201
|
Priming for l-dopa-induced dyskinesia in Parkinson's disease: a feature inherent to the treatment or the disease? Prog Neurobiol 2008; 87:1-9. [PMID: 18938208 DOI: 10.1016/j.pneurobio.2008.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 11/27/2022]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson's disease ultimately experienced by the vast majority of patients. This article does not review the increased understanding of dyskinesia pathophysiology we have seen during the past few years but, instead, specifically focuses upon the very first molecular events thought to be responsible for the establishment of dyskinesia and generally grouped under the term of "priming". Priming is classically defined as the process by which the brain becomes sensitized such that administration of a dopaminergic therapy modifies the response to subsequent dopaminergic treatments. In this way, over time, with repeated treatment, the chance of dopaminergic stimulation eliciting dyskinesia is increased and once dyskinesia has been established, the severity of dyskinesia increases. In this opinion review, however, we aim at strongly opposing the common view of priming. We propose, and hopefully will demonstrate, that priming does not exist per se but is the direct and intrinsic consequence of the loss of dopamine innervation of the striatum (and other target structures), meaning that the first injections of dopaminergic drugs only exacerbate those mechanisms (sensitization) but do not induce them. Chronicity and pulsatility of subsequent dopaminergic treatment only exacerbates the likelihood of developing dyskinesia.
Collapse
|
202
|
Cansev M, Ulus IH, Wang L, Maher TJ, Wurtman RJ. Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson's disease. Neurosci Res 2008; 62:206-9. [PMID: 18761383 DOI: 10.1016/j.neures.2008.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/10/2008] [Accepted: 07/25/2008] [Indexed: 11/24/2022]
Abstract
Administering uridine-5'-monophosphate (UMP) and docosahexaenoic acid (DHA) increases synaptic membranes (as characterized by pre- and post-synaptic proteins) and dendritic spines in rodents. We examined their effects on rotational behavior and dopaminergic markers in rats with partial unilateral 6-hydroxydopamine (6-OHDA)-induced striatal lesions. Rats receiving UMP, DHA, both, or neither, daily, and intrastriatal 6-OHDA 3 days after treatment onset, were tested for d-amphetamine-induced rotational behavior and dopaminergic markers after 24 and 28 days, respectively. UMP/DHA treatment reduced ipsilateral rotations by 57% and significantly elevated striatal dopamine, tyrosine hydroxylase (TH) activity, TH protein and synapsin-1 on the lesioned side. Hence, giving uridine and DHA may partially restore dopaminergic neurotransmission in this model of Parkinson's disease.
Collapse
Affiliation(s)
- Mehmet Cansev
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
203
|
Olfactory Mucosa Is a Potential Source for Autologous Stem Cell Therapy for Parkinson's Disease. Stem Cells 2008; 26:2183-92. [DOI: 10.1634/stemcells.2008-0074] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
204
|
Lane E, Dunnett S. Animal models of Parkinson's disease and L-dopa induced dyskinesia: how close are we to the clinic? Psychopharmacology (Berl) 2008; 199:303-12. [PMID: 17899020 DOI: 10.1007/s00213-007-0931-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 08/27/2007] [Indexed: 01/27/2023]
Abstract
BACKGROUND Several different animal models are currently used to research the neurodegenerative movement disorder Parkinson's disease (PD). RESULTS Models based on the genetic deficits associated with a small percentage of sufferers demonstrate the pathological accumulation of alpha-synuclein characteristic of the disease but have few motor deficits and little neurodegeneration. Conversely, toxin-based models recreate the selective nigrostriatal cell death and show extensive motor dysfunction. However, these toxin models do not reproduce the extra-nigral degeneration that also occurs as part of the disease and lack the pathological hallmark of Lewy body inclusions. DISCUSSION Recently, several therapies that appeared promising in the MPTP-treated non-human primate and 6-OHDA-lesioned rat models have entered clinical trials, with disappointing results. We review the animal models in question and highlight the features that are discordant with PD, discussing if our search for pharmacological treatments beyond the dopamine system has surpassed the capacity of these models to adequately represent the disease.
Collapse
Affiliation(s)
- Emma Lane
- School of Bioscience, Cardiff University, Cardiff, UK.
| | | |
Collapse
|
205
|
Miczek KA, de Wit H. Challenges for translational psychopharmacology research--some basic principles. Psychopharmacology (Berl) 2008; 199:291-301. [PMID: 18523737 DOI: 10.1007/s00213-008-1198-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
Abstract
We introduce below several principles that recur in the discussion of translating preclinical findings to clinical applications, and conversely, developing animal models of human disorders: 1. The translation of preclinical data to clinical concerns is more successful when the scope of experimental models is restricted to a core symptom of a psychiatric disorder. 2. Preclinical experimental models gain in clinical relevance if they incorporate conditions that induce maladaptive behavioral or physiological changes that have some correspondence with species-normative behavioral adaptations. 3. Preclinical data are more readily translated to the clinical situation when they are based on converging evidence from several experimental procedures, each capturing cardinal features of the disorder. 4. The more closely a model approximates significant clinical symptoms, the more likely it is to generate data that will yield clinical benefits. 5. The choice of environmental, genetic, and/or physiological manipulations that induce a cardinal symptom or cluster of behavioral symptoms reveals the theoretical approach used to construct the model. 6. Preclinical experimental preparations that are validated by predicting treatment success with a prototypic agent are only able to detect alternative treatments that are based on the same mechanism as the existing treatment that was used to validate the screen. 7. The degree to which an experimental model fulfills the criteria of high construct validity relative to face or predictive validity depends on the purpose of the model. 8. Psychological processes pertinent to affect and cognition can only be studied in preclinical models if they are defined in behavioral and neural terms.
Collapse
Affiliation(s)
- Klaus A Miczek
- Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA 02155, USA.
| | | |
Collapse
|
206
|
Smith LK, Jadavji NM, Colwell KL, Katrina Perehudoff S, Metz GA. Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson's disease. Eur J Neurosci 2008; 27:2133-46. [PMID: 18412632 DOI: 10.1111/j.1460-9568.2008.06177.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The causes of most cases of Parkinson's disease (PD) are still poorly understood. Here we show that chronic stress and elevated corticosterone levels exaggerate motor deficits and neurodegenerative events in a Parkinson's disease rat model. Animals were tested in skilled and non-skilled movement while being exposed to daily restraint stress or oral corticosterone treatment. Stress and corticosterone compromised normal motor function and exaggerated motor deficits caused by unilateral 6-hydroxydopamine lesion of the nigrostriatal bundle. Moreover, stress and corticosterone treatments diminished the ability to acquire compensatory strategies in limb use during skilled reaching and skilled walking. In contrast, lesion control animals were able to significantly improve in the ability of skilled limb use during the repeated test sessions. The exaggerated motor impairments in stress-treated animals were related to accelerated loss of midbrain dopamine-producing neurons during the first week postlesion. Correlation analysis revealed a significant connection between loss of tyrosine hydroxylase-positive cells and increase in Fluoro-Jade-positive cells only in stress- and corticosterone-treated animals. Furthermore, stress and elevated corticosterone levels caused greater permanent loss of midbrain neurons than found in non-treated lesion animals. These findings demonstrate that stress and elevated corticosterone levels can exaggerate nigral neuronal loss and motor symptoms in a rat analogue of PD. It is therefore possible that stress represents a key factor in the pathogenesis of human PD by impeding functional and structural compensation and exaggerating neurodegenerative processes.
Collapse
Affiliation(s)
- Lori K Smith
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4 Canada
| | | | | | | | | |
Collapse
|
207
|
Guatteo E, Cucchiaroni ML, Sebastianelli L, Bernardi G, Mercuri NB. The midbrain slice preparation. An in vitro model to select potential anti-parkinsonian drugs? Parkinsonism Relat Disord 2008; 14 Suppl 2:S150-3. [DOI: 10.1016/j.parkreldis.2008.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
208
|
Da Cunha C, Wietzikoski EC, Ferro MM, Martinez GR, Vital MABF, Hipólide D, Tufik S, Canteras NS. Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission. Behav Brain Res 2008; 189:364-72. [DOI: 10.1016/j.bbr.2008.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
209
|
Nyhan WL. Genetic heterogeneity at the locus for hypoxanthine-guanine phosphoribosyltransferase. CIBA FOUNDATION SYMPOSIUM 2008:65-81. [PMID: 305334 DOI: 10.1002/9780470720301.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purine phosphoribosyltransferases have emerged as important enzymes in the metabolic economy of the developing human. Hypoxanthine-guanine phosphoribosyltransferase (HGPRT, EC 2.4.2.8) catalyses the conversion of hypoxanthine and guinine into their respective nucleotides. Inherited variation in HGPRT first became evident through clinical observations with the definition of the Lesch-Nyhan syndrome. In this disorder, HGPRT activity in erythrocytes is almost zero, although the fact that sensitive electrophoretic analysis reveals a tiny amount of activity suggests that a protein of altered structure is present. Furthermore, this variant enzyme has been activated by manipulation in the presence of small amounts of normal enzyme. Nevertheless, no cross-reacting material could be detected in lysates of red cells or fibroblasts of patients with the syndrome when tested with antiserum prepared in rabbits to normal erythrocyte HGPRT. We have tested for the presence of cross-reacting material in 18 patients, and all were negative. More HGPRT variants are coming to light. Most of the patients have renal stone disease or gout but no other feature of the Lesch-Nyhan syndrome. In one family four affected males displayed about 5% of normal activity, and the enzyme migrated electrophoretically more rapidly than normal. Cross-reacting material could not be demonstrated in erythrocyte lysates, although it was clear that a variant protein was present. A boy with renal stone disease has been found to have about 1% of normal erythrocyte activity of HGPRT. Cross-reacting material was found in his erythrocytes. The data indicate that mutations which produce diminished enzyme activity in this protein with a distinct subunit structure may or may not so alter the tertiary state of the protein that immunoreactive sites are no longer available to antibody prepared against the normal enzyme. So far whenever a variant normal HGPRT has been found there has been an identifiable clinical illness. The different forms of illness provide for correlation of molecular structure and function in man.
Collapse
|
210
|
Iversen SD. Behavioural effects of manipulation of basal ganglia neurotransmitters. CIBA FOUNDATION SYMPOSIUM 2008; 107:183-200. [PMID: 6149897 DOI: 10.1002/9780470720882.ch10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Topographically organized dopaminergic projections from the extrapyramidal structures of the ventral mesencephalon (substantia nigra and ventral tegmental area) to the dorsal (body of caudate-putamen) and ventral (anterior-ventral caudate, nucleus accumbens, tuberculum olfactorium) striatum subserve sensorimotor integration in the rat. Selective depletion of DA impairs the animal's ability to integrate sensory input with motor output; in the dorsal striatum the exteroceptive sensory input and in the ventral or limbic striatum the interoceptive input principally related to motivation and affect. Grafts of fetal DA neurons to the damaged dorsal striatum reverse sensorimotor asymmetry and sensory neglect. A large number of other excitatory and inhibitory neurotransmitters, including recently discovered neuropeptides, contribute to the functional balance afforded by the DA neurons. This chemical heterogeneity of the basal ganglia offers the possibility that novel therapeutic approaches with drugs could be used to control the chemical imbalances in basal ganglia that are associated with a number of neurological and psychiatric conditions.
Collapse
|
211
|
Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease. J Neuroinflammation 2008; 5:19. [PMID: 18492290 PMCID: PMC2426681 DOI: 10.1186/1742-2094-5-19] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/21/2008] [Indexed: 12/04/2022] Open
Abstract
Background It has recently become apparent that neuroinflammation may play a significant role in Parkinson's disease (PD). This is also the case in animal paradigms of the disease. The potential neuroprotective action of the glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 (EX-4), which is protective against cytokine mediated apoptosis and may stimulate neurogenesis, was investigated In paradigms of PD. Methods Two rodent 'models' of PD, 6-hydroxydopamine (6-OHDA) and lipopolysaccaride (LPS), were used to test the effects of EX-4. Rats were then investigated in vivo and ex vivo with a wide range of behavioural, neurochemical and histological tests to measure integrity of the nigrostriatal system. Results EX-4 (0.1 and 0.5 μg/kg) was given seven days after intracerebral toxin injection. Seven days later circling behaviour was measured following apomorphine challenge. Circling was significantly lower in rats given EX-4 at both doses compared to animals given 6-OHDA/LPS and vehicle. Consistent with these observations, striatal tissue DA concentrations were markedly higher in 6-OHDA/LPS + EX-4 treated rats versus 6-OHDA/LPS + vehicle groups, whilst assay of L-DOPA production by tyrosine hydroxylase was greatly reduced in the striata of 6-OHDA/LPS + vehicle rats, but this was not the case in rats co-administered EX-4. Furthermore nigral TH staining recorded in 6-OHDA/LPS + vehicle treated animals was markedly lower than in sham-operated or EX-4 treated rats. Finally, EX-4 clearly reversed the loss of extracellular DA in the striata of toxin lesioned freely moving rats. Conclusion The apparent ability of EX-4 to arrest progression of, or even reverse nigral lesions once established, suggests that pharmacological manipulation of the GLP-1 receptor system could have substantial therapeutic utility in PD. Critically, in contrast to other peptide agents that have been demonstrated to possess neuroprotective properties in pre-clinical models of PD, EX-4 is in current clinical use in the management of type-II diabetes and freely crosses the blood brain barrier; hence, assessment of the clinical efficacy of EX-4 in patients with PD could be pursued without delay.
Collapse
Affiliation(s)
- Alexander Harkavyi
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | | | | | | |
Collapse
|
212
|
|
213
|
Imaging apomorphine stimulation of brain arachidonic acid signaling via D2-like receptors in unanesthetized rats. Psychopharmacology (Berl) 2008; 197:557-66. [PMID: 18274730 DOI: 10.1007/s00213-008-1073-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE AND OBJECTIVE Because of the important role of dopamine in neurotransmission, it would be useful to be able to image brain dopamine receptor-mediated signal transduction in animals and humans. Administering the D1-D2 receptor agonist apomorphine may allow us to do this, as the D2-like receptor is reported to be coupled to cytosolic phospholipase A2 activation and arachidonic acid (AA) release from membrane phospholipid. METHODS Unanesthetized adult rats were given intraperitoneally apomorphine (0.5 mg/kg) or saline, with or without pretreatment with 6 mg/kg intravenous raclopride, a D2/D3 receptor antagonist. [1-14C]AA was injected intravenously, then AA incorporation coefficients k*--brain radioactivity divided by integrated plasma radioactivity--markers of AA signaling, were measured using quantitative autoradiography in 62 brain regions. RESULTS Apomorphine significantly elevated k* in 26 brain regions, including the frontal cortex, motor and somatosensory cortex, caudate-putamen, thalamic nuclei, and nucleus accumbens. Raclopride alone did not change baseline values of k*, but raclopride pretreatment prevented the apomorphine-induced increments in k*. CONCLUSIONS A mixed D1-D2 receptor agonist, apomorphine, increased the AA signal by activating only D2-like receptors in brain circuits containing regions with high D2-like receptor densities. Thus, apomorphine might be used with positron emission tomography to image brain D2-like receptor-mediated AA signaling in humans in health and disease.
Collapse
|
214
|
Survival and functional recovery of transplanted human dopaminergic neurons into hemiparkinsonian rats depend on the cannula size of the implantation instrument. J Neurosci Methods 2008; 169:128-34. [DOI: 10.1016/j.jneumeth.2007.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 11/23/2007] [Accepted: 11/29/2007] [Indexed: 11/17/2022]
|
215
|
Khoboko T, Russell VA. Effects of development and dopamine depletion on striatal NMDA receptor-mediated calcium uptake. Metab Brain Dis 2008; 23:9-30. [PMID: 17594134 DOI: 10.1007/s11011-007-9050-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/04/2007] [Indexed: 10/23/2022]
Abstract
Calcium (Ca(2+)) is the currency of N-methyl-D-aspartate (NMDA) receptor mediated signal transduction pathways involved in the modification of synaptic efficacy during regulation of excitatory inputs into the striatum. The aim of the present study was to investigate the effects of development and dopamine depletion on NMDA receptor function. NMDA receptors were stimulated by incubation of striatal sections (350 microm) in buffer containing NMDA (100 microm) for 2 min, the slices were washed and uptake of radioactively labelled calcium ((45)Ca(2+)) was measured. Dopamine depletion has been reported to result in alterations of glutamate receptor expression and upregulation of NMDA receptor activity. However, the results of the present study show that dopamine depletion does not alter NMDA-stimulated Ca(2+) uptake into rat striatal slices in vitro. Unilateral striatal dopamine depletion was achieved by infusion of 6-hydroxydopamine (6-OHDA, 13.5 microg/4.5 microl) into the medial forebrain bundle (MFB) of the left hemisphere of ten rats. NMDA-stimulated (45)Ca(2+) uptake into striata following dopamine depletion was not significantly different from NMDA-stimulated (45)Ca(2+) uptake into striata obtained from sham-operated rats. Other factors that induce changes in NMDA receptor function include development and aging. In young rats aged 7 weeks old (n = 7) and 16 weeks old (n = 6) a significant 2-3 fold decrease in striatal NMDA receptor function was observed with increasing age over the 9 week period of development. To our knowledge these are the first results to show developmental decreases of NMDA receptor function in the striatum of juvenile rats.
Collapse
Affiliation(s)
- Thabelo Khoboko
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | | |
Collapse
|
216
|
Puttonen KA, Lehtonen S, Lampela P, Männistö PT, Raasmaja A. Different viabilities and toxicity types after 6-OHDA and Ara-C exposure evaluated by four assays in five cell lines. Toxicol In Vitro 2008; 22:182-9. [PMID: 17764891 DOI: 10.1016/j.tiv.2007.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 06/14/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
Cell viability studies are useful when screening novel drugs for the diseases that are related to either increased cell death or enhanced cell survival. There are numerous assays but the results that they produce are rarely unanimous. Here we compared the performance of (1) morphological microscopic assay with double DNA staining, (2) propidium iodide-digitonin assay, (3) MTT-assay, and (4) ATP-assay in human neuroblastoma (SH-SY5Y), rat glioma (C6), rabbit smooth muscle (SMC), Chinese hamster ovary (CHO) and monkey fibroblast cells (CV1-P) exposed to cytosine arabinoside (Ara-C) and 6-hydroxydopamine (6-OHDA). We found that neuronal SH-SY5Y cells were most sensitive to both toxins and the results in all viability tests correlated well. All the other cell lines were much more resistant, particularly to Ara-C but also to 6-OHDA. Toxicity of the compounds was best revealed by MTT and ATP assays, measuring the metabolic activity of the cells, and only occasionally by morphological observations or with the propidium iodide-digitonin assay which is based on the cell membrane integrity. In this research, Ara-C induced pure apoptosis whereas the toxicity type of 6-OHDA was dose-dependent. The use of several viability tests and cell lines is recommended when studying cell death, particularly apoptosis, and performance of antiapoptotic compounds.
Collapse
Affiliation(s)
- Katja A Puttonen
- Department of Pharmacology and Toxicology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
217
|
Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson's disease. Mov Disord 2008; 22:1990-2017. [PMID: 17618524 DOI: 10.1002/mds.21440] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Future therapies in Parkinson's disease may substantially build on the existence of intra-membrane receptor-receptor interactions in DA receptor containing heteromeric receptor complexes. The A(2A)/D(2) heteromer is of substantial interest in view of its specific location in cortico-striatal glutamate terminals and in striato-pallidal GABA neurons. Antagonistic A(2A)/D(2) receptor interactions in this heteromer demonstrated at the cellular level, and at the level of the striato-pallidal GABA neuron and at the network level made it possible to suggest A(2A) antagonists as anti-parkinsonian drugs. The major mechanism is an enhancement of D(2) signaling leading to attenuation of hypokinesia, tremor, and rigidity in models of Parkinson's disease with inspiring results in two clinical trials. Other interactions are antagonism at the level of the adenylyl cyclase; heterologous sensitization at the A(2A) activated adenylyl cyclase by persistent D(2) activation and a compensatory up-regulation of A(2A) receptors in response to intermittent Levodopa treatment. An increased dominance of A(2A) homomers over D(2) homomers and A(2A)/D(2) heteromers after intermittent Levodopa treatment may therefore contribute to development of Levodopa induced dyskinesias and to the wearing off of the therapeutic actions of Levodopa giving additional therapeutic roles of A(2A) antagonists. Their neuroprotective actions may involve an increase in the retrograde trophic signaling in the nigro-striatal DA system.
Collapse
Affiliation(s)
- Kjell Fuxe
- Division of Cellular and Molecular Neurochemistry, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
218
|
Fiandaca M, Forsayeth J, Bankiewicz K. Current status of gene therapy trials for Parkinson's disease. Exp Neurol 2008; 209:51-7. [DOI: 10.1016/j.expneurol.2007.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/07/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
|
219
|
Pérez V, Sosti V, Rubio A, Barbanoj M, Rodríguez-Alvarez J, Kulisevsky J. Modulation of the motor response to dopaminergic drugs in a parkinsonian model of combined dopaminergic and noradrenergic degeneration. Eur J Pharmacol 2007; 576:83-90. [PMID: 17888901 DOI: 10.1016/j.ejphar.2007.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Besides dopaminergic deficiency, other neurotransmitter systems such as noradrenergic nuclei are affected in Parkinson's disease. Locus coeruleus degeneration might influence the response to dopamine replacement and the presence of long-term complications such as dyskinesias. In this scenario of noradrenergic and dopaminergic neurodegeneration, behavioural effects induced by dopaminergic-interacting drugs are incompletely known. We investigated whether noradrenergic lesion modulates the levodopa (l-DOPA) response and modifies the response to adenosine antagonists and its interaction with l-DOPA. We examined the motor behaviour induced by: 1) subthreshold doses of l-DOPA (2mg/kg, i.p.), 2) the adenosine-receptor antagonist caffeine (10mg/kg), and 3) the combination of l-DOPA (2mg/kg) and caffeine (10mg/kg). Each study was done in two experimental conditions: a) rats with unilateral 6-OHDA lesion and b) rats with a lesion of the nigrostriatal pathway (6-OHDA) combined with selective denervation of locus coeruleus-noradrenergic terminal fields by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). While only 28% of the 6-OHDA-lesioned animals presented circling behaviour after l-DOPA challenge, all (100%) double-denervated animals rotated after the same l-DOPA dose (p<0.05). No statistical differences in the percentage of rotating animals were observed between single- and double-denervated rats after caffeine challenge. Combined l-DOPA-caffeine challenge produced rotational behaviour in all (100%) single- and double-denervated rats. No differences in total turns were observed between single- and double-denervated animals in each treatment condition. These findings suggest that additional noradrenergic denervation selectively decreases the motor threshold to l-DOPA treatment without modifying the magnitude or the pattern of the motor response to adenosinergic antagonism.
Collapse
Affiliation(s)
- Virgili Pérez
- Laboratori de Neuropsicofarmacologia, Institut de Recerca de l'Hospital de la Santa Creu i de Sant Pau, Avgda. St. Antoni M(a) Claret, 167, 08025 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
220
|
Recchia A, Rota D, Debetto P, Peroni D, Guidolin D, Negro A, Skaper SD, Giusti P. Generation of a alpha-synuclein-based rat model of Parkinson's disease. Neurobiol Dis 2007; 30:8-18. [PMID: 18313315 DOI: 10.1016/j.nbd.2007.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/07/2007] [Accepted: 11/05/2007] [Indexed: 12/31/2022] Open
Abstract
Two missense mutations (A30P and A53T) in the gene for alpha-synuclein (alpha-syn) cause familial Parkinson's disease (PD) in a small cohort. There is increasing evidence to propose that abnormal metabolism and accumulation of alpha-syn in dopaminergic neurons play a role in the development of familial as well as sporadic PD. The complexity of the mechanisms underlying alpha-syn-induced neurotoxicity, however, has made difficult the development of animal models that faithfully reproduce human PD pathology. We now describe and characterize such a model, which is based on the stereotaxic injection into rat right substantia nigra pars compacta of the A30P mutated form of alpha-syn fused to a protein transduction domain (TAT). The TAT sequence allows diffusion of the fusion protein across the neuronal plasma membrane and results in a localized dopaminergic loss. Dopaminergic cell loss was evaluated both by tyrosine hydroxylase immunohistochemistry and by HPLC analysis of dopamine and its catabolite 3,4 dihydroxyphenylacetic acid. Infusion of TAT-alpha-synA30P induced a significant 26% loss in dopaminergic neurons. This dopaminergic loss was accompanied by a time-dependent impairment in motor function, evaluated utilizing the rotarod and footprint tests. In comparison to chemical neurotoxin-based (e.g. 6-hyroxydopamine, MPTP) animal models of PD, the alpha-syn-based PD animal model offers the advantage of mimicking the early stages and slow development of the human disease and should prove valuable in assessing specific aspects of PD pathogenesis in vivo and in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Recchia
- Department of Pharmacology and Anesthesiology, University of Padua, Largo Meneghetti, 2, 35131 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Bychkov E, Ahmed MR, Dalby KN, Gurevich EV. Dopamine depletion and subsequent treatment with L-DOPA, but not the long-lived dopamine agonist pergolide, enhances activity of the Akt pathway in the rat striatum. J Neurochem 2007; 102:699-711. [PMID: 17630981 DOI: 10.1111/j.1471-4159.2007.04586.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysregulation of signaling pathways is believed to contribute to Parkinson's disease pathology and l-DOPA-induced motor complications. Long-lived dopamine (DA) agonists are less likely to cause motor complications by virtue of continuous stimulation of DA receptors. In this study, we compared the effects of the unilateral 6-hydroxydopamine lesion and subsequent treatment with l-DOPA and DA agonist pergolide on signaling pathways in rats. Pergolide caused less pronounced behavioral sensitization than l-DOPA (25 mg/kg, i.p., 10 days), particularly at lower dose (0.5 and 0.25 mg/kg, i.p.). Pergolide, but not l-DOPA, reversed lesion-induced up-regulation of preproenkephalin and did not up-regulate preprodynorphine or DA D3 receptor in the lesioned hemisphere. Pergolide was as effective as l-DOPA in reversing the lesion-induced elevation of ERK2 phosphorylation in response to acute apomorphine administration (0.05 mg/kg, s.c.). Chronic l-DOPA significantly elevated the level of Akt phosphorylation at both Thr(308) and Ser(473) and concentration of phosphorylated GSK3alpha, whereas pergolide suppressed the lesion- and/or challenge-induced supersensitive Akt responses. The data indicate that l-DOPA, unlike pergolide, exacerbates imbalances in the Akt pathway caused by the loss of DA. The results support the hypothesis that the Akt pathway is involved in long-term actions of l-DOPA and may be linked to l-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Evgeny Bychkov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
222
|
Chang JY, Shi LH, Luo F, Zhang WM, Woodward DJ. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease. Neurosci Biobehav Rev 2007; 32:352-66. [PMID: 18035416 DOI: 10.1016/j.neubiorev.2007.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real time computation of ensemble neural activity.
Collapse
Affiliation(s)
- Jing-Yu Chang
- Neuroscience Research Institute of North Carolina, Winston-Salem, NC 27101, USA.
| | | | | | | | | |
Collapse
|
223
|
Bhattacharjee AK, Meister LM, Chang L, Bazinet RP, White L, Rapoport SI. In vivo imaging of disturbed pre- and post-synaptic dopaminergic signaling via arachidonic acid in a rat model of Parkinson's disease. Neuroimage 2007; 37:1112-21. [PMID: 17681816 PMCID: PMC2040339 DOI: 10.1016/j.neuroimage.2007.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Parkinson's disease involves loss of dopamine (DA)-producing neurons in the substantia nigra, associated with fewer pre-synaptic DA transporters (DATs) but more post-synaptic dopaminergic D2 receptors in terminal areas of these neurons. HYPOTHESIS Arachidonic acid (AA) signaling via post-synaptic D2 receptors coupled to cytosolic phospholipase A2 (cPLA2) will be reduced in terminal areas ipsilateral to a chronic unilateral substantia nigra lesion in rats given D-amphetamine, which reverses the direction of the DAT, but will be increased in rats given quinpirole, a D2-receptor agonist. METHODS D-amphetamine (5.0 mg/kg i.p.), quinpirole (1.0 mg/kg i.v.), or saline was administered to unanesthetized rats having a chronic unilateral lesion of the substantia nigra. AA incorporation coefficients, k* (radioactivity/integrated plasma radioactivity), markers of AA signaling, were measured using quantitative autoradiography in 62 bilateral brain regions following intravenous [1-(14)C]AA. RESULTS In rats given saline (baseline), k* was elevated in 13 regions in the lesioned compared with intact hemisphere. Quinpirole increased k* in frontal cortical and basal ganglia regions bilaterally, more so in the lesioned than intact hemisphere. D-amphetamine increased k* bilaterally but less so in the lesioned hemisphere. CONCLUSIONS Increased baseline elevations of k* and increased responsiveness to quinpirole in the lesioned hemisphere are consistent with their higher D2-receptor and cPLA2 activity levels, whereas reduced responsiveness to D-amphetamine is consistent with dropout of pre-synaptic elements containing the DAT. In vivo imaging of AA signaling using dopaminergic drugs can identify pre- and post-synaptic DA changes in animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Abesh Kumar Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
224
|
Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, Surmeier DJ. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 2007; 10:1458-66. [PMID: 17906621 DOI: 10.1038/nn1972] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/03/2007] [Indexed: 11/08/2022]
Abstract
Dopamine-depleting lesions of the striatum that mimic Parkinson's disease induce a profound pruning of spines and glutamatergic synapses in striatopallidal medium spiny neurons, leaving striatonigral medium spiny neurons intact. The mechanisms that underlie this cell type-specific loss of connectivity are poorly understood. The Kir2 K(+) channel is an important determinant of dendritic excitability in these cells. Here we show that opening of these channels is potently reduced by signaling through M1 muscarinic receptors in striatopallidal neurons, but not in striatonigral neurons. This asymmetry could be attributed to differences in the subunit composition of Kir2 channels. Dopamine depletion alters the subunit composition further, rendering Kir2 channels in striatopallidal neurons even more susceptible to modulation. Reduced opening of Kir2 channels enhances dendritic excitability and synaptic integration. This cell type-specific enhancement of dendritic excitability is an essential trigger for synaptic pruning after dopamine depletion, as pruning was prevented by genetic deletion of M1 muscarinic receptors.
Collapse
Affiliation(s)
- Weixing Shen
- Department of Physiology and Institute of Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
225
|
MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its stereoisomers: Similarities and differences in behavioral effects in an automated activity apparatus in mice. Pharmacol Biochem Behav 2007; 88:318-31. [PMID: 17904622 DOI: 10.1016/j.pbb.2007.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/28/2007] [Accepted: 09/06/2007] [Indexed: 12/01/2022]
Abstract
Racemic MDMA (0.3-30 mg/kg), S(+)-MDMA (0.3-30 mg/kg), R(-)-MDMA (0.3-50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (+/-)-MDMA usually being more potent than R(-)-MDMA in measures such as movement (time, distance, velocity), margin distance, rotation (clockwise and counterclockwise), and retraced activities. Interestingly, racemic MDMA appeared to exert a greater than expected potency and/or an enhanced effect on measures such as movement episodes, center actions (entries and distance), clockwise rotations, and jumps; actions that might be explained by additive or synergistic (i.e. potentiation) effects of the stereoisomers. In other measures, the enantiomers displayed different effects: S(+)-MDMA produced a preference to induce counterclockwise (versus clockwise) rotations, and each isomer exerted a different profile of effect on vertical activities and jumps. Furthermore, each isomer of MDMA appeared to attenuate the effect of its opposite enantiomer on some behaviors; antagonism effects that were surmised from a lack of expected activities by racemic MDMA. S(+)-MDMA (but not R(-)-MDMA), for example, produced an increase in vertical entries (rearing) and a preference to increase counterclockwise (versus clockwise) rotations; (+/-)-MDMA also should have induced such effects but did not. Apparently, R(-)-MDMA, when combined with S(+)-MDMA to form (+/-)-MDMA, prevented the appearance of those increases (from control) in activities. Similarly, R(-)-MDMA (but not S(+)-MDMA) produced increases in episodes (i.e. jumps) and vertical distance that racemic MDMA also should have, but were not, exhibited. Evidently, the presence of S(+)-MDMA in the racemic mixture inhibited the appearance of those increases (from control) in behavior. Taken together, the various and complex effects of MDMA and its stereoisomers are noted and a strategy is suggested for future studies that stresses the importance of steric effects and interplay, probable interaction(s) with various neurotransmitters, and interaction(s) with the particular behavioral or biological event (or action) being measured.
Collapse
|
226
|
Herrera-Marschitz M, Bustamante D, Morales P, Goiny M. Exploring neurocircuitries of the basal ganglia by intracerebral administration of selective neurotoxins. Neurotox Res 2007; 11:169-82. [PMID: 17449458 DOI: 10.1007/bf03033566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The detailed anatomy of the monoamine pathways of the rat, first described by the students of Nils Ake Hillarp in Sweden, provided the basis for a neurocircuitry targeted pharmacology, leading to important therapeutic breakthroughs. Progress was achieved by the introduction of accurate lesion techniques based on selective neurotoxins. Systematic intracerebral injections of 6-hydroxydopamine let Urban Ungerstedt at the Karolinska Institutet, Stockholm, Sweden, to propose the first stereotaxic mapping of the monoamine pathways in the rat brain; and the 'Rotational Behaviour', as a classical model for screening drugs useful for alleviating Parkinson's disease and other neuropathologies. The direction of the rotational behaviour induced by drugs administrated to unilaterally 6-hydroxydopamine-lesioned rats reveals their mechanism of action at dopamine synapses, as demonstrated when rotational behaviour was combined with microdialysis. The model was useful for proposing a role for dopamine receptors in the gating of the flow of information integrated and/or modulated by the basal ganglia, through different efferent pathways; notably the striatopallidal system, via D(2) receptors, and the striatonigral system, via D(1) receptors. The role of other dopamine receptor subtypes on rotational behaviour has not yet been clarified.
Collapse
Affiliation(s)
- Mario Herrera-Marschitz
- Programme of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
227
|
Eskow KL, Gupta V, Alam S, Park JY, Bishop C. The partial 5-HT1A agonist buspirone reduces the expression and development of l-DOPA-induced dyskinesia in rats and improves l-DOPA efficacy. Pharmacol Biochem Behav 2007; 87:306-14. [PMID: 17553556 DOI: 10.1016/j.pbb.2007.05.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/26/2007] [Accepted: 05/03/2007] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) replacement therapy with l-DOPA remains the standard pharmacotherapy for Parkinson's disease (PD). Unfortunately, chronic l-DOPA treatment is accompanied by development of motor fluctuations and l-DOPA-induced dyskinesia (LID). While serotonin (5-HT)(1A) agonists acutely reduce these complications, their prophylactic and long-term effects are not well-delineated. To test this, male Sprague-Dawley rats received unilateral 6-hydroxydopamine (6-OHDA) lesions. In experiment 1, l-DOPA-primed rats were pre-treated with Vehicle (0.9% NaCl), various doses of the partial 5-HT(1A) agonist, buspirone (0.25, 1.0 or 2.5 mg/kg, ip) or buspirone (2.5 mg/kg, ip)+the 5-HT(1A) antagonist, WAY100635 (0.5 mg/kg, ip) 5 min prior to l-DOPA (12 mg/kg+15 mg/kg benserazide, ip). Rats were tested for LID using the abnormal involuntary movements (AIMs) scale and motor performance using the forepaw adjusting steps test (FAS). In experiment 2, l-DOPA-naïve rats received co-administration of l-DOPA+buspirone (1.0 or 2.5 mg/kg, ip) for 2 weeks. AIMs and FAS were measured throughout. In l-DOPA-primed rats, buspirone dose-dependently reduced LID and improved l-DOPA-related motor performance due to action at the 5-HT(1A) receptor. In l-DOPA-naïve rats, buspirone delayed LID development while improving l-DOPA's anti-parkinsonian efficacy indicating the potential long-term benefits of 5-HT(1A) agonists for reduction of l-DOPA-related side effects.
Collapse
Affiliation(s)
- Karen L Eskow
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | | | | | | | | |
Collapse
|
228
|
Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L, Lester HA, Anderson DJ. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel. Neuron 2007; 54:35-49. [PMID: 17408576 DOI: 10.1016/j.neuron.2007.02.030] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/09/2007] [Accepted: 02/22/2007] [Indexed: 02/03/2023]
Abstract
Several genetic strategies for inhibiting neuronal function in mice have been described, but no system that directly suppresses membrane excitability and is triggered by a systemically administered drug, has been validated in awake behaving animals. We expressed unilaterally in mouse striatum a modified heteromeric ivermectin (IVM)-gated chloride channel from C. elegans (GluClalphabeta), systemically administered IVM, and then assessed amphetamine-induced rotational behavior. Rotation was observed as early as 4 hr after a single intraperitoneal IVM injection (10 mg/kg), reached maximal levels by 12 hr, and was almost fully reversed by 4 days. Multiple cycles of silencing and recovery could be performed in a single animal. In striatal slice preparations from GluClalphabeta-expressing animals, IVM rapidly suppressed spiking. The two-subunit GluCl/IVM system permits "intersectional" strategies designed to increase the cellular specificity of silencing in transgenic animals.
Collapse
Affiliation(s)
- Walter Lerchner
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Aminochrome as a preclinical experimental model to study degeneration of dopaminergic neurons in Parkinson’s disease. Neurotox Res 2007; 12:125-34. [DOI: 10.1007/bf03033921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
230
|
Matsukawa N, Maki M, Yasuhara T, Hara K, Yu G, Xu L, Kim KM, Morgan JC, Sethi KD, Borlongan CV. Overexpression of D2/D3 receptors increases efficacy of ropinirole in chronically 6-OHDA-lesioned Parkinsonian rats. Brain Res 2007; 1160:113-23. [PMID: 17573046 DOI: 10.1016/j.brainres.2007.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 05/12/2007] [Accepted: 05/17/2007] [Indexed: 01/09/2023]
Abstract
Ropinirole, which is a non-ergot dopamine agonist derivative, exerts therapeutic benefits in Parkinson's disease (PD). Based on recent studies implicating dopamine receptors 2 and 3 (D2R and D3R) as possible targets of ropinirole, we over-expressed these dopamine receptor genes in the dopamine-denervated striatum of rodents to reveal whether their over-expression modulated ropinirole activity. Adult Sprague-Dawley rats initially received unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. At 1 month after surgery, successfully lesioned animals (3 or less forelimb akinesia score, and 8 or more apomorphine-induced rotations/min over 1 h) were randomly assigned to intrastriatal injection (ipsilateral to the lesion) of blank lentiviral vector, D2R, D3R or both genes. At about 5 months post-lesion, ropinirole (0.2 mg/kg, i.p.) was administered daily for 9 consecutive days. The subtherapeutic dose of ropinirole improved the use of previously akinetic forelimb and produced robust circling behavior in lesioned animals with striatal over-expression of both D2R and D3R compared to lesioned animals that received blank vector. In contrast, the subtherapeutic dose of ropinirole generated only modest motor effects in lesioned animals with sole over-expression of D2R or D3R. Western immunoblot and autoradiographic assays showed enhanced D2R and D3R protein levels coupled with normalized D2R and D3R binding in the ventral striatum of lesioned animals with lentiviral over-expression of both D2R and D3R relative to vehicle-treated lesioned animals. Immunohistochemical analyses showed that D2R and D3R GFP fluorescent cells colocalized with enkephalin and substance P immunoreactive medium spiny neurons. These data support the use of the subtherapeutic dose of ropinirole in a chronic model of PD.
Collapse
Affiliation(s)
- N Matsukawa
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Anstrom KK, Schallert T, Woodlee MT, Shattuck A, Roberts DCS. Repetitive vibrissae-elicited forelimb placing before and immediately after unilateral 6-hydroxydopamine improves outcome in a model of Parkinson's disease. Behav Brain Res 2007; 179:183-91. [PMID: 17374405 DOI: 10.1016/j.bbr.2007.01.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 01/20/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
In rodent models of Parkinson's disease (PD), exercise or complex living environments introduced immediately before or during early stages of degeneration can provide beneficial effects on functional and/or neurochemical outcome. The goal of this study was to determine whether or not exposure to repetitive vibrissae-elicited forelimb placing, a dopamine-dependent sensorimotor movement, improves functional outcome in rats infused unilaterally with 6-OHDA. Prior to unilateral 6-OHDA infusions into the medial forebrain bundle, male Sprague-Dawley rats were randomly divided into groups exposed to one of five placing schedules: (1) two consecutive days pre-6-OHDA (PRE), (2) PRE+day 1 post-6-OHDA, (3) PRE+days 1, 2, 3 post-6-OHDA, (4) HANDLE, and (5) Sham infusion+handle. A session consisted of 180 total trials (90 left forelimb and 90 right forelimb trials) including 60 consecutive trials where vibrissae stimulation evoked ipsilateral forelimb movement and 30 consecutive trials where the ipsilateral forelimb was restrained so that vibrissae evoked contralateral forelimb movement (cross-midline placing). All groups were exposed to forelimb placing sessions on post-infusion days 7 and 14. The ability of vibrissae stimulation to elicit an ipsilateral response of the 6-OHDA affected forelimb was assessed on all days. Animals were sacrificed on post-lesion day 15 and substantia nigra tyrosine hydroxylase immunoreactivity (TH-ir) quantified. Repetitive forelimb placing had a significant effect on behavioral performance for all groups compared to the HANDLE group, but only the PRE+123 group was not significantly different from SHAM controls. Only the PRE+123 group showed significant sparing of TH-ir compared to the HANDLE group. These data suggest that extensive repetitive exposure to a sensorimotor task may provide therapeutic effects in an animal model of PD.
Collapse
Affiliation(s)
- Kristin K Anstrom
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
232
|
Finberg JPM, Sader-Mazbar O. Modification of L-DOPA pharmacological activity by MAO inhibitors. J Neural Transm (Vienna) 2007; 114:801-5. [PMID: 17417741 DOI: 10.1007/s00702-007-0691-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Accepted: 11/01/2006] [Indexed: 12/30/2022]
Abstract
Dopamine behaves mainly as a MAO-A substrate in rodent brain, but selective inhibition of MAO-B results in an increased turning activity following L-DOPA administration in hemi-Parkinsonian rodents. Unilateral substantia nigra dopaminergic denervation results in serotonergic hyper-innervation which may increase the contribution of MAO-A in the denervated striatum. Possibly as a result of this, there was no change in striatal MAO-A activity when 95% of dopaminergic innervation was reduced by 6-hydroxydopamine, as assessed by apomorphine-induced turning activity. MAO-B as well as MAO-A may contribute to deamination of dopamine produced from L-DOPA.
Collapse
Affiliation(s)
- J P M Finberg
- Pharmacology Department, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | | |
Collapse
|
233
|
Carta AR, Pinna A, Morelli M. How reliable is the behavioural evaluation of dyskinesia in animal models of Parkinson's disease? Behav Pharmacol 2007; 17:393-402. [PMID: 16940760 DOI: 10.1097/00008877-200609000-00005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In spite of the current availability of several pharmacological therapies for the treatment of Parkinson's disease, side effects are invariably manifested during long-term treatment. Dyskinesia, wearing-off and on-off are among the most disabling side effects produced by the dopamine precursor L-dihydroxyphenylalanine and, to a lesser degree, by other pharmacological treatments based on dopamine receptor agonism. Evaluation of the side effects, in particular dyskinesia, produced by antiparkinsonian drug treatments, therefore represents a critical issue in drug validation prior to a clinical trial. Moreover, a reliable model of dyskinesia is a fundamental requirement for the study of the as yet unknown mechanisms at the basis of this severely disabling side effect. The present review aims to provide a critical evaluation of the validity, reliability and utility of animal models of dyskinesia. In the first part of this review, we present a brief overview of the different models of Parkinson's disease focusing on those utilized for the evaluation of dyskinetic movements, then proceed to critically examine the turning behaviour model in an attempt to assess the way in which it has influenced the evaluation of drugs utilized in the treatment of Parkinson's disease. Subsequently, the various models of dyskinesia are reviewed and conclusions are drawn as to how the environment in which experiments are performed can influence the behaviour observed.
Collapse
Affiliation(s)
- Anna R Carta
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari bCNR Institute for Neuroscience - Section of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
234
|
Colebrooke RE, Humby T, Lynch PJ, McGowan DP, Xia J, Emson PC. Age-related decline in striatal dopamine content and motor performance occurs in the absence of nigral cell loss in a genetic mouse model of Parkinson's disease. Eur J Neurosci 2007; 24:2622-30. [PMID: 17100850 DOI: 10.1111/j.1460-9568.2006.05143.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine cytotoxicity is thought to contribute towards the selective loss of substantia nigra pars compacta dopamine neurons and disease progression in Parkinson's disease. However, the long-term toxicity of dopamine in vivo has not previously been established. The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles, a process that, in addition to being important in normal transmission, may also act to keep intracellular levels of monoamine neurotransmitters below potentially toxic thresholds. The homozygous VMAT2-hypomorphic mouse has an insertion in the VMAT2 gene (Slc18a2). Consequently, VMAT2-deficient mice (VD(-/-)) have an approximately 95% reduction in VMAT2 expression and an equivalent level of dopamine depletion in the striatum which results in moderate motor impairment. Here, we show that L-DOPA induces locomotor hyperactivity in VD(-/-) mice and reverses the deficit in motor coordination and balance as tested with the rotarod. We report that evidence for cytosolic accumulation of dopamine in substantia nigra neurons in these mice is two-fold: firstly, there is reduced phosphorylation of tyrosine hydroxylase at the residue associated with catechol feedback inhibition; and, secondly, there are increased rates of dopamine turnover at 6, 12 and 24 months of age. These animals exhibit a progressive decline in striatal monoamine levels and rotarod performance with increasing age. However, despite these data, there was no loss of nigral dopamine neurons as estimated by quantification of tyrosine hydroxylase-immunoreactive cells in the substantia nigra pars compacta of old VD(-/-) mice (24-month-old), implying that these age-dependent manifestations may be due to senescence alone.
Collapse
Affiliation(s)
- Rebecca E Colebrooke
- Laboratory of Molecular Neuroscience, The Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | | | | | | | |
Collapse
|
235
|
|
236
|
Chang JY, Shi LH, Luo F, Zhang WM, Woodward DJ. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease. Neurosci Biobehav Rev 2007; 31:643-57. [PMID: 17442393 DOI: 10.1016/j.neubiorev.2007.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 12/28/2006] [Accepted: 01/19/2007] [Indexed: 11/17/2022]
Abstract
Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low-frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real-time computation of ensemble neural activity.
Collapse
Affiliation(s)
- Jing-Yu Chang
- Neuroscience Research Institute of North Carolina, Winston-Salem, NC 27101, USA.
| | | | | | | | | |
Collapse
|
237
|
Banjaw MY, Schmidt WJ. Catha edulis extract and its active principle cathinone induce ipsilateral rotation in unilaterally lesioned rats. Behav Pharmacol 2006; 17:615-20. [PMID: 17021394 DOI: 10.1097/01.fbp.0000236273.10418.2b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Catha edulis extract, a natural psychostimulant, and its active component, S-(-)-cathinone, were evaluated for their rotational effects in unilaterally lesioned rats. In our earlier study, we demonstrated that commercially available S-(-)-cathinone, the active principle of C. edulis extract, reverses haloperidol-induced catalepsy. In the current study, we evaluated the effect of C. edulis extract or its active principle, cathinone, in 6-hydroxydopamine unilaterally lesioned rats. Evaluation of the rotational behaviour induced by this natural psychostimulant was made upon acute and repeated oral administration. The data show that C. edulis extract or S-(-)-cathinone induced ipsilateral rotation in 6-hydroxydopamine unilaterally lesioned rats. The ipsilateral rotation produced by commercially available S-(-)-cathinone was more marked than the response produced by oral administration of lyophilized C. edulis extract at the dose and periods specified. In addition, upon repeated administration, the effect was more pronounced (i.e. there was sensitization). In conclusion, the results demonstrate that the plant induces ipsilateral rotation, like its close relative amphetamine.
Collapse
Affiliation(s)
- Mehret Yerdaw Banjaw
- Neuropharmacology, Zoological Institute, Faculty of Biology, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
238
|
Janać B, Radenović L, Selaković V, Prolić Z. Time course of motor behavior changes in Mongolian gerbils submitted to different durations of cerebral ischemia. Behav Brain Res 2006; 175:362-73. [PMID: 17067689 DOI: 10.1016/j.bbr.2006.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/07/2006] [Accepted: 09/11/2006] [Indexed: 11/29/2022]
Abstract
In addition to morphological changes, global cerebral ischemia leads to functional changes that can be assessed by behavioral examination. The purpose of this study was to investigate the impact of the duration of global cerebral ischemia on the time course of a comprehensive set of motor behaviors in Mongolian gerbils. The common carotid arteries of gerbils were occluded either for 5 min, 10 min, or 15 min. Gerbil motor behavior was recorded in the open field at 24 h, 48 h, 4 days, 7 days, 14 days, 21 days, and 28 days after reperfusion. Each session lasted for 60 min and was composed of six intervals of 10 min. Our results revealed that ischemic gerbils quickly develop locomotor and stereotypic hyperactivity, with the expected decrease of resting time. The most evident effect was observed in gerbils submitted to a 15 min ischemia, whose locomotor activity returned to nearly normal values after 7 days. In contrast, the duration of global cerebral ischemia had no effects on rearing, clockwise, or counter-clockwise rotation. These findings indicate that exposure to global cerebral ischemia induces changes in locomotion, stereotypy, and resting time. The magnitude and duration of these effects depend on the duration of ischemia.
Collapse
Affiliation(s)
- Branka Janać
- Institute for Biological Research, Belgrade, Serbia.
| | | | | | | |
Collapse
|
239
|
Murase S, McKay RD. A specific survival response in dopamine neurons at most risk in Parkinson's disease. J Neurosci 2006; 26:9750-60. [PMID: 16988046 PMCID: PMC6674460 DOI: 10.1523/jneurosci.2745-06.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The specific expression of fibroblast growth factor 20 (FGF-20) in the adult substantia nigra and the association between FGF-20 mutations and Parkinson's disease provoked exploration of the function of this growth factor. We show by gain- and loss-of-function in vitro experiments that FGF-20 promotes survival and stimulates dopamine (DA) release in a calbindin-negative subset of cells that are preferentially lost in Parkinson's disease. FGF-20 selectively activates tyrosine hydroxylase in calbindin-negative neurons. In the adult substantia nigra, calbindin-negative neurons specifically express high levels of FGFR1 (FGF receptor 1). These data show that FGF signals to elevate DA levels and protect the specific midbrain neuron type at most risk in Parkinson's patients.
Collapse
Affiliation(s)
- Sachiko Murase
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Ronald D. McKay
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
240
|
Yanagida T, Takata K, Inden M, Kitamura Y, Taniguchi T, Yoshimoto K, Taira T, Ariga H. Distribution of DJ-1, Parkinson's disease-related protein PARK7, and its alteration in 6-hydroxydopamine-treated hemiparkinsonian rat brain. J Pharmacol Sci 2006; 102:243-7. [PMID: 17038803 DOI: 10.1254/jphs.sc0060098] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
DJ-1 has multiple functions and its dysfunction may be linked to the onset of familial Parkinson's disease PARK7. However, the function and distribution of DJ-1 is unclear. In this study, we determined DJ-1 distribution and change after intranigral injection of 6-hydroxydopamine (6-OHDA). Although distribution of DJ-1 immunoreactivity was not changed in cerebral cortex and striatum, 6-OHDA caused increase of DJ-1 in the particulate fraction and decrease in the cytosolic fraction in substantia nigra. At that time, DJ-1 shifted to acid forms. These results suggest that distributional changes, translocation, and acidic shift of DJ-1 may be compensatory responses to protect against 6-OHDA-induced oxidative stress.
Collapse
Affiliation(s)
- Takashi Yanagida
- Department of Neurobiology and 21st Century COE Program, Kyoto Pharmaceutical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Antonelli T, Fuxe K, Agnati L, Mazzoni E, Tanganelli S, Tomasini MC, Ferraro L. Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson's disease. Relevance for L-dopa induced dyskinesias. J Neurol Sci 2006; 248:16-22. [PMID: 16765381 DOI: 10.1016/j.jns.2006.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dual probe microdialysis was used to study A2A/D2 receptor interactions in the striato-pallidal GABA pathway in a model of Parkinson's Disease. The A2A agonist CGS21680 and/or the D2-like agonist quinpirole were perfused via reverse microdialysis into the DA denervated striatum and the effects on globus pallidus (GP) extracellular GABA levels were evaluated. CGS21680 alone produced in the DA denervated striatum a transient rise of GP GABA levels. Quinpirole perfused alone into the DA denervated striatum reduced GP GABA levels, which was not only counteracted by coperfused CGS21680, but led to an enhancement of the GABA levels, which was larger than that seen with CGS21680 alone. These results may reflect existence not only of antagonistic A2A/D2 interactions but also of the appearance of D2/A2A interactions increasing the A2A signaling at the level of the adenylate cyclase. Such actions diminish the therapeutic efficacy of L-dopa and D2 agonists. L-dopa induced dyskinesias could be caused by changes in the balance of A2A/D2 heteromers vs A2A homomers expressed at the surface membrane, where A2A homomers dominate with abnormal increases in A2A signaling. This may lead to stabilization of abnormal receptor mosaics (high order hetero-oligomers) leading to formation of abnormal motor programs contributing to dyskinesia development.
Collapse
Affiliation(s)
- Tiziana Antonelli
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Voluntary movement in animals is modulated by a number of subcortical systems. One of these resides in the basal nuclei and their associated projections and utilizes dopamine as a neurotransmitter. Apart from regulating movement, the dopaminergic axis is also involved in the control of goal-oriented behavior, cognition, and mood. Disorders of this system result in common human neurologic disorders such as Parkinson's and Huntington's diseases, as well contributing to a host of behavioral conditions, such as schizophrenia, attention deficit hyperactivity disorder, and addiction. Many individual mouse models of human dopaminergic dysfunction have been described in varying degrees of detail. However, when evaluating this region of the brain, the veterinary pathologist is confronted by a paucity of information summarizing the comparative aspects of the anatomy, physiology, and pathology of the central dopaminergic system. In this review, a systematic approach to anatomic phenotyping of the central dopaminergic system in the mouse is described and illustrated using tyrosine hydroxylase immunohistochemistry. Differences between murine neuroanatomy and comparable regions of the nonhuman primate brain are highlighted. Although the mouse is the focus of this review, conditions in domestic animals characterized by lesions within the basal nuclei and its projections are also briefly described. Murine behavioral and motor tests that accompany abnormalities of specific anatomic regions of the dopaminergic axis are summarized. Finally, we review mouse models of Parkinson's and Huntington's diseases, as well as those genetically altered mice that elucidate aspects of dopamine metabolism and receptor function.
Collapse
Affiliation(s)
- C J Zeiss
- Comparative Medicine, Yale University School of Medicine, 375 Congress Avenue, New Haven, CT 06437, USA.
| |
Collapse
|
243
|
Konitsiotis S, Tsironis C. Levodopa-induced dyskinesia and rotational behavior in hemiparkinsonian rats: Independent features or components of the same phenomenon? Behav Brain Res 2006; 170:337-41. [PMID: 16621050 DOI: 10.1016/j.bbr.2006.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/16/2006] [Accepted: 02/23/2006] [Indexed: 11/17/2022]
Abstract
Chronic daily administration of 6.25mg/kg of levodopa in unilaterally 6-OHDA lesioned rats did not induce any observable behavioral effects for the first 12.5+/-2.5 days. Thereafter, levodopa administration induced abnormal involuntary movements (AIMs), involving the contralateral limb, head, neck and trunk, along with the development of contralateral rotations. AIMs and rotations followed a progressively worsening, highly correlated, parallel course. We suggest that rotational behavior does not represent a pure antiparkinsonian response, but along with levodopa-induced dyskinesia is part of the levodopa-induced motor response complications syndrome.
Collapse
Affiliation(s)
- Spiridon Konitsiotis
- Department of Neurology, Medical School, University of Ioannina, University Campus, GR-451 10 Ioannina, Greece.
| | | |
Collapse
|
244
|
Sindhu KM, Banerjee R, Senthilkumar KS, Saravanan KS, Raju BC, Rao JM, Mohanakumar KP. Rats with unilateral median forebrain bundle, but not striatal or nigral, lesions by the neurotoxins MPP+ or rotenone display differential sensitivity to amphetamine and apomorphine. Pharmacol Biochem Behav 2006; 84:321-9. [PMID: 16820197 DOI: 10.1016/j.pbb.2006.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/13/2006] [Accepted: 05/18/2006] [Indexed: 12/21/2022]
Abstract
Rotenone and 1-methyl-4-phenyl pyridinium (MPP+) are two mitochondrial neurotoxins known to produce Parkinson's disease (PD) in experimental animals. In the present study, we compared drug-induced rotational asymmetry in rats lesioned using these neurotoxins at three distinct basal ganglia sites, the striatum, substantia nigra pars compacta (SNpc) and median forebrain bundle (MFB). The levels of dopamine (DA) in the ipsilateral striata of these hemiparkinsonian animals were assayed employing an HPLC-electrochemical procedure 2 days after the final rotational study. Rats infused with rotenone or MPP+ into the SNpc, but not into the striatum or MFB, exhibited contralateral rotations immediately after recovery from anesthesia. Irrespective of the lesion site or the toxin used, all the animals exhibited ipsilateral rotations when challenged with D-amphetamine. Apomorphine administration caused contralateral circling behavior in MFB-lesioned animals, but ipsilateral rotations in rats that received rotenone or MPP+ in the striatum or SNpc. Stereotaxic administration of rotenone into the MFB, SNpc or striatum caused a significant loss of DA in the ipsilateral striatum to varying degrees (96%, 62% and 30%, respectively, as compared to the contralateral side). However, unilateral MPP+ administration into the MFB, SNpc or striatum caused respectively about 98%, 74% and 59% loss of striatal DA. Behavioural observations and the neurochemical results indicate that, among the three anatomically distinct loci-lesioned, MFB-lesioned animals mimicked behavioral aberrations similar to nigral lesions caused by 6-hydroxydopamine, a classical parkinsonian neurotoxin. Moreover, the results point out that while both d-amphetamine and apomorphine-induced rotations could be considered as valuable behavioral indices to test novel drugs against PD, yet apomorphine-induced contralateral bias proves to be a more reliable indicator of specific destruction in the nigrostriatal pathway and development of post-synaptic DA receptor supersensitivity.
Collapse
Affiliation(s)
- Kizhakke M Sindhu
- Division of Clinical and Experimental Neuroscience, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Calcutta 700 032, India
| | | | | | | | | | | | | |
Collapse
|
245
|
Caudle WM, Tillerson JL, Reverón ME, Miller GW. Use-dependent behavioral and neurochemical asymmetry in MPTP mice. Neurosci Lett 2006; 418:213-6. [PMID: 16603316 DOI: 10.1016/j.neulet.2006.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 02/05/2006] [Accepted: 03/08/2006] [Indexed: 11/20/2022]
Abstract
Early in Parkinson's disease (PD) physical activity becomes difficult resulting in a more sedentary lifestyle. Clinical and experimental studies have found that increased activity following striatal dopamine loss leads to increased motor function. Decreased physical activity early in PD along with findings that increased physical activity results in functional improvement suggested to us that decreased physical activity during the period of nigrostriatal degeneration may not only be a symptom of the injury, but may also act to potentiate the degeneration. Using the bilateral MPTP mouse model of PD, we restricted use of one forelimb for the first 7 days post-injection. This transient behavioral manipulation during the period of dopamine degeneration resulted in a long-lasting deficit of the restricted forelimb. This was manifested as sustained asymmetrical use of the forelimbs during wall exploration, as well as a neurochemical imbalance between striatal hemispheres measured by immunoreactivity of the dopamine terminal markers, DAT, VMAT2 and TH. These results show a significant interaction between behavior and neurochemistry and suggest that a reduction in activity level may further exacerbate degeneration.
Collapse
Affiliation(s)
- W Michael Caudle
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
246
|
Chandra G, Gangopadhyay PK, Senthil Kumar KS, Mohanakumar KP. Acute intranigral homocysteine administration produces stereotypic behavioral changes and striatal dopamine depletion in Sprague–Dawley rats. Brain Res 2006; 1075:81-92. [PMID: 16487496 DOI: 10.1016/j.brainres.2005.12.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 11/30/2022]
Abstract
Homocysteine has been considered a major risk factor for cardiovascular diseases, and patients with hyperhomocystinemia exhibit neurological and psychological abnormalities. Elevated level of this molecule in the blood of Parkinson's disease patients receiving long-term l-DOPA therapy prompted us to investigate whether homocysteine is neurotoxic to the nigrostriatal dopaminergic system in Sprague-Dawley rats. Animals infused unilaterally with different doses of homocysteine (0.25-1 micromol in 1 microl) intranigrally exhibited significant and dose-dependent decrease in dopamine levels in the ipsilateral striatum as assayed employing an HPLC coupled with electrochemical detector, 19 days post-infusion. While 3,4-dihydroxyphenylacetic acid level in the striatum showed a dose-dependent decrease, homovanillic acid was found to be inhibited only for the highest dose. Amphetamine administration in these animals on the 14th day caused stereotypic turning behavior ipsilateral to the side of infusion. Apomorphine challenge on the 16th day elicited stereotypic contralateral circling behavior. Neurotransmitter levels in the serotonergic perikarya or terminals were unaltered 19 days following intraraphe infusion of homocysteine, which suggested the specificity of its action to dopaminergic neurons. These results indicate nigrostriatal lesions similar to that observed following intranigral infusion of the dopaminergic neurotoxin, 6-hydroxydopamine and suggest its closeness to the parkinsonian animal model. Furthermore, these findings provide evidence for the neurotoxic nature of homocysteine to dopaminergic neurons and suggest that elevated level of this molecule in parkinsonian patients may be conducive to accelerate the progression of the disease.
Collapse
Affiliation(s)
- Goutam Chandra
- Division of Clinical and Experimental Neurosciences, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata-700 032, India
| | | | | | | |
Collapse
|
247
|
Petzinger GM, Fisher B, Hogg E, Abernathy A, Arevalo P, Nixon K, Jakowec MW. Behavioral motor recovery in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned squirrel monkey (Saimiri sciureus): Changes in striatal dopamine and expression of tyrosine hydroxylase and dopamine transporter proteins. J Neurosci Res 2006; 83:332-47. [PMID: 16385585 DOI: 10.1002/jnr.20730] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) provides an excellent opportunity to study repair and response to injury in the basal ganglia. Administration to mammals leads to the destruction of nigrostriatal dopaminergic neurons and depletion of striatal dopamine. In the squirrel monkey (Saimiri sciureus), MPTP-lesioning results in parkinsonian motor symptoms including bradykinesia, postural instability, and rigidity. Over time animals display motor behavioral recovery. To better understand this mechanism we employed a lesioning regimen of two or six subcutaneous injections of MPTP (2.0 mg/kg, free-base) to generate mild or moderate parkinsonism. Brain tissue was harvested at 6 weeks or 9 months after the last injection and analyzed for dopamine and its metabolites by high performance liquid chromatography (HPLC), and by immunohistochemical staining and Western immunoblotting for the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine- and cAMP-responsive protein phosphatase of 32 kDa (DARPP-32), an effector molecule enriched in striatal medium spiny neurons. Several months after MPTP-lesioning, when squirrel monkeys displayed full motor behavioral recovery, striatal dopamine levels remained low with a greater return in the ventral striatum. This finding is consistent with other reports using neurotoxicant-lesioning models of the basal ganglia in rodents and other species of nonhuman primates. Elevated dopamine turnover ratio and decreased DAT expression appeared in early behavioral recovery at the 6-week time point in both mild- and moderate-parkinsonian monkeys. Tyrosine hydroxylase and DAT expression was increased in late stage recovery even within dopamine-depleted regions and supports sprouting. Altered DARPP-32 expression suggests a role of medium spiny neurons in recovery.
Collapse
Affiliation(s)
- Giselle M Petzinger
- George and MaryLou Boone Parkinson's Disease and Movement Disorders Research Center, Department of Neurology, University of Southern California, Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
248
|
Sanftner LM, Rivera VM, Suzuki BM, Feng L, Berk L, Zhou S, Forsayeth JR, Clackson T, Cunningham J. Dimerizer regulation of AADC expression and behavioral response in AAV-transduced 6-OHDA lesioned rats. Mol Ther 2006; 13:167-74. [PMID: 16126007 DOI: 10.1016/j.ymthe.2005.06.480] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 11/23/2022] Open
Abstract
Recombinant AAV vectors containing a dimerizer-inducible system of transcriptional activation provide a strategy for control of therapeutic gene expression in the CNS. Here we explored this system for regulated expression of human aromatic L-amino acid decarboxylase (hAADC) in a rodent model of Parkinson disease. Expression of hAADC, the enzyme that converts L-dopa to dopamine, was dependent on reconstitution of a functional transcription factor (TF) by the dimerizer rapamycin. Two vectors, AAV-CMV-TF and AAV-Z12-hAADC, were infused into striata of 6-OHDA-lesioned rats. Rapamycin-induced increases in expression of hAADC repeatedly produced robust rotational behavior in response to low doses of L-dopa. Seven weeks after vector infusion, AADC expression in brain was quantitated by both stereology and Western blot analysis following the final rapamycin treatment. While a low level of hAADC was observed in rats that were not induced with rapamycin, this basal expression was not significant enough to elicit a rotational response to L-dopa. This study demonstrated a robust behavioral response of parkinsonian rats to regulated hAADC expression. Recombinant AAV vectors controlled by rapamycin or its analogs show promise as candidates for CNS therapies in which regulation of the transgene is desired.
Collapse
|
249
|
Chang JY, Shi LH, Luo F, Woodward DJ. Neural responses in multiple basal ganglia regions following unilateral dopamine depletion in behaving rats performing a treadmill locomotion task. Exp Brain Res 2005; 172:193-207. [PMID: 16369786 DOI: 10.1007/s00221-005-0312-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
To investigate basal ganglia (BG) neural responses to dopamine (DA) depletion, multiple channel, single unit recording was carried out in freely moving rats performing a treadmill locomotion task. Single unit activity from 64 microelectrodes in the striatum (STR), globus pallidus (GP), subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) was recorded simultaneously before and after a unilateral DA lesion induced by microinjection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. The DA lesion resulted in an impairment of treadmill walking manifested by a significant decrease in swing time of both forelimbs. The stance time, however, increased significantly only in ipsilateral (good) forelimbs, reflecting compensatory changes in the good limb for motor deficits. Neural activity in the STR and GP ipsilateral to the lesion decreased during the 7-day period following the DA lesion. Conversely, an increase in spike discharges appeared in the ipsilateral SNr and STN several days after the DA lesion. Changes in the type of neural response associated with treadmill locomotion were also found in some neurons after DA depletion. Such changes were most prominent in the STR. Limb movement-related neural activity increased significantly mainly in the SNr. Additionally, neural responses to the tone cue associated with the onset of the treadmill diminished greatly in the lesioned side of the BG. Increased activity in SNr neurons is consistent with the concept that inhibition of thalamus contributes to hypokinesis in the absence of DA. Substantial decrease in striatal activity supports a concept that DA loss leads to a global suppression of recurrent cortical striatal thalamic activity that degrades normal information flow in Parkinson's diseases.
Collapse
Affiliation(s)
- Jing-Yu Chang
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
250
|
Harrison LM, LaHoste GJ. Rhes, the Ras homolog enriched in striatum, is reduced under conditions of dopamine supersensitivity. Neuroscience 2005; 137:483-92. [PMID: 16352400 DOI: 10.1016/j.neuroscience.2005.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 07/21/2005] [Accepted: 08/01/2005] [Indexed: 12/01/2022]
Abstract
Striatal dopamine receptors become supersensitive when dopaminergic input is removed through either surgical denervation or pharmacological depletion. Although alterations such as increased D2 receptor binding and increased receptor-G protein coupling have been described in supersensitive striatal tissue, their roles in the mechanism of supersensitivity remain uncertain. The Ras Homolog Enriched in Striatum (Rhes) is expressed in brain areas that receive dopaminergic input, and here we test whether alterations in its expression accompany treatments that promote dopamine receptor supersensitivity in rats. Removal of dopamine input to the striatum by surgical denervation with 6-hydroxydopamine resulted in a decrease in rhes mRNA expression throughout striatum, as measured with quantitative in situ hybridization. The decrease was detected as early as two weeks and as late as seven months after surgery. Furthermore, a decrease in rhes mRNA was evident after repeated or acute reserpine treatment. Chronic daily injection of rats with the D2 antagonist eticlopride, which is known to up-regulate D2 receptors without inducing profound receptor supersensitivity, did not alter the expression of rhes mRNA in striatum. Thus, changes in rhes mRNA expression are strictly correlated with receptor supersensitivity, perhaps as a result of continuous removal of dopaminergic input. These findings suggest that rhes mRNA expression is maintained by dopamine and may play a role in determining normal dopamine receptor sensitivity.
Collapse
Affiliation(s)
- L M Harrison
- Department of Psychology, University of New Orleans, 2000 Lakeshore Drive, LA 70148, USA.
| | | |
Collapse
|