201
|
Munnik C, Xaba MP, Malindisa ST, Russell BL, Sooklal SA. Drosophila melanogaster: A platform for anticancer drug discovery and personalized therapies. Front Genet 2022; 13:949241. [PMID: 36003330 PMCID: PMC9393232 DOI: 10.3389/fgene.2022.949241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex disease whereby multiple genetic aberrations, epigenetic modifications, metabolic reprogramming, and the microenvironment contribute to the development of a tumor. In the traditional anticancer drug discovery pipeline, drug candidates are usually screened in vitro using two-dimensional or three-dimensional cell culture. However, these methods fail to accurately mimic the human disease state. This has led to the poor success rate of anticancer drugs in the preclinical stages since many drugs are abandoned due to inefficacy or toxicity when transitioned to whole-organism models. The common fruit fly, Drosophila melanogaster, has emerged as a beneficial system for modeling human cancers. Decades of fundamental research have shown the evolutionary conservation of key genes and signaling pathways between flies and humans. Moreover, Drosophila has a lower genetic redundancy in comparison to mammals. These factors, in addition to the advancement of genetic toolkits for manipulating gene expression, allow for the generation of complex Drosophila genotypes and phenotypes. Numerous studies have successfully created Drosophila models for colorectal, lung, thyroid, and brain cancers. These models were utilized in the high-throughput screening of FDA-approved drugs which led to the identification of several compounds capable of reducing proliferation and rescuing phenotypes. More noteworthy, Drosophila has also unlocked the potential for personalized therapies. Drosophila ‘avatars’ presenting the same mutations as a patient are used to screen multiple therapeutic agents targeting multiple pathways to find the most appropriate combination of drugs. The outcomes of these studies have translated to significant responses in patients with adenoid cystic carcinoma and metastatic colorectal cancers. Despite not being widely utilized, the concept of in vivo screening of drugs in Drosophila is making significant contributions to the current drug discovery pipeline. In this review, we discuss the application of Drosophila as a platform in anticancer drug discovery; with special focus on the cancer models that have been generated, drug libraries that have been screened and the status of personalized therapies. In addition, we elaborate on the biological and technical limitations of this system.
Collapse
Affiliation(s)
- Chamoné Munnik
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Malungi P. Xaba
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Sibusiso T. Malindisa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Bonnie L. Russell
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- Buboo (Pty) Ltd, The Innovation Hub, Pretoria, South Africa
| | - Selisha A. Sooklal
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- *Correspondence: Selisha A. Sooklal,
| |
Collapse
|
202
|
Guo R, Papanicolaou A, Fritz ML. Validation of reference-assisted assembly using existing and novel Heliothine genomes. Genomics 2022; 114:110441. [PMID: 35931274 DOI: 10.1016/j.ygeno.2022.110441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Chloridea subflexa and Chloridea virescens are a pair of closely related noctuid species exhibiting pheromone-based sexual isolation and divergent host plant preferences. We produced a novel Illumina short read C. subflexa genome assembly and an improved C. virescens genome assembly, which offer opportunities to study the genomic basis for evolutionarily important traits in this lepidopteran family with few genomic resources. We then examined the feasibility of reference-assisted assembly, an approach that leverages existing high quality genomic resources for genome improvement in closely related taxa and applied it to our Heliothine genomes. Our work demonstrates that reference-assisted assembly has the potential to enhance contiguity and completeness of existing insect genomic resources with minimal additional laboratory costs. We conclude by discussing both the potential and pitfalls of reference-assisted assembly according to the intended downstream assembly application.
Collapse
Affiliation(s)
- Rong Guo
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia.
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
203
|
Aardema ML, Campana MG, Wagner NE, Ferreira FC, Fonseca DM. A gene-based capture assay for surveying patterns of genetic diversity and insecticide resistance in a worldwide group of invasive mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010689. [PMID: 35939523 PMCID: PMC9387926 DOI: 10.1371/journal.pntd.0010689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/18/2022] [Accepted: 07/20/2022] [Indexed: 12/30/2022] Open
Abstract
Understanding patterns of diversification, genetic exchange, and pesticide resistance in arthropod disease vectors is necessary for effective population management. With the availability of next-generation sequencing technologies, one of the best approaches for surveying such patterns involves the simultaneous genotyping of many samples for a large number of genetic markers. To this end, the targeting of gene sequences of known function can be a cost-effective strategy. One insect group of substantial health concern are the mosquito taxa that make up the Culex pipiens complex. Members of this complex transmit damaging arboviruses and filariae worms to humans, as well as other pathogens such as avian malaria parasites that are detrimental to birds. Here we describe the development of a targeted, gene-based assay for surveying genetic diversity and population structure in this mosquito complex. To test the utility of this assay, we sequenced samples from several members of the complex, as well as from distinct populations of the relatively under-studied Culex quinquefasciatus. The data generated was then used to examine taxonomic divergence and population clustering between and within these mosquitoes. We also used this data to investigate genetic variants present in our samples that had previously been shown to correlate with insecticide-resistance. Broadly, our gene capture approach successfully enriched the genomic regions of interest, and proved effective for facilitating examinations of taxonomic divergence and geographic clustering within the Cx. pipiens complex. It also allowed us to successfully survey genetic variation associated with insecticide resistance in Culex mosquitoes. This enrichment protocol will be useful for future studies that aim to understand the genetic mechanisms underlying the evolution of these ubiquitous and increasingly damaging disease vectors. The mosquito taxa that make up the Culex pipiens complex are important vectors of the agents of several human diseases such as West Nile and St. Louis encephalitides, and lymphatic filariasis. They are also important vectors of avian malaria, which impacts livestock and wildlife. The development of effective strategies for the control of these mosquitoes requires knowledge of their origins, distribution, dispersal patterns, and the extent to which discreet taxonomic entities within the complex interbreed. To achieve these objectives, it is necessary to compare patterns of genetic diversity across many mosquito samples, which can be cost-prohibitive. To address this limitation, we developed a targeted, gene-based assay that allowed us to cost-effectively genotype a large number of genetic variants from a representative global sampling of individual Cx. pipiens complex mosquitoes. We show that this assay is a powerful tool for examining genetic structure and hybridization among populations. We also explore its utility for surveying alleles previously shown to be associated with insecticide resistance. Future use of this enrichment assay and the bioinformatics methods described here will allow researchers to study evolutionary patterns across the Cx. pipiens complex as well as monitor the presence of genetic variation that could affect control efforts.
Collapse
Affiliation(s)
- Matthew L. Aardema
- Department of Biology, Montclair State University, Montclair, New Jersey, United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
- * E-mail: (MLA); (DMF)
| | - Michael G. Campana
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States of America
| | - Nicole E. Wagner
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Francisco C. Ferreira
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States of America
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (MLA); (DMF)
| |
Collapse
|
204
|
Li M, Yang X, Fan F, Ge Y, Hong D, Wang Z, Lu C, Chen S, Wei G. De novo genome assembly of Bradysia cellarum (Diptera: Sciaridae), a notorious pest in traditional special vegetables in China. INSECT MOLECULAR BIOLOGY 2022; 31:508-518. [PMID: 35389542 DOI: 10.1111/imb.12776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Bradysia cellarum (Diptera: Sciaridae) is a destructive vegetable insect pest infesting more than 30 species of host plants from seven families in Asia and Europe. B. cellarum causes grave problems in Chinese chive, which originated in China and is cultivated widely in East Asia. The B. cellarum infestation results in economic losses and subsequent severe food safety problems in farm productions, insecticide resistance and environmental pollution. The genomic and molecular information of B. cellarum to delineate the biological features, insecticide resistance, evolution remains poorly understood. Herein, we decode the whole genome of B. cellarum to delineate the underlying molecular mechanisms causing insecticide resistance. We constructed a highly reliable genome for B. cellarum using PacBio, Illumina and 10X Genomics sequencing platforms. The genome size of B. cellarum was 375.91 Mb with a contig N50 of 1.57 Mb. A total of 16,231 genes were identified, among which 93.8% were functionally annotated, and 42.06% were repeat sequences. According to phylogenetic analysis, B. cellarum diverged from the common ancestor of Drosophila melanogaster and Musca domestica ~139.3-191.0 million years ago. Moreover, some important genes responsible for significant insecticide resistance, such as cytochrome P450s, ABC transporters and those involved in glutathione metabolism, were expanded in B. cellarum. We assembled a high-quality B. cellarum genome to provide valuable insights into their life history strategies, insecticide resistance and biological behaviours. It also lays the foundation for exploring gene structure and functional evolution, as well as comparative genomics of B. cellarum and other model insect species.
Collapse
Affiliation(s)
- Mengyao Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiaofan Yang
- Plant protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Fan Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yafei Ge
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dawei Hong
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, Tibet, China
| | - Zhongyan Wang
- The Technical Education Centre of Nangong City, Xingtai, China
| | - Chenyan Lu
- College of Plant Science&Technology, Huazhong Agricultural University, Wuhan, China
| | - Suyi Chen
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Guoshu Wei
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
205
|
Gong Z, Li T, Miao J, Duan Y, Jiang Y, Li H, Guo P, Wang X, Zhang J, Wu Y. A chromosome-level genome assembly of the orange wheat blossom midge, Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) provides insights into the evolution of a detoxification system. G3 GENES|GENOMES|GENETICS 2022; 12:6617839. [PMID: 35751604 PMCID: PMC9339269 DOI: 10.1093/g3journal/jkac161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/22/2022] [Indexed: 11/14/2022]
Abstract
The orange wheat blossom midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae), an economically important pest, has caused serious yield losses in most wheat-growing areas worldwide in the past half-century. A high-quality chromosome-level genome for S. mosellana was assembled using PacBio long read, Illumina short read, and Hi-C sequencing technologies. The final genome assembly was 180.69 Mb, with contig and scaffold N50 sizes of 998.71 kb and 44.56 Mb, respectively. Hi-C scaffolding reliably anchored 4 pseudochromosomes, accounting for 99.67% of the assembled genome. In total, 12,269 protein-coding genes were predicted, of which 91% were functionally annotated. Phylogenetic analysis indicated that S. mosellana and its close relative, the swede midge Contarinia nasturtii, diverged about 32.7 MYA. The S. mosellana genome showed high chromosomal synteny with the genome of Drosophila melanogaster and Anopheles gambiae. The key gene families involved in the detoxification of plant secondary chemistry were analyzed. The high-quality S. mosellana genome data will provide an invaluable resource for research in a broad range of areas, including the biology, ecology, genetics, and evolution of midges, as well as insect–plant interactions and coevolution.
Collapse
Affiliation(s)
- Zhongjun Gong
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Tong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Jin Miao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yun Duan
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yueli Jiang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Huiling Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Pei Guo
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Xueqin Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Jing Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| |
Collapse
|
206
|
Marquez J, Dinguirard N, Gonzalez A, Kane A, Joffe N, Yoshino T, Castillo M. Molecular characterization of thioester-containing proteins in Biomphalaria glabrata and their differential gene expression upon Schistosoma mansoni exposure. Front Immunol 2022; 13:903158. [PMID: 35967434 PMCID: PMC9363628 DOI: 10.3389/fimmu.2022.903158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Schistosomiasis is a disease caused by trematode parasites of the genus Schistosoma that affects approximately 200 million people worldwide. Schistosomiasis has been a persistent problem in endemic areas as there is no vaccine available, currently used anti-helmintic medications do not prevent reinfection, and most concerning, drug resistance has been documented in laboratory and field isolates. Thus, alternative approaches to curtail this human disease are warranted. Understanding the immunobiology of the obligate intermediate host of these parasites, which include the freshwater snail Biomphalaria glabrata, may facilitate the development of novel methods to stop or reduce transmission to humans. Molecules from the thioester-containing protein (TEP) superfamily have been shown to be involved in immunological functions in many animals including corals and humans. In this study we identified, characterized, and compared TEP transcripts and their expression upon S. mansoni exposure in resistant and susceptible strains of B. glabrata snails. Results showed the expression of 11 unique TEPs in B. glabrata snails. These transcripts present high sequence identity at the nucleotide and putative amino acid levels between susceptible and resistant strains. Further analysis revealed differences in several TEPs’ constitutive expression levels between resistant and susceptible snail strains, with C3-1, C3-3, and CD109 having higher constitutive expression levels in the resistant (BS90) strain, whereas C3-2 and TEP-1 showed higher constitutive expression levels in the susceptible (NMRI) strain. Furthermore, TEP-specific response to S. mansoni miracidia exposure reiterated their differential expression, with resistant snails upregulating the expression of both TEP-4 and TEP-3 at 2 h and 48 h post-exposure, respectively. Further understanding the diverse TEP genes and their functions in invertebrate animal vectors will not only expand our knowledge in regard to this ancient family of immune proteins, but also offer the opportunity to identify novel molecular targets that could aid in the efforts to develop control methods to reduce schistosomiasis transmission.
Collapse
Affiliation(s)
- J. Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - N. Dinguirard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - A. Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - A.E. Kane
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - N.R. Joffe
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - T.P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - M.G. Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
- *Correspondence: M.G. Castillo,
| |
Collapse
|
207
|
Abstract
In Darwin's and Mendel's times, researchers investigated a wealth of organisms, chosen to solve particular problems for which they seemed especially well suited. Later, a focus on a few organisms, which are accessible to systematic genetic investigations, resulted in larger repertoires of methods and applications in these few species. Genetic animal model organisms with large research communities are the nematode Caenorhabditis elegans, the fly Drosophila melanogaster, the zebrafish Danio rerio, and the mouse Mus musculus. Due to their specific strengths, these model organisms have their strongest impacts in rather different areas of biology. C. elegans is unbeatable in the analysis of cell-to-cell contacts by saturation mutagenesis, as worms can be grown very fast in very high numbers. In Drosophila, a rich pattern is generated in the embryo as well as in adults that is used to unravel the underlying mechanisms of morphogenesis. The transparent larvae of zebrafish are uniquely suited to study organ development in a vertebrate, and the superb versatility of reverse genetics in the mouse made it the model organism to study human physiology and diseases. The combination of these models allows the in-depth genetic analysis of many fundamental biological processes using a plethora of different methods, finally providing many specific approaches to combat human diseases. The plant model Arabidopsis thaliana provides an understanding of many aspects of plant biology that might ultimately be useful for breeding crops.
Collapse
|
208
|
Kim AA, Nguyen A, Marchetti M, Du X, Montell DJ, Pruitt BL, O'Brien LE. Independently paced Ca2+ oscillations in progenitor and differentiated cells in an ex vivo epithelial organ. J Cell Sci 2022; 135:jcs260249. [PMID: 35722729 PMCID: PMC9450890 DOI: 10.1242/jcs.260249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Cytosolic Ca2+ is a highly dynamic, tightly regulated and broadly conserved cellular signal. Ca2+ dynamics have been studied widely in cellular monocultures, yet organs in vivo comprise heterogeneous populations of stem and differentiated cells. Here, we examine Ca2+ dynamics in the adult Drosophila intestine, a self-renewing epithelial organ in which stem cells continuously produce daughters that differentiate into either enteroendocrine cells or enterocytes. Live imaging of whole organs ex vivo reveals that stem-cell daughters adopt strikingly distinct patterns of Ca2+ oscillations after differentiation: enteroendocrine cells exhibit single-cell Ca2+ oscillations, whereas enterocytes exhibit rhythmic, long-range Ca2+ waves. These multicellular waves do not propagate through immature progenitors (stem cells and enteroblasts), of which the oscillation frequency is approximately half that of enteroendocrine cells. Organ-scale inhibition of gap junctions eliminates Ca2+ oscillations in all cell types - even, intriguingly, in progenitor and enteroendocrine cells that are surrounded only by enterocytes. Our findings establish that cells adopt fate-specific modes of Ca2+ dynamics as they terminally differentiate and reveal that the oscillatory dynamics of different cell types in a single, coherent epithelium are paced independently.
Collapse
Affiliation(s)
- Anna A Kim
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden
| | - Amanda Nguyen
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - XinXin Du
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Denise J Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
209
|
Keränen SVE, Villahoz-Baleta A, Bruno AE, Halfon MS. REDfly: An Integrated Knowledgebase for Insect Regulatory Genomics. INSECTS 2022; 13:618. [PMID: 35886794 PMCID: PMC9323752 DOI: 10.3390/insects13070618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
We provide here an updated description of the REDfly (Regulatory Element Database for Fly) database of transcriptional regulatory elements, a unique resource that provides regulatory annotation for the genome of Drosophila and other insects. The genomic sequences regulating insect gene expression-transcriptional cis-regulatory modules (CRMs, e.g., "enhancers") and transcription factor binding sites (TFBSs)-are not currently curated by any other major database resources. However, knowledge of such sequences is important, as CRMs play critical roles with respect to disease as well as normal development, phenotypic variation, and evolution. Characterized CRMs also provide useful tools for both basic and applied research, including developing methods for insect control. REDfly, which is the most detailed existing platform for metazoan regulatory-element annotation, includes over 40,000 experimentally verified CRMs and TFBSs along with their DNA sequences, their associated genes, and the expression patterns they direct. Here, we briefly describe REDfly's contents and data model, with an emphasis on the new features implemented since 2020. We then provide an illustrated walk-through of several common REDfly search use cases.
Collapse
Affiliation(s)
| | - Angel Villahoz-Baleta
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.V.-B.); (A.E.B.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Andrew E. Bruno
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.V.-B.); (A.E.B.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Marc S. Halfon
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
210
|
Swain MT, Vickers M. Interpreting alignment-free sequence comparison: what makes a score a good score? NAR Genom Bioinform 2022; 4:lqac062. [PMID: 36071721 PMCID: PMC9442500 DOI: 10.1093/nargab/lqac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Alignment-free methods are alternatives to alignment-based methods when searching sequence data sets. The output from an alignment-free sequence comparison is a similarity score, the interpretation of which is not straightforward. We propose objective functions to interpret and calibrate outputs from alignment-free searches, noting that different objective functions are necessary for different biological contexts. This leads to advantages: visualising and comparing score distributions, including those from true positives, may be a relatively simple method to gain insight into the performance of different metrics. Using an empirical approach with both DNA and protein sequences, we characterise different similarity score distributions generated under different parameters. In particular, we demonstrate how sequence length can affect the scores. We show that scores of true positive sequence pairs may correlate significantly with their mean length; and even if the correlation is weak, the relative difference in length of the sequence pair may significantly reduce the effectiveness of alignment-free metrics. Importantly, we show how objective functions can be used with test data to accurately estimate the probability of true positives. This can significantly increase the utility of alignment-free approaches. Finally, we have developed a general-purpose software tool called KAST for use in high-throughput workflows on Linux clusters.
Collapse
Affiliation(s)
- Martin T Swain
- Department of Life Sciences, Aberystwyth University , Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Martin Vickers
- The John Innes Centre, Norwich Research Park , Norwich NR4 7UH, UK
| |
Collapse
|
211
|
Olguín V, Durán A, Las Heras M, Rubilar JC, Cubillos FA, Olguín P, Klein AD. Genetic Background Matters: Population-Based Studies in Model Organisms for Translational Research. Int J Mol Sci 2022; 23:7570. [PMID: 35886916 PMCID: PMC9316598 DOI: 10.3390/ijms23147570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
We are all similar but a bit different. These differences are partially due to variations in our genomes and are related to the heterogeneity of symptoms and responses to treatments that patients exhibit. Most animal studies are performed in one single strain with one manipulation. However, due to the lack of variability, therapies are not always reproducible when treatments are translated to humans. Panels of already sequenced organisms are valuable tools for mimicking human phenotypic heterogeneities and gene mapping. This review summarizes the current knowledge of mouse, fly, and yeast panels with insightful applications for translational research.
Collapse
Affiliation(s)
- Valeria Olguín
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Anyelo Durán
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Francisco A. Cubillos
- Departamento de Biología, Santiago, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
- Millennium Institute for Integrative Biology (iBio), Santiago 7500565, Chile
| | - Patricio Olguín
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Andrés D. Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| |
Collapse
|
212
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
213
|
Ishola I, Afolayan O, Badru A, Olubodun-Obadun T, John N, Adeyemi O. Angiotensin converting enzyme inhibitor captopril prevents neuronal overexpression of amyloid-beta and alpha-synuclein in Drosophila melanogaster genetic models of neurodegenerative diseases. Niger J Physiol Sci 2022; 37:21-28. [PMID: 35947848 DOI: 10.54548/njps.v37i1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Parkinson disease (PD) and Alzheimer's disease (AD) are progressive neurodegenerative disorders characterized by loss of selective neurons in discreet part of the brain. The peptide angiotensin II (Ang II) plays significant role in hippocampal and striatal neurons degeneration through the generation of reactive oxygen species. Blockade of the angiotensin converting enzyme or ATI receptors provides protection in animal models of neurodegenerative diseases. In the present study, the neuroprotective effect of captopril was investigated in Drosophila melanogaster model using the UAS-GAL4 system to express the synuclein and Aβ42 peptide in the flies' neurons. METHODS The disease causing human Aβ42 peptide or α-syn was expressed pan-neuronally (elav-GAL4) or dopamine neuron (DDC-GAL4) using the UAS-GAL4 system. Flies were either grown in food media with or without captopril (1, 5, or 10µM). This was followed by fecundity, larva motility, negative geotaxis assay (climbing) and lifespan as a measure of neurodegeneration. RESULTS Elav-Gal4<Aβ or DDC-GAL4<α-syn flies displayed significant decrease in larva motility when compared with normal control (w1118) which was reversed by the supplementation of the media with captopril (5 or 10 mM) indicative of neuroprotection. Interestingly, supplementation of flies' media with captopril improved climbing activity in Elav-Gal4<Aβ or DDC-GAL4<α-syn flies when compared with vehicle treated only. Moreover, flies grown on captopril caused no significant change in lifespan. Conclusion: Findings from this study confirmed the neuroprotective action of captopril in genetic or familial forms of neurodegeneration.
Collapse
|
214
|
Wang Q, Liu L, Zhang S, Wu H, Huang J. A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability. Gigascience 2022; 11:giac059. [PMID: 35764601 PMCID: PMC9239855 DOI: 10.1093/gigascience/giac059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Lignocellulose, as the key structural component of plant biomass, is a recalcitrant structure, difficult to degrade. The traditional management of plant waste, including landfill and incineration, usually causes serious environmental pollution and health problems. Interestingly, the xylophagous beetle, Trypoxylus dichotomus, can decompose lignocellulosic biomass. However, the genomics around the digestion mechanism of this beetle remain to be elucidated. Here, we assembled the genome of T. dichotomus, showing that the draft genome size of T. dichotomus is 636.27 Mb, with 95.37% scaffolds anchored onto 10 chromosomes. Phylogenetic results indicated that a divergent evolution between the ancestors of T. dichotomus and the closely related scarabaeid species Onthophagus taurus occurred in the early Cretaceous (120 million years ago). Through gene family evolution analysis, we found 67 rapidly evolving gene families, within which there were 2 digestive gene families (encoding Trypsin and Enoyl-(Acyl carrier protein) reductase) that have experienced significant expansion, indicating that they may contribute to the high degradation efficiency of lignocellulose in T. dichotomus. Additionally, events of chromosome breakage and rearrangement were observed by synteny analysis during the evolution of T. dichotomus due to chromosomes 6 and 8 of T. dichotomus being intersected with chromosomes 2 and 10 of Tribolium castaneum, respectively. Furthermore, the comparative transcriptome analyses of larval guts showed that the digestion-related genes were more commonly expressed in the midgut or mushroom residue group than the hindgut or sawdust group. This study reports the well-assembled and annotated genome of T. dichotomus, providing genomic and transcriptomic bases for further understanding the functional and evolutionary mechanisms of lignocellulose digestion in T. dichotomus.
Collapse
Affiliation(s)
- Qingyun Wang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Liwei Liu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
- Zhejiang Museum of Natural History, No. 6 West Lake Cultural Square, Hangzhou, Zhejiang 310014, China
| | - Sujiong Zhang
- Dapanshan Insect Institute of Zhejiang, Pan'an, Zhejiang 322300, China
| | - Hong Wu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Junhao Huang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
215
|
Tse J, Li TH, Zhang J, Lee ACK, Lee I, Qu Z, Lin X, Hui J, Chan TF. Single-Cell Atlas of the Drosophila Leg Disc Identifies a Long Non-Coding RNA in Late Development. Int J Mol Sci 2022; 23:ijms23126796. [PMID: 35743238 PMCID: PMC9224501 DOI: 10.3390/ijms23126796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The Drosophila imaginal disc has been an excellent model for the study of developmental gene regulation. In particular, long non-coding RNAs (lncRNAs) have gained widespread attention in recent years due to their important role in gene regulation. Their specific spatiotemporal expressions further support their role in developmental processes and diseases. In this study, we explored the role of a novel lncRNA in Drosophila leg development by dissecting and dissociating w1118 third-instar larval third leg (L3) discs into single cells and single nuclei, and performing single-cell RNA-sequencing (scRNA-seq) and single-cell assays for transposase-accessible chromatin (scATAC-seq). Single-cell transcriptomics analysis of the L3 discs across three developmental timepoints revealed different cell types and identified lncRNA:CR33938 as a distal specific gene with high expression in late development. This was further validated by fluorescence in-situ hybridization (FISH). The scATAC-seq results reproduced the single-cell transcriptomics landscape and elucidated the distal cell functions at different timepoints. Furthermore, overexpression of lncRNA:CR33938 in the S2 cell line increased the expression of leg development genes, further elucidating its potential role in development.
Collapse
Affiliation(s)
- Joyce Tse
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Tsz Ho Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Jizhou Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Alan Chun Kit Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ivy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Zhe Qu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Jerome Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- Correspondence:
| |
Collapse
|
216
|
Velázquez-Ulloa NA, Heres-Pulido ME, Santos-Cruz LF, Durán-Díaz A, Castañeda-Partida L, Browning A, Carmona-Alvarado C, Estrada-Guzmán JC, Ferderer G, Garfias M, Gómez-Loza B, Magaña-Acosta MJ, Perry HH, Dueñas-García IE. Complex interactions between nicotine and resveratrol in the Drosophila melanogaster wing spot test. Heliyon 2022; 8:e09744. [PMID: 35770151 PMCID: PMC9234589 DOI: 10.1016/j.heliyon.2022.e09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Nicotine (NIC) and resveratrol (RES) are chemicals in tobacco and wine, respectively, that are widely consumed concurrently worldwide. NIC is an alkaloid known to be toxic, addictive and to produce oxidative stress, while RES is thought of as an antioxidant with putative health benefits. Oxidative stress can induce genotoxic damage, yet few studies have examined whether NIC is genotoxic in vivo. In vitro studies have shown that RES can ameliorate deleterious effects of NIC. However, RES has been reported to have both antioxidant and pro-oxidant effects, and an in vivo study reported that 0.011 mM RES was genotoxic. We used the Drosophila melanogaster wing spot test to determine whether NIC and RES, first individually and then in combination, were genotoxic and/or altered the cell division. We hypothesized that RES would modulate NIC’s effects. NIC was genotoxic in the standard (ST) cross in a concentration-independent manner, but not genotoxic in the high bioactivation (HB) cross. RES was not genotoxic in either the ST or HB cross at the concentrations tested. We discovered a complex interaction between NIC and RES. Depending on concentration, RES was protective of NIC’s genotoxic damage, RES had no interaction with NIC, or RES had an additive or synergistic effect, increasing NIC’s genotoxic damage. Most NIC, RES, and NIC/RES combinations tested altered the cell division in the ST and HB crosses. Because we used the ST and HB crosses, we demonstrated that genotoxicity and cell division alterations were modulated by the xenobiotic metabolism. These results provide evidence of NIC’s genotoxicity in vivo at specific concentrations. Moreover, NIC’s genotoxicity can be modulated by its interaction with RES in a complex manner, in which their interaction can lead to either increasing NIC’s damage or protecting against it. Nicotine was genotoxic at specific concentrations in the Drosophila wing spot test. Resveratrol protected against nicotine’s genotoxic effects at some concentrations. Resveratrol increased nicotine’s genotoxicity at specific concentrations. Nicotine and resveratrol have a complex interaction in vivo. Studying chemicals in combination in vivo may uncover unexpected interactions.
Collapse
Affiliation(s)
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Browning
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - C Carmona-Alvarado
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J C Estrada-Guzmán
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - G Ferderer
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - M Garfias
- Biology Department, Lewis & Clark College, Portland, OR, USA.,Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - B Gómez-Loza
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M J Magaña-Acosta
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.,Department of Developmental Genetics & Molecular Physiology, Universidad Nacional Autónoma de México. Av Universidad, 2001, Col Chamilpa, Cuernavaca, Mexico
| | - H H Perry
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - I E Dueñas-García
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
217
|
Camilleri-Robles C, Amador R, Klein CC, Guigó R, Corominas M, Ruiz-Romero M. Genomic and functional conservation of lncRNAs: lessons from flies. Mamm Genome 2022; 33:328-342. [PMID: 35098341 PMCID: PMC9114055 DOI: 10.1007/s00335-021-09939-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Over the last decade, the increasing interest in long non-coding RNAs (lncRNAs) has led to the discovery of these transcripts in multiple organisms. LncRNAs tend to be specifically, and often lowly, expressed in certain tissues, cell types and biological contexts. Although lncRNAs participate in the regulation of a wide variety of biological processes, including development and disease, most of their functions and mechanisms of action remain unknown. Poor conservation of the DNA sequences encoding for these transcripts makes the identification of lncRNAs orthologues among different species very challenging, especially between evolutionarily distant species such as flies and humans or mice. However, the functions of lncRNAs are unexpectedly preserved among different species supporting the idea that conservation occurs beyond DNA sequences and reinforcing the potential of characterising lncRNAs in animal models. In this review, we describe the features and roles of lncRNAs in the fruit fly Drosophila melanogaster, focusing on genomic and functional comparisons with human and mouse lncRNAs. We also discuss the current state of advances and limitations in the study of lncRNA conservation and future perspectives.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain.
| |
Collapse
|
218
|
Feron R, Waterhouse RM. Exploring new genomic territories with emerging model insects. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100902. [PMID: 35301165 DOI: 10.1016/j.cois.2022.100902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Improvements in reference genome generation for insects and across the tree of life are extending the concept and utility of model organisms beyond traditional laboratory-tractable supermodels. Species or groups of species with comprehensive genome resources can be developed into model systems for studying a large variety of biological phenomena. Advances in sequencing and assembly technologies are supporting these emerging genome-enabled model systems by producing resources that are increasingly accurate and complete. Nevertheless, quality controls including assessing gene content completeness are required to ensure that these data can be included in expanding catalogues of high-quality references that will greatly advance understanding of insect biology and evolution.
Collapse
Affiliation(s)
- Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics,1015 Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics,1015 Lausanne, Switzerland.
| |
Collapse
|
219
|
Kim DH, Park JC, Lee JS. G protein-coupled receptors (GPCRs) in rotifers and cladocerans: Potential applications in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109297. [PMID: 35183764 DOI: 10.1016/j.cbpc.2022.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
220
|
Cardoso DC, Moura MN, Cristiano MP. Dynamic development of AT-rich heterochromatin has followed diversification and genome expansion of psammophilous Mycetophylax (Formicidae: Attini: Attina). INSECT MOLECULAR BIOLOGY 2022; 31:297-307. [PMID: 35060209 DOI: 10.1111/imb.12759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Heterochromatin is an important genome constituent comprised by a high density of repetitive DNA sequences that mediate chromosome structure and function. The species Mycetophylax morschi currently harbours three cytotypes: 2n = 26, 2n = 28 and 2n = 30 chromosomes. However, Mycetophylax conformis and Mycetophylax simplex harbour 2n = 30 and 2n = 36 chromosomes, respectively. None of the cytotypes of M. morschi showed any AT-positive blocks, whereas the karyotypes of M. conformis and M. simplex revealed AT-rich blocks around the pericentromeric region and on the short arm of several chromosomes. This AT-rich pattern is coincident with the known heterochromatin distribution of psammophilous Mycetophylax, confirming that heterochromatin is AT-rich, in line with the genome size and AT%. Our results demonstrated that genome size among psammophilous Mycetophylax is correlated with the proportion of base pairs, biased to adenine and thymine. Thus, genome size and the proportion of adenine and thymine in the species studied here suggest that the genome changes in psammophilous Mycetophylax are related to the expansion of repetitive DNA in AT-rich heterochromatin. Considering the phylogenetic relationship of psammophilous Mycetophylax, the dynamic development of AT-rich heterochromatin and karyotype repatterning encompasses the diversification of such ants.
Collapse
Affiliation(s)
- Danon Clemes Cardoso
- Laboratório de Genética Evolutiva e de Populações, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Mariana Neves Moura
- Laboratório de Genética Evolutiva e de Populações, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Maykon Passos Cristiano
- Laboratório de Genética Evolutiva e de Populações, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
221
|
Xiao G. Molecular physiology of zinc in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100899. [PMID: 35276390 DOI: 10.1016/j.cois.2022.100899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
New research in Drosophila melanogaster has revealed the molecular mechanisms of zinc involvement in many biological processes. A newly discovered Metallothionein is predicted to have a higher zinc specificity than the other isoforms. Zinc negatively regulates tyrosine hydroxylase activity by antagonizing iron binding, thus rendering the enzyme ineffective or non-functional. The identification of a new chaperone of the protein disulfide isomerase family provided mechanistic insight into the protein trafficking defects caused by zinc dyshomeostasis in the secretory pathway. Insect models of tumor pathogenesis indicate that zinc regulates the structural stabilization of cells by transcriptionally regulating matrix metalloproteinases while zinc dyshomeostasis in the secretory pathway modulates cell signaling through endoplastic recticulum stress.
Collapse
Affiliation(s)
- Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
222
|
Jia Z, Hasi S, Vogl C, Burger PA. Genomic insights into evolution and control of
Wohlfahrtia magnifica
, a widely distributed myiasis‐causing fly of warm‐blooded vertebrates. Mol Ecol Resour 2022; 22:2744-2757. [PMID: 35643968 PMCID: PMC9545800 DOI: 10.1111/1755-0998.13654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Wohlfahrtia magnifica is a pest fly species, invading livestock in many European, African and Asian countries, and causing heavy agroeconomic losses. In the life cycle of this obligatory parasite, adult flies infect the host by depositing the first‐stage larvae into body cavities or open wounds. The feeding larvae cause severe (skin) tissue damage and potentially fatal infections if untreated. Despite serious health detriments and agroeconomic concerns, genomic resources for understanding the biology of W. magnifica have so far been lacking. Here, we present a complete genome assembly from a single adult female W. magnifica using a Low‐DNA Input workflow for PacBio HiFi library preparation. The de novo assembled genome is 753.99 Mb in length, with a scaffold N50 of 5.00 Mb, consisting of 16,718 predicted protein‐encoding genes. Comparative genomic analysis revealed that W. magnifica has the closest phylogenetic relationship to Sarcophaga bullata followed by Lucilia cuprina. Evolutionary analysis of gene families showed expansions of 173 gene families in W. magnifica that were enriched for gene ontology (GO) categories related to immunity, insecticide‐resistance mechanisms, heat stress response and cuticle development. In addition, 45 positively selected genes displaying various functions were identified. This new genomic resource contributes to the evolutionary and comparative analysis of dipterous flies and an in‐depth understanding of many aspects of W. magnifica biology. Furthermore, it will facilitate the development of novel tools for controlling W. magnifica infection in livestock.
Collapse
Affiliation(s)
- Zhipeng Jia
- Research Institute of Wildlife Ecology Department of Interdisciplinary Life Sciences University of Veterinary Medicine Vienna Savoyenstrasse 1 1160 Vienna Austria
| | - Surong Hasi
- Inner Mongolia Agricultural University/Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs Hohhot 010018 China
| | - Claus Vogl
- Institute of Animal Breeding and Genetics Department of Biomedical Sciences University of Veterinary Medicine Vienna Veterinaerplatz 1 1210 Vienna Austria
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology Department of Interdisciplinary Life Sciences University of Veterinary Medicine Vienna Savoyenstrasse 1 1160 Vienna Austria
| |
Collapse
|
223
|
Yuan J, Zhang X, Kou Q, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Xiang J, Li X, Li F. Genome of a giant isopod, Bathynomus jamesi, provides insights into body size evolution and adaptation to deep-sea environment. BMC Biol 2022; 20:113. [PMID: 35562825 PMCID: PMC9107163 DOI: 10.1186/s12915-022-01302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydrostatic pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across different environments including the deep sea and as such are a useful model for studying adaptation, migration, and speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a deep-sea giant isopod Bathynomus jamesi was sequenced and assembled. RESULTS B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utilization to provide sustained energy supply for their large body size. CONCLUSIONS Taken together, the giant isopod genome may provide a valuable resource for understanding body size evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Kou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin, 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xinzheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
224
|
Meng F, Han H, Wang M, Jiang Y, Pi Z, Qu Y, Liu Z, Cai J. Characterized Gene Repertoires and Functional Gene Reference for Forensic Entomology: Genomic and Developmental Transcriptomic Analysis of Aldrichina grahami (Diptera: Calliphoridae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:810-819. [PMID: 35139213 DOI: 10.1093/jme/tjac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 06/14/2023]
Abstract
Many flies of Diptera are common entomological evidence employed in forensic investigation. Exploring the existence of inter- and intra-species genomic differences of forensically relevant insects is of great importance. Aldrichina grahami is a common blow fly species of forensic importance. The present study characterized the gene repertoires of A. grahami, and provides insights into issues related to forensic entomology, such as necrophagous behavior, gene family features, and developmental patterns. Gene families were clustered and classified according to their function in different aspects of the necrophagous lifestyle, generating several gene repertoires. The genes under positive selection pressure and evolutionary changes were screen and identified. Moreover, genes that exhibited potential prediction value in the post mortem interval (PMI) estimation and development of immature stages were subjected to analysis based on the developmental transcriptome. Related insect species were compared at the genomic level to reveal the genes associated with necrophagous behaviors. The expression of selected genes in separated repositories was verified using qPCR. This work was conducted using a high-quality chromosome-level genome assembly of A. grahami and its developmental transcriptome. The findings will facilitate future research on A. grahami and the other forensically important species.
Collapse
Affiliation(s)
- Fanming Meng
- School of Basic Medicine, Central South University, Changsha, China
| | - Han Han
- School of Basic Medicine, Central South University, Changsha, China
| | - Mo Wang
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| | - Yangshuai Jiang
- School of Basic Medicine, Central South University, Changsha, China
| | - Zhiyun Pi
- School of Basic Medicine, Central South University, Changsha, China
| | - Yihong Qu
- School of Basic Medicine, Central South University, Changsha, China
| | - Zhuoying Liu
- School of Basic Medicine, Central South University, Changsha, China
| | - Jifeng Cai
- School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
225
|
Smoot J, Padilla S, Farraj AK. The utility of alternative models in particulate matter air pollution toxicology. Curr Res Toxicol 2022; 3:100077. [PMID: 35676914 PMCID: PMC9168130 DOI: 10.1016/j.crtox.2022.100077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Countless unique particulate matter (PM) samples with limited or no toxicity information. Alternative in vivo models offer greater throughput than traditional mammalian models. Use of zebrafish, fruit flies, and nematodes in PM toxicology lacks systematic review. Their utility in PM toxicity and mechanistic research and as screening tools is reviewed.
Exposure to particulate matter (PM) air pollution increases risk of adverse human health effects. As more attention is brought to bear on the problem of PM, traditional mammalian in vivo models struggle to keep up with the risk assessment challenges posed by the countless number of unique PM samples across air sheds with limited or no toxicity information. This review examines the utility of three higher throughput, alternative, in vivo animal models in PM toxicity research: Danio rerio (zebrafish), Caenorhabditis elegans (nematode), and Drosophila melanogaster (fruit fly). These model organisms vary in basic biology, ease of handling, methods of exposure to PM, number and types of available assays, and the degree to which they mirror human biology and responsiveness, among other differences. The use of these models in PM research dates back over a decade, with assessments of the toxicity of various PM sources including traffic-related combustion emissions, wildland fire smoke, and coal fly ash. This article reviews the use of these alternative model organisms in PM toxicity studies, their biology, the various assays developed, endpoints measured, their strengths and limitations, as well as their potential role in PM toxicity assessment and mechanistic research going forward.
Collapse
Affiliation(s)
- Jacob Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Stephanie Padilla
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, United States
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC, United States
- Corresponding author.
| |
Collapse
|
226
|
Marygold SJ, Chan PP, Lowe TM. Systematic identification of tRNA genes in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000560. [PMID: 35789696 PMCID: PMC9249942 DOI: 10.17912/micropub.biology.000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022]
Abstract
Transfer RNAs (tRNAs) are ubiquitous adapter molecules that link specific codons in messenger RNA (mRNA) with their corresponding amino acids during protein synthesis. The tRNA genes of Drosophila have been investigated for over half a century but have lacked systematic identification and nomenclature. Here, we review and integrate data within FlyBase and the Genomic tRNA Database (GtRNAdb) to identify the full complement of tRNA genes in the D. melanogaster nuclear and mitochondrial genomes. We apply a logical and informative nomenclature to all tRNA genes, and provide an overview of their characteristics and genomic features.
Collapse
Affiliation(s)
- Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
,
Correspondence to: Steven J Marygold (
)
| | - Patricia P Chan
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064, USA
| |
Collapse
|
227
|
El Husseiny IM, El Kholy S, Mohamed AZ, Meshrif WS, Elbrense H. Alterations in biogenic amines levels associated with age-related muscular tissue impairment in Drosophila melanogaster. Saudi J Biol Sci 2022; 29:3739-3748. [PMID: 35844402 PMCID: PMC9280237 DOI: 10.1016/j.sjbs.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
While holding on youth may be a universal wish, aging is a natural process associated with physical and physiological impairment in living organisms. Drosophila provides useful insights into aging-related events. Hence, this study was conducted to investigate the age-related changes in muscle function and architecture in relation to the biogenic amine titers. To achieve this aim, visceral and skeletal muscles performance was tested in newly-eclosed, sexually mature and old adult flies using climbing and gut motility assays. In addition, age-related ultrastructural alterations of muscular tissue were observed using transmission electron microscopy (TEM). The titer of selected biogenic amines was measured using high-performance liquid chromatography (HPLC). The results demonstrated that old flies were dramatically slower in upward movement than either newly-eclosed or sexually mature flies. Similarly, gut contraction rate was significantly lower in old flies than the sexually mature, although it was markedly higher than that in the newly-eclosed flies. In TEM examination, there were several ultrastructural changes in the midgut epithelium, legs and thorax muscles of old flies. Regarding biogenic amine titers, the old flies had significantly lower concentrations of octopamine, dopamine and serotonin than the sexually mature. We concluded that aging has adverse effects on muscular system function and ultrastructure, synchronized with biogenic amine titers changes. Our results highlighted the need for more researches on therapeutics that may balance the levels of age-related alterations in biogenic amines.
Collapse
Affiliation(s)
- Iman M. El Husseiny
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Samar El Kholy
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | | | - Wesam S. Meshrif
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| |
Collapse
|
228
|
Nakajima Y, Ogura A. Genomics and effective trait candidates of edible insects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
229
|
Keesey IW, Zhang J, Depetris-Chauvin A, Obiero GF, Gupta A, Gupta N, Vogel H, Knaden M, Hansson BS. Functional olfactory evolution in Drosophila suzukii and the subgenus Sophophora. iScience 2022; 25:104212. [PMID: 35573203 PMCID: PMC9093017 DOI: 10.1016/j.isci.2022.104212] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 10/25/2022] Open
|
230
|
Dhillon MK, Jaba J, Mishra P, Iquebal MA, Jaiswal S, Tanwar AK, Bharat N, Arora N, Mishra SP, Gogineni SP, Hasan F, Rai A, Kumar D, Sharma HC. Whole genome sequencing of spotted stem borer, Chilo partellus, reveals multiple genes encoding enzymes for detoxification of insecticides. Funct Integr Genomics 2022; 22:611-624. [PMID: 35426546 DOI: 10.1007/s10142-022-00852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Spotted stem borer, Chilo partellus, is the most important constraint for increasing the production and productivity of maize and sorghum, the two major coarse cereals in Asia and Africa. The levels of resistance to this pest in the cultivated germplasm are low to moderate, and hence, farmers have to use insecticides for effective control of this pest. However, there is no information on the detoxification mechanisms in C. partellus, which is one of the constraints for deployment of appropriate insecticides to control this pest. The ability to detoxify insecticides varies across insect populations, and hence, we sequenced different populations of C. partellus to identify and understand detoxification mechanisms to devise appropriate strategies for deployment of different insecticides for controlling this pest. Larval samples were sequenced from three different cohorts of C. partellus using the Illumina HiSeq 2500 platform. The data were subjected to identify putative genes that are involved in detoxification on insecticides in our cohort insect species. These studies resulted in identification of 64 cytochrome P450 genes (CYP450s), and 36 glutathione S-transferases genes (GSTs) encoding metabolic detoxification enzymes, primarily responsible for xenobiotic metabolism in insects. A total of 183 circadian genes with > 80% homolog and 11 olfactory receptor genes that mediate chemical cues were found in the C. partellus genome. Also, target receptors related to insecticide action, 4 acetylcholinesterase (AChE), 14 γ-aminobutyric acid (GABA), and 15 nicotinic acetylcholine (nAChR) receptors were detected. This is the first report of whole genome sequencing of C. partellus useful for understanding mode of action of different insecticides, and mechanisms of detoxification and designing target-specific insecticides to develop appropriate strategies to control C. partellus for sustainable crop production.
Collapse
Affiliation(s)
- Mukesh K Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jagdish Jaba
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Pallavi Mishra
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Aditya K Tanwar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nareshkumar Bharat
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Naveen Arora
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Suraj Prasad Mishra
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Shyam Prasad Gogineni
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, Telangana, India
| | - Fazil Hasan
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India. .,Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Hari C Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| |
Collapse
|
231
|
Identification of additional dye tracers for measuring solid food intake and food preference via consumption-excretion in Drosophila. Sci Rep 2022; 12:6201. [PMID: 35418664 PMCID: PMC9008003 DOI: 10.1038/s41598-022-10252-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
The Drosophila model has become a leading platform for investigating mechanisms that drive feeding behavior and the effect of diet on physiological outputs. Several methods for tracking feeding behavior in flies have been developed. One method, consumption-excretion or Con-Ex, provides flies with media labeled with dye and then quantifies the amount of dye excreted into the vial as a measure of consumption. We previously found that Blue 1 and Orange 4 work well in Con-Ex and can be used as a dye pair in food preference studies. We have expanded our development of Con-Ex by identifying two additional dyes, Orange G and Yellow 10, that detect the anticipated effects of mating status, strain, starvation and nutrient concentration. Additionally, Orange G and Yellow 10 accumulate linearly in excretion products out to 48 h and the excreted volumes of these two dyes reflect the volumes consumed. Orange G also works with Blue 1 as a dye pair in food preference studies. Finally, consumption of Blue 1, Orange 4, Orange G or Yellow 10 does not affect ethanol sedation or rapid tolerance to ethanol. Our findings establish that Orange G and Yellow 10, like Blue 1 and Orange 4, are suitable for use in Con-Ex.
Collapse
|
232
|
Courant F, Maravat M, Chen W, Gosset D, Blot L, Hervouet-Coste N, Sarou-Kanian V, Morisset-Lopez S, Decoville M. Expression of the Human Serotonin 5-HT 7 Receptor Rescues Phenotype Profile and Restores Dysregulated Biomarkers in a Drosophila melanogaster Glioma Model. Cells 2022; 11:1281. [PMID: 35455961 PMCID: PMC9028361 DOI: 10.3390/cells11081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Significant progress has been made in recent years in identifying the molecular alterations involved in gliomas. Among them, an amplification/overexpression of the EGFR (Epidermal Growth Factor Receptor) proto-oncogene and its associated signaling pathways have been widely described. However, current treatments remain ineffective for glioblastomas, the most severe forms. Thus, the identification of other pharmacological targets could open new therapeutic avenues. We used a glioma model in Drosophila melanogaster that results from the overexpression of constitutively active forms of EGFR and PI3K specifically in glial cells. We observed hyperproliferation of glial cells that leads to an increase in brain size and lethality at the third instar larval stage. After expression of the human serotonin 5-HT7 receptor in this glioma model, we observed a decrease in larval lethality associated with the presence of surviving adults and a return to a normal morphology of brain for some Drosophila. Those phenotypic changes are accompanied by the normalization of certain metabolic biomarkers measured by High-Resolution Magic Angle Spinning NMR (HR-MAS NMR). The 5-HT7R expression in glioma also restores some epigenetic modifications and characteristic markers of the signaling pathways associated with tumor growth. This study demonstrates the role of the serotonin 5-HT7 receptor as a tumor suppressor gene which is in agreement with transcriptomic analysis obtained on human glioblastomas.
Collapse
Affiliation(s)
- Florestan Courant
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Marion Maravat
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Wanyin Chen
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - David Gosset
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Lauren Blot
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Nadège Hervouet-Coste
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Martine Decoville
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
- UFR Sciences et Techniques, Université d’Orléans, 6 Avenue du Parc Floral, F-45100 Orléans, France
| |
Collapse
|
233
|
Pan D. The unfolding of the Hippo signaling pathway. Dev Biol 2022; 487:1-9. [PMID: 35405135 DOI: 10.1016/j.ydbio.2022.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
The development of a functional organ requires not only patterning mechanisms that confer proper identities to individual cells, but also growth-regulatory mechanisms that specify the final size of the organ. At the turn of the 21st century, comprehensive genetic screens in model organisms had successfully uncovered the major signaling pathways that mediate pattern formation in metazoans. In contrast, signaling pathways dedicated to growth control were less explored. The past two decades has witnessed the emergence of the Hippo signaling pathway as a central mediator of organ size control through coordinated regulation of cell proliferation and apoptosis. Here I reflect on the early discoveries in Drosophila that elucidated the core kinase cascade and transcriptional machinery of the Hippo pathway, highlight its deep evolutionary conservation from humans to unicellular relatives of metazoan, and discuss the complex regulation of Hippo signaling by upstream inputs. This historical perspective underscores the importance of model organisms in uncovering fundamental and universal mechanisms of life processes.
Collapse
Affiliation(s)
- Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9040, USA.
| |
Collapse
|
234
|
Foe VE. Does the Pachytene Checkpoint, a Feature of Meiosis, Filter Out Mistakes in Double-Strand DNA Break Repair and as a side-Effect Strongly Promote Adaptive Speciation? Integr Org Biol 2022; 4:obac008. [PMID: 36827645 PMCID: PMC8998493 DOI: 10.1093/iob/obac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This essay aims to explain two biological puzzles: why eukaryotic transcription units are composed of short segments of coding DNA interspersed with long stretches of non-coding (intron) DNA, and the near ubiquity of sexual reproduction. As is well known, alternative splicing of its coding sequences enables one transcription unit to produce multiple variants of each encoded protein. Additionally, padding transcription units with non-coding DNA (often many thousands of base pairs long) provides a readily evolvable way to set how soon in a cell cycle the various mRNAs will begin being expressed and the total amount of mRNA that each transcription unit can make during a cell cycle. This regulation complements control via the transcriptional promoter and facilitates the creation of complex eukaryotic cell types, tissues, and organisms. However, it also makes eukaryotes exceedingly vulnerable to double-strand DNA breaks, which end-joining break repair pathways can repair incorrectly. Transcription units cover such a large fraction of the genome that any mis-repair producing a reorganized chromosome has a high probability of destroying a gene. During meiosis, the synaptonemal complex aligns homologous chromosome pairs and the pachytene checkpoint detects, selectively arrests, and in many organisms actively destroys gamete-producing cells with chromosomes that cannot adequately synapse; this creates a filter favoring transmission to the next generation of chromosomes that retain the parental organization, while selectively culling those with interrupted transcription units. This same meiotic checkpoint, reacting to accidental chromosomal reorganizations inflicted by error-prone break repair, can, as a side effect, provide a mechanism for the formation of new species in sympatry. It has been a long-standing puzzle how something as seemingly maladaptive as hybrid sterility between such new species can arise. I suggest that this paradox is resolved by understanding the adaptive importance of the pachytene checkpoint, as outlined above.
Collapse
|
235
|
Sims C, Birkett MA, Withall DM. Enantiomeric Discrimination in Insects: The Role of OBPs and ORs. INSECTS 2022; 13:368. [PMID: 35447810 PMCID: PMC9030700 DOI: 10.3390/insects13040368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
Olfaction is a complex recognition process that is critical for chemical communication in insects. Though some insect species are capable of discrimination between compounds that are structurally similar, little is understood about how this high level of discrimination arises. Some insects rely on discriminating between enantiomers of a compound, demonstrating an ability for highly selective recognition. The role of two major peripheral olfactory proteins in insect olfaction, i.e., odorant-binding proteins (OBPs) and odorant receptors (ORs) has been extensively studied. OBPs and ORs have variable discrimination capabilities, with some found to display highly specialized binding capability, whilst others exhibit promiscuous binding activity. A deeper understanding of how odorant-protein interactions induce a response in an insect relies on further analysis such as structural studies. In this review, we explore the potential role of OBPs and ORs in highly specific recognition, specifically enantiomeric discrimination. We summarize the state of research into OBP and OR function and focus on reported examples in the literature of clear enantiomeric discrimination by these proteins.
Collapse
Affiliation(s)
- Cassie Sims
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael A. Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| | - David M. Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| |
Collapse
|
236
|
Certel SJ, McCabe BD, Stowers RS. A conditional GABAergic synaptic vesicle marker for Drosophila. J Neurosci Methods 2022; 372:109540. [PMID: 35219770 PMCID: PMC8940707 DOI: 10.1016/j.jneumeth.2022.109540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND Throughout the animal kingdom, GABA is the principal inhibitory neurotransmitter of the nervous system. It is essential for maintaining the homeostatic balance between excitation and inhibition required for the brain to operate normally. Identification of GABAergic neurons and their GABA release sites are thus essential for understanding how the brain regulates the excitability of neurons and the activity of neural circuits responsible for numerous aspects of brain function including information processing, locomotion, learning, memory, and synaptic plasticity, among others. NEW METHOD Since the structure and features of GABA synapses are critical to understanding their function within specific neural circuits of interest, here we developed and characterized a conditional marker of GABAergic synaptic vesicles for Drosophila, 9XV5-vGAT. RESULTS 9XV5-vGAT is validated for conditionality of expression, specificity for localization to synaptic vesicles, specificity for expression in GABAergic neurons, and functionality. Its utility for GABAergic neurotransmitter phenotyping and identification of GABA release sites was verified for ellipsoid body neurons of the central complex. In combination with previously reported conditional SV markers for acetylcholine and glutamate, 9XV5-vGAT was used to demonstrate fast neurotransmitter phenotyping of subesophageal ganglion neurons. COMPARISON WITH EXISTING METHODS This method is an alternative to single cell transcriptomics for neurotransmitter phenotyping and can be applied to any neurons of interest represented by a binary transcription system driver. CONCLUSION A conditional GABAergic synaptic vesicle marker has been developed and validated for GABA neurotransmitter phenotyping and subcellular localization of GABAergic synaptic vesicles.
Collapse
|
237
|
Liu X, Li J, Sun Y, Liang X, Zhang R, Zhao X, Zhang M, Zhang J. A nuclear receptor HR4 is essential for the formation of epidermal cuticle in the migratory locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103740. [PMID: 35183732 DOI: 10.1016/j.ibmb.2022.103740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nuclear receptors (NRs) function as key factors in diverse signaling and metabolic pathways. Previous studies have focused on the roles of a nuclear receptor, hormone receptor 4 (HR4), mainly in holometabolous insects, while current knowledge of its function in hemimetabolous insects is still limited. In this study, we identified a HR4 gene in the orthopteran species Locusta migratoria. The full-length open reading frame of LmHR4 comprises 2694-nucleotides encoding a polypeptide of 897 amino acids, which contained a DNA-binding and a ligand-binding domain. Analyzing LmHR4 expression by quantitative reverse-transcription PCR (RT-qPCR) revealed that LmHR4 was highly expressed in integument, hindgut and fat body. During development from 3rd and 5th nymphal instars, the expression of LmHR4 reached maximal levels before ecdysis. We further demonstrated that LmHR4 expression is induced by 20-hydroxyecdysone (20E) and suppressed by silencing LmEcR, suggesting that LmHR4 expression is controlled by 20E signaling. The dsLmHR4-injected nymphs failed to molt and remained in the nymphal stage until death. Hematoxylin and eosin staining of the integument indicated that apolysis in the dsLmHR4-injected insects was delayed compared to that in control insects. Chitin staining and ultra-structural analysis showed that both the synthesis of the new cuticle and the degradation of the old cuticle were blocked in dsLmHR4-injected insects. Silencing LmHR4 decreased 20E titer and down-regulated the transcript levels of genes involved in chitin synthesis and degradation. Taken together, these results suggest that LmHR4 is essential for the formation of epidermal cuticle by mediating the 20E signaling to regulate the expression of chitin synthesis and degradation genes.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Juan Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yawen Sun
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaoyu Liang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
238
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
239
|
Sims C, Withall DM, Oldham N, Stockman R, Birkett M. Computational investigation of aphid odorant receptor structure and binding function. J Biomol Struct Dyn 2022; 41:3647-3658. [PMID: 35352606 DOI: 10.1080/07391102.2022.2053743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Odorant receptors (OR) play a critical role in signal transduction and olfactory recognition in insects. Unfortunately, insect ORs are difficult to express and purify, and limited structural data are available. Computational methods were used to predict models for aphid ORs, and binding interactions with aphid pheromones and other semiochemicals were investigated. Previously functionally characterised ORs from the pea aphid, Acyrthosiphon pisum, ApisOR4 and ApisOR5, were screened against functional ligands. ApisOR5 had a defined binding site, and had predicted interactions with the aphid alarm pheromone, (E)-β-farnesene. ApisOR4 had multiple distinct binding sites and showed broad tuning to multiple odorants. Screening of six other highly conserved ORs showed some interactions and potential enantiomeric discrimination between the aphid sex pheromone components (4aS,7S,7aR)-nepetalactone and (1R,4aS,7S,7aR)-nepetalactol. These results indicate that specific binding sites may be more critical to understanding olfactory activity of ligands and ORs than kinetic data, and greater knowledge of the method of action of ORs is required.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cassie Sims
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, UK.,School of Chemistry, University of Nottingham, Nottingham, UK
| | - David M Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Neil Oldham
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Robert Stockman
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Michael Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
240
|
Chathoth KT, Mikheeva LA, Crevel G, Wolfe JC, Hunter I, Beckett-Doyle S, Cotterill S, Dai H, Harrison A, Zabet NR. The role of insulators and transcription in 3D chromatin organization of flies. Genome Res 2022; 32:682-698. [PMID: 35354608 PMCID: PMC8997359 DOI: 10.1101/gr.275809.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The DNA in many organisms, including humans, is shown to be organized in topologically associating domains (TADs). In Drosophila, several architectural proteins are enriched at TAD borders, but it is still unclear whether these proteins play a functional role in the formation and maintenance of TADs. Here, we show that depletion of BEAF-32, Cp190, Chro, and Dref leads to changes in TAD organization and chromatin loops. Their depletion predominantly affects TAD borders located in regions moderately enriched in repressive modifications and depleted in active ones, whereas TAD borders located in euchromatin are resilient to these knockdowns. Furthermore, transcriptomic data has revealed hundreds of genes displaying differential expression in these knockdowns and showed that the majority of differentially expressed genes are located within reorganized TADs. Our work identifies a novel and functional role for architectural proteins at TAD borders in Drosophila and a link between TAD reorganization and subsequent changes in gene expression.
Collapse
Affiliation(s)
- Keerthi T Chathoth
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Liudmila A Mikheeva
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom.,Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Gilles Crevel
- Department Basic Medical Sciences, St. Georges University London, London SW17 0RE, United Kingdom
| | - Jareth C Wolfe
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom.,School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Ioni Hunter
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Saskia Beckett-Doyle
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Sue Cotterill
- Department Basic Medical Sciences, St. Georges University London, London SW17 0RE, United Kingdom
| | - Hongsheng Dai
- Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Andrew Harrison
- Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| |
Collapse
|
241
|
Mito T, Ishimaru Y, Watanabe T, Nakamura T, Ylla G, Noji S, Extavour CG. Cricket: The third domesticated insect. Curr Top Dev Biol 2022; 147:291-306. [PMID: 35337452 DOI: 10.1016/bs.ctdb.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.
Collapse
Affiliation(s)
- Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
242
|
Han H, Yang Y, Hu J, Wang Y, Zhao Z, Ma R, Gao L, Guo Y. Identification and Characterization of CYP6 Family Genes from the Oriental Fruit Moth (Grapholita molesta) and Their Responses to Insecticides. INSECTS 2022; 13:insects13030300. [PMID: 35323597 PMCID: PMC8953268 DOI: 10.3390/insects13030300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Eight CYP6 family genes were identified in Grapholita molesta (Busck). The expression of individual gene members differed between the developmental stages and insect tissues. High expression was found in third/fourth-instar larvae and in the midgut and Malpighian tubules. The response patterns of the genes exhibited diverse response patterns to the three representative insecticides were diverse. Abstract Cytochrome P450 (CYP) monooxygenases comprise a superfamily of proteins that detoxify xenobiotics and plant secondary metabolites in insects. The CYP6 family is unique to the class Insecta, and its members participate in the metabolism of exogenous substances. In this study, we sequenced and characterized the full-length cDNAs of eight CYP6 family genes from Grapholita molesta (Busck), a global pest of pome fruits. P450 genes with the exception of CYP6AN35, which was most highly expressed in adults, consistently showed high expression in third- or fourth-instar larvae. The analysis of different tissues of adults showed that most of these genes were predominantly expressed in the midgut, Malpighian tubules, and/or fat body. The expression of these eight CYP6 genes was differentially affected by three representative insecticides: malathion (organophosphate), deltamethrin (pyrethroid), and chlorantraniliprole (carbamate). All eight CYP6 genes responded to malathion treatment. Only three CYP6 genes were highly expressed in deltamethrin-treated individuals. Chlorantraniliprole treatment exerted weak effects on gene expression. Interestingly, CYP6AN35 was a highly expression level in the adult head and its expression was induced by all three insecticides. CYP6AN35 may be a key gene in the metabolism of insecticides. This study provides a fundamental understanding of the functions of the CYP6 gene family in insecticide metabolism in G. molesta.
Collapse
Affiliation(s)
- Hui Han
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Yanyu Yang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Jun Hu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Yuanxin Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Zhiguo Zhao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Lingling Gao
- CSIRO Agriculture & Food, Private Bag 5, Wembley, Perth, WA 6913, Australia
- Correspondence: (L.G.); (Y.G.)
| | - Yanqiong Guo
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
- Correspondence: (L.G.); (Y.G.)
| |
Collapse
|
243
|
Certel SJ, Ruchti E, McCabe BD, Stowers RS. A conditional glutamatergic synaptic vesicle marker for Drosophila. G3 (BETHESDA, MD.) 2022; 12:6493328. [PMID: 35100385 PMCID: PMC8895992 DOI: 10.1093/g3journal/jkab453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development, as well as a myriad of brain functions from the simple transmission of information between neurons to more complex aspects of nervous system function including synaptic plasticity, learning, and memory. Identification of glutamatergic neurons and their sites of glutamate release are thus essential for understanding the mechanisms of neural circuit function and how information is processed to generate behavior. Here, we describe and characterize smFLAG-vGlut, a conditional marker of glutamatergic synaptic vesicles for the Drosophila model system. smFLAG-vGlut is validated for functionality, conditional expression, and specificity for glutamatergic neurons and synaptic vesicles. The utility of smFLAG-vGlut is demonstrated by glutamatergic neurotransmitter phenotyping of 26 different central complex neuron types of which nine were established to be glutamatergic. This illumination of glutamate neurotransmitter usage will enhance the modeling of central complex neural circuitry and thereby our understanding of information processing by this region of the fly brain. The use of smFLAG for glutamatergic neurotransmitter phenotyping and identification of glutamate release sites can be extended to any Drosophila neuron(s) represented by a binary transcription system driver.
Collapse
Affiliation(s)
- Sarah J Certel
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Evelyne Ruchti
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne VD 1015, Switzerland
| | - Brian D McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne VD 1015, Switzerland
| | - R Steven Stowers
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
244
|
Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, Saelens W, David F, Brbić M, Spanier K, Leskovec J, McLaughlin CN, Xie Q, Jones RC, Brueckner K, Shim J, Tattikota SG, Schnorrer F, Rust K, Nystul TG, Carvalho-Santos Z, Ribeiro C, Pal S, Mahadevaraju S, Przytycka TM, Allen AM, Goodwin SF, Berry CW, Fuller MT, White-Cooper H, Matunis EL, DiNardo S, Galenza A, O’Brien LE, Dow JAT, FCA Consortium, Jasper H, Oliver B, Perrimon N, Deplancke B, Quake SR, Luo L, Aerts S, Agarwal D, Ahmed-Braimah Y, Arbeitman M, Ariss MM, Augsburger J, Ayush K, Baker CC, Banisch T, Birker K, Bodmer R, Bolival B, Brantley SE, Brill JA, Brown NC, Buehner NA, Cai XT, Cardoso-Figueiredo R, Casares F, Chang A, Clandinin TR, Crasta S, Desplan C, Detweiler AM, Dhakan DB, Donà E, Engert S, Floc'hlay S, George N, González-Segarra AJ, Groves AK, Gumbin S, Guo Y, Harris DE, Heifetz Y, Holtz SL, Horns F, Hudry B, Hung RJ, Jan YN, Jaszczak JS, Jefferis GSXE, Karkanias J, Karr TL, Katheder NS, Kezos J, Kim AA, Kim SK, Kockel L, Konstantinides N, Kornberg TB, Krause HM, Labott AT, Laturney M, Lehmann R, Leinwand S, Li J, Li JSS, et alLi H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, Saelens W, David F, Brbić M, Spanier K, Leskovec J, McLaughlin CN, Xie Q, Jones RC, Brueckner K, Shim J, Tattikota SG, Schnorrer F, Rust K, Nystul TG, Carvalho-Santos Z, Ribeiro C, Pal S, Mahadevaraju S, Przytycka TM, Allen AM, Goodwin SF, Berry CW, Fuller MT, White-Cooper H, Matunis EL, DiNardo S, Galenza A, O’Brien LE, Dow JAT, FCA Consortium, Jasper H, Oliver B, Perrimon N, Deplancke B, Quake SR, Luo L, Aerts S, Agarwal D, Ahmed-Braimah Y, Arbeitman M, Ariss MM, Augsburger J, Ayush K, Baker CC, Banisch T, Birker K, Bodmer R, Bolival B, Brantley SE, Brill JA, Brown NC, Buehner NA, Cai XT, Cardoso-Figueiredo R, Casares F, Chang A, Clandinin TR, Crasta S, Desplan C, Detweiler AM, Dhakan DB, Donà E, Engert S, Floc'hlay S, George N, González-Segarra AJ, Groves AK, Gumbin S, Guo Y, Harris DE, Heifetz Y, Holtz SL, Horns F, Hudry B, Hung RJ, Jan YN, Jaszczak JS, Jefferis GSXE, Karkanias J, Karr TL, Katheder NS, Kezos J, Kim AA, Kim SK, Kockel L, Konstantinides N, Kornberg TB, Krause HM, Labott AT, Laturney M, Lehmann R, Leinwand S, Li J, Li JSS, Li K, Li K, Li L, Li T, Litovchenko M, Liu HH, Liu Y, Lu TC, Manning J, Mase A, Matera-Vatnick M, Matias NR, McDonough-Goldstein CE, McGeever A, McLachlan AD, Moreno-Roman P, Neff N, Neville M, Ngo S, Nielsen T, O'Brien CE, Osumi-Sutherland D, Özel MN, Papatheodorou I, Petkovic M, Pilgrim C, Pisco AO, Reisenman C, Sanders EN, Dos Santos G, Scott K, Sherlekar A, Shiu P, Sims D, Sit RV, Slaidina M, Smith HE, Sterne G, Su YH, Sutton D, Tamayo M, Tan M, Tastekin I, Treiber C, Vacek D, Vogler G, Waddell S, Wang W, Wilson RI, Wolfner MF, Wong YCE, Xie A, Xu J, Yamamoto S, Yan J, Yao Z, Yoda K, Zhu R, Zinzen RP. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science 2022; 375:eabk2432. [PMID: 35239393 PMCID: PMC8944923 DOI: 10.1126/science.abk2432] [Show More Authors] [Citation(s) in RCA: 361] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jasper Janssens
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Maxime De Waegeneer
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Sai Saroja Kolluru
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford CA USA, and Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Wouter Saelens
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Fabrice David
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Maria Brbić
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA, and Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Katina Spanier
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA, and Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Colleen N. McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Robert C. Jones
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford CA USA, and Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Katja Brueckner
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea 04763
| | - Sudhir Gopal Tattikota
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115; Howard Hughes Medical Institute, Boston, MA, USA
| | - Frank Schnorrer
- Aix-Marseille University, CNRS, IBDM (UMR 7288), Turing Centre for Living systems, 13009 Marseille, France
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University, Marburg, Germany,Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Todd G. Nystul
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Soumitra Pal
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Sharvani Mahadevaraju
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa M. Przytycka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Aaron M. Allen
- Centre for Neural Circuits & Behaviour, University of Oxford, Tinsley Building, Mansfield road, Oxford, OX1 3SR, UK
| | - Stephen F. Goodwin
- Centre for Neural Circuits & Behaviour, University of Oxford, Tinsley Building, Mansfield road, Oxford, OX1 3SR, UK
| | - Cameron W. Berry
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T. Fuller
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Helen White-Cooper
- Molecular Biosciences Division, Cardiff University, Cardiff, CF10 3AX UK
| | - Erika L. Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen DiNardo
- Perelman School of Medicine, The University of Pennsylvania, and The Penn Institute for Regenerative Medicine Philadelphia, PA 19104, USA
| | - Anthony Galenza
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Lucy Erin O’Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Julian A. T. Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - FCA Consortium
- FCA Consortium: All authors listed before Acknowledgements, and all contributions and affiliations listed in the Supplementary Materials
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115; Howard Hughes Medical Institute, Boston, MA, USA,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Stephen R. Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford CA USA, and Chan Zuckerberg Biohub, San Francisco CA, USA,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Devika Agarwal
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | | | - Michelle Arbeitman
- Biomedical Sciences Department, Florida State University, Tallahassee, FL, USA
| | - Majd M Ariss
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Kumar Ayush
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Catherine C Baker
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Torsten Banisch
- Skirball Institute and HHMI, New York University Langone Medical Center, New York City, NY 10016, USA
| | - Katja Birker
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Benjamin Bolival
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susanna E Brantley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children (SickKids), Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Norene A Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyu Tracy Cai
- Immunology Discovery, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Rita Cardoso-Figueiredo
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Fernando Casares
- CABD (Andalusian Centre for Developmental Biology), CSIC-UPO-JA, Seville 41013, Spain
| | - Amy Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Sheela Crasta
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Applied Physics, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Darshan B Dhakan
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Erika Donà
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Stefanie Engert
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Swann Floc'hlay
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven 3000, Belgium.,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Amanda J González-Segarra
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew K Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha Gumbin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanmeng Guo
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Devon E Harris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yael Heifetz
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stephen L Holtz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Felix Horns
- Department of Bioengineering and Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, INSERM, iBV, France
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yuh Nung Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Jacob S Jaszczak
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | | | | | - Timothy L Karr
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | | | - James Kezos
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anna A Kim
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,University of California, Santa Barbara, CA 93106, USA.,Uppsala University, Sweden
| | - Seung K Kim
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lutz Kockel
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikolaos Konstantinides
- Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR 7592, Université Paris Diderot, Paris, France
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Andrew Thomas Labott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meghan Laturney
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ruth Lehmann
- Skirball Institute, Department of Cell Biology and HHMI, New York University Langone Medical Center, New York City, NY 10016
| | - Sarah Leinwand
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiefu Li
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua Shing Shun Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kai Li
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Ke Li
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Liying Li
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Tun Li
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Maria Litovchenko
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Han-Hsuan Liu
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Manning
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | | | - Neuza Reis Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caitlin E McDonough-Goldstein
- Department of Biology, Syracuse University, Syracuse, NY, USA.,Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | | | - Alex D McLachlan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Paola Moreno-Roman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Megan Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Sang Ngo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Caitlin E O'Brien
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - David Osumi-Sutherland
- European Bioinformatics Institute (EMBL/EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | | | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Maja Petkovic
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Clare Pilgrim
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Carolina Reisenman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gilberto Dos Santos
- The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aparna Sherlekar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Shiu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Sims
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Rene V Sit
- Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Maija Slaidina
- Skirball Institute, Faculty of Medicine, New York University, New York, NY 10016
| | - Harold E Smith
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Sterne
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yu-Han Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Sutton
- Graduate Program in Genetics and Genomics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Marco Tamayo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Ibrahim Tastekin
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Christoph Treiber
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - David Vacek
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yiu-Cheung E Wong
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anthony Xie
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Zepeng Yao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kazuki Yoda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruijun Zhu
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Robert P Zinzen
- Laboratory for Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany
| |
Collapse
|
245
|
Transfer of Human Microbiome to Drosophila Gut Model. Microorganisms 2022; 10:microorganisms10030553. [PMID: 35336128 PMCID: PMC8948740 DOI: 10.3390/microorganisms10030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Laboratory animals with human microbiome have increasingly been used to study the role of bacteria and host interaction. Drosophila melanogaster, as a model of microbiota-host interaction with high reproductive efficiency and high availability, has always been lacking studies of interaction with human gut microbiome. In this study, we attempted to use antibiotic therapy and human fecal exposure strategy to transfer the human microbiome to the drosophila. The method includes depleting the original intestinal bacteria using a broad-spectrum antibiotic and then introducing human microorganisms by a diet supplemented with donor’s fecal samples. The sequencing results showed that 80–87.5% of the OTUs (Operational Taxonomic Units) from donor feces were adopted by the recipient drosophila following 30 days of observation. In comparison to females, the male recipient drosophila inherited more microbiota from the donor feces and had significantly increased lifespan as well as improved vertical climbing ability. Furthermore, distinctly differential expression patterns for age and insulin-like signaling-related genes were obtained for the male vs. female recipients. Only the male drosophila offspring acquired the characteristics of the donor fecal microbiota.
Collapse
|
246
|
Zhao AJ, Montes-Laing J, Perry WMG, Shiratori M, Merfeld E, Rogers SL, Applewhite DA. The Drosophila spectraplakin Short stop regulates focal adhesion dynamics by crosslinking microtubules and actin. Mol Biol Cell 2022; 33:ar19. [PMID: 35235367 PMCID: PMC9282009 DOI: 10.1091/mbc.e21-09-0434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spectraplakin family of proteins includes ACF7/MACF1 and BPAG1/dystonin in mammals, VAB-10 in Caenorhabditis elegans, Magellan in zebrafish, and Short stop (Shot), the sole Drosophila member. Spectraplakins are giant cytoskeletal proteins that cross-link actin, microtubules, and intermediate filaments, coordinating the activity of the entire cytoskeleton. We examined the role of Shot during cell migration using two systems: the in vitro migration of Drosophila tissue culture cells and in vivo through border cell migration. RNA interference (RNAi) depletion of Shot increases the rate of random cell migration in Drosophila tissue culture cells as well as the rate of wound closure during scratch-wound assays. This increase in cell migration prompted us to analyze focal adhesion dynamics. We found that the rates of focal adhesion assembly and disassembly were faster in Shot-depleted cells, leading to faster adhesion turnover that could underlie the increased migration speeds. This regulation of focal adhesion dynamics may be dependent on Shot being in an open confirmation. Using Drosophila border cells as an in vivo model for cell migration, we found that RNAi depletion led to precocious border cell migration. Collectively, these results suggest that spectraplakins not only function to cross-link the cytoskeleton but may regulate cell–matrix adhesion.
Collapse
Affiliation(s)
- Andrew J Zhao
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Julia Montes-Laing
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wick M G Perry
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Mari Shiratori
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Emily Merfeld
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Stephen L Rogers
- Department of Biology & Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Campus Box 3280, 422 Fordham Hall, Chapel Hill, NC 27599-3280, USA
| | - Derek A Applewhite
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| |
Collapse
|
247
|
Sun Y, Fu D, Liu B, Wang L, Chen H. Functional Characterization of Allatostatin C (PISCF/AST) and Juvenile Hormone Acid O-Methyltransferase in Dendroctonus armandi. Int J Mol Sci 2022; 23:ijms23052749. [PMID: 35269892 PMCID: PMC8910878 DOI: 10.3390/ijms23052749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Allatostatin C (PISCF/AST) is a neuropeptide gene that affects juvenile hormone (JH) synthesis in the corpora allata. Juvenile hormone acid O-methyltransferase (JHAMT) is a key gene in the JH biosynthetic pathway. In this study, two genes encoding DaAST and DaJHAMT were cloned. Both DaAST and DaJHAMT were expressed in the larvae, pupae and adults of Chinese white pine beetle (Dendroctonus armandi), and highly expressed in the head and the gut. The expression of the two genes was induced by JH analog (JHA) methoprene and the functions of the two genes were then investigated by RNAi. Considering the role of hormones in metamorphosis, JHA significantly induced DaAST and DaJHAMT in the larval stage. DaAST knockdown in larvae, pupae and adults significantly increased the DaJHAMT mRNA levels. Moreover, knockdown of DaAST instead of DaJHAMT increased pupae mortality and the abnormal rate of emergence morphology and reduced emergence rates. However, knockdown of DaJHAMT instead of DaAST significantly reduced frontalin biosynthesis in adult males. The results showed that DaAST acts as an allatostatin and inhibits JH biosynthesis, and that JHAMT is a key regulatory enzyme for JH synthesis in the D. armandi.
Collapse
Affiliation(s)
- Yaya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Danyang Fu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Bin Liu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Linjun Wang
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: ; Tel.: +86-02085280256
| |
Collapse
|
248
|
Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, Li S, Chinen M, Lei EP, Rosbash M, Lau NC. Transposable element landscapes in aging Drosophila. PLoS Genet 2022; 18:e1010024. [PMID: 35239675 PMCID: PMC8893327 DOI: 10.1371/journal.pgen.1010024] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic mechanisms that repress transposable elements (TEs) in young animals decline during aging, as reflected by increased TE expression in aged animals. Does increased TE expression during aging lead to more genomic TE copies in older animals? To address this question, we quantified TE Landscapes (TLs) via whole genome sequencing of young and aged Drosophila strains of wild-type and mutant backgrounds. We quantified TLs in whole flies and dissected brains and validated the feasibility of our approach in detecting new TE insertions in aging Drosophila genomes when small RNA and RNA interference (RNAi) pathways are compromised. We also describe improved sequencing methods to quantify extra-chromosomal DNA circles (eccDNAs) in Drosophila as an additional source of TE copies that accumulate during aging. Lastly, to combat the natural progression of aging-associated TE expression, we show that knocking down PAF1, a conserved transcription elongation factor that antagonizes RNAi pathways, may bolster suppression of TEs during aging and extend lifespan. Our study suggests that in addition to a possible influence by different genetic backgrounds, small RNA and RNAi mechanisms may mitigate genomic TL expansion despite the increase in TE transcripts during aging. Transposable elements, also called transposons, are genetic parasites found in all animal genomes. Normally, transposons are compacted away in silent chromatin in young animals. But, as animals age and transposon-silencing defense mechanisms break down, transposon RNAs accumulate to significant levels in old animals like fruit flies. An open question is whether the increased levels of transposon RNAs in older animals also correspond to increased genomic copies of transposons. This study approached this question by sequencing the whole genomes of young and old wild-type and mutant flies lacking a functional RNA interference (RNAi) pathway, which naturally silences transposon RNAs. Although the wild-type flies with intact RNAi activity had little new accumulation of transposon copies, the sequencing approach was able to detect several transposon accumulation occurrences in some RNAi mutants. In addition, we found that some fly transposon families can also accumulate as extra-chromosomal circular DNA copies. Lastly, we showed that genetically augmenting the expression of RNAi factors can counteract the rising transposon RNA levels in aging and promote longevity. This study improves our understanding of the animal host genome relationship with transposons during natural aging processes.
Collapse
Affiliation(s)
- Nachen Yang
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Satyam P. Srivastav
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Reazur Rahman
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Qicheng Ma
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Gargi Dayama
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Sizheng Li
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Madoka Chinen
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Michael Rosbash
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Nelson C. Lau
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
- Boston University Genome Science Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
249
|
Cheng Y, Lu T, Guo J, Lin Z, Jin Q, Zhang X, Zou Z. Helicoverpa armigera miR-2055 regulates lipid metabolism via fatty acid synthase expression. Open Biol 2022; 12:210307. [PMID: 35232249 PMCID: PMC8889172 DOI: 10.1098/rsob.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insect hormones and microRNAs regulate lipid metabolism, but the mechanisms are not fully elucidated. Here, we found that cotton bollworm larvae feeding on Arabidopsis thaliana (AT) leaves had a lower triacylglycerol (TAG) level and more delayed development than individuals feeding on artificial diet (AD). Association analysis of small RNA and mRNA revealed that the level of miR-2055, a microRNA related to lipid metabolism, was significantly higher in larvae feeding on AT. Dual-luciferase reporter assays demonstrated miR-2055 binding to 3' UTR of fatty acid synthase (FAS) mRNA to suppress its expression. Elevating the level of miR-2055 in larvae by agomir injection decreased FAS mRNA and protein levels, which resulted in reduction of free fatty acid (FFA) and TAG in fat body. Interestingly, in vitro assays illustrated that juvenile hormone (JH) increased miR-2055 accumulation in a dosage-dependent manner, whereas knockdown of Methoprene tolerant (Met) or Kruppel homologue 1 (Kr-h1) decreased the miR-2055 level. This implied that JH induces the expression of miR-2055 via a Met-Kr-h1 signal. These findings demonstrate that JH and miRNA cooperate to modulate lipid synthesis, which provides new insights into the regulatory mechanisms of metabolism in insects.
Collapse
Affiliation(s)
- Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, People's Republic of China
| | - Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junliang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiao Jin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
250
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|