201
|
Lang-Mladek C, Xie L, Nigam N, Chumak N, Binkert M, Neubert S, Hauser MT. UV-B signaling pathways and fluence rate dependent transcriptional regulation of ARIADNE12. PHYSIOLOGIA PLANTARUM 2012; 145:527-39. [PMID: 22188380 DOI: 10.1111/j.1399-3054.2011.01561.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ARI12 belongs to a family of 'RING between RING fingers' (RBR) domain proteins with E3 ligase activity (Eisenhaber et al. 2007). The Arabidopsis genome codes for 14 ARI genes and two pseudogenes (Mladek et al. 2003). Under standard growth conditions ARI12 is predominantly expressed in roots. In addition, ARI12 is strongly induced in leaves following exposure to ultraviolet (UV)-B radiation at dosages similar to those in areas under a reduced ozone layer. With quantitative reverse transcription polymerase chain reaction analyses and promoter:reporter constructs we show that the expression of ARI12 peaks 2-4 h after UV-B radiation exposure. To test if ARI12's transcriptional activation depends on key players of the UV-B signaling pathway, ARI12 expression was quantified in mutants of the ELONGATED HYPOCOTYL5 (HY5), HY5 HOMOLOG (HYH) and the UV RESISTANCE LOCUS8 (UVR8) genes. ARI12 transcription was reduced by 50-70% in hy5, hyh and hy5/hyh double mutants, but not in uvr8 mutants. However, under low fluence rate UV-B conditions ARI12 is not induced in these mutants. Our results show that ARI12 represents a downstream target of the low fluence rate UVR8/HY5/HYH UV-B signaling pathway while under high fluence rates its expression is regulated by the two bZIP transcription factors HY5 and HYH in an UVR8-independent manner.
Collapse
Affiliation(s)
- Christina Lang-Mladek
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
202
|
Shelton D, Stranne M, Mikkelsen L, Pakseresht N, Welham T, Hiraka H, Tabata S, Sato S, Paquette S, Wang TL, Martin C, Bailey P. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. PLANT PHYSIOLOGY 2012; 159:531-47. [PMID: 22529285 PMCID: PMC3375922 DOI: 10.1104/pp.112.194753] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/23/2012] [Indexed: 05/20/2023]
Abstract
Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors.
Collapse
Affiliation(s)
- Dale Shelton
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Maria Stranne
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Lisbeth Mikkelsen
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Nima Pakseresht
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Tracey Welham
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Hideki Hiraka
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Satoshi Tabata
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Shusei Sato
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Suzanne Paquette
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Trevor L. Wang
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | | | - Paul Bailey
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| |
Collapse
|
203
|
Demkura PV, Ballaré CL. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. MOLECULAR PLANT 2012; 5:642-52. [PMID: 22447155 DOI: 10.1093/mp/sss025] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Light is emerging as a central regulator of plant immune responses against herbivores and pathogens. Solar UV-B radiation plays an important role as a positive modulator of plant defense. However, since UV-B photons can interact with a wide spectrum of molecular targets in plant tissues, the mechanisms that mediate their effects on plant defense have remained elusive. Here, we show that ecologically meaningful doses of UV-B radiation increase Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea and that this effect is mediated by the photoreceptor UVR8. The UV-B effect on plant resistance was conserved in mutants impaired in jasmonate (JA) signaling (jar1-1 and P35S:JAZ10.4) or metabolism of tryptophan-derived defense compounds (pen2-1, pad3-1, pen2 pad3), suggesting that neither regulation of the JA pathway nor changes in levels of indolic glucosinolates (iGS) or camalexin are involved in this response. UV-B radiation, acting through UVR8, increased the levels of flavonoids and sinapates in leaf tissue. The UV-B effect on pathogen resistance was still detectable in tt4-1, a mutant deficient in chalcone synthase and therefore impaired in the synthesis of flavonoids, but was absent in fah1-7, a mutant deficient in ferulic acid 5-hydroxylase, which is essential for sinapate biosynthesis. Collectively, these results indicate that UVR8 plays an important role in mediating the effects of UV-B radiation on pathogen resistance by controlling the expression of the sinapate biosynthetic pathway.
Collapse
Affiliation(s)
- Patricia V Demkura
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | | |
Collapse
|
204
|
Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants. TRENDS IN PLANT SCIENCE 2012; 17:230-7. [PMID: 22326562 DOI: 10.1016/j.tplants.2012.01.007] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 05/05/2023]
Abstract
Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways.
Collapse
Affiliation(s)
- Marc Heijde
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
205
|
Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Res 2012; 22:1046-57. [PMID: 22410790 DOI: 10.1038/cr.2012.34] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UV-B (280-315 nm) is an integral part of solar radiation and can act either as a stress inducer or as a developmental signal. In recent years, increasing attention has been paid to the low-fluence UV-B-induced photomorphogenic response and several key players in this response have been identified, which include UVR8 (a UV-B-specific photoreceptor), COP1 (a WD40-repeat-containing RING finger protein), HY5 (a basic zipper transcription factor), and RUP1/2 (two UVR8-interacting proteins). Here we report that Arabidopsis SALT TOLERANCE (STO/BBX24), a known regulator for light signaling in plants, defines a new signaling component in UV-B-mediated photomorphogenesis. The bbx24 mutant is hypersensitive to UV-B radiation and becomes extremely dwarfed under UV-B treatment. By contrast, BBX24 overexpression transgenic lines respond much more weakly to UV-B than the bbx24 and wild-type plants. BBX24 expression is UV-B-inducible and its accumulation under UV-B requires COP1. Co-immunoprecipitation experiments indicate that BBX24 interacts with COP1 in planta upon UV-B illumination. Moreover, BBX24 interacts with HY5 and acts antagonistically with HY5 in UV-B-induced inhibition of hypocotyl elongation. Furthermore, BBX24 attenuates UV-B-induced HY5 accumulation and suppresses its transcription-activation activity. Taken together, our results reveal a previously uncharacterized function of the light-regulated BBX24 in UV-B responses and demonstrate that BBX24 functions as a negative regulator of photomorphogenic UV-B responses by interacting with both COP1 and HY5. The UV-B-inducible expression pattern and its suppression of HY5 activity suggest that BBX24 could be a new component of the feedback regulatory module of UV-B signaling in plants.
Collapse
|
206
|
Structural basis of ultraviolet-B perception by UVR8. Nature 2012; 484:214-9. [DOI: 10.1038/nature10931] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/10/2012] [Indexed: 12/26/2022]
|
207
|
Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O'Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 2012; 335:1492-6. [PMID: 22323738 DOI: 10.1126/science.1218091] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The recently identified plant photoreceptor UVR8 (UV RESISTANCE LOCUS 8) triggers regulatory changes in gene expression in response to ultraviolet-B (UV-B) light through an unknown mechanism. Here, crystallographic and solution structures of the UVR8 homodimer, together with mutagenesis and far-UV circular dichroism spectroscopy, reveal its mechanisms for UV-B perception and signal transduction. β-propeller subunits form a remarkable, tryptophan-dominated, dimer interface stitched together by a complex salt-bridge network. Salt-bridging arginines flank the excitonically coupled cross-dimer tryptophan "pyramid" responsible for UV-B sensing. Photoreception reversibly disrupts salt bridges, triggering dimer dissociation and signal initiation. Mutation of a single tryptophan to phenylalanine retunes the photoreceptor to detect UV-C wavelengths. Our analyses establish how UVR8 functions as a photoreceptor without a prosthetic chromophore to promote plant development and survival in sunlight.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
González Besteiro MA, Bartels S, Albert A, Ulm R. Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:727-37. [PMID: 21790814 DOI: 10.1111/j.1365-313x.2011.04725.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants perceive UV-B radiation as an informational signal by a pathway involving UVR8 as UV-B photoreceptor, activating photomorphogenic and acclimation responses. In contrast, the response to UV-B as an environmental stress involves mitogen-activated protein kinase (MAPK) signalling cascades. Whereas the perception pathway is plant specific, the UV-B stress pathway is more broadly conserved. Knowledge of the UV-B stress-activated MAPK signalling pathway in plants is limited, and its potential interplay with the UVR8-mediated pathway has not been defined. Here, we show that loss of MAP kinase phosphatase 1 in the mutant mkp1 results in hypersensitivity to acute UV-B stress, but without impairing UV-B acclimation. The MKP1-interacting proteins MPK3 and MPK6 are activated by UV-B stress and are hyperactivated in mkp1. Moreover, mutants mpk3 and mpk6 exhibit elevated UV-B tolerance and partially suppress the UV-B hypersensitivity of mkp1. We show further that the MKP1-regulated stress-response MAPK pathway is independent of the UVR8 photoreceptor, but that MKP1 also contributes to survival under simulated sunlight. We conclude that, whereas UVR8-mediated acclimation in plants promotes UV-B-induced defence measures, MKP1-regulated stress signalling results when UV-B protection and repair are insufficient and damage occurs. The combined activity of these two mechanisms is crucial to UV-B tolerance in plants.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
209
|
Kühn K, Carrie C, Giraud E, Wang Y, Meyer EH, Narsai R, des Francs-Small CC, Zhang B, Murcha MW, Whelan J. The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1067-80. [PMID: 21623974 DOI: 10.1111/j.1365-313x.2011.04658.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have identified a mitochondrial protein (RUG3) that is required for accumulation of mitochondrial respiratory chain complex I. RUG3 is related to human REGULATOR OF CHROMOSOME CONDENSATION 1 (RCC1) and Arabidopsis UV-B RESISTANCE 8 (UVR8). Although the family of RCC1-like proteins in Arabidopsis has over 20 members, UVR8 is the sole plant representative of this family to have been functionally characterized. Mitochondria from Arabidopsis plants lacking a functional RUG3 gene showed greatly reduced complex I abundance and activity. In contrast, accumulation of complexes III, IV and V of the oxidative phosphorylation system and the capacity for succinate-dependent respiration were unaffected. A comprehensive study of processes contributing to complex I biogenesis in rug3 mutants revealed that RUG3 is required for efficient splicing of the nad2 mRNA, which encodes a complex I subunit. A comparison of the formation of complex I assembly intermediates between rug3 and wild type mitochondria indicated that NAD2 enters the assembly pathway at an early stage. Remarkably, rug3 mutants displayed increased capacities for import of nucleus-encoded mitochondrial proteins into the organelle and showed moderately increased mitochondrial transcript levels. This observation is consistent with global transcript changes indicating enhanced mitochondrial biogenesis in the rug3 mutant in response to the complex I defect.
Collapse
Affiliation(s)
- Kristina Kühn
- Australian Research Council Centre of Excellence in Plant Energy Biology, M316, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Abstract
The structure and compaction of chromatin exerts a major regulatory influence on eukaryotic transcription. Changes in both histone composition and post-translational modifications of individual histone proteins can lead to remodelling of higher order chromatin structure. Chromatin remodelling regulates transcriptional activity through modifying gene accessibility, via DNA/histone interactions and the recruitment of non-histone proteins to DNA. Plant growth and development is regulated by the integration of multiple environmental signals. Of these, light is one of the most important. Chromatin remodelling processes have been identified in plants following a variety of different light treatments. These include the initiation of seedling de-etiolation, changes in photon irradiance and ultraviolet-B radiation exposure. In this review, we will summarize the roles of chromatin remodelling in plant photomorphogenesis and discuss these in the wider context of plant environmental adaptation.
Collapse
Affiliation(s)
- Alex J Fisher
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK School of Biological Sciences, University of Bristol, Bristol BS81UG, UK
| | | |
Collapse
|
211
|
Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V. Recommendations for reporting metabolite data. THE PLANT CELL 2011; 23:2477-82. [PMID: 21771932 PMCID: PMC3226225 DOI: 10.1105/tpc.111.086272] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/14/2011] [Accepted: 06/30/2011] [Indexed: 05/18/2023]
|
212
|
Tossi V, Amenta M, Lamattina L, Cassia R. Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. PLANT, CELL & ENVIRONMENT 2011; 34:909-921. [PMID: 21332509 DOI: 10.1111/j.1365-3040.2011.02289.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The link between ultraviolet (UV)-B, nitric oxide (NO) and phenylpropanoid biosynthetic pathway (PPBP) was studied in maize and Arabidopsis. The transcription factor (TF) ZmP regulates PPBP in maize. A genetic approach using P-rr (ZmP+) and P-ww (ZmP⁻) maize lines demonstrate that: (1) NO protects P-rr leaves but not P-ww from UV-B-induced reactive oxygen species (ROS) and cell damage; (2) NO increases flavonoid and anthocyanin content and prevents chlorophyll loss in P-rr but not in P-ww and (3) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) blocks the UV-B-induced expression of ZmP and their targets CHS and CHI suggesting that NO plays a key role in the UV-B-regulated PPBP. Involvement of endogenous NO was studied in Arabidopsis nitric oxide dioxygenase (NOD) plants that express a NO dioxygenase gene under the control of a dexamethasone (DEX)-inducible promoter. Expression of HY5 and MYB12, TFs involved in PPBP regulation, was induced by UV-B, reduced by DEX in NOD plants and recovered by subsequent NO treatment. C4H regulates synapate esters synthesis and is UV-B-induced in a NO-independent pathway. Data indicate that UV-B perception increases NO concentration, which protects plant against UV-B by two ways: (1) scavenging ROS; and (2) up-regulating the expression of HY5, MYB12 and ZmP, resulting in the PPBP activation.
Collapse
Affiliation(s)
- Vanesa Tossi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| | - Melina Amenta
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| | - Raúl Cassia
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| |
Collapse
|
213
|
Wu M, Grahn E, Eriksson LA, Strid A. Computational evidence for the role of Arabidopsis thaliana UVR8 as UV-B photoreceptor and identification of its chromophore amino acids. J Chem Inf Model 2011; 51:1287-95. [PMID: 21561100 DOI: 10.1021/ci200017f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A homology model of the Arabidopsis thaliana UV resistance locus 8 (UVR8) protein is presented herein, showing a seven-bladed β-propeller conformation similar to the globular structure of RCC1. The UVR8 amino acid sequence contains a very high amount of conserved tryptophans, and the homology model shows that seven of these tryptophans cluster at the 'top surface' of the UVR8 protein where they are intermixed with positive residues (mainly arginines) and a couple of tyrosines. Quantum chemical calculations of excitation spectra of both a large cluster model involving all twelve above-mentioned residues and smaller fragments thereof reveal that absorption maxima appearing in the 280-300 nm range for the full cluster result from interactions between the central tryptophans and surrounding arginines. This observation coincides with the published experimentally measured action spectrum for the UVR8-dependent UV-B stimulation of HY5 transcription in mature A. thaliana leaf tissue. In total these findings suggest that UVR8 has in fact in itself the ability to be an ultraviolet-B photoreceptor in plants.
Collapse
Affiliation(s)
- Min Wu
- School of Chemistry, National University of Ireland-Galway, Galway, Ireland
| | | | | | | |
Collapse
|
214
|
Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011; 332:103-6. [PMID: 21454788 DOI: 10.1126/science.1200660] [Citation(s) in RCA: 726] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.
Collapse
Affiliation(s)
- Luca Rizzini
- Faculty of Biology, Institute of Biology II, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Dick CA, Buenrostro J, Butler T, Carlson ML, Kliebenstein DJ, Whittall JB. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway. PLoS One 2011; 6:e18230. [PMID: 21490971 PMCID: PMC3072389 DOI: 10.1371/journal.pone.0018230] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/23/2011] [Indexed: 12/28/2022] Open
Abstract
Intra- and interspecific variation in flower color is a hallmark of angiosperm diversity. The evolutionary forces underlying the variety of flower colors can be nearly as diverse as the colors themselves. In addition to pollinator preferences, non-pollinator agents of selection can have a major influence on the evolution of flower color polymorphisms, especially when the pigments in question are also expressed in vegetative tissues. In such cases, identifying the target(s) of selection starts with determining the biochemical and molecular basis for the flower color variation and examining any pleiotropic effects manifested in vegetative tissues. Herein, we describe a widespread purple-white flower color polymorphism in the mustard Parrya nudicaulis spanning Alaska. The frequency of white-flowered individuals increases with increasing growing-season temperature, consistent with the role of anthocyanin pigments in stress tolerance. White petals fail to produce the stress responsive flavonoid intermediates in the anthocyanin biosynthetic pathway (ABP), suggesting an early pathway blockage. Petal cDNA sequences did not reveal blockages in any of the eight enzyme-coding genes in white-flowered individuals, nor any color differentiating SNPs. A qRT-PCR analysis of white petals identified a 24-fold reduction in chalcone synthase (CHS) at the threshold of the ABP, but no change in CHS expression in leaves and sepals. This arctic species has avoided the deleterious effects associated with the loss of flavonoid intermediates in vegetative tissues by decoupling CHS expression in petals and leaves, yet the correlation of flower color and climate suggests that the loss of flavonoids in the petals alone may affect the tolerance of white-flowered individuals to colder environments.
Collapse
Affiliation(s)
- Cynthia A. Dick
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Jason Buenrostro
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Timothy Butler
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Matthew L. Carlson
- Biological Sciences Department, University of Alaska, Anchorage, Alaska, United States of America
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
- * E-mail:
| |
Collapse
|
216
|
Martínez-Esteso MJ, Casado-Vela J, Sellés-Marchart S, Elortza F, Pedreño MA, Bru-Martínez R. iTRAQ-based profiling of grape berry exocarp proteins during ripening using a parallel mass spectrometric method. ACTA ACUST UNITED AC 2011; 7:749-65. [DOI: 10.1039/c0mb00194e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
217
|
Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci U S A 2010; 107:20132-7. [PMID: 21041653 DOI: 10.1073/pnas.0914532107] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plants respond to low levels of UV-B radiation with a coordinated photomorphogenic response that allows acclimation to this environmental stress factor. The key players in this UV-B response are COP1 (an E3 ubiquitin ligase), UVR8 (a β-propeller protein), and HY5 (a bZIP transcription factor). We have shown previously that an elevated UV-B-specific response is associated with dwarf growth, indicating the importance of balancing UV-B-specific signaling. Negative regulators of this pathway are not known, however. Here, we describe two highly related WD40-repeat proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2, that interact directly with UVR8 as potent repressors of UV-B signaling. Both genes were transcriptionally activated by UV-B in a COP1-, UVR8-, and HY5-dependent manner. rup1 rup2 double mutants showed an enhanced response to UV-B and elevated UV-B tolerance after acclimation. Overexpression of RUP2 resulted in reduced UV-B-induced photomorphogenesis and impaired acclimation, leading to hypersensitivity to UV-B stress. These results are consistent with an important regulatory role for RUP1 and RUP2, which act downstream of UVR8-COP1 in a negative feedback loop impinging on UVR8 function, balancing UV-B defense measures and plant growth.
Collapse
|
218
|
Chao D, Lin H. The tricks plants use to reach appropriate light. SCIENCE CHINA-LIFE SCIENCES 2010; 53:916-26. [PMID: 20821290 DOI: 10.1007/s11427-010-4047-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/25/2010] [Indexed: 11/30/2022]
Abstract
The perception of ambient light signals that produce a relevant response to ensure exposure to appropriate levels of light energy is vital for plants. In response to this, intricate molecular mechanisms to mediate light signaling have evolved in plants. Among the responses induced by light, seedling extension is a determining event for plant survival in darkness, especially in the initial stage of plant growth. Here we review previous studies and recent progress towards an understanding of light signaling that regulates seedling elongation. We focus on the three regions of the sunlight spectrum that primarily control seedling elongation, namely red/far-red light, blue/UV-A light and UV-B light, and summarize the four signaling pathways that correspond to the three effective spectra.
Collapse
Affiliation(s)
- DaiYin Chao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
219
|
Identification of a Novel cis-Regulatory Element Region Responded to UV-B in Rice WRKY89 Promoter*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
220
|
Zhang C, Guo H, Zhang J, Guo G, Schumaker KS, Guo Y. Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. THE PLANT CELL 2010; 22:2353-69. [PMID: 20622147 PMCID: PMC2929103 DOI: 10.1105/tpc.110.073973] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 06/07/2010] [Accepted: 06/21/2010] [Indexed: 05/19/2023]
Abstract
In plants, as in animals, DNA is constantly subject to chemical modification. UV-B irradiation is a major genotoxic agent and has significant effects on plant growth and development. Through forward genetic screening, we identified a UV-B-sensitive mutant (csaat1a-3) in Arabidopsis thaliana, in which expression of CSAat1A, encoding a Cockayne Syndrome A-like protein, is reduced due to insertion of a T-DNA in the promoter region. Arabidopsis lacking CSAat1A or its homolog CSAat1B is more sensitive to UV-B and the genotoxic drug methyl methanesulfonate and exhibits reduced transcription-coupled repair activity. Yeast two-hybrid analysis indicated that both CSAat1A and B interact with DDB1A (UV-Damage DNA Binding Protein1). Coimmunoprecipitation assays demonstrated that CSAat1A and B associate with the CULLIN4 (CUL4)-DDB1A complex in Arabidopsis. A split-yellow fluorescent protein assay showed that this interaction occurs in the nucleus, consistent with the idea that the CUL4-DDB1A-CSA complex functions as a nuclear E3 ubiquitin ligase. CSAat1A and B formed heterotetramers in Arabidopsis. Taken together, our data suggest that the plant CUL4-DDB1A(CSAat1A and B) complex represents a unique mechanism to promote ubiquitination of substrates in response to DNA damage.
Collapse
Affiliation(s)
- Caiguo Zhang
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huiping Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jun Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guangqin Guo
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Karen S. Schumaker
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Yan Guo
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Address correspondence to
| |
Collapse
|
221
|
Wolf L, Rizzini L, Stracke R, Ulm R, Rensing SA. The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. PLANT PHYSIOLOGY 2010; 153:1123-34. [PMID: 20427465 PMCID: PMC2899899 DOI: 10.1104/pp.110.154658] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/26/2010] [Indexed: 05/19/2023]
Abstract
Ultraviolet-B (UV-B) radiation present in sunlight is an important trigger of photomorphogenic acclimation and stress responses in sessile land plants. Although numerous moss species grow in unshaded habitats, our understanding of their UV-B responses is very limited. The genome of the model moss Physcomitrella patens, which grows in sun-exposed open areas, encodes signaling and metabolic components that are implicated in the UV-B response in flowering plants. In this study, we describe the response of P. patens to UV-B radiation at the morphological and molecular levels. We find that P. patens is more capable of surviving UV-B stress than Arabidopsis (Arabidopsis thaliana) and describe the differential expression of approximately 400 moss genes in response to UV-B radiation. A comparative analysis of the UV-B response in P. patens and Arabidopsis reveals both distinct and conserved pathways.
Collapse
Affiliation(s)
| | | | | | | | - Stefan A. Rensing
- Institute of Biology II (L.W., L.R., R.U., S.A.R.) and Freiburg Initiative for Systems Biology (L.W., S.A.R.), Faculty of Biology, University of Freiburg, D–79104 Freiburg, Germany; Genome Research, Faculty of Biology, Bielefeld University, D–33594 Bielefeld, Germany (R.S.)
| |
Collapse
|
222
|
Conte M, de Simone S, Simmons SJ, Ballaré CL, Stapleton AE. Chromosomal loci important for cotyledon opening under UV-B in Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:112. [PMID: 20565708 PMCID: PMC3095277 DOI: 10.1186/1471-2229-10-112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/16/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Understanding of the genetic architecture of plant UV-B responses allows extensive targeted testing of candidate genes or regions, along with combinations of those genes, for placement in metabolic or signal transduction pathways. RESULTS Composite interval mapping and single-marker analysis methods were used to identify significant loci for cotyledon opening under UV-B in four sets of recombinant inbred lines. In addition, loci important for canalization (stability) of cotyledon opening were detected in two mapping populations. One candidate locus contained the gene HY5. Mutant analysis demonstrated that HY5 was required for UV-B-specific cotyledon opening. CONCLUSIONS Structured mapping populations provide key information on the degree of complexity in the genetic control of UV-B-induced cotyledon opening in Arabidopsis. The loci identified using quantitative trait analysis methods are useful for follow-up testing of candidate genes.
Collapse
Affiliation(s)
- Mariana Conte
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, C1417 DSE Buenos Aires, Argentina
| | - Silvia de Simone
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, C1417 DSE Buenos Aires, Argentina
| | - Susan J Simmons
- Department of Mathematics and Statistics, University of North Carolina at Wilmington, Wilmington, NC 28403 USA
| | - Carlos L Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, C1417 DSE Buenos Aires, Argentina
| | - Ann E Stapleton
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC 28403 USA
| |
Collapse
|
223
|
Klink VP, Hosseini P, Matsye P, Alkharouf NW, Matthews BF. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). PLANT MOLECULAR BIOLOGY 2009; 71:525-67. [PMID: 19787434 DOI: 10.1007/s11103-009-9539-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 08/09/2009] [Indexed: 05/07/2023]
Abstract
The syncytium is a nurse cell formed within the roots of Glycine max by the plant parasitic nematode Heterodera glycines. Its development and maintenance are essential for nematode survival. The syncytium appears to undergo two developmental phases during its maturation into a functional nurse cell. The first phase is a parasitism phase where the nematode establishes the molecular circuitry that during the second phase ensures a compatible interaction with the plant cell. The cytological features of syncytia undergoing susceptible or resistant reactions appear the same during the parasitism phase. Depending on the outcome of any defense response, the second phase is a period of syncytium maintenance (susceptible reaction) or failure (resistant reaction). In the analyses presented here, the localized gene expression occurring at the syncytium during the resistant reaction was studied. This was accomplished by isolating syncytial cells from Glycine max genotype Peking (PI 548402) by laser capture microdissection. Microarray analyses using the Affymetrix soybean GeneChip directly compared Peking syncytia undergoing a resistant reaction to those undergoing a susceptible reaction during the parasitism phase of the resistant reaction. Those analyses revealed lipoxygenase-9 and lipoxygenase-4 as the most highly induced genes in the resistant reaction. The analysis also identified induced levels of components of the phenylpropanoid pathway. These genes included phenylalanine ammonia lyase, chalcone isomerase, isoflavone reductase, cinnamoyl-CoA reductase and caffeic acid O-methyltransferase. The presence of induced levels of these genes implies the importance of jasmonic acid and phenylpropanoid signaling pathways locally at the site of the syncytium during the resistance phase of the resistant reaction. The analysis also identified highly induced levels of four S-adenosylmethionine synthetase genes, the EARLY-RESPONSIVE TO DEHYDRATION 2 gene and the 14-3-3 gene known as GENERAL REGULATORY FACTOR 2. Subsequent analyses studied microdissected syncytial cells at 3, 6 and 9 days post infection (dpi) during the course of the resistant reaction, resulting in the identification of signature gene expression profiles at each time point in a single G. max genotype, Peking.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Harned Hall, Mississippi State, MS 39762, USA.
| | | | | | | | | |
Collapse
|
224
|
Gardner G, Lin C, Tobin EM, Loehrer H, Brinkman D. Photobiological properties of the inhibition of etiolated Arabidopsis seedling growth by ultraviolet-B irradiation. PLANT, CELL & ENVIRONMENT 2009; 32:1573-83. [PMID: 19627566 DOI: 10.1111/j.1365-3040.2009.02021.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alteration of 'normal' levels of ultraviolet-B light (UV-B, 280-320 nm) can affect plant chemical composition as well as growth; however, little is known about how plants perceive UV-B light. We have carried out fluence response curves, and demonstrated that the growth inhibition of etiolated Arabidopsis thaliana seedlings by low fluence UV light is specific to UV-B and not UV-A (320-390 nm). The response shows reciprocity between duration and intensity, at least over a limited range, and thus depends only on photon fluence and not on photon flux. The action spectrum for this response indicates a peak of maximum effectiveness at 290 nm, and response spectra at different fluences indicate that the most effective wavelength at 30,000 micromol m(-2) is 290 nm, whereas 300 nm light was the most effective at 100,000 micromol m(-2). This response occurs in mutant seedlings deficient in cryptochrome, phytochrome or phototropin, suggesting that none of the known photoreceptors is the major UV-B photoreceptor. Some null mutants in DNA repair enzymes show hypersensitivity to UV-B, suggesting that even at low fluence rates, direct damage to DNA may be one component of the response to UV-B.
Collapse
Affiliation(s)
- Gary Gardner
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
225
|
Kram BW, Xu WW, Carter CJ. Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues. BMC PLANT BIOLOGY 2009; 9:92. [PMID: 19604393 PMCID: PMC2720969 DOI: 10.1186/1471-2229-9-92] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/15/2009] [Indexed: 05/06/2023]
Abstract
BACKGROUND Many flowering plants attract pollinators by offering a reward of floral nectar. Remarkably, the molecular events involved in the development of nectaries, the organs that produce nectar, as well as the synthesis and secretion of nectar itself, are poorly understood. Indeed, to date, no genes have been shown to directly affect the de novo production or quality of floral nectar. To address this gap in knowledge, the ATH1 Affymetrix GeneChip array was used to systematically investigate the Arabidopsis nectary transcriptome to identify genes and pathways potentially involved in nectar production. RESULTS In this study, we identified a large number of genes differentially expressed between secretory lateral nectaries and non-secretory median nectary tissues, as well as between mature lateral nectaries (post-anthesis) and immature lateral nectaries (pre-anthesis). Expression within nectaries was also compared to thirteen non-nectary reference tissues, from which 270 genes were identified as being significantly upregulated in nectaries. The expression patterns of 14 nectary-enriched genes were also confirmed via RT PCR. Upon looking into functional groups of upregulated genes, pathways involved in gene regulation, carbohydrate metabolism, and lipid metabolism were particularly enriched in nectaries versus reference tissues. CONCLUSION A large number of genes preferentially expressed in nectaries, as well as between nectary types and developmental stages, were identified. Several hypotheses relating to mechanisms of nectar production and regulation thereof are proposed, and provide a starting point for reverse genetics approaches to determine molecular mechanisms underlying nectar synthesis and secretion.
Collapse
Affiliation(s)
- Brian W Kram
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Wayne W Xu
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clay J Carter
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
226
|
Brown BA, Headland LR, Jenkins GI. UV-B action spectrum for UVR8-mediated HY5 transcript accumulation in Arabidopsis. Photochem Photobiol 2009; 85:1147-55. [PMID: 19558421 DOI: 10.1111/j.1751-1097.2009.00579.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a UV-B-specific signaling component that mediates low fluence, photomorphogenic responses to UV-B. It is required for UV-B-induced expression of the gene encoding the ELONGATED HYPOCOTYL5 (HY5) transcription factor. HY5 is a key effector of responses mediated by UVR8. In mature leaf tissue, HY5 transcript accumulation occurred rapidly in response to a brief UV-B treatment and no induction was observed in a uvr8 mutant over a broad range of UV wavelengths. In response to monochromatic light, maximal transcript accumulation occurred in wild-type plants at wavelengths 280-300 nm. HY5 transcript accumulation showed reciprocity between the fluence rate and duration of UV-B exposure, and on this basis conditions were chosen to generate an action spectrum for the UVR8 signaling pathway. Dose-response curves were produced for a range of UV wavelengths using 20 min exposure to UV and harvesting tissue 2 h after the start of illumination. Experiments using mutants defective in sinapate ester and flavonoid biosynthesis indicated that the presence of UV-absorbing compounds did not affect the construction of an action spectrum under the conditions employed. The action spectrum for the induction of HY5 by the UVR8 pathway showed a main peak at 280 nm with a smaller peak at 300 nm. The data are discussed in relation to the proposed mechanisms of UV-B photoreception.
Collapse
Affiliation(s)
- Bobby A Brown
- Plant Science Group, Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
227
|
Abstract
UV-B radiation is a key environmental signal that initiates diverse responses in plants that affect metabolism, development, and viability. Many effects of UV-B involve the differential regulation of gene expression. The response to UV-B depends on the nature of the UV-B treatment, the extent of adaptation and acclimation to UV-B, and interaction with other environmental factors. Responses to UV-B are mediated by both nonspecific signaling pathways, involving DNA damage, reactive oxygen species, and wound/defense signaling molecules, and UV-B-specific pathways that mediate photomorphogenic responses to low levels of UV-B. Importantly, photomorphogenic signaling stimulates the expression of genes involved in UV-protection and hence promotes plant survival in UV-B. Photomorphogenic UV-B signaling is mediated by the UV-B-specific component UV RESISTANCE LOCUS8 (UVR8). Both UVR8 and CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) are required for UV-B-induced expression of the ELONGATED HYPOCOTYL5 (HY5) transcription factor, which plays a central role in the regulation of genes involved in photomorphogenic UV-B responses.
Collapse
Affiliation(s)
- Gareth I. Jenkins
- Plant Science Group, Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
228
|
Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 2009; 28:591-601. [PMID: 19165148 DOI: 10.1038/emboj.2009.4] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 01/05/2009] [Indexed: 12/28/2022] Open
Abstract
The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment.
Collapse
|
229
|
Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3531-44. [PMID: 19561048 PMCID: PMC2724701 DOI: 10.1093/jxb/erp194] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme, NADP-ME, and pyruvate dehydrogenase, PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase, CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase,ALDH, ascorbate-dependent oxidoreductase, ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8, HSP17.8, and dehydrin 3, DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were possibly constitutively expressed in drought-tolerant genotypes. Among them, seven known annotated genes might enhance drought tolerance through signalling [such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP)], anti-senescence (G2 pea dark accumulated protein, GDA2), and detoxification (glutathione S-transferase, GST) pathways. In addition, 18 genes, including those encoding Delta(l)-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C), and several chaperones, were differentially expressed in all genotypes under drought; thus they were more likely to be general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley.
Collapse
Affiliation(s)
- Peiguo Guo
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
- To whom correspondence should be addressed: E-mail:
| | - Stefania Grando
- International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
| | - Salvatore Ceccarelli
- International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
| | - Guihua Bai
- USDA-ARS Plant Science and Entomology Research Unit, 4008 Throckmorton Hall, Manhattan, KS 66506, USA
| | - Ronghua Li
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Maria von Korff
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Rajeev K. Varshney
- Applied Genomics Laboratory, GT-Biotechnology, ICRISAT, PATANCHERU-502 324, Greater Hyderabad, India
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research Head, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Jan Valkoun
- International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
| |
Collapse
|
230
|
Wargent JJ, Gegas VC, Jenkins GI, Doonan JH, Paul ND. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. THE NEW PHYTOLOGIST 2009; 183:315-326. [PMID: 19402876 DOI: 10.1111/j.1469-8137.2009.02855.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Responses specific to ultraviolet B (UV-B) wavelengths are still poorly understood, both in terms of initial signalling and effects on morphogenesis. Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is the only known UV-B specific signalling component, but the role of UVR8 in leaf morphogenesis is unknown. The regulatory effects of UVR8 on leaf morphogenesis at a range of supplementary UV-B doses were characterized, revealing both UVR8-dependent and independent responses to UV irradiation. Inhibition of epidermal cell division in response to UV-B is largely independent of UVR8. However, overall leaf growth under UV-B irradiation in wild-type plants is enhanced compared with a uvr8 mutant because of a UVR8-dependent compensatory increase of cell area in wild-type plants. UVR8 was also required for the regulation of endopolyploidy in response to UV-B, and the uvr8 mutant also has a lower density of stomata than the wild type in the presence of UV-B, indicating that UVR8 has a regulatory role in other developmental events. Our findings show that, in addition to regulating UV-protective gene expression responses, UVR8 is involved in controlling aspects of leaf growth and morphogenesis. This work extends our understanding of how UV-B response is orchestrated at the whole-plant level.
Collapse
Affiliation(s)
- Jason J Wargent
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Vasilis C Gegas
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Gareth I Jenkins
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John H Doonan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
231
|
Role of root UV-B sensing in Arabidopsis early seedling development. Proc Natl Acad Sci U S A 2008; 105:21039-44. [PMID: 19075229 DOI: 10.1073/pnas.0809942106] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All sun-exposed organisms are affected by UV-B [(UVB) 280-320 nm], an integral part of sunlight. UVB can cause stresses or act as a developmental signal depending on its fluence levels. In plants, the mechanism by which high-fluence-rate UVB causes damages and activates DNA-repair systems has been extensively studied. However, little is known about how nondamaging low-fluence-rate UVB is perceived to regulate plant morphogenesis and development. Here, we report the identification of an Arabidopsis mutant, root UVB sensitive 1 (rus1), whose primary root is hypersensitive to very low-fluence-rate (VLF) UVB. Under standard growth-chamber fluorescent white light, rus1 displays stunted root growth and fails to form postembryonic leaves. Experiments with different monochromatic light sources showed that rus1 phenotypes can be rescued if the seedlings are allowed to grow in light conditions with minimum UVB. We determined that roots, not other organs, perceive the UVB signal. Genetic and molecular analyses confirmed that the root light-sensitive phenotypes are independent of all other known plant photoreceptors. Three rus1 alleles have been identified and characterized. A map-based approach was used to identify the RUS1 locus. RUS1 encodes a protein that contains DUF647 (domain of unknown function 647), a domain highly conserved in eukaryotes. Our results demonstrate a root VLF UVB-sensing mechanism that is involved in Arabidopsis early seedling morphogenesis and development.
Collapse
|
232
|
Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, Rosa JL. The RCC1 superfamily: From genes, to function, to disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1467-79. [DOI: 10.1016/j.bbamcr.2008.03.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 02/07/2023]
|
233
|
Lee Y, Kim MH, Kim SK, Kim SH. Phytochrome-mediated differential gene expression of plant Ran/TC4 small G-proteins. PLANTA 2008; 228:215-24. [PMID: 18481083 DOI: 10.1007/s00425-008-0745-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/21/2008] [Indexed: 05/26/2023]
Abstract
Ran/TC4 is the only known member of the family of small GTP-binding proteins primarily localized inside the nucleus. We cloned a pea Ran gene (PsRan1) and characterized its expression in tissues, and under different light sources. PsRan1 is a member of a highly homologous multigene family, and it encodes a protein containing plant-specific amino acids in its sequence. It is ubiquitously expressed in pea tissues with high expression in radicles. The amount of total mRNA transcripts representing multiple Ran family members increased in response to very low-fluence R, while the amount of mRNA transcript encoding PsRan1 specifically was not affected by various light treatments. In addition, Ran genes in Arabidopsis were also differentially expressed in various mutants defective in phytochromes or the light-responding HY5 protein, such as phyA, phyB, and hy5. AtRan1 and AtRan3 gene expression was significantly reduced in the phyA mutant background compared to that in Ler-0 wild type plants. AtRan1 expression was also decreased in the phyB background. In contrast, the expression of AtRan2 did not vary in the hy5 and phytochrome mutant backgrounds examined. Interestingly, expression of AtRan1 was significantly reduced in hy5 plants, while AtRan3 expression was increased in the same plants. From these results, we conclude that Ran gene expression is differentially regulated by various light sources and phytochrome-mediated signaling pathways.
Collapse
Affiliation(s)
- Yew Lee
- Division of Biological Sciences and Biotechnology, Yonsei University, Wonju-Si, 220-710, South Korea
| | | | | | | |
Collapse
|
234
|
Safrany J, Haasz V, Mate Z, Ciolfi A, Feher B, Oravecz A, Stec A, Dallmann G, Morelli G, Ulm R, Nagy F. Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:402-14. [PMID: 18266923 DOI: 10.1111/j.1365-313x.2008.03435.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultraviolet-B light (UV-B) regulates the expression of genes in a wavelength- and fluence rate-dependent fashion. A signaling pathway consisting of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) and UV RESISTANCE LOCUS 8 (UVR 8) mediates responsiveness to longer wavelength, low intensity UV-B light-activating, for example, HY5 gene expression. By contrast, transcription of another group of genes, including ANAC13, modulated by shorter wavelength, higher intensity UV-B is controlled by a yet unknown and largely COP1-independent signaling cascade. Here we provide evidence by promoter deletion analysis, and characterization of genetic mutants displaying aberrant expression patterns, that two cis-regulatory elements, designated MRE(ANAC13) and UVBox(ANAC13), are required for maximal UV-B induction of the ANAC13 gene in transgenic plants. These elements are located in the proximal 150-bp region of the ANAC13 promoter. They show no significant similarity to each other; the putative MRE(ANAC13) (-AACCTT-) is closely related to MRE(CHS) (-AACCTA-) found in the CHALCONE SYNTHASE (CHS) gene, whereas UVBox(ANAC13) (with core sequence CAAG) represents a novel cis-regulatory element. The novel UVBox(ANAC13) sequence is significantly enriched in the promoter region of a subset of UV-B-induced genes with similar activation properties as ANAC13. In addition, we demonstrate that expression of a chimeric gene containing only the dimerized 12-mer containing UVBox(ANAC13) fused to a minimal CaMV35S promoter/luciferase reporter is (i) efficiently induced by shorter wavelength, higher intensity UV-B, but (ii) does not respond either to longer wavelength UV-B and red light or (iii) to abscisic acid treatment and osmotic, salt, heat and cold stresses.
Collapse
Affiliation(s)
- Judit Safrany
- Agricultural Biotechnology Center, Szent-Gyorgyi A. 4, H-2100 Gödöllo, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Brown BA, Jenkins GI. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. PLANT PHYSIOLOGY 2008; 146:576-88. [PMID: 18055587 PMCID: PMC2245850 DOI: 10.1104/pp.107.108456] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 11/21/2007] [Indexed: 05/18/2023]
Abstract
UV-B signaling is an important but poorly understood aspect of light responsiveness in plants. Arabidopsis (Arabidopsis thaliana) UV RESISTANCE LOCUS8 (UVR8) is a recently identified UV-B-specific signaling component that regulates UV-protective responses. Using the uvr8 mutant, we defined genetically distinct UVR8-dependent and UVR8-independent pathways that stimulate different sets of genes in mature Arabidopsis leaf tissue. Both pathways operate at 1 micromol m(-2) s(-1) UV-B and above, but the UVR8-dependent pathway is able to stimulate UV-protective genes even in response to 0.1 micromol m(-2) s(-1) UV-B. Both pathways function in mutants lacking phytochromes, cryptochromes, or phototropins. Genes encoding the ELONGATED HYPOCOTYL5 (HY5) and HY5 HOMOLOG (HYH) transcription factors are induced at low UV-B fluence rates (0.1 micromol m(-2) s(-1)). Experiments with hy5 and hyh mutants reveal that both these factors mediate responses of the UVR8-dependent pathway, acting with partial or complete redundancy to stimulate expression of particular genes. Furthermore, evidence is presented that all UVR8 pathway genes are likely to be regulated by HY5/HYH and that these transcription factors do not mediate UV-B responses independent of UVR8. Finally, we highlight the functions of HY5 and HYH in UV protection and show that HY5 plays the more critical role. This research provides evidence that, in UV-B signaling, UVR8, HY5, and HYH act together in a photoregulatory pathway and demonstrates a new role for HYH in UV-B responses.
Collapse
Affiliation(s)
- Bobby A Brown
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
236
|
Stevens TJ, Paoli M. RCC1-like repeat proteins: a pangenomic, structurally diverse new superfamily of beta-propeller domains. Proteins 2008; 70:378-87. [PMID: 17680689 DOI: 10.1002/prot.21521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The beta-propeller fold is a phylogenetically widespread, common protein architecture able to support a range of different functions such as catalysis, ligand binding and transport, regulation and protein binding. Interestingly, it appears that the beta-propeller topology is also compatible with strikingly diverse sequences. Amongst this diversity, there are three large groups of proteins with related sequences and very important cellular and intercellular regulatory functions: WD, kelch, and YWTD proteins. A common characteristic between these protein families is that their sequences, while distinct, all contain internal repeats 40-45 residues long. Through a pangenomic analysis using internal repeat profiles derived from the structurally known propeller modules of the eukaryotic protein RCC1 and the related prokaryotic protein BLIP-II, we have defined a new superfamily of propeller repeats, the RCC1-like repeats (RLRs). These sequences turn out to be more phylogenetically widespread than other large groups of propeller proteins, occurring in both prokaryotic and eukaryotic genomes. Interestingly, our research showed that RLR domains with different numbers of repeats exist, ranging from 3 to 7, and possibly more. A novel, intriguing finding is the discovery of sequences with 3 repeats, as well as proteins with 10 modular units, though in the latter case it is not clear whether these are made of two 5-bladed domains or a single, novel 10-bladed propeller. In addition, the results indicate that circular permutation events may have taken place in the evolution of these proteins. It is now established that the group of RLR proteins is extremely numerous and is characterized by unique, remarkable features which place it in a position of special interest as an important superfamily of proteins in nature.
Collapse
Affiliation(s)
- Tim J Stevens
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | |
Collapse
|
237
|
Lee Y, Lee HS, Lee JS, Kim SK, Kim SH. Hormone- and light-regulated nucleocytoplasmic transport in plants: current status. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3229-45. [PMID: 18678754 DOI: 10.1093/jxb/ern200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.
Collapse
Affiliation(s)
- Yew Lee
- Department of Biological Sciences, Yonsei University, 234 Heungup-Myun, Wonju-Si, 220-710, Korea
| | | | | | | | | |
Collapse
|
238
|
Cloix C, Jenkins GI. Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. MOLECULAR PLANT 2008; 1:118-28. [PMID: 20031919 DOI: 10.1093/mp/ssm012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabidopsis UV RESISTANCE LOCUS8 (UVR8) is a UV-B-specific signaling component that regulates expression of a range of genes concerned with UV protection. Here, we investigate the interaction of UVR8 with chromatin. Using antibodies specific to UVR8 in chromatin immunoprecipitation (ChIP) assays with wild-type plants, we show that native UVR8 binds to chromatin in vivo. Similar experiments using an anti-GFP antibody with plants expressing a GFP-UVR8 fusion show that UVR8 associates with a relatively small region of chromatin containing the HY5 gene. UVR8 interacts with chromatin containing the promoter regions of other genes, but not with all the genes it regulates. UV-B is not required for the interaction of UVR8 with chromatin because association with several gene loci is observed in the absence of UV-B. Pull-down assays demonstrate that UVR8 associates with histones in vivo and competition experiments indicate that the interaction is preferentially with histone H2B. ChIP experiments using antibodies that recognize specific histone modifications indicate that the UV-B-stimulated transcription of some genes may be correlated with histone modification. In particular, the ELIP1 promoter showed a significant enrichment of diacetyl histone H3 (K9/K14) following UV-B exposure. These findings increase understanding of the interaction of the key UV-B-specific regulator UVR8 with chromatin.
Collapse
Affiliation(s)
- Catherine Cloix
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
239
|
Zhao J, Zhang W, Zhao Y, Gong X, Guo L, Zhu G, Wang X, Gong Z, Schumaker KS, Guo Y. SAD2, an importin -like protein, is required for UV-B response in Arabidopsis by mediating MYB4 nuclear trafficking. THE PLANT CELL 2007; 19:3805-18. [PMID: 17993626 PMCID: PMC2174865 DOI: 10.1105/tpc.106.048900] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 10/11/2007] [Accepted: 10/21/2007] [Indexed: 05/18/2023]
Abstract
We report that the Arabidopsis thaliana mutant sensitive to ABA and drought2 (sad2), which harbors a T-DNA insertion in an importin beta-like gene, is more tolerant to UV-B radiation than the wild type. Analysis of cyclobutane pyrimidine dimer accumulation revealed that less DNA damage occurred in sad2 than in the wild type during UV-B treatment. No significant growth difference was observed between sad2 and the wild type when treated with the genotoxic drug methyl methanesulfonate, suggesting that SAD2 functions in UV-B protection rather than in DNA damage repair. Whereas the R2R3-type transcription repressor MYB4 has previously been shown to negatively regulate the transcription of cinnamate 4-hydroxylase (C4H) and thus to regulate the synthesis of sinapate esters, expression of both MYB4 and C4H and accumulation of UV-absorbing compounds were significantly higher in sad2 than in the wild type. MYB4 did not localize to the nucleus in the sad2 mutant, suggesting that SAD2 is required for MYB4 nuclear trafficking. SAD2 and MYB4 coimmunoprecipitated, indicating that these proteins localize in the same complex in vivo. MYB4 protein specifically bound to its own promoter in gel shift assays and repressed its own expression, demonstrating that MYB4 protein and mRNA are part of a negative autoregulatory loop. This feedback loop is altered in the sad2 mutant due to the absence of MYB4 protein in the nucleus, leading to the constitutive expression of MYB4 and C4H and resulting in accumulation of UV-absorbing pigments that shield the plant from UV-B radiation.
Collapse
Affiliation(s)
- Jinfeng Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Kaiserli E, Jenkins GI. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. THE PLANT CELL 2007; 19:2662-73. [PMID: 17720867 PMCID: PMC2002606 DOI: 10.1105/tpc.107.053330] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/13/2007] [Accepted: 08/09/2007] [Indexed: 05/16/2023]
Abstract
Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a UV-B-specific signaling component that binds to chromatin and regulates UV protection by orchestrating expression of a range of genes. Here, we studied how UV-B regulates UVR8. We show that UV-B stimulates the nuclear accumulation of both a green fluorescent protein (GFP)-UVR8 fusion and native UVR8. Nuclear accumulation leads to UV-B induction of the HY5 gene, encoding a key transcriptional effector of the UVR8 pathway. Nuclear accumulation of UVR8 is specific to UV-B, occurs at low fluence rates, and is observed within 5 min of UV-B exposure. Attachment of a nuclear export signal (NES) to GFP-UVR8 causes cytosolic localization in the absence of UV-B. However, UV-B promotes rapid nuclear accumulation of NES-GFP-UVR8, indicating a concerted mechanism for nuclear translocation. UVR8 lacking the N-terminal 23 amino acids is impaired in nuclear translocation. Attachment of a nuclear localization signal (NLS) to UVR8 causes constitutive nuclear localization. However, NLS-GFP-UVR8 only confers HY5 gene expression following UV-B illumination, indicating that nuclear localization, although necessary for UVR8 function, is insufficient to cause expression of target genes; UV-B is additionally required to stimulate UVR8 function in the nucleus. These findings provide new insights into the mechanisms through which UV-B regulates gene expression in plants.
Collapse
Affiliation(s)
- Eirini Kaiserli
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
241
|
Oravecz A, Baumann A, Máté Z, Brzezinska A, Molinier J, Oakeley EJ, Adám E, Schäfer E, Nagy F, Ulm R. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. THE PLANT CELL 2006; 18:1975-90. [PMID: 16829591 PMCID: PMC1533968 DOI: 10.1105/tpc.105.040097] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 05/11/2006] [Accepted: 06/19/2006] [Indexed: 05/10/2023]
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a negative regulator of photomorphogenesis in Arabidopsis thaliana. COP1 functions as an E3 ubiquitin ligase, targeting select proteins for proteasomal degradation in plants as well as in mammals. Among its substrates is the basic domain/leucine zipper (bZIP) transcription factor ELONGATED HYPOCOTYL5 (HY5), one of the key regulators of photomorphogenesis under all light qualities, including UV-B responses required for tolerance to this environmental threat. Here, we report that, in contrast with the situation in visible light, COP1 is a critical positive regulator of responses to low levels of UV-B. We show that in the cop1-4 mutant, flavonoid accumulation and genome-wide expression changes in response to UV-B are blocked to a large extent. COP1 is required for HY5 gene activation, and both COP1 and HY5 proteins accumulate in the nucleus under supplementary UV-B. SUPPRESSOR OF PHYTOCHROME A-105 family proteins (SPA1 to SPA4) that are required for COP1 function in dark and visible light are not essential in the response to UV-B. We conclude that COP1 performs a specific and novel role in the plants' photomorphogenic response to UV-B, coordinating HY5-dependent and -independent pathways, which eventually results in UV-B tolerance.
Collapse
Affiliation(s)
- Attila Oravecz
- Institute of Biology II/Botany, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Casati P, Stapleton AE, Blum JE, Walbot V. Genome-wide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodeling proteins in response to UV-B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:613-27. [PMID: 16640598 DOI: 10.1111/j.1365-313x.2006.02721.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A comparative analysis, by expression profiling of maize, was performed to identify novel components in the mechanisms of maize responses to UV-B. Five high-altitude landraces grown from 2,000 to 3,400 m naturally receive higher UV-B fluence than plants at lower altitudes and similar latitudes. These high-altitude landraces were compared directly with a low-altitude line and with literature reports for other temperate maize lines. A microarray analysis demonstrated that among the UV-B responsive transcripts, several types of gene implicated in chromatin remodeling are differentially expressed before and after UV-B treatment in high-altitude lines. RNAi transgenic plants with lower expression of four such chromatin-associated genes exhibited hypersensitivity to UV-B by measurements of leaf arching, increased leaf chlorosis and necrosis, and altered UV-B regulation of selected genes. These results collectively suggest that genes involved in chromatin remodeling are crucial for UV-B acclimation and that some high-altitude lines exhibit adaptations to this challenge.
Collapse
Affiliation(s)
- Paula Casati
- Department of Biological Sciences, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| | | | | | | |
Collapse
|
243
|
Hase Y, Trung KH, Matsunaga T, Tanaka A. A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:317-26. [PMID: 16623893 DOI: 10.1111/j.1365-313x.2006.02696.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have isolated and characterized a new ultraviolet B (UV-B)-resistant mutant, uvi4 (UV-B-insensitive 4), of Arabidopsis. The fresh weight (FW) of uvi4 plants grown under supplemental UV-B light was more than twice that of the wild-type. No significant difference was found in their ability to repair the UV-B-induced cyclobutane pyrimidine dimers, or in the amount of UV-B absorptive compounds, both of which are well-known factors that contribute to UV sensitivity. Positional cloning revealed that the UVI4 gene encodes a novel basic protein of unknown function. We found that the hypocotyl cells in uvi4 undergo one extra round of endo-reduplication. The uvi4 mutation also promoted the progression of endo-reduplication during leaf development. The UVI4 gene is expressed mainly in actively dividing cells. In the leaves of P(UVI4)::GUS plants, the GUS signal disappeared in basipetal fashion as the leaf developed. The total leaf blade area was not different between uvi4 and the wild-type through leaf development, while the average cell area in the adaxial epidermis was considerably larger in uvi4, suggesting that the uvi4 leaves have fewer but larger epidermal cells. These results suggest that UVI4 is necessary for the maintenance of the mitotic state, and the loss of UVI4 function stimulated endo-reduplication. Tetraploid Arabidopsis was hyper-resistant to UV-B compared to diploid Arabidopsis, suggesting that the enhanced polyploidization is responsible for the increased UV-B tolerance of the uvi4 mutant.
Collapse
Affiliation(s)
- Yoshihiro Hase
- Radiation-Applied Biology Division, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292, Japan.
| | | | | | | |
Collapse
|
244
|
Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ. Plant responses to UV radiation and links to pathogen resistance. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:1-40. [PMID: 17178464 DOI: 10.1016/s0074-7696(06)55001-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased incident ultraviolet (UV) radiation due to ozone depletion has heightened interest in plant responses to UV because solar UV wavelengths can reduce plant genome stability, growth, and productivity. These detrimental effects result from damage to cell components including nucleic acids, proteins, and membrane lipids. As obligate phototrophs, plants must counter the onslaught of cellular damage due to prolonged exposure to sunlight. They do so by attenuating the UV dose received through accumulation of UV-absorbing secondary metabolites, neutralizing reactive oxygen species produced by UV, monomerizing UV-induced pyrimidine dimers by photoreactivation, extracting UV photoproducts from DNA via nucleotide excision repair, and perhaps transiently tolerating the presence of DNA lesions via replicative bypass of the damage. The signaling mechanisms controlling these responses suggest that UV exposure also may be beneficial to plants by increasing cellular immunity to pathogens. Indeed, pathogen resistance can be enhanced by UV treatment, and recent experiments suggest DNA damage and its processing may have a role.
Collapse
Affiliation(s)
- Bernard A Kunz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | | | | | |
Collapse
|
245
|
A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 2005. [PMID: 16330762 DOI: 10.1073/pnas.050718710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
UV-B radiation in sunlight has diverse effects on humans, animals, plants, and microorganisms. UV-B can cause damage to molecules and cells, and consequently organisms need to protect against and repair UV damage to survive in sunlight. In plants, low nondamaging levels of UV-B stimulate transcription of genes involved in UV-protective responses. However, remarkably little is known about the underlying mechanisms of UV-B perception and signal transduction. Here we report that Arabidopsis UV RESISTANCE LOCUS 8 (UVR8) is a UV-B-specific signaling component that orchestrates expression of a range of genes with vital UV-protective functions. Moreover, we show that UVR8 regulates expression of the transcription factor HY5 specifically when the plant is exposed to UV-B. We demonstrate that HY5 is a key effector of the UVR8 pathway, and that it is required for survival under UV-B radiation. UVR8 has sequence similarity to the eukaryotic guanine nucleotide exchange factor RCC1, but we found that it has little exchange activity. However, UVR8, like RCC1, is located principally in the nucleus and associates with chromatin via histones. Chromatin immunoprecipitation showed that UVR8 associates with chromatin in the HY5 promoter region, providing a mechanistic basis for its involvement in regulating transcription. We conclude that UVR8 defines a UV-B-specific signaling pathway in plants that orchestrates the protective gene expression responses to UV-B required for plant survival in sunlight.
Collapse
|
246
|
Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI. A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 2005; 102:18225-30. [PMID: 16330762 PMCID: PMC1312397 DOI: 10.1073/pnas.0507187102] [Citation(s) in RCA: 385] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/20/2005] [Indexed: 11/18/2022] Open
Abstract
UV-B radiation in sunlight has diverse effects on humans, animals, plants, and microorganisms. UV-B can cause damage to molecules and cells, and consequently organisms need to protect against and repair UV damage to survive in sunlight. In plants, low nondamaging levels of UV-B stimulate transcription of genes involved in UV-protective responses. However, remarkably little is known about the underlying mechanisms of UV-B perception and signal transduction. Here we report that Arabidopsis UV RESISTANCE LOCUS 8 (UVR8) is a UV-B-specific signaling component that orchestrates expression of a range of genes with vital UV-protective functions. Moreover, we show that UVR8 regulates expression of the transcription factor HY5 specifically when the plant is exposed to UV-B. We demonstrate that HY5 is a key effector of the UVR8 pathway, and that it is required for survival under UV-B radiation. UVR8 has sequence similarity to the eukaryotic guanine nucleotide exchange factor RCC1, but we found that it has little exchange activity. However, UVR8, like RCC1, is located principally in the nucleus and associates with chromatin via histones. Chromatin immunoprecipitation showed that UVR8 associates with chromatin in the HY5 promoter region, providing a mechanistic basis for its involvement in regulating transcription. We conclude that UVR8 defines a UV-B-specific signaling pathway in plants that orchestrates the protective gene expression responses to UV-B required for plant survival in sunlight.
Collapse
Affiliation(s)
- Bobby A Brown
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
247
|
Hirose E, Mukai M, Shimada A, Nishitani H, Shibata Y, Nishimoto T. Loss of RanGEF/Pim1 activity abolishes the orchestration of Ran-mediated mitotic cellular events in S. pombe. Genes Cells 2005; 11:29-46. [PMID: 16371130 DOI: 10.1111/j.1365-2443.2005.00919.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RCC1, a conserved chromosomal protein with a seven-bladed propeller is a GDP/GTP nucleotide exchange factor for RanGTPase that mediates various cellular events. We isolated 16 temperature-sensitive (ts) mutants of S. pombeRCC1-homolog, pim1+, by error-prone PCR. Five pim1(ts) mutants had a single mutation. The obtained pim1(ts) mutations and previously reported mutations were localized on similar sites in seven RCC1 repeats. Those mutations resulted in a reduced binding of Pim1 with Spi1. All pim1(ts) mutants showed a defect in nucleocytoplasmic protein transports, whereas the majority of them showed a normal mRNA export. In all pim1(ts) examined, chromosomal DNA replication was completed. However, mitotic spindle formation was abrogated, the septum was formed being uncoupled with nuclear division and abnormally widened, thus resulting in chromosomal DNA mis-segregation and the accumulation of enucleated cells. As a result, a defect of RanGEF/Pim1 abolished the orchestration of sequential mitotic events, spindle formation, septation and cytokinesis that are essential to produce two identical daughter cells.
Collapse
Affiliation(s)
- Eiji Hirose
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1, Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
248
|
Torres CA, Davies NM, Yañez JA, Andrews PK. Disposition of selected flavonoids in fruit tissues of various tomato (lycopersicon esculentum mill.) Genotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:9536-43. [PMID: 16302774 DOI: 10.1021/jf051176t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Flavonoids have been studied extensively because they offer great potential health benefits. In this study, enzymatic hydrolysis of glycosylated quercetin, kaempferol, and naringin was used to obtain their sugar-free aglycones. The investigation also employed a validated HPLC method to obtain the chiral disposition of the aglycone naringenin enantiomers. These analyses were conducted on exocarp, mesocarp, and seed cavity tissues of field-grown tomato (Lycopersicon esculentum Mill.) mutants (anthocyanin absent, atroviolacea, and high pigment-1) and their nearly isogenic parent (cv. Ailsa Craig) at immature green, "breaker", and red ripe maturity stages. Concentrations of all flavonoids using enzymatic hydrolysis were significantly higher than previously reported concentrations using acid hydrolysis. Presumably, this occurred due to a more specific and rapid hydrolysis of the glycoside moiety by the beta-glucosidase enzyme. The glycoside S-naringin was the predominant enantiomer in all fruit tissues, although the aglycones free R- and S-naringenin were detected in both exocarp and mesocarp. Whereas there was significantly more quercetin than kaempferol in exocarp tissue, they were present in about equal concentrations in the mesocarp. Quercetin concentrations were higher in the exocarp and mesocarp of immature green and breaker fruit of the high pigment-1 mutant than in the other genotypes, supporting the observed photoprotection and potential health benefits of the high pigment-1 tomato genotype.
Collapse
Affiliation(s)
- Carolina A Torres
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington 99164-6414, USA.
| | | | | | | |
Collapse
|
249
|
Ulm R, Nagy F. Signalling and gene regulation in response to ultraviolet light. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:477-82. [PMID: 16039155 DOI: 10.1016/j.pbi.2005.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/12/2005] [Indexed: 05/03/2023]
Abstract
In contrast to phytochrome-, cryptochrome- and phototropin-sensing systems, about which considerable knowledge has accumulated, the ultraviolet-B (UVB) photoreceptor is not yet known at the molecular level. Information about the downstream signalling events that underlie UVB-provoked physiological responses is limited. Recent whole-genome transcript profiling, isolation of mutants that are impaired in specific UVB-induced responses and detailed photobiological studies suggest that responses that are triggered by shorter wavelength UVB and longer wavelength UVB are mediated by two different sensory systems. The bZIP transcription factor HY5 was recently identified as an important player in the long-wavelength UVB-induced signal transduction cascade. Advances in the development of luciferase-reporter lines will make it feasible to perform high-throughput genetic screens to isolate novel mutants that are impaired in sensing or transducing signals downstream of the putative UVB photoreceptor(s).
Collapse
Affiliation(s)
- Roman Ulm
- Institute of Biology II/Botany, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.
| | | |
Collapse
|
250
|
Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. THE PLANT CELL 2005; 17:2186-203. [PMID: 15994906 PMCID: PMC1182482 DOI: 10.1105/tpc.105.033456] [Citation(s) in RCA: 416] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that can play crucial regulatory roles in eukaryotes by targeting mRNAs for silencing. To test whether miRNAs play roles in the regulation of wood development in tree species, we isolated small RNAs from the developing xylem of Populus trichocarpa stems and cloned 22 miRNAs. They are the founding members of 21 miRNA gene families for 48 miRNA sequences, represented by 98 loci in the Populus genome. A majority of these miRNAs were predicted to target developmental- and stress/defense-related genes and possible functions associated with the biosynthesis of cell wall metabolites. Of the 21 P. trichocarpa miRNA families, 11 have sequence conservation in Arabidopsis thaliana but exhibited species-specific developmental expression patterns, suggesting that even conserved miRNAs may have different regulatory roles in different species. Most unexpectedly, the remaining 10 miRNAs, for which 17 predicted targets were experimentally validated in vivo, are absent from the Arabidopsis genome, suggesting possible roles in tree-specific processes. In fact, the expression of a majority of the cloned miRNAs was upregulated or downregulated in woody stems in a manner consistent with tree-specific corrective growth against tension and compression stresses, two constant mechanical loads in trees. Our results show that plant miRNAs can be induced by mechanical stress and may function in one of the most critical defense systems for structural and mechanical fitness.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincent L. Chiang
- To whom correspondence should be addressed. E-mail ; fax 919-515-7801
| |
Collapse
|