201
|
Rashidi OM, H Nazar FA, Alama MN, Awan ZA. Interpreting the Mechanism of APOE (p.Leu167del) Mutation in the Incidence of Familial Hypercholesterolemia; An In-silico Approach. Open Cardiovasc Med J 2017; 11:84-93. [PMID: 29204218 PMCID: PMC5688386 DOI: 10.2174/1874192401711010084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Apolipoprotein E (APOE) gene is a ligand protein in humans which mediates the metabolism of cholesterol by binding to the low-density lipoprotein receptor (LDLR). P.Leu167del mutation in APOE gene was recently connected with Familial Hypercholesterolemia, a condition associated with premature cardiovascular disease. The consequences of this mutation on the protein structure and its receptor binding capacity remain largely unknown. Objective: The current study aims to further decipher the underlying mechanism of this mutation using advanced software-based algorithms. The consequences of disrupting the leucine zipper by this mutation was studied at the structural and functional level of the APOE protein. Methods: 3D protein modeling for both APOE and LDLR (wild types), along with APOE (p.Leu167del) mutant type were generated using homology modeling template-based alignment. Structural deviation analysis was performed to evaluate the spatial orientation and the stability of the mutant APOE structure. Molecular docking analysis simulating APOE-LDLR protein interaction was carried out, in order to evaluate the impact of the mutation on the binding affinity. Result: Structural deviation analysis for APOE mutated model showed low degree of deviance scoring root-mean-square deviation, (RMSD) = 0.322 Å. Whereas Docking simulation revealed an enhanced molecular interaction towards the LDLR with an estimation of +171.03 kJ/mol difference in binding free energy. Conclusion: This in-silico study suggests that p.Leu167del is causing the protein APOE to associate strongly with its receptor, LDLR. This gain-of-function is likely hindering the ability of LDLR to be effectively recycled back to the surface of the hepatocytes to clear cholesterol from the circulation therefore leading to FH.
Collapse
Affiliation(s)
- Omran Mohammed Rashidi
- Department of Clinical Biochemistry. Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatima Amanullah H Nazar
- Department of Biology, Genomic and Biotechnology Section. Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Nabil Alama
- Adult interventional cardiology, Cardiology unit, King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia
| | - Zuhier Ahmed Awan
- Department of Clinical Biochemistry. Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
202
|
Kost LA, Nikitin ES, Ivanova VO, Sung U, Putintseva EV, Chudakov DM, Balaban PM, Lukyanov KA, Bogdanov AM. Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor. PLoS One 2017; 12:e0184225. [PMID: 28863184 PMCID: PMC5580962 DOI: 10.1371/journal.pone.0184225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
Visualization of electrical activity in living cells represents an important challenge in context of basic neurophysiological studies. Here we report a new voltage sensitive fluorescent indicator which response could be detected by fluorescence monitoring in a single red channel. To the best of our knowledge, this is the first fluorescent protein-based voltage sensor which uses insertion-into-circular permutant topology to provide an efficient interaction between sensitive and reporter domains. Its fluorescent core originates from red fluorescent protein (FP) FusionRed, which has optimal spectral characteristics to be used in whole body imaging techniques. Indicators using the same domain topology could become a new perspective for the FP-based voltage sensors that are traditionally based on Förster resonance energy transfer (FRET).
Collapse
Affiliation(s)
- Liubov A. Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Evgeny S. Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russian Federation
| | - Violetta O. Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russian Federation
| | - Uhna Sung
- Center for Functional Connectomics, Korea Institute of Science & Technology, Seoul, Korea
| | | | - Dmitry M. Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Pavel M. Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russian Federation
| | - Konstantin A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| |
Collapse
|
203
|
Nepomuceno TC, De Gregoriis G, de Oliveira FMB, Suarez-Kurtz G, Monteiro AN, Carvalho MA. The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int J Mol Sci 2017; 18:ijms18091886. [PMID: 28858227 PMCID: PMC5618535 DOI: 10.3390/ijms18091886] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
The deoxyribonucleic acid (DNA) damage response (DDR) is a major feature in the maintenance of genome integrity and in the suppression of tumorigenesis. PALB2 (Partner and Localizer of Breast Cancer 2 (BRCA2)) plays an important role in maintaining genome integrity through its role in the Fanconi anemia (FA) and homologous recombination (HR) DNA repair pathways. Since its identification as a BRCA2 interacting partner, PALB2 has emerged as a pivotal tumor suppressor protein associated to hereditary cancer susceptibility to breast and pancreatic cancers. In this review, we discuss how other DDR proteins (such as the kinases Ataxia Telangiectasia Mutated (ATM) and ATM- and Rad3-Related (ATR), mediators BRCA1 (Breast Cancer 1)/BRCA2 and effectors RAD51/DNA Polymerase η (Polη) interact with PALB2 to orchestrate DNA repair. We also examine the involvement of PALB2 mutations in the predisposition to cancer and the role of PALB2 in stimulating error-free DNA repair through the FA/HR pathway.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Giuliana De Gregoriis
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | | | - Guilherme Suarez-Kurtz
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Marcelo A Carvalho
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro 20270-021, Brazil.
| |
Collapse
|
204
|
Torres MDT, Pedron CN, da Silva Lima JA, da Silva PI, da Silva FD, Oliveira VX. Antimicrobial activity of leucine-substituted decoralin analogs with lower hemolytic activity. J Pept Sci 2017; 23:818-823. [PMID: 28795464 DOI: 10.1002/psc.3029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Linear cationic α-helical antimicrobial peptides are promising chemotherapeutics. Most of them act by different mechanisms, making it difficult to microorganisms acquiring resistance. Decoralin is an example of antimicrobial peptide; it was described by Konno et al. and presented activity against microorganisms, but with pronounced hemolytic activity. We synthesized leucine-substituted decoralin analogs designed based on important physicochemical properties, which depend on the maintenance of the amphiphilic α-helical tendency of the native molecule. Peptides were synthesized, purified, and characterized, and the conformational studies were performed. The results indicated that the analogs presented both higher therapeutic indexes, but with antagonistic behavior. While [Leu]10 -Dec-NH2 analog showed similar activity against different microorganisms (c.a. 0.4-0.8 μmol L-1 ), helical structuration, and some hemolytic activity, [Leu]8 -Dec-NH2 analog did not tend to helical structure and presented antimicrobial activities two orders higher than the other two peptides analyzed. On the other hand, this analog showed to be the less hemolytic (MHC value = 50.0 μmol L-1 ). This approach provided insight for understanding the effects of the leucine substitution in the amphiphilic balance. They led to changes on the conformational tendency, which showed to be important for the mechanism of action and affecting antimicrobial and hemolytic activities. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | | | - Fernanda Dias da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Vani Xavier Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| |
Collapse
|
205
|
Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod. J Struct Biol 2017; 200:219-228. [PMID: 28743637 DOI: 10.1016/j.jsb.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
Abstract
X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 - Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.
Collapse
|
206
|
C/EBPα deregulation as a paradigm for leukemogenesis. Leukemia 2017; 31:2279-2285. [PMID: 28720765 DOI: 10.1038/leu.2017.229] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.
Collapse
|
207
|
Colpan M, Ly T, Grover S, Tolkatchev D, Kostyukova AS. The cardiomyopathy-associated K15N mutation in tropomyosin alters actin filament pointed end dynamics. Arch Biochem Biophys 2017; 630:18-26. [PMID: 28732641 DOI: 10.1016/j.abb.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Correct assembly of thin filaments composed of actin and actin-binding proteins is of crucial importance for properly functioning muscle cells. Tropomyosin (Tpm) mediates the binding of tropomodulin (Tmod) and leiomodin (Lmod) at the slow-growing, or pointed, ends of the thin filaments. Together these proteins regulate thin filament lengths and actin dynamics in cardiac muscle. The K15N mutation in the TPM1 gene is associated with familial dilated cardiomyopathy (DCM) but the effect of this mutation on Tpm's function is unknown. In this study, we introduced the K15N mutation in striated muscle α-Tpm (Tpm1.1) and investigated its interaction with actin, Tmod and Lmod. The mutation caused a ∼3-fold decrease in the affinity of Tpm1.1 for actin. The binding of Lmod and Tmod to Tpm1.1-covered actin filaments also decreased in the presence of the K15N mutation. Furthermore, the K15N mutation in Tpm1.1 disrupted the inhibition of actin polymerization and affected the competition between Tmod1 and Lmod2 for binding at the pointed ends. Our data demonstrate that the K15N mutation alters pointed end dynamics by affecting molecular interactions between Tpm1.1, Lmod2 and Tmod1.
Collapse
Affiliation(s)
- Mert Colpan
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States.
| | - Thu Ly
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Samantha Grover
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| |
Collapse
|
208
|
Affiliation(s)
- Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Angela L. Holmberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
209
|
Awwad SW, Abu-Zhayia ER, Guttmann-Raviv N, Ayoub N. NELF-E is recruited to DNA double-strand break sites to promote transcriptional repression and repair. EMBO Rep 2017; 18:745-764. [PMID: 28336775 PMCID: PMC5412775 DOI: 10.15252/embr.201643191] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/12/2023] Open
Abstract
Double-strand breaks (DSBs) trigger rapid and transient transcription pause to prevent collisions between repair and transcription machineries at damage sites. Little is known about the mechanisms that ensure transcriptional block after DNA damage. Here, we reveal a novel role of the negative elongation factor NELF in blocking transcription activity nearby DSBs. We show that NELF-E and NELF-A are rapidly recruited to DSB sites. Furthermore, NELF-E recruitment and its repressive activity are both required for switching off transcription at DSBs. Remarkably, using I-SceI endonuclease and CRISPR-Cas9 systems, we observe that NELF-E is preferentially recruited, in a PARP1-dependent manner, to DSBs induced upstream of transcriptionally active rather than inactive genes. Moreover, the presence of RNA polymerase II is a prerequisite for the preferential recruitment of NELF-E to DNA break sites. Additionally, we demonstrate that NELF-E is required for intact repair of DSBs. Altogether, our data identify the NELF complex as a new component in the DNA damage response.
Collapse
Affiliation(s)
- Samah W Awwad
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Enas R Abu-Zhayia
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noga Guttmann-Raviv
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
210
|
Dewangan PS, Sonawane PJ, Chouksey AR, Chauhan R. The Nup62 Coiled-Coil Motif Provides Plasticity for Triple-Helix Bundle Formation. Biochemistry 2017; 56:2803-2811. [PMID: 28406021 DOI: 10.1021/acs.biochem.6b01050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The central transport channel of the vertebrate nuclear pore complex (NPC) consists of nucleoporins: Nup62, Nup54, and Nup58. The coiled-coil domains in α-helical regions of these nucleoporins are thought to be crucial for several protein-protein interactions in the NPC subcomplexes. In this study, we determined the crystal structure of the coiled-coil domain of rat Nup62 fragment (residues 362-425) to 2.4 Å resolution. The crystal structure shows the conserved coiled-coil domain as a parallel three-helix bundle for the Nup62(362-425) fragment. On the basis of our size exclusion chromatography coupled to multiangle light scattering analysis and glutaraldehyde cross-linking experiments, we conclude that the Nup62(362-425) fragment displays dynamic behavior in solution and can also exist in either homodimeric or homotrimeric states. Our comparative analysis of the rat Nup62(362-425) homotrimeric structure with previously reported heterotrimeric structures [rat Nup62(362-425)·Nup54(346-407) and Xenopus Nup62(358-485)·Nup54(315-450)·Nup58(283-406) complexes] demonstrates the structural basis for parallel triple-helix bundle formation for Nup62 with different partners. Moreover, we show that the coiled-coil domain of Nup62 is sufficient for interaction with the coiled-coil domain of rat Exo70, a protein in an exocyst complex. On the basis of these observations, we suggest the plausible chain replacement mechanism that yields to diverse protein assemblies with Nup62. In summary, the coiled-coil motif present in Nup62 imparts the ability to form a homotrimer and heterotrimers either with Nup54 or with Nup54-Nup58 within the NPCs as well as with Exo70 beyond the NPCs. These complexes of Nup62 suggest the crucial role of the coiled-coil motifs in providing plasticity to various modular assemblies.
Collapse
Affiliation(s)
- Pravin S Dewangan
- National Centre for Cell Science , S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Parshuram J Sonawane
- National Centre for Cell Science , S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Ankita R Chouksey
- National Centre for Cell Science , S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Radha Chauhan
- National Centre for Cell Science , S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
211
|
Differential Control of Asexual Development and Sterigmatocystin Biosynthesis by a Novel Regulator in Aspergillus nidulans. Sci Rep 2017; 7:46340. [PMID: 28422127 PMCID: PMC5396049 DOI: 10.1038/srep46340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/15/2017] [Indexed: 11/08/2022] Open
Abstract
The filamentous fungus Aspergillus nidulans primarily reproduces by forming asexual spores called conidia and produces the mycotoxin sterigmatocystin (ST), the penultimate precursor of aflatoxins. It has been known that asexual development and ST production are tightly co-regulated by various regulatory inputs. Here, we report that the novel regulator AslA with a C2H2 domain oppositely regulates development and ST biosynthesis. Nullifying aslA resulted in defective conidiation and reduced expression of brlA encoding a key activator of asexual development, which indicates that AslA functions as an upstream activator of brlA expression. aslA deletion additionally caused enhanced ST production and expression of aflR encoding a transcriptional activator for ST biosynthetic genes, suggesting that AslA functions as an upstream negative regulator of aflR. Cellular and molecular studies showed that AslA has a trans-activation domain and is localized in the nuclei of vegetative and developing cells but not in spores, indicating that AslA is likely a transcription factor. Introduction of the aslA homologs from distantly-related aspergilli complemented the defects caused by aslA null mutation in A. nidulans, implying a functional conservancy of AslA. We propose that AslA is a novel regulator that may act at the split control point of the developmental and metabolic pathways.
Collapse
|
212
|
Yamaguchi M, Murata T. Involvement of regucalcin gene promoter region-related protein-p117, a transcription factor, in human obesity. Biomed Rep 2017; 6:374-378. [PMID: 28413634 DOI: 10.3892/br.2017.874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Regucalcin gene promoter region-related protein-p117 (RGPR-p117; gene symbol, rgpr-117) was identified in 2001 as a novel transcription factor that specifically binds to a nuclear factor I consensus motif, TTGGC(N)6CC in the promoter region of the regucalcin (rgn) gene. The human RGPR-p117 gene consists of 26 exons spanning ~4.1 kbp and is localized on chromosome 1q25.2. The nuclear translocation of cytoplasm RGPR-p117 is mediated via the protein kinase C-dependent signaling pathway. Overexpression of RGPR-p117 enhances the transcription activity of rgn, and a protective effect on cell death by inhibition of gene expression levels of caspase-3, caspase-8 and FADD proteins that possess the TTGGC motif in the promoter region of those genes was revealed. RGPR-p117 has a crucial role as a transcription factor. Notably, RGPR-p117 was shown to localize in the plasma membranes, mitochondria and microsomes (endoplasmic reticulum; ER). RGPR-p117, which is located in the ER, was also shown to have a role as an ER export factor implicated in the transports of proteins and lipids. As a result of this finding, it was proposed in 2007 that RGPR-p117 is renamed SEC 16 homolog B, endoplasmic reticulum export factor (SEC16B). Recently, there is increasing evidence that RGPR-p117/SEC16B may be involved in human obesity. Thus, the current review presents data regarding the involvement of RGPR-p117 in human obesity.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| |
Collapse
|
213
|
Genome-Wide Identification of bZIP Family Genes Involved in Drought and Heat Stresses in Strawberry ( Fragaria vesca). Int J Genomics 2017; 2017:3981031. [PMID: 28487861 PMCID: PMC5405593 DOI: 10.1155/2017/3981031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/24/2017] [Accepted: 02/12/2017] [Indexed: 12/20/2022] Open
Abstract
Basic leucine zipper (bZIP) genes are known to play a crucial role in response to various processes in plant as well as abiotic or biotic stress challenges. We have performed an identification and characterization of 50 bZIP genes across the woodland strawberry (Fragaria vesca) genome, which were divided into 10 clades according to the phylogenetic relationship of the strawberry bZIP proteins with those in Arabidopsis and rice. Five categories of intron patterns were observed within basic and hinge regions of the bZIP domains. Some additional conserved motifs have been found with the group specificity. Further, we predicted DNA-binding specificity of the basic and hinge regions as well as dimerization properties of leucine zipper regions, which was consistent with our phylogenetic clade and classified into 20 subfamilies. Across the different developmental stages of 15 organs and two types of fruits, the clade A bZIP members showed different tissue-specific expression patterns and the duplicated genes were differentially regulated, indicating a functional diversification coupled with the expansion of this gene family in strawberry. Under normal growth conditions, mrna11837 and mrna30280 of clade A showed very weak expression levels in organs and fruits, respectively; but higher expression was observed with different set of genes following drought and heat treatment, which may be caused by the separate response pathway between drought and heat treatments.
Collapse
|
214
|
Xi H, Zhang K, Yin Y, Gu T, Sun Q, Li Z, Cheng Y, Jiang C, Kong W, Wu Y. Engineering of a novel zipFv using leucine zipper motif against rabies virus glycoprotein G with improved protection potency in vivo. Immunol Lett 2017; 186:9-14. [PMID: 28389318 DOI: 10.1016/j.imlet.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
Rabies is an acute zoonotic infectious disease with a high fatality rate but is preventable with vaccination and rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv), a small engineered antigen-binding protein derived from antibody variable heavy (VH) and light (VL) chains connected by a peptide linker, can potentially be used to replace RIG. Here, we produced two peptides VH-JUN-HIS and VL-FOS-HA separately in Escherichia coli and assembled them to form zipFv successfully in vitro. The new zipFv utilizes FOS and JUN leucine zippers to form an antibody structure similar to the IgG counterpart with two free N-terminal ends of VH and VL. The zipFv protein showed notable improvement in binding ability and affinity over its corresponding scFv. The zipFv also demonstrated greater stability in serum and the same protective rate as RIG against challenge with a standard rabies virus (CVS-24) in mice. Our results indicated zipFv as a novel and efficient antibody form with enhanced neutralizing potency.
Collapse
Affiliation(s)
- Hualong Xi
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Kaixin Zhang
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Yanchun Yin
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Qing Sun
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Zhuang Li
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Yue Cheng
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|
215
|
Perotti MF, Ribone PA, Chan RL. Plant transcription factors from the homeodomain-leucine zipper family I. Role in development and stress responses. IUBMB Life 2017; 69:280-289. [PMID: 28337836 DOI: 10.1002/iub.1619] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/24/2017] [Indexed: 01/08/2023]
Abstract
In front of stressful conditions plants display adaptation mechanisms leading to changes in their morphology, physiology, development and molecular composition. Transcription factors (TFs) play crucial roles in these complex adaptation processes. This work is focused in the homeodomain-leucine zipper I (HD-Zip I) family of TFs, unique to plants. First discovered in 1991, they were identified and isolated from monocotyledonous and dicotyledonous plants showing high structural similarity and diversified functions. These TFs have, besides the homeodomain and leucine zipper, conserved motifs in their carboxy-termini allowing the interaction with the basal machinery and with other regulatory proteins. The model dicotyledonous plant Arabidopsis thaliana has 17 HD-Zip I members; most of them regulated by external stimuli and hormones. These TFs are involved in key developmental processes like root and stem elongation, rosette leaves morphology determination, inflorescence stem branching, flowering and pollen hydration. Moreover, they are key players in responses to environmental stresses and illumination conditions. Several HD-Zip I encoding genes from different species were protected in patents because their overexpression or mutation generates improved agronomical phenotypes. Here we discuss many aspects about these TFs including structural features, biological functions and their utilization as biotechnological tools to improve crops. © 2017 IUBMB Life, 69(5):280-289, 2017.
Collapse
Affiliation(s)
- María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Pamela Anahí Ribone
- Instituto de Agrobiotecnología del Litoral Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| |
Collapse
|
216
|
Rapp PB, Omar AK, Shen JJ, Buck ME, Wang ZG, Tirrell DA. Analysis and Control of Chain Mobility in Protein Hydrogels. J Am Chem Soc 2017; 139:3796-3804. [DOI: 10.1021/jacs.6b13146] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter B. Rapp
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Ahmad K. Omar
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Jeff J. Shen
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Maren E. Buck
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Zhen-Gang Wang
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - David A. Tirrell
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|
217
|
Kroeger JK, Hofmann SC, Leppert J, Has C, Franzke CW. Amino acid duplication in the coiled-coil structure of collagen XVII alters its maturation and trimerization causing mild junctional epidermolysis bullosa. Hum Mol Genet 2017; 26:479-488. [PMID: 28365758 DOI: 10.1093/hmg/ddw404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2023] Open
Abstract
The function and stability of collagens depend on the accurate triple helix formation of three distinct polypeptide chains. Disruption of this triple-helical structure can result in connective-tissue disorders. Triple helix formation is thought to depend on three-stranded coiled-coil oligomerization sites within non-collagenous domains. However, only little is known about the physiological relevance of these coiled-coil structures. Transmembrane collagen XVII, also known as 180 kDa bullous pemphigoid antigen provides mechanical stability through the anchorage of epithelial cells to the basement membrane. Mutations in the collagen XVII gene, COL17A1, cause junctional epidermolysis bullosa (JEB), characterized by chronic trauma-induced skin blistering. Here we exploited a novel naturally occurring COL17A1 mutation, leading to an in-frame lysine duplication within the coiled-coil structure of the juxtamembranous NC16A domain of collagen XVII, which resulted in a mild phenotype of JEB due to reduced membrane-anchored collagen XVII molecules. This mutation causes structural changes in the mutant molecule and interferes with its maturation. The destabilized coiled-coil structure of the mutant collagen XVII unmasks a furin cleavage site that results in excessive and non-physiological ectodomain shedding during its maturation. Furthermore, it decreases its triple-helical stability due to defective coiled-coil oligomerization, which makes it highly susceptible to proteolytic degradation. As a consequence of altered maturation and decreased stability of collagen XVII trimers, reduced collagen XVII is incorporated into the cell membrane, resulting in compromised dermal-epidermal adhesion. Taken together, using this genetic model, we provide the first proof that alteration of the coiled-coil structure destabilizes oligomerization and impairs physiological shedding of collagen XVII in vivo.
Collapse
Affiliation(s)
- Jasmin K Kroeger
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Silke C Hofmann
- Center for Dermatology, Allergy and Dermatosurgery, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Germany
| | - Juna Leppert
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
218
|
Abstract
α-Helical coiled coils constitute one of the most diverse folds yet described. They range in length over two orders of magnitude; they form rods, segmented ropes, barrels, funnels, sheets, spirals, and rings, which encompass anywhere from two to more than 20 helices in parallel or antiparallel orientation; they assume different helix crossing angles, degrees of supercoiling, and packing geometries. This structural diversity supports a wide range of biological functions, allowing them to form mechanically rigid structures, provide levers for molecular motors, project domains across large distances, mediate oligomerization, transduce conformational changes and facilitate the transport of other molecules. Unlike almost any other protein fold known to us, their structure can be computed from parametric equations, making them an ideal model system for rational protein design. Here we outline the principles by which coiled coils are structured, review the determinants of their folding and stability, and present an overview of their diverse architectures.
Collapse
|
219
|
Gombos M, Zombori Z, Szécsényi M, Sándor G, Kovács H, Györgyey J. Characterization of the LBD gene family in Brachypodium: a phylogenetic and transcriptional study. PLANT CELL REPORTS 2017; 36:61-79. [PMID: 27686461 DOI: 10.1007/s00299-016-2057-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
An unambiguous nomenclature is proposed for the twenty-eight-member LOB domain transcription factor family in Brachypodium . Expression analysis provides unique transcript patterns that are characteristic of a wide range of organs and plant parts. LOB (lateral organ boundaries)-domain proteins define a family of plant-specific transcription factors involved in developmental processes from embryogenesis to seed production. They play a crucial role in shaping the plant architecture through coordinating cell fate at meristem to organ boundaries. Despite their high potential importance, our knowledge of them is limited, especially in the case of monocots. In this study, we characterized LOB domain protein coding genes (LBDs) of Brachypodium distachyon, a model plant for grasses, and present their phylogenetic relationships and an overall spatial expression study. In the Brachypodium genome database, 28 LBDs were found and then classified based on the presence of highly conserved LOB domain motif. Their transcript amounts were measured via quantitative real-time RT-PCR in 37 different plant parts from root tip to generative organs. Comprehensive phylogenetic analysis suggests that there are neither Brachypodium- nor monocot-specific lineages among LBDs, but there are differences in terms of complexity of subclasses between monocots and dicots. Although LBDs in Brachypodium have wide variation of tissue-specific expression and relative transcript levels, overall expression patterns show similarity to their counterparts in other species. The varying transcript profiles we observed support the hypothesis that Brachypodium LBDs have diverse but conserved functions in plant organogenesis.
Collapse
Affiliation(s)
- Magdolna Gombos
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Zoltán Zombori
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Mária Szécsényi
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Györgyi Sándor
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Hajnalka Kovács
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - János Györgyey
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
220
|
Abstract
Coiled coils appear in countless structural contexts, as appendages to small proteins, as parts of multi-domain proteins, and as building blocks of filaments. Although their structure is unpretentious and their basic properties are understood in great detail, the spectrum of functional properties they provide in different proteins has become increasingly complex. This chapter aims to depict this functional spectrum, to identify common themes and their molecular basis, with an emphasis on new insights gained into dynamic aspects.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076, Tübingen, Germany.
| |
Collapse
|
221
|
Inamoto I, Chen G, Shin JA. The DNA target determines the dimerization partner selected by bHLHZ-like hybrid proteins AhRJun and ArntFos. MOLECULAR BIOSYSTEMS 2017; 13:476-488. [DOI: 10.1039/c6mb00795c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular basis of protein–partner selection and DNA binding of the basic helix–loop–helix (bHLH) and basic region-leucine zipper (bZIP) superfamilies of dimeric transcription factors is fundamental toward understanding gene regulation.
Collapse
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| | - Gang Chen
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| | - Jumi A. Shin
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| |
Collapse
|
222
|
Liou YF, Huang HL, Ho SY. A hydrophobic spine stabilizes a surface-exposed α-helix according to analysis of the solvent-accessible surface area. BMC Bioinformatics 2016; 17:503. [PMID: 28155647 PMCID: PMC5259910 DOI: 10.1186/s12859-016-1368-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Most of hydrophilic and hydrophobic residues are thought to be exposed and buried in proteins, respectively. In contrast to the majority of the existing studies on protein folding characteristics using protein structures, in this study, our aim was to design predictors for estimating relative solvent accessibility (RSA) of amino acid residues to discover protein folding characteristics from sequences. Methods The proposed 20 real-value RSA predictors were designed on the basis of the support vector regression method with a set of informative physicochemical properties (PCPs) obtained by means of an optimal feature selection algorithm. Then, molecular dynamics simulations were performed for validating the knowledge discovered by analysis of the selected PCPs. Results The RSA predictors had the mean absolute error of 14.11% and a correlation coefficient of 0.69, better than the existing predictors. The hydrophilic-residue predictors preferred PCPs of buried amino acid residues to PCPs of exposed ones as prediction features. A hydrophobic spine composed of exposed hydrophobic residues of an α-helix was discovered by analyzing the PCPs of RSA predictors corresponding to hydrophobic residues. For example, the results of a molecular dynamics simulation of wild-type sequences and their mutants showed that proteins 1MOF and 2WRP_H16I (Protein Data Bank IDs), which have a perfectly hydrophobic spine, have more stable structures than 1MOF_I54D and 2WRP do (which do not have a perfectly hydrophobic spine). Conclusions We identified informative PCPs to design high-performance RSA predictors and to analyze these PCPs for identification of novel protein folding characteristics. A hydrophobic spine in a protein can help to stabilize exposed α-helices. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1368-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Fan Liou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
223
|
Luo Y, Zheng SG. Hall of Fame among Pro-inflammatory Cytokines: Interleukin-6 Gene and Its Transcriptional Regulation Mechanisms. Front Immunol 2016; 7:604. [PMID: 28066415 PMCID: PMC5165036 DOI: 10.3389/fimmu.2016.00604] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 12/27/2022] Open
Abstract
Pro-inflammatory cytokines that are generated by immune system cells and mediate many kinds of immune responses are kinds of endogenous polypeptides. They are also the effectors of the autoimmune system. It is generally accepted that interleukin (IL)-4, IL-6, IL-9, IL-17, and tumor necrosis factor-α are pro-inflammatory cytokines; however, IL-6 becomes a protagonist among them since it predominately induces pro-inflammatory signaling and regulates massive cellular processes. It has been ascertained that IL-6 is associated with a large number of diseases with inflammatory background, such as anemia of chronic diseases, angiogenesis acute-phase response, bone metabolism, cartilage metabolism, and multiple cancers. Despite great progress in the relative field, the targeted regulation of IL-6 response for therapeutic benefits remains incompletely to be understood. Therefore, it is conceivable that understanding mechanisms of IL-6 from the perspective of gene regulation can better facilitate to determine the pathogenesis of the disease, providing more solid scientific basis for clinical treatment translation. In this review, we summarize the candidate genes that have been implicated in clinical target therapy from the perspective of gene transcription regulation.
Collapse
Affiliation(s)
- Yang Luo
- Department of Clinical Immunology of the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine at Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Song Guo Zheng
- Department of Clinical Immunology of the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine at Penn State Hershey College of Medicine, Hershey, PA, USA
| |
Collapse
|
224
|
Lupas AN, Bassler J. Coiled Coils - A Model System for the 21st Century. Trends Biochem Sci 2016; 42:130-140. [PMID: 27884598 DOI: 10.1016/j.tibs.2016.10.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
α-Helical coiled coils were described more than 60 years ago as simple, repetitive structures mediating oligomerization and mechanical stability. Over the past 20 years, however, they have emerged as one of the most diverse protein folds in nature, enabling many biological functions beyond mechanical rigidity, such as membrane fusion, signal transduction, and solute transport. Despite this great diversity, their structures can be described by parametric equations, making them uniquely suited for rational protein design. Far from having been exhausted as a source of structural insight and a basis for functional engineering, coiled coils are poised to become even more important for protein science in the coming decades.
Collapse
Affiliation(s)
- Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Jens Bassler
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
225
|
Zhao X, Zheng T, Shao L, Xiao Z, Wang F, Li S, Zang L, Zheng M, Li Y, Qu GZ. Variation Analysis of Physiological Traits in Betula platyphylla Overexpressing TaLEA-ThbZIP Gene under Salt Stress. PLoS One 2016; 11:e0164820. [PMID: 27802286 PMCID: PMC5089751 DOI: 10.1371/journal.pone.0164820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/30/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to determine whether transgenic birch (Betula platyphylla) ectopic overexpressing a late embryogenesis abundant (LEA) gene and a basic leucine zipper (bZIP) gene from the salt-tolerant genus Tamarix (salt cedar) show increased tolerance to salt (NaCl) stress. Co-transfer of TaLEA and ThbZIP in birch under the control of two independent CaMV 35S promoters significantly enhanced salt stress. PCR and northern blot analyses indicated that the two genes were ectopically overexpressed in several dual-gene transgenic birch lines. We compared the effects of salt stress among three transgenic birch lines (L-4, L-5, and L-8) and wild type (WT). In all lines, the net photosynthesis values were higher before salt stress treatment than afterwards. After the salt stress treatment, the transgenic lines L-4 and L-8 showed higher values for photosynthetic traits, chlorophyll fluorescence, peroxidase and superoxide dismutase activities, and lower malondialdehyde and Na+ contents, compared with those in WT and L-5. These different responses to salt stress suggested that the transcriptional level of the TaLEA and ThbZIP genes differed among the transgenic lines, resulting in a variety of genetic and phenotypic effects. The results of this research can provide a theoretical basis for the genetic engineering of salt-tolerant trees.
Collapse
Affiliation(s)
- Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Tangchun Zheng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Longting Shao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhenhai Xiao
- Tree Seedling Management Station, Forestry Department of Jilin Province, Changchun 130000, China
| | - Fuwei Wang
- Tree Seedling Management Station, Forestry Department of Jilin Province, Changchun 130000, China
| | - Shuchun Li
- Tree Seedling Management Station, Forestry Department of Jilin Province, Changchun 130000, China
| | - Lina Zang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Mi Zheng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Guan-Zheng Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
226
|
Demizu Y, Okitsu K, Doi M, Misawa T, Oba M, Tanaka M, Kurihara M. Influence of L-Leu to D-Leu Replacement on the Helical Secondary Structures of L-Leu-Aib-Based Dodecapeptides. ChemistrySelect 2016. [DOI: 10.1002/slct.201601493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yosuke Demizu
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
| | - Koyo Okitsu
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
| | - Mitsunobu Doi
- Osaka University of Pharmaceutical Sciences; Osaka 569-1094 Japan
| | - Takashi Misawa
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University; Nagasaki 852-8521 Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University; Nagasaki 852-8521 Japan
| | - Masaaki Kurihara
- National Institute of Health Sciences; Setagaya Tokyo 158-8501 Japan
| |
Collapse
|
227
|
Pereira Silva L, Alves de Castro P, Dos Reis TF, Paziani MH, Von Zeska Kress MR, Riaño-Pachón DM, Hagiwara D, Ries LNA, Brown NA, Goldman GH. Genome-wide transcriptome analysis of Aspergillus fumigatus exposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakA HOG1 and MpkC dependent. Cell Microbiol 2016; 19. [PMID: 27706915 DOI: 10.1111/cmi.12681] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022]
Abstract
Invasive aspergillosis is predominantly caused by Aspergillus fumigatus, and adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. The central signal transduction pathway operating during hyperosmotic stress is the high osmolarity glycerol mitogen-activated protein kinase cascade. A. fumigatus MpkC and SakA, orthologues of the Saccharomyces cerevisiae Hog1p, constitute the primary regulator of the hyperosmotic stress response. We compared A. fumigatus wild-type transcriptional response to osmotic stress with the ΔmpkC, ΔsakA, and ΔmpkC ΔsakA strains. Our results strongly indicate that MpkC and SakA have independent and collaborative functions during the transcriptional response to transient osmotic stress. We have identified and characterized null mutants for four A. fumigatus basic leucine zipper proteins transcription factors. The atfA and atfB have comparable expression levels with the wild-type in ΔmpkC but are repressed in ΔsakA and ΔmpkC ΔsakA post-osmotic stress. The atfC and atfD have reduced expression levels in all mutants post-osmotic stress. The atfA-D null mutants displayed several phenotypes related to osmotic, oxidative, and cell wall stresses. The ΔatfA and ΔatfB were shown to be avirulent and to have attenuated virulence, respectively, in both Galleria mellonella and a neutropenic murine model of invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mario Henrique Paziani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Diego M Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), São Paulo, Brazil
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Laure N A Ries
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
228
|
Reed A, Lin L, Ostertag-Hill C, Wang Q, Wu Z, Miller-Morgan T, Jin L. Detection of ORF6 protein associated with latent KHV infection. Virology 2016; 500:82-90. [PMID: 27771562 DOI: 10.1016/j.virol.2016.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
Abstract
Koi herpesvirus (KHV) is highly pathogenic to Cyprinus carpio. KHV can also become latent in recovered fish and reactivate from latency under stressful conditions. Understanding KHV latency is important for development of strategies against herpesvirus latent infection. Our previous studies found KHV ORF6 mRNA is detectable during latent infection. In this study, ORF6 protein expression was investigated by a polyclonal antibody specific to ORF6 peptide. Positive staining by an immunofluorescence assay was observed in both KHV infected CCB (common carp brain) cells and IgM+ white blood cells (WBCs) from recovered KHV+ koi. Proteins at the expected size, 68kDa, and several different sizes can be detected during productive infection. Five potential sumoylation sites were identified in the ORF6 protein. Our study demonstrated that ORF6 protein is expressed in both productive infection and latent infection and may have different post-translational modifications during productive infection.
Collapse
Affiliation(s)
- Aimee Reed
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa Lin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Claire Ostertag-Hill
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Qing Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Zhixing Wu
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA
| | - Tim Miller-Morgan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Aquatic Animal Health Program, Oregon Sea Grant, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
229
|
Romani F, Ribone PA, Capella M, Miguel VN, Chan RL. A matter of quantity: Common features in the drought response of transgenic plants overexpressing HD-Zip I transcription factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:139-154. [PMID: 27593472 DOI: 10.1016/j.plantsci.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 05/14/2023]
Abstract
Plant responses to water deficit involve complex molecular mechanisms in which transcription factors have key roles. Previous reports ectopically overexpressed a few members of the homeodomain-leucine zipper I (HD-Zip I) family of transcription factors from different species, and the obtained transgenic plants exhibited drought tolerance which extent depended on the level of overexpression, triggering diverse molecular and physiological pathways. Here we show that most HD-Zip I genes are regulated by drought in the vegetative and/or reproductive stages. Moreover, uncharacterized members of this family were expressed as transgenes both in Col-0 and rdr6-12 backgrounds and were able to enhance drought tolerance in host plants. The extent of such tolerance depended on the expression level of the transgene and was significantly higher in transgenic rdr6-12 than in Col-0. Comparative transcriptome analyses of Arabidopsis thaliana plants overexpressing HD-Zip I proteins indicated that many members have common targets. Moreover, the water deficit tolerance exhibited by these plants is likely due to the induction and repression of certain of these common HD-Zip I-regulated genes. However, each HD-Zip I member regulates other pathways, which, in some cases, generate differential and potentially undesirable traits in addition to drought tolerance. In conclusion, only a few members of this family could become valuable tools to improve drought-tolerance.
Collapse
Affiliation(s)
- Facundo Romani
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina
| | - Pamela A Ribone
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina
| | - Virginia N Miguel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Colectora Ruta Nacional 168km 0, 3000, Santa Fe, Argentina.
| |
Collapse
|
230
|
Patel SJ, Trivedi GL, Darie CC, Clarkson BD. The possible roles of B-cell novel protein-1 (BCNP1) in cellular signalling pathways and in cancer. J Cell Mol Med 2016; 21:456-466. [PMID: 27680505 PMCID: PMC5323820 DOI: 10.1111/jcmm.12989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023] Open
Abstract
B‐cell novel protein‐1 (BCNP1) or Family member of 129C (FAM129C) was identified as a B‐cell‐specific plasma‐membrane protein. Bioinformatics analysis predicted that BCNP1 might be heavily phosphorylated. The BCNP1 protein contains a pleckstrin homology (PH) domain, two proline‐rich (PR) regions and a Leucine Zipper (LZ) domain suggesting that it may be involved in protein‐protein interactions. Using The Cancer Genome Atlas (TCGA) data sets, we investigated the correlation of alteration of the BCNP1 copy‐number changes and mutations in several cancer types. We also investigated the function of BCNP1 in cellular signalling pathways. We found that BCNP1 is highly altered in some types of cancers and that BCNP1 copy‐number changes and mutations co‐occur with other molecular alteration events for TP53 (tumour protein P53), PIK3CA (Phosphatidylinositol‐4,5‐Bisphosphate 3‐Kinase, Catalytic Subunit Alpha), MAPK1 (mitogen‐activated protein kinase‐1; ERK: extracellular signal regulated kinase), KRAS (Kirsten rat sarcoma viral oncogene homolog) and AKT2 (V‐Akt Murine Thymoma Viral Oncogene Homolog 2). We also found that PI3K (Phoshoinositide 3‐kinase) inhibition and p38 MAPK (p38 mitogen‐activated protein kinase) activation leads to reduction in phosphorylation of BCNP1 at serine residues, suggesting that BCNP1 phosphorylation is PI3K and p38MAPK dependent and that it might be involved in cancer. Its degradation depends on a proteasome‐mediated pathway.
Collapse
Affiliation(s)
- Sapan J Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY, USA.,Department of Chemistry and Biomolecular Science, Clarkson University, Biochemistry and Proteomics Group, Potsdam, NY, USA
| | | | - Costel C Darie
- Department of Chemistry and Biomolecular Science, Clarkson University, Biochemistry and Proteomics Group, Potsdam, NY, USA
| | - Bayard D Clarkson
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY, USA
| |
Collapse
|
231
|
Liang F, Li Q, Li X, Li Z, Gong Z, Deng H, Xiang B, Zhou M, Li X, Li G, Zeng Z, Xiong W. TSC22D2 interacts with PKM2 and inhibits cell growth in colorectal cancer. Int J Oncol 2016; 49:1046-56. [PMID: 27573352 DOI: 10.3892/ijo.2016.3599] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/16/2016] [Indexed: 11/06/2022] Open
Abstract
We previously identified TSC22D2 (transforming growth factor β-stimulated clone 22 domain family, member 2) as a novel cancer-associated gene in a rare multi-cancer family. However, its role in tumor development remains completely unknown. In this study, we found that TSC22D2 was significantly downregulated in colorectal cancer (CRC) and that TSC22D2 overexpression inhibited cell growth. Using a co-immunoprecipitation (co-IP) assay combined with mass spectrometry analysis to identify TSC22D2-interacting proteins, we demonstrated that TSC22D2 interacts with pyruvate kinase isoform M2 (PKM2). These findings were confirmed by the results of immunoprecipitation and immunofluorescence assays. Moreover, overexpression of TSC22D2 reduced the level of nuclear PKM2 and suppressed cyclin D1 expression. Collectively, our study reveals a growth suppressor function of TSC22D2 that is at least partially dependent on the TSC22D2-PKM2-cyclinD1 regulatory axis. In addition, our data provide important clues that might contribute to future studies evaluating the role of TSC22D2.
Collapse
Affiliation(s)
- Fang Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Qiao Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zheng Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
232
|
Shi S, Gao Q, Zeng J, Liu X, Pu Q, Liu G, Zhang H, Yang X, Zhu L. N-terminal domains of ARC1 are essential for interaction with the N-terminal region of Exo70A1 in transducing self-incompatibility of Brassica oleracea. Acta Biochim Biophys Sin (Shanghai) 2016; 48:777-87. [PMID: 27590064 DOI: 10.1093/abbs/gmw075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/11/2016] [Indexed: 12/28/2022] Open
Abstract
Self-incompatibility (SI) is an important mating system to prevent inbreeding and promote outcrossing. ARC1 and Exo70A1 function as the downstream targets of the S-locus receptor kinase and play conservative roles in Brassica SI signaling. Based on the sequence homology, Exo70A1 is divided into four subdomains: leucine zipper (Leu(128)-Leu(149)), hypervariable region (Ser(172)-Leu(197)), SUMO modification motif (Glu(260)-Ile(275)), and pfamExo70 domain (His(271)-Phe(627)). ARC1 contains four domains as follows: leucine zipper (Leu(116)-Leu(137)), coiled-coil domain (Thr(210)-Val(236)), U-box (Asp(282)-Trp(347)) motif, and ARM (Ala(415)-Thr(611)) domain. Bioinformatics analysis, yeast two-hybrid screening and pull-down assays show that leucine zipper and coiled-coil motifs of ARC1116-236 are required for the interaction with Exo70A1, while the addition of ARM motif results in loss of the interaction with Exo70A1. Meanwhile, the N-terminal of Exo70A1 without any domains shows a weak interaction with ARC1, and the level of LacZ expression increases with addition of leucine zipper and reaches the maximum value with hypervariable region and SUMO modification motif, indicating that hypervariable region and SUMO modification motif of Exo70A1172-275 is mainly responsible for the binding with ARC1, whereas pfamExo70 domain has little affinity for ARC1. Lys(181) located in the Exo70A1 hypervariable region may be the ubiquitination site mediating the interaction between ARC1 and Exo70A1. Therefore, both the leucine zipper with coiled-coil structure of ARC1116-236, and the hypervariable region and SUMO modification motif of Exo70A1172-275 are the core interaction domains between ARC1 and Exo70A1. Any factors affecting these core domains would be the regulators of ARC1 mediating ubiquitin degradation in self-incompatible system.
Collapse
Affiliation(s)
- Songmei Shi
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China Laboratory of Plant Biochemistry and Molecular Biology, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qiguo Gao
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Jing Zeng
- Laboratory of Plant Biochemistry and Molecular Biology, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaohuan Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Quanming Pu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Guixi Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Hecui Zhang
- Laboratory of Plant Biochemistry and Molecular Biology, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaohong Yang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Liquan Zhu
- Laboratory of Plant Biochemistry and Molecular Biology, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
233
|
Zhang J, Gao B, Chai H, Ma Z, Yang G. Identification of DNA-binding proteins using multi-features fusion and binary firefly optimization algorithm. BMC Bioinformatics 2016; 17:323. [PMID: 27565741 PMCID: PMC5002159 DOI: 10.1186/s12859-016-1201-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/24/2016] [Indexed: 11/13/2022] Open
Abstract
Background DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable. Results In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used multiple informative features to encode the protein. These features included evolutionary conservation profile, secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good generalization ability of our method. In addition, the BFA forged in this research would be of great potential in practical applications in optimization fields, especially in feature selection problems. Conclusions A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1201-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Bo Gao
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Haiting Chai
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Zhiqiang Ma
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Guifu Yang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, People's Republic of China. .,Office of Informatization Management and Planning, Northeast Normal University, Changchun, 130117, People's Republic of China.
| |
Collapse
|
234
|
Cao L, Yu Y, DuanMu H, Chen C, Duan X, Zhu P, Chen R, Li Q, Zhu Y, Ding X. A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC PLANT BIOLOGY 2016; 16:184. [PMID: 27553065 PMCID: PMC4995822 DOI: 10.1186/s12870-016-0872-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/15/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Wild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. In soybean genome, there exist about 140 HD-Zip (Homeodomain-leucine Zipper) genes. HD-Zip transcription factor family is one of the largest plant specific superfamilies and plays important roles in response to abiotic stresses. Although HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown. RESULTS From our previous transcriptome profile analysis of wild soybean treated by 50 mM NaHCO3, we identified an HD-Zip gene (Gshdz4) which showed high response to the alkaline stress. Our result of qRT-PCR showed that the expression of Gshdz4 was induced by alkaline stress (NaHCO3) in both leaves and roots of wild soybean. Overexpression of Gshdz4 in Arabidopsis resulted in enhanced tolerance to NaHCO3 and KHCO3 during the process of plant growth and development. However, the growths of transgenic and WT plants were not significantly different on the medium with high pH adjusted by KOH, implicating Gshdz4 is only responsible for resisting HCO3 (-) but not high pH. The transgenic plants had less MDA contents but higher POD activities and chlorophyll contents than the WT plants. Moreover, the transcript levels of stress-related genes, such as NADP-ME, H (+) -Ppase, RD29B and KIN1 were increased with greater extent in the transgenic plants than the wild plants. On the contrary, Gshdz4 overexpression lines were much sensitive to osmotic stress at seed germination and stocking stages compared to the wild plants. CONCLUSIONS We revealed that the important and special roles of Gshdz4 in enhancing bicarbonate tolerance and responding to osmotic stress. It is the first time to elucidate these novel functions of HD-ZIP transcription factors. All the evidences broaden our understanding of functions of HD-Zip family and provide clues for uncovering the mechanisms of high tolerance of wild soybean to saline-alkaline stresses.
Collapse
Affiliation(s)
- Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Pinghui Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Ranran Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
235
|
McGrath KP, Butler MM, DiGirolamo CM, Kaplan DL, Petka WA, Laue TM. Electrostatic Interactions in Leucine Zippers: Effects on Stability and Specificity of Interaction. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391150001500405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using a set of natural coiled-coil proteins as models, a series of recombinant proteins were designed and expressed in E. coli. These proteins contain a consensus coiled-coil sequence as a framework into which were incorporated positively or negatively charged residues at selected positions. A mixed-site genetic strategy was used to generate DNA fragments encoding over 4,000 different combinations of charged residues within the coiled-coil motif. A subset of these genes was used to produce recombinant coiled-coil proteins with well-defined variations in charge pattern and composition. Variants of each sequence containing a unique cysteine at the C-terminus were oxidized to the disulfide-linked dimer, and characterization of their physical properties support the proposed parallel orientation of protein chains. In all cases, equilibrium populations of dimeric and tetrameric structures were observed under physiological conditions, with dimer-to-tetramer dissociation constants in the range of 50-190 riM. Significant differences in complex stability were seen with different charge patterns. Contrary to expectations, no linear relationship was observed between net ionic interaction and any measure of complex stability, arguing that a more subtle set of rules governs these interactions. This work has revealed two important aspects of coiled-coil interactions: the observed relationship between charge interactions and complex stability shows considerable nonlinearity, and the presence of higher order interactions in coiled-coil motifs may be more widespread than is currently suspected. The relationships described here have broad relevance, especially in the areas of protein folding, protein-based materials design, antibody-antigen and receptor-ligand interactions, and rational drug design.
Collapse
Affiliation(s)
- Kevin P. McGrath
- Science and Technology Directorate, U.S. Army Natick RD&E Center, Kansas St., Natick, MA 01760-5020
| | - Michelle M. Butler
- Science and Technology Directorate, U.S. Army Natick RD&E Center, Kansas St., Natick, MA 01760-5020
| | - Carla M. DiGirolamo
- Science and Technology Directorate, U.S. Army Natick RD&E Center, Kansas St., Natick, MA 01760-5020
| | - David L. Kaplan
- Science and Technology Directorate, U.S. Army Natick RD&E Center, Kansas St., Natick, MA 01760-5020
| | - Wendy A. Petka
- Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Thomas M. Laue
- Dept. of Biochemistry, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
236
|
Akiyama Y, Nakasone Y, Nakatani Y, Hisatomi O, Terazima M. Time-Resolved Detection of Light-Induced Dimerization of Monomeric Aureochrome-1 and Change in Affinity for DNA. J Phys Chem B 2016; 120:7360-70. [PMID: 27404115 DOI: 10.1021/acs.jpcb.6b05760] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aureochrome (Aureo) is a recently discovered blue light sensor protein initially from Vaucheria frigida, in which it controls blue light-dependent branch formation and/or development of a sex organ by a light-dependent change in the affinity for DNA. Although photochemical reactions of Aureo-LOV (LOV is a C-terminal light-oxygen-voltage domain) and the N-terminal truncated construct containing a bZIP (N-terminal basic leucine zipper domain) and a LOV domain have previously been reported, the reaction kinetics of the change in affinity for DNA have never been elucidated. The reactions of Aureo where the cysteines are replaced by serines (AureoCS) as well as the kinetics of the change in affinity for a target DNA are investigated in the time-domain. The dimerization rate constant is obtained as 2.8 × 10(4) M(-1) s(-1), which suggests that the photoinduced dimerization occurs in the LOV domain and the bZIP domain dimerizes using the interaction with DNA. Surprisingly, binding with the target DNA is completed very quickly, 7.7 × 10(4) M(-1) s(-1), which is faster than the protein dimerization rate. It is proposed that the nonspecific electrostatic interaction, which is observed as a weak binding with DNA, may play a role in the efficient searching for the target sequence within the DNA.
Collapse
Affiliation(s)
- Yuki Akiyama
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Yoichi Nakatani
- Department of Earth and Space Science, Graduate School of Science, Osaka University , Osaka 560-0043, Japan
| | - Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science, Osaka University , Osaka 560-0043, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| |
Collapse
|
237
|
Abstract
The regulatory potential of RNA has never ceased to amaze: from RNA catalysis, to RNA-mediated splicing, to RNA-based silencing of an entire chromosome during dosage compensation. More recently, thousands of long noncoding RNA (lncRNA) transcripts have been identified, the majority with unknown function. Thus, it is tempting to think that these lncRNAs represent a cadre of new factors that function through ribonucleic mechanisms. Some evidence points to several lncRNAs with tantalizing physiological contributions and thought-provoking molecular modalities. However, dissecting the RNA biology of lncRNAs has been difficult, and distinguishing the independent contributions of functional RNAs from underlying DNA elements, or the local act of transcription, is challenging. Here, we aim to survey the existing literature and highlight future approaches that will be needed to link the RNA-based biology and mechanisms of lncRNAs in vitro and in vivo.
Collapse
Affiliation(s)
- Loyal A Goff
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA; The Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
238
|
Insulin induction of SREBP-1c in rodent liver requires LXRα-C/EBPβ complex. Proc Natl Acad Sci U S A 2016; 113:8182-7. [PMID: 27382175 DOI: 10.1073/pnas.1608987113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Insulin increases lipid synthesis in liver by activating transcription of the gene encoding sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c activates the transcription of all genes necessary for fatty acid synthesis. Insulin induction of SREBP-1c requires LXRα, a nuclear receptor. Transcription of SREBP-1c also requires transcription factor C/EBPβ, but a connection between LXRα and C/EBPβ has not been made. Here we show that LXRα and C/EBPβ form a complex that can be immunoprecipitated from rat liver nuclei. Chromatin immunoprecipitation assays showed that the LXRα-C/EBPβ complex binds to the SREBP-1c promoter in a region that contains two binding sites for LXRα and is known to be required for insulin induction. Knockdown of C/EBPβ in fresh rat hepatocytes or mouse livers in vivo reduces the ability of insulin to increase SREBP-1c mRNA. The LXRα-C/EBPβ complex is bound to the SREBP-1c promoter in the absence or presence of insulin, indicating that insulin acts not by increasing the formation of this complex, but rather by activating it.
Collapse
|
239
|
Sun MY, Fu XL, Tan QP, Liu L, Chen M, Zhu CY, Li L, Chen XD, Gao DS. Analysis of basic leucine zipper genes and their expression during bud dormancy in peach (Prunus persica). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:54-70. [PMID: 27107182 DOI: 10.1016/j.plaphy.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Dormancy is a biological characteristic developed to resist the cold conditions in winter. The bZIP transcription factors are present exclusively in eukaryotes and have been identified and classified in many species. bZIP proteins are known to regulate numerous biological processes, however, the role of bZIP in bud dodormancy has not been studied extensively. In total, 50 PpbZIP transcription factor-encoding genes were identified and categorized them into 10 groups (A-I and S). Similar intron/exon structures, additional conserved motifs, and DNA-binding site specificity supported our classification scheme. Additionally, chromosomal distribution and collinearity analyses suggested that expansion of the PpbZIP transcription factor family was due to segment/chromosomal duplications. We also predicted the dimerization properties based on characteristic features of the leucine zipper and classified PpbZIP proteins into 23 subfamilies. Furthermore, qRT-PCR results indicated that PpbZIPs genes may be involved in regulating dormancy. The same gene of different species might participate in different regulating networks through interactions with specific partners. Our expression profiling results complemented the microarray data, suggesting that co-expression patterns of bZIP transcription factors during dormancy differed among deciduous fruit trees. Our findings further clarify the molecular characteristics of the PpbZIP transcription factor family, including potential gene functions during dormancy. This information may facilitate further research on the evolutionary history and biological functions of bZIP proteins in peach and other rosaceae plants.
Collapse
Affiliation(s)
- Ming-Yue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Xi-Ling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Qiu-Ping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Li Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Cui-Ying Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Xiu-De Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Dong-Sheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
240
|
Morgan JI, Curran T. Review : The Immediate-Early Gene Response and Neuronal Death and Regeneration. Neuroscientist 2016. [DOI: 10.1177/107385849500100203] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The induction of the cellular immediate-early gene (cIEG) response is the earliest known transcriptional con sequence of neuronal excitation. It is believed that the products of the cIEGs (such as c- fos and c- jun) serve to bring about persistent changes in neuronal phenotype by altering gene expression and modifying signal transduction pathways. This has led, on the one hand, to the burgeoning use of Fos immunohistochemistry as a surrogate form of neuronal activity mapping and, on the other hand, to a quest for the biochemical functions of individual cIEG products in the nervous system. Recent studies of neuronal death and regen eration have contributed substantially to our vision of the molecular and biological characteristics of the cIEG response. Indeed, they have challenged some of its long-held tenets. Therefore, we will use these results to illustrate our most contemporary view of the cIEG response in the nervous system. The Neuroscientist 1:68- 75,1995
Collapse
Affiliation(s)
- James I. Morgan
- Roche Institute of Molecular Biology Roche Research
Center Nutley, New Jersey
| | - Tom Curran
- Roche Institute of Molecular Biology Roche Research
Center Nutley, New Jersey
| |
Collapse
|
241
|
Tang K, Jin Y, Chen F, Wang L. Overexpression of C/EBPβ
Affects The Cell Cycle Regulators and Spermatogenesis Related Genes Expression And Function of Bovine Sertoli Cells. Reprod Domest Anim 2016; 51:591-6. [DOI: 10.1111/rda.12724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/29/2016] [Indexed: 12/17/2022]
Affiliation(s)
- K Tang
- College of Veterinary Medicine; Northwest A&F University; Shaanxi China
| | - Y Jin
- College of Veterinary Medicine; Northwest A&F University; Shaanxi China
| | - F Chen
- College of Veterinary Medicine; Northwest A&F University; Shaanxi China
| | - L Wang
- College of Veterinary Medicine; Northwest A&F University; Shaanxi China
| |
Collapse
|
242
|
Kuhn JH, Wiley MR, Rodriguez SE, Bào Y, Prieto K, Travassos da Rosa APA, Guzman H, Savji N, Ladner JT, Tesh RB, Wada J, Jahrling PB, Bente DA, Palacios G. Genomic Characterization of the Genus Nairovirus (Family Bunyaviridae). Viruses 2016; 8:E164. [PMID: 27294949 PMCID: PMC4926184 DOI: 10.3390/v8060164] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Nairovirus, one of five bunyaviral genera, includes seven species. Genomic sequence information is limited for members of the Dera Ghazi Khan, Hughes, Qalyub, Sakhalin, and Thiafora nairovirus species. We used next-generation sequencing and historical virus-culture samples to determine 14 complete and nine coding-complete nairoviral genome sequences to further characterize these species. Previously unsequenced viruses include Abu Mina, Clo Mor, Great Saltee, Hughes, Raza, Sakhalin, Soldado, and Tillamook viruses. In addition, we present genomic sequence information on additional isolates of previously sequenced Avalon, Dugbe, Sapphire II, and Zirqa viruses. Finally, we identify Tunis virus, previously thought to be a phlebovirus, as an isolate of Abu Hammad virus. Phylogenetic analyses indicate the need for reassignment of Sapphire II virus to Dera Ghazi Khan nairovirus and reassignment of Hazara, Tofla, and Nairobi sheep disease viruses to novel species. We also propose new species for the Kasokero group (Kasokero, Leopards Hill, Yogue viruses), the Ketarah group (Gossas, Issyk-kul, Keterah/soft tick viruses) and the Burana group (Wēnzhōu tick virus, Huángpí tick virus 1, Tǎchéng tick virus 1). Our analyses emphasize the sister relationship of nairoviruses and arenaviruses, and indicate that several nairo-like viruses (Shāyáng spider virus 1, Xīnzhōu spider virus, Sānxiá water strider virus 1, South Bay virus, Wǔhàn millipede virus 2) require establishment of novel genera in a larger nairovirus-arenavirus supergroup.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Michael R Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Sergio E Rodriguez
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Yīmíng Bào
- Information Engineering Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karla Prieto
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Amelia P A Travassos da Rosa
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Hilda Guzman
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nazir Savji
- School of Medicine, New York University, New York, NY 10016, USA.
| | - Jason T Ladner
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Robert B Tesh
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Dennis A Bente
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
243
|
Pukáncsik M, Orbán Á, Nagy K, Matsuo K, Gekko K, Maurin D, Hart D, Kézsmárki I, Vertessy BG. Secondary Structure Prediction of Protein Constructs Using Random Incremental Truncation and Vacuum-Ultraviolet CD Spectroscopy. PLoS One 2016; 11:e0156238. [PMID: 27273007 PMCID: PMC4896422 DOI: 10.1371/journal.pone.0156238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
A novel uracil-DNA degrading protein factor (termed UDE) was identified in Drosophila melanogaster with no significant structural and functional homology to other uracil-DNA binding or processing factors. Determination of the 3D structure of UDE is excepted to provide key information on the description of the molecular mechanism of action of UDE catalysis, as well as in general uracil-recognition and nuclease action. Towards this long-term aim, the random library ESPRIT technology was applied to the novel protein UDE to overcome problems in identifying soluble expressing constructs given the absence of precise information on domain content and arrangement. Nine constructs of UDE were chosen to decipher structural and functional relationships. Vacuum ultraviolet circular dichroism (VUVCD) spectroscopy was performed to define the secondary structure content and location within UDE and its truncated variants. The quantitative analysis demonstrated exclusive α-helical content for the full-length protein, which is preserved in the truncated constructs. Arrangement of α-helical bundles within the truncated protein segments suggested new domain boundaries which differ from the conserved motifs determined by sequence-based alignment of UDE homologues. Here we demonstrate that the combination of ESPRIT and VUVCD spectroscopy provides a new structural description of UDE and confirms that the truncated constructs are useful for further detailed functional studies.
Collapse
Affiliation(s)
- Mária Pukáncsik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111 Budapest, Hungary
- * E-mail: ; (BGV); (MP)
| | - Ágnes Orbán
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111 Budapest, Hungary
| | - Kinga Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kunihiko Gekko
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Damien Maurin
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Darren Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - István Kézsmárki
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111 Budapest, Hungary
| | - Beata G. Vertessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail: ; (BGV); (MP)
| |
Collapse
|
244
|
Kowenz-Leutz E, Schuetz A, Liu Q, Knoblich M, Heinemann U, Leutz A. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:841-7. [PMID: 27131901 DOI: 10.1016/j.bbagrm.2016.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 11/28/2022]
Abstract
The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα.
Collapse
Affiliation(s)
- Elisabeth Kowenz-Leutz
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anja Schuetz
- Protein Sample Production Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Qingbin Liu
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Maria Knoblich
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Udo Heinemann
- Protein Sample Production Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Chemistry and Biochemistry Institute, Freie Universität Berlin, Berlin, Germany
| | - Achim Leutz
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
245
|
Nobre LS, Meloni D, Teixeira M, Viscogliosi E, Saraiva LM. Trichomonas vaginalis Repair of Iron Centres Proteins: The Different Role of Two Paralogs. Protist 2016; 167:222-33. [PMID: 27124376 DOI: 10.1016/j.protis.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/28/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Trichomonas vaginalis, the causative parasite of one of the most prevalent sexually transmitted diseases is, so far, the only protozoan encoding two putative Repair of Iron Centres (RIC) proteins. Homologs of these proteins have been shown to protect bacteria from the chemical stress imposed by mammalian immunity. In this work, the biochemical and functional characterisation of the T. vaginalis RICs revealed that the two proteins have different properties. Expression of ric1 is induced by nitrosative stress but not by hydrogen peroxide, while ric2 transcription remained unaltered under similar conditions. T. vaginalis RIC1 contains a di-iron centre, but RIC2 apparently does not. Only RIC1 resembles bacterial RICs on spectroscopic profiling and repairing ability of oxidatively-damaged iron-sulfur clusters. Unexpectedly, RIC2 was found to bind DNA plasmid and T. vaginalis genomic DNA, a function proposed to be related with its leucine zipper domain. The two proteins also differ in their cellular localization: RIC1 is expressed in the cytoplasm only, and RIC2 occurs both in the nucleus and cytoplasm. Therefore, we concluded that the two RIC paralogs have different roles in T. vaginalis, with RIC2 showing an unprecedented DNA binding ability when compared with all other until now studied RICs.
Collapse
Affiliation(s)
- Lígia S Nobre
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Dionigia Meloni
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, 1 rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Eric Viscogliosi
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, 1 rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.
| |
Collapse
|
246
|
Corra S, Lewandowska U, Benetti EM, Wennemers H. Size-Controlled Formation of Noble-Metal Nanoparticles in Aqueous Solution with a Thiol-Free Tripeptide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefano Corra
- Laboratory of Organic Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Urszula Lewandowska
- Laboratory of Organic Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, D-MATL; ETH Zürich; Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
247
|
Corra S, Lewandowska U, Benetti EM, Wennemers H. Size-Controlled Formation of Noble-Metal Nanoparticles in Aqueous Solution with a Thiol-Free Tripeptide. Angew Chem Int Ed Engl 2016; 55:8542-5. [PMID: 27098442 DOI: 10.1002/anie.201510337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/23/2016] [Indexed: 11/09/2022]
Abstract
A combinatorial screening revealed the peptide H-His-d-Leu-d-Asp-NH2 (1) as an additive for the generation of monodisperse, water-soluble palladium nanoparticles with average diameters of 3 nm and stabilities of over 9 months. The tripeptide proved to be also applicable for the size-controlled formation of other noble-metal nanoparticles (Pt and Au). Studies with close analogues of peptide 1 revealed a specific role of each of the three amino acids for the formation and stabilization of the nanoparticles. These data combined with microscopic and spectroscopic analyses provided insight into the structure of the self-assembled peptidic monolayer around the metal core. The results open interesting prospects for the development of functionalized metal nanoparticles.
Collapse
Affiliation(s)
- Stefano Corra
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Urszula Lewandowska
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, D-MATL, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.
| |
Collapse
|
248
|
Finch-Edmondson ML, Strauss RP, Clayton JS, Yeoh GC, Callus BA. Splice variant insertions in the C-terminus impairs YAP's transactivation domain. Biochem Biophys Rep 2016; 6:24-31. [PMID: 28018981 PMCID: PMC5176130 DOI: 10.1016/j.bbrep.2016.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
The yes-associated protein (YAP) is a key effector of the mammalian Hippo signaling pathway. YAP has eight known alternately spliced isoforms and these are widely expressed across multiple tissues. Variable effects have been ascribed to different YAP isoforms by inducing their expression in cells, but whether these differences are due to variability in the transcriptional potency of individual YAP isoforms has not been addressed. Indeed a systematic comparison of the transcriptional potencies of YAP isoforms has not been done. To address this, using overexpression and transcriptional reporter analyses we investigated the transcriptional activities of several human YAP isoforms and determined the effects of the splice variant insertions within the transactivation domain on its transcriptional potency. Utilising full-length coding sequence constructs we determined that the number of WW domains and disruption of the leucine zipper motif within YAP’s transactivation domain both contribute to transcriptional activity. Notably, disruption of YAP’s leucine zipper had a greater effect on transcriptional activity than the absence of the second WW domain. Using GAL4-YAP transcriptional activation domain fusion proteins we found that disruption of the leucine zipper significantly decreased YAP’s transcriptional activity in several cell lines. Our data indicates that expression of different YAP isoforms with varying transcriptional potencies may enable fine control of Hippo pathway signaling. Furthermore the specific isoform being utilised should be taken into consideration when interpreting published data or when designing experiments to ascribe YAP’s function. Transcriptional activities of yes-associated protein (YAP) isoforms were compared. YAP’s WW domains and leucine zipper motif both contribute to transcriptional activity. Absence of YAP’s second WW domain weakens transcriptional potency. Disruption of YAP’s leucine zipper weakens the transactivation domain (TAD). Potency of the TAD from YAP α, β, γ, δ isoforms is cell-context dependent.
Collapse
Affiliation(s)
| | - Robyn P Strauss
- School of Chemistry and Biochemistry, University of Western Australia, WA 6009, Australia; Harry Perkins Institute of Medical Research, WA 6009, Australia
| | - Joshua S Clayton
- School of Pathology and Laboratory Medicine, University of Western Australia, WA 6009, Australia
| | - George C Yeoh
- School of Chemistry and Biochemistry, University of Western Australia, WA 6009, Australia; Harry Perkins Institute of Medical Research, WA 6009, Australia
| | - Bernard A Callus
- School of Chemistry and Biochemistry, University of Western Australia, WA 6009, Australia; School of Health Sciences, The University of Notre Dame Australia, WA 6959, Australia
| |
Collapse
|
249
|
Yang Y, Cvekl A. Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. ACTA ACUST UNITED AC 2016; 23:2-11. [PMID: 18159220 DOI: 10.23861/ejbm20072347] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A large number of mammalian transcription factors possess the evolutionary conserved basic and leucine zipper domain (bZIP). The basic domain interacts with DNA while the leucine zipper facilitates homo- and hetero-dimerization. These factors can be grouped into at least seven families: AP-1, ATF/CREB, CNC, C/EBP, Maf, PAR, and virus-encoded bZIPs. Here, we focus on a group of four large Maf proteins: MafA, MafB, c-Maf, and NRL. They act as key regulators of terminal differentiation in many tissues such as bone, brain, kidney, lens, pancreas, and retina, as well as in blood. The DNA-binding mechanism of large Mafs involves cooperation between the basic domain and an adjacent ancillary DNA-binding domain. Many genes regulated by Mafs during cellular differentiation use functional interactions between the Pax/Maf, Sox/Maf, and Ets/Maf promoter and enhancer modules. The prime examples are crystallin genes in lens and glucagon and insulin in pancreas. Novel roles for large Mafs emerged from studying generations of MafA and MafB knockouts and analysis of combined phenotypes in double or triple null mice. In addition, studies of this group of factors in invertebrates revealed the evolutionarily conserved function of these genes in the development of multicellular organisms.
Collapse
Affiliation(s)
- Ying Yang
- Departments of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
250
|
Lesne E, Krammer EM, Dupre E, Locht C, Lensink MF, Antoine R, Jacob-Dubuisson F. Balance between Coiled-Coil Stability and Dynamics Regulates Activity of BvgS Sensor Kinase in Bordetella. mBio 2016; 7:e02089. [PMID: 26933056 PMCID: PMC4810494 DOI: 10.1128/mbio.02089-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/28/2016] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED The two-component system BvgAS controls the expression of the virulence regulon of Bordetella pertussis. BvgS is a prototype of bacterial sensor kinases with extracytoplasmic Venus flytrap perception domains. Following its transmembrane segment, BvgS harbors a cytoplasmic Per-Arnt-Sim (PAS) domain and then a predicted 2-helix coiled coil that precede the dimerization-histidine-phosphotransfer domain of the kinase. BvgS homologs have a similar domain organization, or they harbor only a predicted coiled coil between the transmembrane and the dimerization-histidine-phosphotransfer domains. Here, we show that the 2-helix coiled coil of BvgS regulates the enzymatic activity in a mechanical manner. Its marginally stable hydrophobic interface enables a switch between a state of great rotational dynamics in the kinase mode and a more rigid conformation in the phosphatase mode in response to signal perception by the periplasmic domains. We further show that the activity of BvgS is controlled in the same manner if its PAS domain is replaced with the natural α-helical sequences of PAS-less homologs. Clamshell motions of the Venus flytrap domains trigger the shift of the coiled coil's dynamics. Thus, we have uncovered a general mechanism of regulation for the BvgS family of Venus flytrap-containing two-component sensor kinases. IMPORTANCE The two-component system BvgAS of the whooping cough agent Bordetella pertussis regulates the virulence factors necessary for infection in a coordinated manner. BvgS is the prototype of a family of sensor kinase proteins found in major bacterial pathogens. When BvgS functions as a kinase, B. pertussis is virulent, and the bacterium shifts to an avirulent phase after BvgS senses chemicals that make it switch to phosphatase. Our goal is to decipher the signaling mechanisms of BvgS in order to understand virulence regulation in Bordetella, which may lead to new antimicrobial treatments targeting those two-component systems. We discovered that the activity of BvgS is regulated in a mechanical manner. A short region of the protein that precedes the enzymatic domain switches between two states in response to signal perception by other BvgS domains. This switch region is conserved among BvgS homologs, and thus, the regulation uncovered here will likely be relevant for the family.
Collapse
Affiliation(s)
- E Lesne
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - E-M Krammer
- Université de Lille, CNRS, UMR 8576-UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - E Dupre
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - C Locht
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - M F Lensink
- Université de Lille, CNRS, UMR 8576-UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - R Antoine
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - F Jacob-Dubuisson
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|