promotes the role of CLF-PRC2 in establishing and/or maintaining the level of H3K27 trimethylation on FLC. Thus, we report a new mechanism for regulating plant gene transcription, mRNA splicing, and growth and development. This study reveals that a plant-specific protein, EMB1579, controls multiple growth and developmental processes in Arabidopsis thaliana by regulating gene transcription and mRNA splicing through the formation of liquid-like droplets via liquid-liquid phase separation.
Collapse
Affiliation(s)
- Yiling Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhankun Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yao Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
228
|
Frank L, Rippe K. Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. J Mol Biol 2020; 432:4270-4286. [DOI: 10.1016/j.jmb.2020.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
|
229
|
Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. SCIENCE CHINA. LIFE SCIENCES 2020; 63:953-985. [PMID: 32548680 DOI: 10.1007/s11427-020-1702-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
Collapse
|
230
|
Abstract
Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.
Collapse
Affiliation(s)
- Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
231
|
Razin SV, Gavrilov AA. The Role of Liquid–Liquid Phase Separation in the Compartmentalization of Cell Nucleus and Spatial Genome Organization. BIOCHEMISTRY (MOSCOW) 2020; 85:643-650. [DOI: 10.1134/s0006297920060012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
232
|
Boyle S, Flyamer IM, Williamson I, Sengupta D, Bickmore WA, Illingworth RS. A central role for canonical PRC1 in shaping the 3D nuclear landscape. Genes Dev 2020; 34:931-949. [PMID: 32439634 PMCID: PMC7328521 DOI: 10.1101/gad.336487.120] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 02/04/2023]
Abstract
In this study from Boyle et al., the authors investigated the role of Polycomb-repressive complex 1 (PRC1) in shaping 3D genome organization in mouse embryonic stem cells. Using a combination of imaging and Hi-C analyses they show that PRC1-mediated long-range interactions are independent of CTCF and can bridge sites at a megabase scale, thus providing novel insights into the function of PRC1. Polycomb group (PcG) proteins silence gene expression by chemically and physically modifying chromatin. A subset of PcG target loci are compacted and cluster in the nucleus; a conformation that is thought to contribute to gene silencing. However, how these interactions influence gross nuclear organization and their relationship with transcription remains poorly understood. Here we examine the role of Polycomb-repressive complex 1 (PRC1) in shaping 3D genome organization in mouse embryonic stem cells (mESCs). Using a combination of imaging and Hi-C analyses, we show that PRC1-mediated long-range interactions are independent of CTCF and can bridge sites at a megabase scale. Impairment of PRC1 enzymatic activity does not directly disrupt these interactions. We demonstrate that PcG targets coalesce in vivo, and that developmentally induced expression of one of the target loci disrupts this spatial arrangement. Finally, we show that transcriptional activation and the loss of PRC1-mediated interactions are separable events. These findings provide important insights into the function of PRC1, while highlighting the complexity of this regulatory system.
Collapse
Affiliation(s)
- Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
233
|
Sanulli S, J Narlikar G. Liquid-like interactions in heterochromatin: Implications for mechanism and regulation. Curr Opin Cell Biol 2020; 64:90-96. [PMID: 32434105 DOI: 10.1016/j.ceb.2020.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
A large portion of the eukaryotic genome is packed into heterochromatin, a versatile platform that is essential to maintain genome stability. Often associated with a compact and transcriptionally repressed chromatin state, heterochromatin was earlier considered a static and locked compartment. However, cumulative findings over the last 17 years have suggested that heterochromatin displays dynamics at different timescales and size scales. These dynamics are thought to be essential for the regulation of heterochromatin. This review illustrates how the key principles underlying heterochromatin structure and function have evolved along the years and summarizes the discoveries that have led to the continuous revision of these principles. Using heterochromatin protein 1-mediated heterochromatin as a context, we discuss a novel paradigm for heterochromatin organization based on two emerging concepts, phase separation and nucleosome structural plasticity. We also examine the broader implications of this paradigm for chromatin organization and regulation beyond heterochromatin.
Collapse
Affiliation(s)
- Serena Sanulli
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
234
|
Liu Z, Tardat M, Gill ME, Royo H, Thierry R, Ozonov EA, Peters AH. SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J 2020; 39:e103697. [PMID: 32395866 PMCID: PMC7327501 DOI: 10.15252/embj.2019103697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin integrity is essential for cellular homeostasis. Polycomb group proteins modulate chromatin states and transcriptionally repress developmental genes to maintain cell identity. They also repress repetitive sequences such as major satellites and constitute an alternative state of pericentromeric constitutive heterochromatin at paternal chromosomes (pat‐PCH) in mouse pre‐implantation embryos. Remarkably, pat‐PCH contains the histone H3.3 variant, which is absent from canonical PCH at maternal chromosomes, which is marked by histone H3 lysine 9 trimethylation (H3K9me3), HP1, and ATRX proteins. Here, we show that SUMO2‐modified CBX2‐containing Polycomb Repressive Complex 1 (PRC1) recruits the H3.3‐specific chaperone DAXX to pat‐PCH, enabling H3.3 incorporation at these loci. Deficiency of Daxx or PRC1 components Ring1 and Rnf2 abrogates H3.3 incorporation, induces chromatin decompaction and breakage at PCH of exclusively paternal chromosomes, and causes their mis‐segregation. Complementation assays show that DAXX‐mediated H3.3 deposition is required for chromosome stability in early embryos. DAXX also regulates repression of PRC1 target genes during oogenesis and early embryogenesis. The study identifies a novel critical role for Polycomb in ensuring heterochromatin integrity and chromosome stability in mouse early development.
Collapse
Affiliation(s)
- Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raphael Thierry
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
235
|
Cohen I, Bar C, Ezhkova E. Activity of PRC1 and Histone H2AK119 Monoubiquitination: Revising Popular Misconceptions. Bioessays 2020; 42:e1900192. [PMID: 32196702 PMCID: PMC7585675 DOI: 10.1002/bies.201900192] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins are evolutionary conserved chromatin-modifying complexes, essential for the regulation of developmental and cell-identity genes. Polycomb-mediated transcriptional regulation is provided by two multi-protein complexes known as Polycomb repressive complex 1 (PRC1) and 2 (PRC2). Recent studies positioned PRC1 as a foremost executer of Polycomb-mediated transcriptional control. Mammalian PRC1 complexes can form multiple sub-complexes that vary in their core and accessory subunit composition, leading to fascinating and diverse transcriptional regulatory mechanisms employed by PRC1 complexes. These mechanisms include PRC1-catalytic activity toward monoubiquitination of histone H2AK119, a well-established hallmark of PRC1 complexes, whose importance has been long debated. In this review, the central roles that PRC1-catalytic activity plays in transcriptional repression are emphasized and the recent evidence supporting a role for PRC1 complexes in gene activation is discussed.
Collapse
Affiliation(s)
- Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
- These authors contributed equally to this work
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology; Icahn School of Medicine at Mount Sinai; 1 Gustave L. Levy Place, New York, NY 10029; USA
- These authors contributed equally to this work
| | - Elena Ezhkova
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
| |
Collapse
|
236
|
Hildebrand EM, Dekker J. Mechanisms and Functions of Chromosome Compartmentalization. Trends Biochem Sci 2020; 45:385-396. [PMID: 32311333 PMCID: PMC7275117 DOI: 10.1016/j.tibs.2020.01.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/23/2023]
Abstract
Active and inactive chromatin are spatially separated in the nucleus. In Hi-C data, this is reflected by the formation of compartments, whose interactions form a characteristic checkerboard pattern in chromatin interaction maps. Only recently have the mechanisms that drive this separation come into view. Here, we discuss new insights into these mechanisms and possible functions in genome regulation. Compartmentalization can be understood as a microphase-segregated block co-polymer. Microphase separation can be facilitated by chromatin factors that associate with compartment domains, and that can engage in liquid-liquid phase separation to form subnuclear bodies, as well as by acting as bridging factors between polymer sections. We then discuss how a spatially segregated state of the genome can contribute to gene regulation, and highlight experimental challenges for testing these structure-function relationships.
Collapse
Affiliation(s)
- Erica M Hildebrand
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
237
|
Du Z, Zheng H, Kawamura YK, Zhang K, Gassler J, Powell S, Xu Q, Lin Z, Xu K, Zhou Q, Ozonov EA, Véron N, Huang B, Li L, Yu G, Liu L, Au Yeung WK, Wang P, Chang L, Wang Q, He A, Sun Y, Na J, Sun Q, Sasaki H, Tachibana K, Peters AHFM, Xie W. Polycomb Group Proteins Regulate Chromatin Architecture in Mouse Oocytes and Early Embryos. Mol Cell 2020; 77:825-839.e7. [PMID: 31837995 DOI: 10.1016/j.molcel.2019.11.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022]
Abstract
In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Zheng
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Sean Powell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Nathalie Véron
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Bo Huang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guang Yu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aibin He
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingyuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria; Department of Totipotency, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; Faculty of Sciences, University of Basel, Basel 4056, Switzerland.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
238
|
Cbx2, a PcG Family Gene, Plays a Regulatory Role in Medaka Gonadal Development. Int J Mol Sci 2020; 21:ijms21041288. [PMID: 32075028 PMCID: PMC7072964 DOI: 10.3390/ijms21041288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Chromobox homolog 2 (CBX2), a key member of the polycomb group (PcG) family, is essential for gonadal development in mammals. A functional deficiency or genetic mutation in cbx2 can lead to sex reversal in mice and humans. However, little is known about the function of cbx2 in gonadal development in fish. In this study, the cbx2 gene was identified in medaka, which is a model species for the study of gonadal development in fish. Transcription of cbx2 was abundant in the gonads, with testicular levels relatively higher than ovarian levels. In situ hybridization (ISH) revealed that cbx2 mRNA was predominately localized in spermatogonia and spermatocytes, and was also observed in oocytes at stages I, II, and III. Furthermore, cbx2 and vasa (a marker gene) were co-localized in germ cells by fluorescent in situ hybridization (FISH). After cbx2 knockdown in the gonads by RNA interference (RNAi), the sex-related genes, including sox9 and foxl2, were influenced. These results suggest that cbx2 not only plays a positive role in spermatogenesis and oogenesis but is also involved in gonadal differentiation through regulating the expression levels of sex-related genes in fish.
Collapse
|
239
|
Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol 2020; 27:109-118. [PMID: 32042149 DOI: 10.1038/s41594-019-0368-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Understanding how the genome is structurally organized as chromatin is essential for understanding its function. Here, we review recent developments that allowed the readdressing of old questions regarding the primary level of chromatin structure, the arrangement of nucleosomes along the DNA and the folding of the nucleosome fiber in nuclear space. In contrast to earlier views of nucleosome arrays as uniformly regular and folded, recent findings reveal heterogeneous array organization and diverse modes of folding. Local structure variations reflect a continuum of functional states characterized by differences in post-translational histone modifications, associated chromatin-interacting proteins and nucleosome-remodeling enzymes.
Collapse
|
240
|
Singh PB, Newman AG. On the relations of phase separation and Hi-C maps to epigenetics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191976. [PMID: 32257349 PMCID: PMC7062049 DOI: 10.1098/rsos.191976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1-5 Mb) heterochromatin-like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer-polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 'bridging' are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin-like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Nur-Sultan Z05K4F4, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russian Federation
| | - Andrew G. Newman
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
241
|
Brackley CA, Marenduzzo D. Bridging-induced microphase separation: photobleaching experiments, chromatin domains and the need for active reactions. Brief Funct Genomics 2020; 19:111-118. [DOI: 10.1093/bfgp/elz032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/11/2023] Open
Abstract
Abstract
We review the mechanism and consequences of the ‘bridging-induced attraction’, a generic biophysical principle that underpins some existing models for chromosome organization in 3D. This attraction, which was revealed in polymer physics-inspired computer simulations, is a generic clustering tendency arising in multivalent chromatin-binding proteins, and it provides an explanation for the biogenesis of nuclear bodies and transcription factories via microphase separation. Including post-translational modification reactions involving these multivalent proteins can account for the fast dynamics of the ensuing clusters, as is observed via microscopy and photobleaching experiments. The clusters found in simulations also give rise to chromatin domains that conform well with the observation of A/B compartments in HiC experiments.
Collapse
|
242
|
Rhodes JDP, Feldmann A, Hernández-Rodríguez B, Díaz N, Brown JM, Fursova NA, Blackledge NP, Prathapan P, Dobrinic P, Huseyin MK, Szczurek A, Kruse K, Nasmyth KA, Buckle VJ, Vaquerizas JM, Klose RJ. Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells. Cell Rep 2020; 30:820-835.e10. [PMID: 31968256 PMCID: PMC6988126 DOI: 10.1016/j.celrep.2019.12.057] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
How chromosome organization is related to genome function remains poorly understood. Cohesin, loop extrusion, and CCCTC-binding factor (CTCF) have been proposed to create topologically associating domains (TADs) to regulate gene expression. Here, we examine chromosome conformation in embryonic stem cells lacking cohesin and find, as in other cell types, that cohesin is required to create TADs and regulate A/B compartmentalization. However, in the absence of cohesin, we identify a series of long-range chromosomal interactions that persist. These correspond to regions of the genome occupied by the polycomb repressive system and are dependent on PRC1. Importantly, we discover that cohesin counteracts these polycomb-dependent interactions, but not interactions between super-enhancers. This disruptive activity is independent of CTCF and insulation and appears to modulate gene repression by the polycomb system. Therefore, we discover that cohesin disrupts polycomb-dependent chromosome interactions to modulate gene expression in embryonic stem cells.
Collapse
Affiliation(s)
- James D P Rhodes
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Angelika Feldmann
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany
| | - Jill M Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Nadezda A Fursova
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Praveen Prathapan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paula Dobrinic
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Miles K Huseyin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Aleksander Szczurek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany; MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
243
|
|
244
|
Johansen S, Gjerstorff MF. Interaction between Polycomb and SSX Proteins in Pericentromeric Heterochromatin Function and Its Implication in Cancer. Cells 2020; 9:cells9010226. [PMID: 31963307 PMCID: PMC7016822 DOI: 10.3390/cells9010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
The stability of pericentromeric heterochromatin is maintained by repressive epigenetic control mechanisms, and failure to maintain this stability may cause severe diseases such as immune deficiency and cancer. Thus, deeper insight into the epigenetic regulation and deregulation of pericentromeric heterochromatin is of high priority. We and others have recently demonstrated that pericentromeric heterochromatin domains are often epigenetically reprogrammed by Polycomb proteins in premalignant and malignant cells to form large subnuclear structures known as Polycomb bodies. This may affect the regulation and stability of pericentromeric heterochromatin domains and/or the distribution of Polycomb factors to support tumorigeneses. Importantly, Polycomb bodies in cancer cells may be targeted by the cancer/testis-related SSX proteins to cause derepression and genomic instability of pericentromeric heterochromatin. This review will discuss the interplay between SSX and Polycomb factors in the repression and stability of pericentromeric heterochromatin and its possible implications for tumor biology.
Collapse
Affiliation(s)
- Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-21261563
| |
Collapse
|
245
|
Kim J, Kingston RE. The CBX family of proteins in transcriptional repression and memory. J Biosci 2020; 45:16. [PMID: 31965994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For mammals to develop properly, master regulatory genes must be repressed appropriately in a heritable manner. This review concerns the Polycomb Repressive Complex 1 (PRC1) family and the relationship between the establishment of repression and memory of the repressed state. The primary focus is on the CBX family of proteins in PRC1 complexes and their role in both chromatin compaction and phase separation. These two activities are linked and might contribute to both repression and memory.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
246
|
Abadie K, Pease NA, Wither MJ, Kueh HY. Order by chance: origins and benefits of stochasticity in immune cell fate control. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 18:95-103. [PMID: 33791444 PMCID: PMC8009491 DOI: 10.1016/j.coisb.2019.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To protect against diverse challenges, the immune system must continuously generate an arsenal of specialized cell types, each of which can mount a myriad of effector responses upon detection of potential threats. To do so, it must generate multiple differentiated cell populations with defined sizes and proportions, often from rare starting precursor cells. Here, we discuss the emerging view that inherently probabilistic mechanisms, involving rare, rate-limiting regulatory events in single cells, control fate decisions and population sizes and fractions during immune development and function. We first review growing evidence that key fate control points are gated by stochastic signaling and gene regulatory events that occur infrequently over decision-making timescales, such that initially homogeneous cells can adopt variable outcomes in response to uniform signals. We next discuss how such stochastic control can provide functional capabilities that are harder to achieve with deterministic control strategies, and may be central to robust immune system function.
Collapse
Affiliation(s)
| | - Nicholas A Pease
- Department of Bioengineering, University of Washington
- Molecular and Cellular Biology Program, University of Washington
| | | | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington
| |
Collapse
|
247
|
Zhang Y, Kutateladze TG. Liquid-liquid phase separation is an intrinsic physicochemical property of chromatin. Nat Struct Mol Biol 2019; 26:1085-1086. [PMID: 31695191 PMCID: PMC11514442 DOI: 10.1038/s41594-019-0333-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromatin is compartmentalized spatially and temporally at multiple levels, but the precise organization of chromatin and mechanisms underlying its restructuring remain unclear. Two studies published in Cell and Nature now demonstrate the ability of chromatin to undergo liquid–liquid phase separation under physiological conditions and show that this intrinsic physicochemical property of chromatin can be regulated.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
248
|
A P, Weber SC. Evidence for and against Liquid-Liquid Phase Separation in the Nucleus. Noncoding RNA 2019; 5:E50. [PMID: 31683819 PMCID: PMC6958436 DOI: 10.3390/ncrna5040050] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Enclosed by two membranes, the nucleus itself is comprised of various membraneless compartments, including nuclear bodies and chromatin domains. These compartments play an important though still poorly understood role in gene regulation. Significant progress has been made in characterizing the dynamic behavior of nuclear compartments and liquid-liquid phase separation (LLPS) has emerged as a prominent mechanism governing their assembly. However, recent work reveals that certain nuclear structures violate key predictions of LLPS, suggesting that alternative mechanisms likely contribute to nuclear organization. Here, we review the evidence for and against LLPS for several nuclear compartments and discuss experimental strategies to identify the mechanism(s) underlying their assembly. We propose that LLPS, together with multiple modes of protein-nucleic acid binding, drive spatiotemporal organization of the nucleus and facilitate functional diversity among nuclear compartments.
Collapse
Affiliation(s)
- Peng A
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada.
| |
Collapse
|
249
|
Cheutin T, Cavalli G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit Rev Biochem Mol Biol 2019; 54:399-417. [PMID: 31698957 DOI: 10.1080/10409238.2019.1679082] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Polycomb group (PcG) proteins silence master regulatory genes required to properly confer cell identity during the development of both Drosophila and mammals. They may act through chromatin compaction and higher-order folding of chromatin inside the cell nucleus. During the last decade, analysis on interphase chromosome architecture discovered self-interacting regions named topologically associated domains (TADs). TADs result from the 3D chromatin folding of a succession of transcribed and repressed epigenomic domains and from loop extrusion mediated by cohesin/CTCF in mammals. Polycomb silenced chromatin constitutes one type of repressed epigenomic domains which form compacted nano-compartments inside cell nuclei. Recruitment of canonical PcG proteins on chromatin relies on initial binding to discrete elements and further spreading into large chromatin domains covered with H3K27me3. Some of these discrete elements have a bivalent nature both in mammals and Drosophila and are dynamically regulated during development. Loops can occur between them, suggesting that their interaction plays both functional and structural roles. Formation of large chromatin domains covered by H3K27me3 seems crucial for PcG silencing and PcG proteins might exert their function through compaction of these domains in both mammals and flies, rather than by directly controlling the nucleosomal accessibility of discrete regulatory elements. In addition, PcG chromatin domains interact over long genomic distances, shaping a higher-order chromatin network. Therefore, PcG silencing might rely on multiscale chromatin folding to maintain cell identity during differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| |
Collapse
|
250
|
Mir M, Bickmore W, Furlong EEM, Narlikar G. Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? Development 2019; 146:dev182766. [PMID: 31554625 PMCID: PMC6803379 DOI: 10.1242/dev.182766] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the past decade, two major advances in our understanding of nuclear organization have taken the field of gene regulation by storm. First, technologies that can analyze the three-dimensional conformation of chromatin have revealed how the genome is organized and have provided novel insights into how regulatory regions in the genome interact. Second, the recognition that many proteins can form membraneless compartments through liquid-liquid phase separation (LLPS) has challenged long-standing notions of how proteins within the nucleus are organized and has offered a tantalizing general mechanism by which many aspects of nuclear function may be regulated. However, the functional roles of chromatin topology and LLPS in regulating gene expression remain poorly understood. These topics were discussed with great fervor during an open discussion held at a recent workshop titled 'Chromatin-based regulation of development' organized by The Company of Biologists. Here, we summarize the major points covered during this debate and discuss how they tie into current thinking in the field of gene regulation.
Collapse
Affiliation(s)
- Mustafa Mir
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wendy Bickmore
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Geeta Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|