201
|
Brachyury cooperates with Wnt/β-catenin signalling to elicit primitive-streak-like behaviour in differentiating mouse embryonic stem cells. BMC Biol 2014; 12:63. [PMID: 25115237 PMCID: PMC4171571 DOI: 10.1186/s12915-014-0063-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
Background The formation of the primitive streak is the first visible sign of gastrulation, the process by which the three germ layers are formed from a single epithelium during early development. Embryonic stem cells (ESCs) provide a good system for understanding the molecular and cellular events associated with these processes. Previous work, both in embryos and in culture, has shown how converging signals from both nodal/TGFβR and Wnt/β-catenin signalling pathways specify cells to adopt a primitive-streak-like fate and direct them to undertake an epithelial-to-mesenchymal transition (EMT). However, many of these approaches have relied on genetic analyses without taking into account the temporal progression of events within single cells. In addition, it is still unclear to what extent events in the embryo are able to be reproduced in culture. Results Here, we combine flow cytometry and a quantitative live single-cell imaging approach to demonstrate how the controlled differentiation of mouse ESCs towards a primitive streak fate in culture results in cells displaying many of the characteristics observed during early mouse development including transient brachyury expression, EMT and increased motility. We also find that the EMT initiates the process, and this is both fuelled and terminated by the action of brachyury, whose expression is dependent on the EMT and β-catenin activity. Conclusions As a consequence of our analysis, we propose that a major output of brachyury expression is in controlling the velocity of the cells that are transiting out of the primitive streak. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0063-7) contains supplementary material, which is available to authorized users.
Collapse
|
202
|
Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods 2014; 11:847-54. [PMID: 24973948 PMCID: PMC4341966 DOI: 10.1038/nmeth.3016] [Citation(s) in RCA: 576] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/19/2014] [Indexed: 01/15/2023]
Abstract
Embryos allocate cells to the three germ layers in a spatially ordered sequence. Human embryonic stem cells (hESCs) can generate the three germ layers in culture; however, differentiation is typically heterogeneous and spatially disordered. We show that geometric confinement is sufficient to trigger self-organized patterning in hESCs. In response to BMP4, colonies reproducibly differentiated to an outer trophectoderm-like ring, an inner ectodermal circle and a ring of mesendoderm expressing primitive-streak markers in between. Fates were defined relative to the boundary with a fixed length scale: small colonies corresponded to the outer layers of larger ones. Inhibitory signals limited the range of BMP4 signaling to the colony edge and induced a gradient of Activin-Nodal signaling that patterned mesendodermal fates. These results demonstrate that the intrinsic tendency of stem cells to make patterns can be harnessed by controlling colony geometries and provide a quantitative assay for studying paracrine signaling in early development.
Collapse
Affiliation(s)
- Aryeh Warmflash
- 1] Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA. [2] Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, New York, USA. [3]
| | - Benoit Sorre
- 1] Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA. [2] Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, New York, USA. [3]
| | - Fred Etoc
- 1] Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA. [2] Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, New York, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, USA
| | - Ali H Brivanlou
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
203
|
Gaarenstroom T, Hill CS. TGF-β signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol 2014; 32:107-18. [PMID: 24503509 DOI: 10.1016/j.semcdb.2014.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
Ligands of the TGF-β superfamily (including the TGF-βs, Nodal and BMPs) play instructive roles during embryonic development. This is achieved by regulation of genes important for both maintaining pluripotency and germ layer specification and differentiation. Here we review how the TGF-β superfamily ligands signal to the chromatin to regulate transcription during development. The effectors of the pathway, the Smad transcription factors, are regulated in a combinatorial and spatiotemporal manner. This occurs via post-translational modifications affecting stability, localization and activity, as well as through interactions with other transcription factors and chromatin modifying enzymes, which occur on DNA. Expression profiling and Chromatin Immunoprecipitation have defined Smad target genes and binding sites on a genome-wide scale, which vary between cell types and differentiation stages. This has led to the insight that Smad-mediated transcriptional responses are influenced by the presence of master transcription factors, such as OCT4, SOX2 and NANOG in embryonic stem cells, interaction with other signal-induced factors, as well as by the general chromatin remodeling machinery. Interplay with transcriptional repressors and the polycomb group proteins also regulates the balance between expression of self-renewal and mesendoderm-specific genes in embryonic stem cells and during early development.
Collapse
Affiliation(s)
- Tessa Gaarenstroom
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Caroline S Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom.
| |
Collapse
|
204
|
Xu P, Zhu G, Wang Y, Sun J, Liu X, Chen YG, Meng A. Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol 2014; 6:272-85. [DOI: 10.1093/jmcb/mju028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
205
|
Teo AKK, Valdez IA, Dirice E, Kulkarni RN. Comparable generation of activin-induced definitive endoderm via additive Wnt or BMP signaling in absence of serum. Stem Cell Reports 2014; 3:5-14. [PMID: 25068117 PMCID: PMC4110751 DOI: 10.1016/j.stemcr.2014.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023] Open
Abstract
There is considerable interest in differentiating human pluripotent stem cells (hPSCs) into definitive endoderm (DE) and pancreatic cells for in vitro disease modeling and cell replacement therapy. Numerous protocols use fetal bovine serum, which contains poorly defined factors to induce DE formation. Here, we compared Wnt and BMP in their ability to cooperate with Activin signaling to promote DE formation in a chemically defined medium. Varying concentrations of WNT3A, glycogen synthase kinase (GSK)-3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime (BIO), and BMP4 could independently co-operate with Activin to effectively induce DE formation even in the absence of serum. Overall, CHIR99021 is favored due to its cost effectiveness. Surprisingly, WNT3A was ineffective in suppressing E-CADHERIN/CDH1 and pluripotency factor gene expression unlike GSK-3 inhibitors or BMP4. Our findings indicate that both Wnt and BMP effectively synergize with Activin signaling to generate DE from hPSCs, although WNT3A requires additional factors to suppress the pluripotency program inherent in hPSCs. High dose of WNT3A cooperates with Activin to induce DE without serum GSK-3 inhibitors, CHIR99021 and BIO, work with Activin to induce DE without serum Wnt and BMP signaling can induce DE with comparable efficiencies without serum WNT3A is not as effective as BMP4, CHIR99021, or BIO in suppressing pluripotency
Collapse
Affiliation(s)
- Adrian Kee Keong Teo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, MA 02215, USA
| | - Ivan Achel Valdez
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, MA 02215, USA
| | - Ercument Dirice
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
206
|
Gieseck RL, Colquhoun J, Hannan NRF. Disease modeling using human induced pluripotent stem cells: lessons from the liver. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:76-89. [PMID: 24943800 DOI: 10.1016/j.bbalip.2014.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/16/2014] [Accepted: 05/24/2014] [Indexed: 02/03/2023]
Abstract
Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Richard L Gieseck
- Department of Surgery, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Forvie Building, Robinson Way, Cambridge, UK; Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | - Jennifer Colquhoun
- Department of Surgery, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Forvie Building, Robinson Way, Cambridge, UK
| | - Nicholas R F Hannan
- Department of Surgery, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Forvie Building, Robinson Way, Cambridge, UK.
| |
Collapse
|
207
|
Pethe P, Nagvenkar P, Bhartiya D. Polycomb group protein expression during differentiation of human embryonic stem cells into pancreatic lineage in vitro. BMC Cell Biol 2014; 15:18. [PMID: 24885493 PMCID: PMC4038052 DOI: 10.1186/1471-2121-15-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/20/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Polycomb Group (PcG) proteins are chromatin modifiers involved in early embryonic development as well as in proliferation of adult stem cells and cancer cells. PcG proteins form large repressive complexes termed Polycomb Repressive Complexes (PRCs) of which PRC1 and PRC2 are well studied. Differentiation of human Embryonic Stem (hES) cells into insulin producing cells has been achieved to limited extent, but several aspects of differentiation remain unexplored. The PcG protein dynamics in human embryonic stem (hES) cells during differentiation into pancreatic lineage has not yet been reported. In the present study, the expression of RING1A, RING1B, BMI1, CBX2, SUZ12, EZH2, EED and JARID2 during differentiation of hES cells towards pancreatic lineage was examined. RESULTS In-house derived hES cell line KIND1 was used to study expression of PcG protein upon spontaneous and directed differentiation towards pancreatic lineage. qRT-PCR analysis showed expression of gene transcripts for various lineages in spontaneously differentiated KIND1 cells, but no differentiation into pancreatic lineage was observed. Directed differentiation induced KIND1 cells grown under feeder-free conditions to transition from definitive endoderm (Day 4), primitive gut tube stage (Day 8) and pancreatic progenitors (Day 12-Day 16) as evident from expression of SOX17, PDX1 and SOX9 by qRT-PCR and Western blotting. In spontaneously differentiating KIND1 cells, RING1A and SUZ12 were upregulated at day 15, while other PcG transcripts were downregulated. qRT-PCR analysis showed transcripts of RING1B, BMI1, SUZ12, EZH2 and EED were upregulated, while RING1A and CBX2 expression remained low and JARID2 was downregulated during directed differentiation of KIND1 cells. Upregulation of BMI1, EZH2 and SUZ12 during differentiation into pancreatic lineage was also confirmed by Western blotting. Histone modifications such as H3K27 trimethylation and monoubiquitinylation of H2AK119 increased during differentiation into pancreatic lineage as seen by Western blotting. CONCLUSION Our study shows expression of PcG proteins was distinct during spontaneous and directed differentiation. Differentiation into pancreatic lineage was achieved by directed differentiation approach and was associated with increased expression of PcG proteins RING1B, BMI1, EZH2 and SUZ12 accompanied by increase in monoubiquitinylation of H2AK119 and trimethylation of H3K27.
Collapse
Affiliation(s)
- Prasad Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel-12, Mumbai, India
| | - Punam Nagvenkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel-12, Mumbai, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel-12, Mumbai, India
| |
Collapse
|
208
|
Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, Economou C, Karagianni E, Zhao S, Lowell S, Wilson V. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 2014; 141:1209-21. [PMID: 24595287 PMCID: PMC3943179 DOI: 10.1242/dev.101014] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak. However, it is unknown whether this restriction accompanies, at the individual cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of epiblast stem cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, mouse EpiSCs express gastrulation stage regional markers in self-renewing conditions. Here, we examined the differentiation potential of cells expressing such lineage markers. We show that undifferentiated EpiSC cultures contain a major subfraction of cells with reversible early primitive streak characteristics, which is mutually exclusive to a neural-like fraction. Using in vitro differentiation assays and embryo grafting we demonstrate that primitive streak-like EpiSCs are biased towards mesoderm and endoderm fates while retaining pluripotency. The acquisition of primitive streak characteristics by self-renewing EpiSCs is mediated by endogenous Wnt signalling. Elevation of Wnt activity promotes restriction towards primitive streak-associated lineages with mesendodermal and neuromesodermal characteristics. Collectively, our data suggest that EpiSC pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula stage epiblast.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Khalid O, Kim JJ, Kim HS, Hoang M, Tu TG, Elie O, Lee C, Vu C, Horvath S, Spigelman I, Kim Y. Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells. Stem Cell Res 2014; 12:791-806. [PMID: 24751885 DOI: 10.1016/j.scr.2014.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022] Open
Abstract
Stem cells, especially human embryonic stem cells (hESCs), are useful models to study molecular mechanisms of human disorders that originate during gestation. Alcohol (ethanol, EtOH) consumption during pregnancy causes a variety of prenatal and postnatal disorders collectively referred to as fetal alcohol spectrum disorders (FASDs). To better understand the molecular events leading to FASDs, we performed a genome-wide analysis of EtOH's effects on the maintenance and differentiation of hESCs in culture. Gene Co-expression Network Analysis showed significant alterations in gene profiles of EtOH-treated differentiated or undifferentiated hESCs, particularly those associated with molecular pathways for metabolic processes, oxidative stress, and neuronal properties of stem cells. A genome-wide DNA methylome analysis revealed widespread EtOH-induced alterations with significant hypermethylation of many regions of chromosomes. Undifferentiated hESCs were more vulnerable to EtOH's effect than their differentiated counterparts, with methylation on the promoter regions of chromosomes 2, 16 and 18 in undifferentiated hESCs most affected by EtOH exposure. Combined transcriptomic and DNA methylomic analysis produced a list of differentiation-related genes dysregulated by EtOH-induced DNA methylation changes, which likely play a role in EtOH-induced decreases in hESC pluripotency. DNA sequence motif analysis of genes epigenetically altered by EtOH identified major motifs representing potential binding sites for transcription factors. These findings should help in deciphering the precise mechanisms of alcohol-induced teratogenesis.
Collapse
Affiliation(s)
- Omar Khalid
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Jeffrey J Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Hyun-Sung Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Michael Hoang
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Thanh G Tu
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Omid Elie
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Connie Lee
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Catherine Vu
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Steve Horvath
- Department of Human Genetics and Biostatistics, UCLA David Geffen School of Medicine, Box 957088, 4357A Gonda Center, Los Angeles, CA 90095, USA
| | - Igor Spigelman
- Division of Oral Biology & Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA 90095, USA
| | - Yong Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA.,Division of Oral Biology & Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, 73-022 CHS, Los Angeles, CA 90095, USA.,UCLA's Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095, USA
| |
Collapse
|
210
|
Robertson EJ. Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin Cell Dev Biol 2014; 32:73-9. [PMID: 24704361 DOI: 10.1016/j.semcdb.2014.03.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 01/28/2023]
Abstract
Nodal signals in the early post-implantation stage embryo are essential to establish initial proximal-distal (P-D) polarity and generate the final anterior-posterior (A-P) body axis. Nodal signaling in the epiblast results in the phosphorylation of Smad2 in the overlying visceral endoderm necessary to induce the AVE, in part via Smad2-dependent activation of the T-box gene Eomesodermin. Slightly later following mesoderm induction a continuum of dose-dependent Nodal signaling during the process of gastrulation underlies specification of mesodermal and definitive endoderm progenitors. Dynamic Nodal expression during the critical 72 h time window immediately following implantation, accomplished by a series of feed-back and feed-forward mechanisms serves to provide key positional cues required for establishment of the body plan and controls cell fate decisions in the early mammalian embryo.
Collapse
Affiliation(s)
- Elizabeth J Robertson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
211
|
Abstract
ChIP-seq has become the primary method for identifying in vivo protein-DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and in aggregate, these data are an important and information-rich resource. However, uncertainties about data quality confound their use by the wider research community. Recently, the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively measure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer inspection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles. Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful, but a substantial minority (20%) were of apparently poor quality, and another ∼25% were of intermediate quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunoprecipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to that used here could guide experimentalists at early stages in a study, provide useful input in the publication process, and be used to stratify ChIP-seq data for different community-wide uses.
Collapse
|
212
|
Loh KM, Ang LT, Zhang J, Kumar V, Ang J, Auyeong JQ, Lee KL, Choo SH, Lim CYY, Nichane M, Tan J, Noghabi MS, Azzola L, Ng ES, Durruthy-Durruthy J, Sebastiano V, Poellinger L, Elefanty AG, Stanley EG, Chen Q, Prabhakar S, Weissman IL, Lim B. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 2014; 14:237-52. [PMID: 24412311 DOI: 10.1016/j.stem.2013.12.007] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 01/11/2023]
Abstract
Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore, we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics, BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm), yet, 24 hr later, suppressed endoderm and induced mesoderm. At lineage bifurcations, cross-repressive signals separated mutually exclusive fates; TGF-β and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations, thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of "pre-enhancer" states before activation, reflecting the establishment of a permissive chromatin landscape as a prelude to differentiation.
Collapse
Affiliation(s)
- Kyle M Loh
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore; Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Lay Teng Ang
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore.
| | - Jingyao Zhang
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Vibhor Kumar
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Jasmin Ang
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Jun Qiang Auyeong
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Siew Hua Choo
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Christina Y Y Lim
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Massimo Nichane
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Junru Tan
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Monireh Soroush Noghabi
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Lisa Azzola
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth S Ng
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Jens Durruthy-Durruthy
- Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vittorio Sebastiano
- Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Andrew G Elefanty
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Microbiology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Shyam Prabhakar
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore
| | - Irving L Weissman
- Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Lim
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| |
Collapse
|
213
|
Radzisheuskaya A, Silva JCR. Do all roads lead to Oct4? the emerging concepts of induced pluripotency. Trends Cell Biol 2013; 24:275-84. [PMID: 24370212 PMCID: PMC3976965 DOI: 10.1016/j.tcb.2013.11.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/18/2022]
Abstract
Oct4 has unique and diverse functions in reprogramming. Oct4 is essential for lineage specification. Oct4 regulates multiple contrasting processes of cell identity change. Oct4 function may be regulated by cellular context and environment.
Pluripotent cells have the potential to differentiate into all of the cell types of an animal. This unique cell state is governed by an interconnected network of transcription factors. Among these, Oct4 plays an essential role both in the development of pluripotent cells in the embryo and in the self-renewal of its in vitro counterpart, embryonic stem (ES) cells. Furthermore, Oct4 is one of the four Yamanaka factors and its overexpression alone can generate induced pluripotent stem (iPS) cells. Recent reports underscore Oct4 as an essential regulator of opposing cell state transitions, such as pluripotency establishment and differentiation into embryonic germ lineages. Here we discuss these recent studies and the potential mechanisms underlying these contrasting functions of Oct4.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José C R Silva
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
214
|
Beyer TA, Weiss A, Khomchuk Y, Huang K, Ogunjimi AA, Varelas X, Wrana JL. Switch enhancers interpret TGF-β and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep 2013; 5:1611-24. [PMID: 24332857 DOI: 10.1016/j.celrep.2013.11.021] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/03/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
A small toolkit of morphogens is used repeatedly to direct development, raising the question of how context dictates interpretation of the same cue. One example is the transforming growth factor β (TGF-β) pathway that in human embryonic stem cells fulfills two opposite functions: pluripotency maintenance and mesendoderm (ME) specification. Using proteomics coupled to analysis of genome occupancy, we uncover a regulatory complex composed of transcriptional effectors of the Hippo pathway (TAZ/YAP/TEAD), the TGF-β pathway (SMAD2/3), and the pluripotency regulator OCT4 (TSO). TSO collaborates with NuRD repressor complexes to buffer pluripotency gene expression while suppressing ME genes. Importantly, the SMAD DNA binding partner FOXH1, a major specifier of ME, is found near TSO elements, and upon fate specification we show that TSO is disrupted with subsequent SMAD-FOXH1 induction of ME. These studies define switch-enhancer elements and provide a framework to understand how cellular context dictates interpretation of the same morphogen signal in development.
Collapse
Affiliation(s)
- Tobias A Beyer
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Alexander Weiss
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Yuliya Khomchuk
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Kui Huang
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Abiodun A Ogunjimi
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Xaralabos Varelas
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
215
|
Singh AM, Chappell J, Trost R, Lin L, Wang T, Tang J, Matlock BK, Weller KP, Wu H, Zhao S, Jin P, Dalton S. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports 2013; 1:532-44. [PMID: 24371808 PMCID: PMC3871385 DOI: 10.1016/j.stemcr.2013.10.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022] Open
Abstract
Heterogeneity within pluripotent stem cell (PSC) populations is indicative of dynamic changes that occur when cells drift between different states. Although the role of metastability in PSCs is unclear, it appears to reflect heterogeneity in cell signaling. Using the Fucci cell-cycle indicator system, we show that elevated expression of developmental regulators in G1 is a major determinant of heterogeneity in human embryonic stem cells. Although signaling pathways remain active throughout the cell cycle, their contribution to heterogeneous gene expression is restricted to G1. Surprisingly, we identify dramatic changes in the levels of global 5-hydroxymethylcytosine, an unanticipated source of epigenetic heterogeneity that is tightly linked to cell-cycle progression and the expression of developmental regulators. When we evaluated gene expression in differentiating cells, we found that cell-cycle regulation of developmental regulators was maintained during lineage specification. Cell-cycle regulation of developmentally regulated transcription factors is therefore an inherent feature of the mechanisms underpinning differentiation. Embryonic stem cells are lineage primed in G1 Transcription of developmentally regulated genes is cell-cycle regulated 5hmC is cell-cycle regulated Stem cells initiate differentiation from G1
Collapse
Affiliation(s)
- Amar M Singh
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - James Chappell
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Robert Trost
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Li Lin
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Tao Wang
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Jie Tang
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Brittany K Matlock
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin P Weller
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
216
|
DeVeale B, Brokhman I, Mohseni P, Babak T, Yoon C, Lin A, Onishi K, Tomilin A, Pevny L, Zandstra PW, Nagy A, van der Kooy D. Oct4 is required ~E7.5 for proliferation in the primitive streak. PLoS Genet 2013; 9:e1003957. [PMID: 24244203 PMCID: PMC3828132 DOI: 10.1371/journal.pgen.1003957] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/01/2013] [Indexed: 12/14/2022] Open
Abstract
Oct4 is a widely recognized pluripotency factor as it maintains Embryonic Stem (ES) cells in a pluripotent state, and, in vivo, prevents the inner cell mass (ICM) in murine embryos from differentiating into trophectoderm. However, its function in somatic tissue after this developmental stage is not well characterized. Using a tamoxifen-inducible Cre recombinase and floxed alleles of Oct4, we investigated the effect of depleting Oct4 in mouse embryos between the pre-streak and headfold stages, ∼E6.0–E8.0, when Oct4 is found in dynamic patterns throughout the embryonic compartment of the mouse egg cylinder. We found that depletion of Oct4 ∼E7.5 resulted in a severe phenotype, comprised of craniorachischisis, random heart tube orientation, failed turning, defective somitogenesis and posterior truncation. Unlike in ES cells, depletion of the pluripotency factors Sox2 and Oct4 after E7.0 does not phenocopy, suggesting that ∼E7.5 Oct4 is required within a network that is altered relative to the pluripotency network. Oct4 is not required in extraembryonic tissue for these processes, but is required to maintain cell viability in the embryo and normal proliferation within the primitive streak. Impaired expansion of the primitive streak occurs coincident with Oct4 depletion ∼E7.5 and precedes deficient convergent extension which contributes to several aspects of the phenotype. Embryogenesis is an intricate process requiring that division, differentiation and position of cells are coordinated. During mammalian development early pluripotent populations are canalized or restricted in potency during embryogenesis. Due to considerable interest in how this fundamental state of pluripotency is maintained, and the requirement of the transcription factor Oct4 to maintain pluripotency, Oct4 has been intensively studied in culture. However, it is not clear what role Oct4 has during lineage specification of pluripotent cells. Oct4 removal during lineage specification indicates that it is required in the primitive streak of mouse embryos to maintain proliferation. The consequences of Oct4 removal diverge from the consequences of removing another factor required for pluripotency between preimplantation development and early cell fate specification suggesting that the network Oct4 acts within is altered between these stages.
Collapse
Affiliation(s)
- Brian DeVeale
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (BD); (DvdK)
| | - Irina Brokhman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Paria Mohseni
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tomas Babak
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Charles Yoon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Science, St-Petersburg, Russia
| | - Larysa Pevny
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Andras Nagy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (BD); (DvdK)
| |
Collapse
|
217
|
Jerabek S, Merino F, Schöler HR, Cojocaru V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:138-54. [PMID: 24145198 DOI: 10.1016/j.bbagrm.2013.10.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
OCT4 was discovered more than two decades ago as a transcription factor specific to early embryonic development. Early studies with OCT4 were descriptive and looked at determining the functional roles of OCT4 in the embryo as well as in pluripotent cell lines derived from embryos. Later studies showed that OCT4 was one of the transcription factors in the four-factor cocktail required for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and that it is the only factor that cannot be substituted in this process by other members of the same protein family. In recent years, OCT4 has emerged as a master regulator of the induction and maintenance of cellular pluripotency, with crucial roles in the early stages of differentiation. Currently, mechanistic studies look at elucidating the molecular details of how OCT4 contributes to establishing selective gene expression programs that define different developmental stages of pluripotent cells. OCT4 belongs to the POU family of proteins, which have two conserved DNA-binding domains connected by a variable linker region. The functions of OCT4 depend on its ability to recognize and bind to DNA regulatory regions alone or in cooperation with other transcription factors and on its capacity to recruit other factors required to regulate the expression of specific sets of genes. Undoubtedly, future iPSC-based applications in regenerative medicine will benefit from understanding how OCT4 functions. Here we provide an integrated view of OCT4 research conducted to date by reviewing the different functional roles for OCT4 and discussing the current progress in understanding their underlying molecular mechanisms. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Stepan Jerabek
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Felipe Merino
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
218
|
Generation of multipotent foregut stem cells from human pluripotent stem cells. Stem Cell Reports 2013; 1:293-306. [PMID: 24319665 PMCID: PMC3849417 DOI: 10.1016/j.stemcr.2013.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/28/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) could provide an infinite source of clinically relevant cells with potential applications in regenerative medicine. However, hPSC lines vary in their capacity to generate specialized cells, and the development of universal protocols for the production of tissue-specific cells remains a major challenge. Here, we have addressed this limitation for the endodermal lineage by developing a defined culture system to expand and differentiate human foregut stem cells (hFSCs) derived from hPSCs. hFSCs can self-renew while maintaining their capacity to differentiate into pancreatic and hepatic cells. Furthermore, near-homogenous populations of hFSCs can be obtained from hPSC lines which are normally refractory to endodermal differentiation. Therefore, hFSCs provide a unique approach to bypass variability between pluripotent lines in order to obtain a sustainable source of multipotent endoderm stem cells for basic studies and to produce a diversity of endodermal derivatives with a clinical value. Multipotent foregut stem cells are derived from pluripotent cells Foregut stem cells can be expanded and retain their differentiation potential Foregut stem cells differentiate into liver and pancreatic cells Foregut stem cells decrease differentiation variability between cell lines
Collapse
|
219
|
Takashima Y, Suzuki A. Regulation of organogenesis and stem cell properties by T-box transcription factors. Cell Mol Life Sci 2013; 70:3929-45. [PMID: 23479132 PMCID: PMC11113830 DOI: 10.1007/s00018-013-1305-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 12/28/2022]
Abstract
T-box transcription factors containing the common DNA-binding domain T-box contribute to the organization of multiple tissues in vertebrates and invertebrates. In mammals, 17 T-box genes are divided into five subfamilies depending on their amino acid homology. The proper distribution and expression of individual T-box transcription factors in different tissues enable regulation of the proliferation and differentiation of tissue-specific stem cells and progenitor cells in a suitable time schedule for tissue organization. Consequently, uncontrollable expressions of T-box genes induce abnormal tissue organization, and eventually cause various diseases with malformation and malfunction of tissues and organs. Furthermore, some T-box transcription factors are essential for maintaining embryonic stem cell pluripotency, improving the quality of induced pluripotent stem cells, and inducing cell-lineage conversion of differentiated cells. These lines of evidence indicate fundamental roles of T-box transcription factors in tissue organization and stem cell properties, and suggest that these transcription factors will be useful for developing therapeutic approaches in regenerative medicine.
Collapse
Affiliation(s)
- Yasuo Takashima
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
220
|
Gentsch G, Owens N, Martin S, Piccinelli P, Faial T, Trotter M, Gilchrist M, Smith J. In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. Cell Rep 2013; 4:1185-96. [PMID: 24055059 PMCID: PMC3791401 DOI: 10.1016/j.celrep.2013.08.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/11/2013] [Accepted: 08/06/2013] [Indexed: 01/30/2023] Open
Abstract
The design of effective cell replacement therapies requires detailed knowledge of how embryonic stem cells form primary tissues, such as mesoderm or neurectoderm that later become skeletal muscle or nervous system. Members of the T-box transcription factor family are key in the formation of these primary tissues, but their underlying molecular activities are poorly understood. Here, we define in vivo genome-wide regulatory inputs of the T-box proteins Brachyury, Eomesodermin, and VegT, which together maintain neuromesodermal stem cells and determine their bipotential fates in frog embryos. These T-box proteins are all recruited to the same genomic recognition sites, from where they activate genes involved in stem cell maintenance and mesoderm formation while repressing neurogenic genes. Consequently, their loss causes embryos to form an oversized neural tube with no mesodermal derivatives. This collaboration between T-box family members thus ensures the continuous formation of correctly proportioned neural and mesodermal tissues in vertebrate embryos during axial elongation.
Collapse
Affiliation(s)
- George E. Gentsch
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Nick D.L. Owens
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
| | - Stephen R. Martin
- Division of Physical Biochemistry, National Institute for Medical Research, London NW7 1AA, UK
| | - Paul Piccinelli
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
| | - Tiago Faial
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Anne McLaren Laboratory for Regenerative Medicine, Cambridge CB2 0SZ, UK
| | | | - Michael J. Gilchrist
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
| | - James C. Smith
- Division of Systems Biology, National Institute for Medical Research, London NW7 1AA, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
221
|
Dianat N, Steichen C, Vallier L, Weber A, Dubart-Kupperschmitt A. Human pluripotent stem cells for modelling human liver diseases and cell therapy. Curr Gene Ther 2013; 13:120-32. [PMID: 23444872 PMCID: PMC3882648 DOI: 10.2174/1566523211313020006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 12/24/2022]
Abstract
The liver is affected by many types of diseases, including metabolic disorders and acute liver failure. Orthotopic liver transplantation (OLT) is currently the only effective treatment for life-threatening liver diseases but transplantation of allogeneic hepatocytes has now become an alternative as it is less invasive than OLT and can be performed repeatedly. However, this approach is hampered by the shortage of organ donors, and the problems related to the isolation of high quality adult hepatocytes, their cryopreservation and their absence of proliferation in culture. Liver is also a key organ to assess the pharmacokinetics and toxicology of xenobiotics and for drug discovery, but appropriate cell culture systems are lacking. All these problems have highlighted the need to explore other sources of cells such as stem cells that could be isolated, expanded to yield sufficiently large populations and then induced to differentiate into functional hepatocytes. The presence of a niche of “facultative” progenitor and stem cells in the normal liver has recently been confirmed but they display no telomerase activity. The recent discovery that human induced pluripotent stem cells can be generated from somatic cells has renewed hopes for regenerative medicine and in vitro disease modelling, as these cells are easily accessible. We review here the present progresses, limits and challenges for the generation of functional hepatocytes from human pluripotent stem cells in view of their potential use in regenerative medicine and drug discovery.
Collapse
Affiliation(s)
- Noushin Dianat
- INSERM UMR-S972, Paul Brousse Hospital, Villejuif, F-94807, France
| | | | | | | | | |
Collapse
|
222
|
Bräutigam C, Raggioli A, Winter J. The Wnt/β-catenin pathway regulates the expression of the miR-302 cluster in mouse ESCs and P19 cells. PLoS One 2013; 8:e75315. [PMID: 24040406 PMCID: PMC3769259 DOI: 10.1371/journal.pone.0075315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/12/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs of the miR-302 cluster are involved in early embryonic development and somatic cell reprogramming. Expression of the miR-302 gene is regulated by the binding of the pluripotency factors Oct4, Sox2 and Nanog to the miR-302 promoter. The specific expression pattern of the miR-302 gene suggested that additional transcription factors might be involved in its regulation. Here, we show that the miR-302 promoter is a direct target of the Wnt/β-catenin signaling pathway. We found that the miR-302 promoter contains three different functional Tcf/Lef binding sites. Two of the three sites were located within the cluster of Oct4/Sox2/Nanog binding sites and were essential for Wnt/β-catenin-mediated regulation of the miR-302 gene. Tcf3, the only Tcf/Lef factor that bound to the miR-302 promoter, acted as a repressor of miR-302 transcription. Interestingly, mutations in the two Tcf/Lef binding sites and the Oct4/Nanog binding sites abolished miR-302 promoter responsiveness to Wnt signaling, suggesting that the Tcf/Lef and the Oct4/Nanog sites interact genetically.
Collapse
Affiliation(s)
- Christien Bräutigam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- University of Freiburg Faculty of Biology, Freiburg, Germany
| | - Angelo Raggioli
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- University of Freiburg Faculty of Biology, Freiburg, Germany
| | - Jennifer Winter
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
223
|
Pimeisl IM, Tanriver Y, Daza RA, Vauti F, Hevner RF, Arnold HH, Arnold SJ. Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis 2013; 51:725-33. [PMID: 23897762 DOI: 10.1002/dvg.22417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/26/2013] [Accepted: 07/18/2013] [Indexed: 01/21/2023]
Abstract
Transgenic mouse lines expressing inducible forms of Cre-recombinase in a tissue-specific manner are powerful genetic tools for studying aspects of development and various processes in the adult. The T-box transcription factor eomesodermin (Eomes) plays critical roles for maintenance and differentiation of different pools of stem and progenitor cells from early embryonic stages to adulthood. These include trophoblast stem cells, epiblast cells during the generation of the primary germ layers, neurogenic intermediate progenitor cells in embryonic and adult cortical neurogenesis, and maturing natural killer and T cells. Here, we report on the generation and analysis of an Eomes(CreER) -targeted allele by placing the tamoxifen-activatable Cre-recombinase (CreER) under the control of the Eomes genomic locus. We demonstrate that CreER expression recapitulates endogenous Eomes transcription within different progenitor cell populations. Tamoxifen administration specifically labels Eomes-expressing cells and their progeny as demonstrated by crossing Eomes(CreER) animals to different Cre-inducible reporter strains. In summary, this novel Eomes(CreER) allele can be used as elegant genetic tool that allows to follow the fate of Eomes-positive cells and to genetically manipulate them in a temporal specific manner.
Collapse
Affiliation(s)
- Inga-Marie Pimeisl
- University Medical Centre, Renal Department, Centre for Clinical Research, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
224
|
Leichsenring M, Maes J, Mössner R, Driever W, Onichtchouk D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 2013; 341:1005-9. [PMID: 23950494 DOI: 10.1126/science.1242527] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of multicellular animals is initially controlled by maternal gene products deposited in the oocyte. During the maternal-to-zygotic transition, transcription of zygotic genes commences, and developmental control starts to be regulated by zygotic gene products. In Drosophila, the transcription factor Zelda specifically binds to promoters of the earliest zygotic genes and primes them for activation. It is unknown whether a similar regulation exists in other animals. We found that zebrafish Pou5f1, a homolog of the mammalian pluripotency transcription factor Oct4, occupies SOX-POU binding sites before the onset of zygotic transcription and activates the earliest zygotic genes. Our data position Pou5f1 and SOX-POU sites at the center of the zygotic gene activation network of vertebrates and provide a link between zygotic gene activation and pluripotency control.
Collapse
Affiliation(s)
- Manuel Leichsenring
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | |
Collapse
|
225
|
Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, Tang X, Yang H, Shen L, Zuo X, Yang W, Shi Y, Chi X, Zhang H, Gao G, Shu Y, Yuan K, He W, Tang C, Zhao Y, Deng H. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013; 153:963-75. [PMID: 23706735 DOI: 10.1016/j.cell.2013.05.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 11/15/2022]
Abstract
The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here, we report that, during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes, whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a "seesaw model" in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming.
Collapse
Affiliation(s)
- Jian Shu
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Hannan NRF, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc 2013; 8:430-7. [PMID: 23424751 DOI: 10.1038/nprot.2012.153] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large-scale production of hepatocytes from a variety of genetic backgrounds would be beneficial for drug screening and to provide a source of cells to be used as a substitute for liver transplantation. However, fully functional primary hepatocytes remain difficult to expand in vitro, and circumventing this problem by using an alternative source of cells is desirable. Here we describe a 25-d protocol to direct the differentiation of human pluripotent stem cells into a near-homogenous population of hepatocyte-like cells. As cells progress through this protocol, they express genes in a chronological manner similar to that described during in vivo hepatic development. The protocol relies on culture systems devoid of serum, feeders or complex extracellular matrices, which enable molecular analyses without interference from unknown factors. This approach works efficiently with human embryonic stem cells and human induced pluripotent stem cells and was recently used to model liver diseases in vitro.
Collapse
Affiliation(s)
- Nicholas R F Hannan
- Wellcome Trust–Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
227
|
Hannan NRF, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc 2013; 496:1269-1275. [PMID: 23424751 DOI: 10.1016/j.bbrc.2018.01.186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
Large-scale production of hepatocytes from a variety of genetic backgrounds would be beneficial for drug screening and to provide a source of cells to be used as a substitute for liver transplantation. However, fully functional primary hepatocytes remain difficult to expand in vitro, and circumventing this problem by using an alternative source of cells is desirable. Here we describe a 25-d protocol to direct the differentiation of human pluripotent stem cells into a near-homogenous population of hepatocyte-like cells. As cells progress through this protocol, they express genes in a chronological manner similar to that described during in vivo hepatic development. The protocol relies on culture systems devoid of serum, feeders or complex extracellular matrices, which enable molecular analyses without interference from unknown factors. This approach works efficiently with human embryonic stem cells and human induced pluripotent stem cells and was recently used to model liver diseases in vitro.
Collapse
Affiliation(s)
- Nicholas R F Hannan
- Wellcome Trust–Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
228
|
Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell 2013; 25:610-22. [PMID: 23747191 DOI: 10.1016/j.devcel.2013.05.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/10/2013] [Accepted: 05/06/2013] [Indexed: 01/18/2023]
Abstract
In embryonic stem (ES) cells and in early mouse embryos, the transcription factor Oct4 is an essential regulator of pluripotency. Oct4 transcriptional targets have been described in ES cell lines; however, the molecular mechanisms by which Oct4 regulates establishment of pluripotency in the epiblast (EPI) have not been fully elucidated. Here, we show that neither maternal nor zygotic Oct4 is required for the formation of EPI cells in the blastocyst. Rather, Oct4 is first required for development of the primitive endoderm (PE), an extraembryonic lineage. EPI cells promote PE fate in neighboring cells by secreting Fgf4, and Oct4 is required for expression of Fgf4, but we show that Oct4 promotes PE development cell-autonomously, downstream of Fgf4 and Mapk. Finally, we show that Oct4 is required for the expression of multiple EPI and PE genes as well as multiple metabolic pathways essential for the continued growth of the preimplantation embryo.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
229
|
Jiang W, Zhang D, Bursac N, Zhang Y. WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Reports 2013; 1:46-52. [PMID: 24052941 PMCID: PMC3757741 DOI: 10.1016/j.stemcr.2013.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/14/2022] Open
Abstract
Generation of functional cells from human pluripotent stem cells (PSCs) through in vitro differentiation is a promising approach for drug screening and cell therapy. However, the observed large and unavoidable variation in the differentiation potential of different human embryonic stem cell (hESC)/induced PSC (iPSC) lines makes the selection of an appropriate cell line for the differentiation of a particular cell lineage difficult. Here, we report identification of WNT3 as a biomarker capable of predicting definitive endoderm (DE) differentiation potential of hESCs. We show that the mRNA level of WNT3 in hESCs correlates with their DE differentiation efficiency. In addition, manipulations of hESCs through WNT3 knockdown or overexpression can respectively inhibit or promote DE differentiation in a WNT3 level-dependent manner. Finally, analysis of several hESC lines based on their WNT3 expression levels allowed accurate prediction of their DE differentiation potential. Collectively, our study supports the notion that WNT3 can serve as a biomarker for predicting DE differentiation potential of hESCs.
Collapse
Affiliation(s)
- Wei Jiang
- Howard Hughes Medical Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA ; Program in Cellular and Molecular Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA ; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
230
|
Radzisheuskaya A, Chia GLB, dos Santos RL, Theunissen TW, Castro LFC, Nichols J, Silva JCR. A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol 2013; 15:579-90. [PMID: 23629142 PMCID: PMC3671976 DOI: 10.1038/ncb2742] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
Abstract
Oct4 is considered a master transcription factor for pluripotent cell self-renewal, but its biology remains poorly understood. Here, we investigated the role of Oct4 using the process of induced pluripotency. We found that a defined embryonic stem cell (ESC) level of Oct4 is required for pluripotency entry. However, once pluripotency is established, the Oct4 level can be decreased up to sevenfold without loss of self-renewal. Unexpectedly, cells constitutively expressing Oct4 at an ESC level robustly differentiated into all embryonic lineages and germline. In contrast, cells with low Oct4 levels were deficient in differentiation, exhibiting expression of naive pluripotency genes in the absence of pluripotency culture requisites. The restoration of Oct4 expression to an ESC level rescued the ability of these to restrict naive pluripotent gene expression and to differentiate. In conclusion, a defined Oct4 level controls the establishment of naive pluripotency as well as commitment to all embryonic lineages.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Gloryn Le Bin Chia
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Rodrigo L. dos Santos
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Doctoral Programme in Experimental Biology and Biomedicine, Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Thorold W. Theunissen
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - L. Filipe C. Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, Porto 4050-123, Portugal
| | - Jennifer Nichols
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José C. R. Silva
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
231
|
Cahan P, Daley GQ. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 2013; 14:357-68. [PMID: 23673969 DOI: 10.1038/nrm3584] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could 'lock' the pluripotency network resulting in residual pluripotent cells or alter the signalling response of developmental pathways leading to lineage bias. The molecular contributors to functional variability and heterogeneity in both embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are only beginning to emerge, yet they are crucial to the future of the stem cell field.
Collapse
Affiliation(s)
- Patrick Cahan
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
232
|
Sumi T, Oki S, Kitajima K, Meno C. Epiblast ground state is controlled by canonical Wnt/β-catenin signaling in the postimplantation mouse embryo and epiblast stem cells. PLoS One 2013; 8:e63378. [PMID: 23691040 PMCID: PMC3653965 DOI: 10.1371/journal.pone.0063378] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/27/2013] [Indexed: 12/30/2022] Open
Abstract
Epiblast stem cells (EpiSCs) are primed pluripotent stem cells and can be derived from postimplantation mouse embryos. We now show that the absence of canonical Wnt/β-catenin signaling is essential for maintenance of the undifferentiated state in mouse EpiSCs and in the epiblast of mouse embryos. Attenuation of Wnt signaling with the small-molecule inhibitor XAV939 or deletion of the β-catenin gene blocked spontaneous differentiation of EpiSCs toward mesoderm and enhanced the expression of pluripotency factor genes, allowing propagation of EpiSCs as a homogeneous population. EpiSCs were efficiently established and propagated from single epiblast cells in the presence of both XAV939 and the Rho kinase (ROCK) inhibitor Y27632. Cell transplantation revealed that EpiSCs were able to contribute to primordial germ cells and descendants of all three germ layers in a host embryo, suggesting that they maintained pluripotency, even after prolonged culture with XAV939. Such an improvement in the homogeneity of pluripotency achieved with the use of a Wnt inhibitor should prove advantageous for manipulation of primed pluripotent stem cells.
Collapse
Affiliation(s)
- Tomoyuki Sumi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Oki
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kitajima
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
233
|
Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek AK, Kelley DR, Shishkin AA, Issner R, Zhang X, Coyne M, Fostel JL, Holmes L, Meldrim J, Guttman M, Epstein C, Park H, Kohlbacher O, Rinn J, Gnirke A, Lander ES, Bernstein BE, Meissner A. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 2013; 153:1149-63. [PMID: 23664763 DOI: 10.1016/j.cell.2013.04.037] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/04/2013] [Accepted: 04/16/2013] [Indexed: 01/10/2023]
Abstract
Differentiation of human embryonic stem cells (hESCs) provides a unique opportunity to study the regulatory mechanisms that facilitate cellular transitions in a human context. To that end, we performed comprehensive transcriptional and epigenetic profiling of populations derived through directed differentiation of hESCs representing each of the three embryonic germ layers. Integration of whole-genome bisulfite sequencing, chromatin immunoprecipitation sequencing, and RNA sequencing reveals unique events associated with specification toward each lineage. Lineage-specific dynamic alterations in DNA methylation and H3K4me1 are evident at putative distal regulatory elements that are frequently bound by pluripotency factors in the undifferentiated hESCs. In addition, we identified germ-layer-specific H3K27me3 enrichment at sites exhibiting high DNA methylation in the undifferentiated state. A better understanding of these initial specification events will facilitate identification of deficiencies in current approaches, leading to more faithful differentiation strategies as well as providing insights into the rewiring of human regulatory programs during cellular transitions.
Collapse
Affiliation(s)
- Casey A Gifford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Kartikasari AER, Zhou JX, Kanji MS, Chan DN, Sinha A, Grapin-Botton A, Magnuson MA, Lowry WE, Bhushan A. The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO J 2013; 32:1393-408. [PMID: 23584530 DOI: 10.1038/emboj.2013.78] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/13/2013] [Indexed: 02/07/2023] Open
Abstract
Stem cell differentiation depends on transcriptional activation driven by lineage-specific regulators as well as changes in chromatin organization. However, the coordination of these events is poorly understood. Here, we show that T-box proteins team up with chromatin modifying enzymes to drive the expression of the key lineage regulator, Eomes during endodermal differentiation of embryonic stem (ES) cells. The Eomes locus is maintained in a transcriptionally poised configuration in ES cells. During early differentiation steps, the ES cell factor Tbx3 associates with the histone demethylase Jmjd3 at the enhancer element of the Eomes locus to allow enhancer-promoter interactions. This spatial reorganization of the chromatin primes the cells to respond to Activin signalling, which promotes the binding of Jmjd3 and Eomes to its own bivalent promoter region to further stimulate Eomes expression in a positive feedback loop. In addition, Eomes activates a transcriptional network of core regulators of endodermal differentiation. Our results demonstrate that Jmjd3 sequentially associates with two T-box factors, Tbx3 and Eomes to drive stem cell differentiation towards the definitive endoderm lineage.
Collapse
|
235
|
Ogony JW, Malahias E, Vadigepalli R, Anni H. Ethanol alters the balance of Sox2, Oct4, and Nanog expression in distinct subpopulations during differentiation of embryonic stem cells. Stem Cells Dev 2013; 22:2196-210. [PMID: 23470161 DOI: 10.1089/scd.2012.0513] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factors Sox2, Oct4, and Nanog regulate within a narrow dose-range embryonic stem (ES) cell pluripotency and cell lineage commitment. Excess of Oct4 relative to Sox2 guides cells to mesoendoderm (ME), while abundance of Sox2 promotes neuroectoderm (NE) formation. Literature does not address whether ethanol interferes with these regulatory interactions during neural development. We hypothesized that ethanol exposure of ES cells in early differentiation causes an imbalance of Oct4 and Sox2 that diverts cells away from NE to ME lineage, consistent with the teratogenesis effects caused by prenatal alcohol exposure. Mouse ES cells were exposed to ethanol (0, 25, 50, and 100 mM) during retinoic acid (10 nM)-directed differentiation to NE for 0-6 days, and the expression of Sox2, Oct4, and Nanog was measured in single live cells by multiparametric flow cytometry, and the cellular phenotype was characterized by immunocytochemistry. Our data showed an ethanol dose- and time-dependent asymmetric modulation of Oct4 and Sox2 expression, as early as after 2 days of exposure. Single-cell analysis of the correlated expression of Sox2, Oct4, and Nanog revealed that ethanol promoted distinct subpopulations with a high Oct4/Sox2 ratio. Ethanol-exposed cells differentiated to fewer β-III tubulin-immunoreactive cells with an immature neuronal phenotype by 4 days. We interpret these data as suggesting that ethanol diverted cells in early differentiation from the NE fate toward the ME lineage. Our results provide a novel insight into the mode of ethanol action and opportunities for discovery of prenatal biomarkers at early stages.
Collapse
Affiliation(s)
- Joshua W Ogony
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
236
|
Abranches E, Bekman E, Henrique D. Generation and characterization of a novel mouse embryonic stem cell line with a dynamic reporter of Nanog expression. PLoS One 2013; 8:e59928. [PMID: 23527287 PMCID: PMC3602340 DOI: 10.1371/journal.pone.0059928] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pluripotent state in embryonic stem (ES) cells is controlled by a core network of transcription factors that includes Nanog, Oct4 and Sox2. Nanog is required to reach pluripotency during somatic reprogramming and is the only core factor whose overexpression is able to oppose differentiation-promoting signals. Additionally, Nanog expression is known to fluctuate in ES cells, and different levels of Nanog seem to correlate with ES cells' ability to respond to differentiation promoting signals. Elucidating how dynamic Nanog levels are regulated in pluripotent cells and modulate their potential is therefore critical to develop a better understanding of the pluripotent state. METHODOLOGY/PRINCIPAL FINDINGS We describe the generation and validation of a mouse ES cell line with a novel Nanog reporter (Nd, from Nanog dynamics), containing a BAC transgene where the short-lived fluorescent protein VNP is placed under Nanog regulation. We show that Nanog and VNP have similar half-lives, and that Nd cells provide an accurate and measurable read-out for the dynamic levels of Nanog. Using this reporter, we could show that ES cells with low Nanog levels indeed have higher degree of priming to differentiation, when compared with high-Nanog cells. However, low-Nanog ES cells maintain high levels of Oct4 and Sox2 and can revert to a state of high-Nanog expression, indicating that they are still within the window of pluripotency. We further show that the observed changes in Nanog levels correlate with ES cell morphology and that Nanog dynamic expression is modulated by the cellular environment. CONCLUSIONS/SIGNIFICANCE The novel reporter ES cell line here described allows an accurate monitoring of Nanog's dynamic expression in the pluripotent state. This reporter will thus be a valuable tool to obtain quantitative measurements of global gene expression in pluripotent ES cells in different states, allowing a detailed molecular mapping of the pluripotency landscape.
Collapse
Affiliation(s)
- Elsa Abranches
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | | | | |
Collapse
|
237
|
Beyer TA, Narimatsu M, Weiss A, David L, Wrana JL. The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochim Biophys Acta Gen Subj 2013; 1830:2268-79. [DOI: 10.1016/j.bbagen.2012.08.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/20/2023]
|
238
|
Nicetto D, Hahn M, Jung J, Schneider TD, Straub T, David R, Schotta G, Rupp RAW. Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene. PLoS Genet 2013; 9:e1003188. [PMID: 23382689 PMCID: PMC3561085 DOI: 10.1371/journal.pgen.1003188] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 11/07/2012] [Indexed: 01/31/2023] Open
Abstract
Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state. The quest of modern developmental biology is a detailed molecular description of the process that leads from the fertilized egg to the complex and highly differentiated adult organism. This process is controlled largely on the level of gene expression. While early embryonic cells are pluripotent and capable of transcribing most of their genome, older cells have become committed to the germ layer and differentiation programs during gastrulation. They express then a subset of genes compatible with their future physiological function. Young, pluripotent cells and post-gastrula, committed cells express different networks of transcription factors and contain chromatin of different structure and composition. How these two regulatory layers are interconnected during development is incompletely understood. We describe a novel and unexpected link between the pluripotency-associated POU-V gene Oct-25 and xSuv4-20h histone methyltransferases. XSuv4-20h enzymes are required to repress the Oct-25 gene, a homolog of mammalian Oct4, in the neuroectoderm of frog embryos as a prerequisite for neural differentiation. Consistently, murine Suv4-20h double-null ES cells show increased Oct4 protein levels before and during in vitro differentiation and display compromised differentiation in comparison to wild-type ES cells. Thus, Suv4-20h enzymes control specific POU-V genes and are involved in germ-layer specific differentiation.
Collapse
Affiliation(s)
- Dario Nicetto
- Adolf Butenandt Institut, Institut für Molekularbiologie, Ludwig Maximilians-Universität, München, Germany
| | - Matthias Hahn
- Center for Integrated Protein Science (Munich) at the Institut für Molekularbiologie, Adolf-Butenandt-Institut, LMU, München, Germany
| | - Julia Jung
- Medizinische Klinik I am Klinikum der Universität München (LMU), München, Germany
| | - Tobias D. Schneider
- Adolf Butenandt Institut, Institut für Molekularbiologie, Ludwig Maximilians-Universität, München, Germany
| | - Tobias Straub
- Adolf Butenandt Institut, Institut für Molekularbiologie, Ludwig Maximilians-Universität, München, Germany
| | - Robert David
- Medizinische Klinik I am Klinikum der Universität München (LMU), München, Germany
| | - Gunnar Schotta
- Center for Integrated Protein Science (Munich) at the Institut für Molekularbiologie, Adolf-Butenandt-Institut, LMU, München, Germany
| | - Ralph A. W. Rupp
- Adolf Butenandt Institut, Institut für Molekularbiologie, Ludwig Maximilians-Universität, München, Germany
- * E-mail:
| |
Collapse
|
239
|
Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, Kelly OG, Wang A, D'Amour KA, Robins AJ, Won KJ, Kaestner KH, Sander M. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 2013; 12:224-37. [PMID: 23318056 DOI: 10.1016/j.stem.2012.11.023] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/30/2012] [Accepted: 11/30/2012] [Indexed: 02/06/2023]
Abstract
Embryonic development is characterized by dynamic changes in gene expression, yet the role of chromatin remodeling in these cellular transitions remains elusive. To address this question, we profiled the transcriptome and select chromatin modifications at defined stages during pancreatic endocrine differentiation of human embryonic stem cells. We identify removal of Polycomb group (PcG)-mediated repression on stage-specific genes as a key mechanism for the induction of developmental regulators. Furthermore, we discover that silencing of transitory genes during lineage progression associates with reinstatement of PcG-dependent repression. Significantly, in vivo- but not in vitro-differentiated endocrine cells exhibit close similarity to primary human islets in regard to transcriptome and chromatin structure. We further demonstrate that endocrine cells produced in vitro do not fully eliminate PcG-mediated repression on endocrine-specific genes, probably contributing to their malfunction. These studies reveal dynamic chromatin remodeling during developmental lineage progression and identify possible strategies for improving cell differentiation in culture.
Collapse
Affiliation(s)
- Ruiyu Xie
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Teo AKK, Ali Y, Wong KY, Chipperfield H, Sadasivam A, Poobalan Y, Tan EK, Wang ST, Abraham S, Tsuneyoshi N, Stanton LW, Dunn NR. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells 2012; 30:631-42. [PMID: 22893457 DOI: 10.1002/stem.1022] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human embryonic stem cells (hESCs) herald tremendous promise for the production of clinically useful cell types for the treatment of injury and disease. Numerous reports demonstrate their differentiation into definitive endoderm (DE) cells, the germ layer from which pancreatic β cells and hepatocytes arise, solely from exposure to a high dose of recombinant Activin/Nodal. We show that combining a second related ligand, BMP4, in combination with Activin A yields 15%-20% more DE as compared with Activin A alone. The addition of recombinant BMP4 accelerates the downregulation of pluripotency genes, particularly SOX2, and results in upregulation of endogenous BMP2 and BMP4, which in turn leads to elevated levels of phospho-SMAD1/5/8. Combined Activin A and BMP4 treatment also leads to an increase in the expression of DE genes CXCR4, SOX17, and FOXA2 when compared with Activin A addition alone. Comparative microarray studies between DE cells harvested on day 3 of differentiation further reveal a novel set of genes upregulated in response to initial BMP4 exposure. Several of these, including APLNR, LRIG3, MCC, LEPREL1, ROR2, and LZTS1, are expressed in the mouse primitive streak, the site of DE formation. Thus, this synergism between Activin A and BMP4 during the in vitro differentiation of hESC into DE suggests a complex interplay between BMP and Activin/Nodal signaling during the in vivo allocation and expansion of the endoderm lineage.
Collapse
Affiliation(s)
- Adrian K K Teo
- Institute of Medical Biology, Agency for Science, Technology and Research, #06-06 Immunos, Singapore 138648
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Sui J, Mehta M, Shi B, Morahan G, Jiang FX. Directed differentiation of embryonic stem cells allows exploration of novel transcription factor genes for pancreas development. Stem Cell Rev Rep 2012; 8:803-12. [PMID: 22278131 DOI: 10.1007/s12015-011-9346-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Embryonic stem cells (ESCs) have been promised as a renewable source for regenerative medicine, including providing a replacement therapy in type 1 diabetes. However, they have not yet been differentiated into functional insulin-secreting β cells. This is due partially to the knowledge gap regarding the transcription factors (TFs) required for pancreas development. We hypothesize that, if directed differentiation in vitro recapitulates the developmental process in vivo, ESCs provide a powerful model to discover novel pancreatic TF genes. Guided by knowledge of their normal development and using RT-PCR and immunochemical analyses, we have established protocols for directed differentiation of mouse ESCs into pancreatic progenitors. Microarray analyses of these differentiating ESC cells at days 0, 4, 8 and 15 confirmed their sequential differentiation. By day 15, we found up-regulation of a group of pancreatic progenitor marker genes including Pdx1, Ptf1a, Nkx6.1, Pax4 and Pax6. Consistently, Pdx1-immunoreactive cells were detected on day 15. Most of these Pdx1(+) cells also expressed Nkx6.1. Bioinformatic analyses of sequential datasets allowed identification of over 20 novel TF genes potentially important for pancreas development. The dynamic expression of representative known and novel genes was confirmed by quantitative real time RT-PCR analysis. This strategy may be modified to study novel regulatory molecules for development of other tissue and organ systems.
Collapse
Affiliation(s)
- Jing Sui
- Centre for Diabetes Research, The Western Australian Institute for Medical Research, University of Western Australia, 50 Murray St (Rear), Perth, WA 6000, Australia
| | | | | | | | | |
Collapse
|
242
|
Cho CHH, Hannan NRF, Docherty FM, Docherty HM, Joåo Lima M, Trotter MWB, Docherty K, Vallier L. Inhibition of activin/nodal signalling is necessary for pancreatic differentiation of human pluripotent stem cells. Diabetologia 2012; 55:3284-95. [PMID: 23011350 PMCID: PMC3483105 DOI: 10.1007/s00125-012-2687-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/22/2012] [Indexed: 12/03/2022]
Abstract
AIMS/HYPOTHESIS Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hIPSCs) offer unique opportunities for regenerative medicine and for the study of mammalian development. However, developing methods to differentiate hESCs/hIPSCs into specific cell types following a natural pathway of development remains a major challenge. METHODS We used defined culture media to identify signalling pathways controlling the differentiation of hESCs/hIPSCs into pancreatic or hepatic progenitors. This approach avoids the use of feeders, stroma cells or serum, all of which can interfere with experimental outcomes and could preclude future clinical applications. RESULTS This study reveals, for the first time, that activin/TGF-β signalling blocks pancreatic specification induced by retinoic acid while promoting hepatic specification in combination with bone morphogenetic protein and fibroblast growth factor. Using this knowledge, we developed culture systems to differentiate human pluripotent stem cells into near homogenous population of pancreatic and hepatic progenitors displaying functional characteristics specific to their natural counterparts. Finally, functional experiments showed that activin/TGF-β signalling achieves this essential function by controlling the levels of transcription factors necessary for liver and pancreatic development, such as HEX and HLXB9. CONCLUSION/INTERPRETATION Our methods of differentiation provide an advantageous system to model early human endoderm development in vitro, and also represent an important step towards the generation of pancreatic and hepatic cells for clinical applications.
Collapse
Affiliation(s)
- C. H.-H. Cho
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, West Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK
| | - N. R.-F. Hannan
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, West Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK
| | - F. M. Docherty
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, West Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK
| | - H. M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | - M. Joåo Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | - M. W. B. Trotter
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, West Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK
- Present Address: Celgene Institute for Translational Research Europe Centro de Empresas Pabellón de Italia, Isaac Newton, 4, Seville, E-41092 Spain
| | - K. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | - L. Vallier
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, West Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK
| |
Collapse
|
243
|
Nipah virus envelope-pseudotyped lentiviruses efficiently target ephrinB2-positive stem cell populations in vitro and bypass the liver sink when administered in vivo. J Virol 2012. [PMID: 23192877 DOI: 10.1128/jvi.02032-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sophisticated retargeting systems for lentiviral vectors have been developed in recent years. Most seek to suppress the viral envelope's natural tropism while modifying the receptor-binding domain such that its tropism is determined by the specificity of the engineered ligand-binding motif. Here we took advantage of the natural tropism of Nipah virus (NiV), whose attachment envelope glycoprotein has picomolar affinity for ephrinB2, a molecule proposed as a molecular marker of "stemness" (present on embryonic, hematopoietic, and neural stem cells) as well as being implicated in tumorigenesis of specific cancers. NiV entry requires both the fusion (F) and attachment (G) glycoproteins. Truncation of the NiV-F cytoplasmic tail (T5F) alone, combined with full-length NiV-G, resulted in optimal titers of NiV-pseudotyped particles (NiVpp) (∼10(6) IU/ml), even without ultracentrifugation. To further enhance the infectivity of NiVpp, we engineered a hyperfusogenic NiV-F protein lacking an N-linked glycosylation site (T5FΔN3). T5FΔN3/wt G particles exhibited enhanced infectivity on less permissive cell lines and efficiently targeted ephrinB2(+) cells even in a 1,000-fold excess of ephrinB2-negative cells, all without any loss of specificity, as entry was abrogated by soluble ephrinB2. NiVpp also transduced human embryonic, hematopoietic, and neural stem cell populations in an ephrinB2-dependent manner. Finally, intravenous administration of the luciferase reporter NiVpp-T5FΔN3/G to mice resulted in signals being detected in the spleen and lung but not in the liver. Bypassing the liver sink is a critical barrier for targeted gene therapy. The extraordinary specificity of NiV-G for ephrinB2 holds promise for targeting specific ephrinB2(+) populations in vivo or in vitro.
Collapse
|
244
|
Iwafuchi-Doi M, Matsuda K, Murakami K, Niwa H, Tesar PJ, Aruga J, Matsuo I, Kondoh H. Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development 2012; 139:3926-37. [DOI: 10.1242/dev.085936] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Somatic development initiates from the epiblast in post-implantation mammalian embryos. Recent establishment of epiblast stem cell (EpiSC) lines has opened up new avenues of investigation of the mechanisms that regulate the epiblast state and initiate lineage-specific somatic development. Here, we investigated the role of cell-intrinsic core transcriptional regulation in the epiblast and during derivation of the anterior neural plate (ANP) using a mouse EpiSC model. Cells that developed from EpiSCs in one day in the absence of extrinsic signals were found to represent the ANP of ~E7.5 embryos. We focused on transcription factors that are uniformly expressed in the E6.5 epiblast but in a localized fashion within or external to the ANP at E7.5, as these are likely to regulate the epiblast state and ANP development depending on their balance. Analyses of the effects of knockdown and overexpression of these factors in EpiSCs on the levels of downstream transcription factors identified the following regulatory functions: cross-regulation among Zic, Otx2, Sox2 and Pou factors stabilizes the epiblastic state; Zic, Otx2 and Pou factors in combination repress mesodermal development; Zic and Sox2 factors repress endodermal development; and Otx2 represses posterior neural plate development. All of these factors variably activate genes responsible for neural plate development. The direct interaction of these factors with enhancers of Otx2, Hesx1 and Sox2 genes was demonstrated. Thus, a combination of regulatory processes that suppresses non-ANP lineages and promotes neural plate development determines the ANP.
Collapse
Affiliation(s)
- Makiko Iwafuchi-Doi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunari Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Murakami
- RIKEN Center for Developmental Biology (CDB), Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hitoshi Niwa
- RIKEN Center for Developmental Biology (CDB), Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Paul J. Tesar
- Department of Genetics and Center for Stem Cell and Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jun Aruga
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Isao Matsuo
- Osaka Medical Center and Research Institute for Maternal and Child Health, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
245
|
Dalton S. Signaling networks in human pluripotent stem cells. Curr Opin Cell Biol 2012; 25:241-6. [PMID: 23092754 DOI: 10.1016/j.ceb.2012.09.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/10/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Maintaining a finely-balanced network of signaling inputs is critical for the maintenance of pluripotent stem cells. Together, signaling pathways achieve this by maintaining a long-term, proliferative state while suppressing differentiation. Although the major pathways involved in pluripotency have been known for some time, it was not previously clear how they function in concert to maintain stem cell identity. Recent work has identified a signaling network involving cross-talk between PI3K, TGFβ, MAPK and Wnt pathways that culminate in a finely-balanced molecular switch that determines the fate of pluripotent cells.
Collapse
Affiliation(s)
- Stephen Dalton
- Paul D. Coverdell Center for Biomedical and Health Science, Department of Biochemistry and Molecular Biology, University of Georgia, 500 DW Brooks Drive, Athens, GA 30602, United States.
| |
Collapse
|
246
|
Horsfield JA, Print CG, Mönnich M. Diverse developmental disorders from the one ring: distinct molecular pathways underlie the cohesinopathies. Front Genet 2012; 3:171. [PMID: 22988450 PMCID: PMC3439829 DOI: 10.3389/fgene.2012.00171] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 08/17/2012] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit protein complex, cohesin, is responsible for sister chromatid cohesion during cell division. The interaction of cohesin with DNA is controlled by a number of additional regulatory proteins. Mutations in cohesin, or its regulators, cause a spectrum of human developmental syndromes known as the “cohesinopathies.” Cohesinopathy disorders include Cornelia de Lange Syndrome and Roberts Syndrome. The discovery of novel roles for chromatid cohesion proteins in regulating gene expression led to the idea that cohesinopathies are caused by dysregulation of multiple genes downstream of mutations in cohesion proteins. Consistent with this idea, Drosophila, mouse, and zebrafish cohesinopathy models all show altered expression of developmental genes. However, there appears to be incomplete overlap among dysregulated genes downstream of mutations in different components of the cohesion apparatus. This is surprising because mutations in all cohesion proteins would be predicted to affect cohesin’s roles in cell division and gene expression in similar ways. Here we review the differences and similarities between genetic pathways downstream of components of the cohesion apparatus, and discuss how such differences might arise, and contribute to the spectrum of cohesinopathy disorders. We propose that mutations in different elements of the cohesion apparatus have distinct developmental outcomes that can be explained by sometimes subtly different molecular effects.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago Dunedin, New Zealand
| | | | | |
Collapse
|
247
|
Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Rep 2012; 13:355-62. [PMID: 22402664 DOI: 10.1038/embor.2012.23] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 01/18/2023] Open
Abstract
The transcription factor Eomesodermin (Eomes) is involved in early embryonic patterning, but the range of cell fates that it controls as well as its mechanisms of action remain unclear. Here we show that transient expression of Eomes promotes cardiovascular fate during embryonic stem cell differentiation. Eomes also rapidly induces the expression of Mesp1, a key regulator of cardiovascular differentiation, and directly binds to regulatory sequences of Mesp1. Eomes effects are strikingly modulated by Activin signalling: high levels of Activin inhibit the promotion of cardiac mesoderm by Eomes, while they enhance Eomes-dependent endodermal specification. These results place Eomes upstream of the Mesp1-dependent programme of cardiogenesis, and at the intersection of mesodermal and endodermal specification, depending on the levels of Activin/Nodal signalling.
Collapse
|
248
|
Singh AM, Reynolds D, Cliff T, Ohtsuka S, Mattheyses AL, Sun Y, Menendez L, Kulik M, Dalton S. Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 2012; 10:312-26. [PMID: 22385658 DOI: 10.1016/j.stem.2012.01.014] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 12/08/2011] [Accepted: 01/09/2012] [Indexed: 01/13/2023]
Abstract
A general mechanism for how intracellular signaling pathways in human pluripotent cells are coordinated and how they maintain self-renewal remain to be elucidated. In this report, we describe a signaling mechanism where PI3K/Akt activity maintains self-renewal by restraining prodifferentiation signaling through suppression of the Raf/Mek/Erk and canonical Wnt signaling pathways. When active, PI3K/Akt establishes conditions where Activin A/Smad2,3 performs a pro-self-renewal function by activating target genes, including Nanog. When PI3K/Akt signaling is low, Wnt effectors are activated and function in conjunction with Smad2,3 to promote differentiation. The switch in Smad2,3 activity after inactivation of PI3K/Akt requires the activation of canonical Wnt signaling by Erk, which targets Gsk3β. In sum, we define a signaling framework that converges on Smad2,3 and determines its ability to regulate the balance between alternative cell states. This signaling paradigm has far-reaching implications for cell fate decisions during early embryonic development.
Collapse
Affiliation(s)
- Amar M Singh
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 2012; 10:440-54. [PMID: 22482508 DOI: 10.1016/j.stem.2012.02.016] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/12/2011] [Accepted: 02/16/2012] [Indexed: 01/03/2023]
Abstract
Nanog, Oct4, and Sox2 are the core regulators of mouse (m)ESC pluripotency. Although their basic importance in human (h)ESCs has been demonstrated, the mechanistic functions are not well defined. Here, we identify general and cell-line-specific requirements for NANOG, OCT4, and SOX2 in hESCs. We show that OCT4 regulates, and interacts with, the BMP4 pathway to specify four developmental fates. High levels of OCT4 enable self-renewal in the absence of BMP4 but specify mesendoderm in the presence of BMP4. Low levels of OCT4 induce embryonic ectoderm differentiation in the absence of BMP4 but specify extraembryonic lineages in the presence of BMP4. NANOG represses embryonic ectoderm differentiation but has little effect on other lineages, whereas SOX2 and SOX3 are redundant and repress mesendoderm differentiation. Thus, instead of being panrepressors of differentiation, each factor controls specific cell fates. Our study revises the view of how self-renewal is orchestrated in hESCs.
Collapse
|
250
|
Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J Neurosci 2012; 32:6275-87. [PMID: 22553033 DOI: 10.1523/jneurosci.0532-12.2012] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurogenesis in the dentate gyrus has been implicated in cognitive functions, including learning and memory, and may be abnormal in major neuropsychiatric disorders, such as depression. Dentate neurogenesis is regulated by interactions between extrinsic factors and intrinsic transcriptional cascades that are currently not well understood. Here we show that Tbr2 (also known as Eomes), a T-box transcription factor expressed by intermediate neuronal progenitors (INPs), is critically required for neurogenesis in the dentate gyrus of developing and adult mice. In the absence of Tbr2, INPs are depleted despite augmented neural stem cell (NSC) proliferation, and neurogenesis is halted as the result of failed neuronal differentiation. Interestingly, we find that Tbr2 likely promotes lineage progression from NSC to neuronal-specified INP in part by repression of Sox2, a key determinant of NSC identity. These findings suggest that Tbr2 expression in INPs is critical for neuronal differentiation in the dentate gyrus and that INPs are an essential stage in the lineage from NSCs to new granule neurons in the dentate gyrus.
Collapse
|